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Abstract 

The integration of robotic technology has advanced endovascular intervention towards a new 

paradigm. Unlike traditional endovascular intervention that require operators to wear heavy 

protective suits and expose themselves to prolonged X-ray radiation, innovative master-slave 

robotic systems are being developed for endovascular intraluminal procedures. Surgeons 

supervise instrument positioning from outside the operating room, using a master robot to 

control a slave robot for operations such as guidewire delivery and stent release. This robotic 

approach offers enhanced safety and precision by eliminating human-induced errors such as 

shaking, while also reducing radiation exposure and operating time to improve surgical 

efficiency and reduce complications. Interventional robots, presently in development, are 

designed for treating endovascular diseases by manoeuvring through stenosis in endovascular 

paths. These designs have led to the creation of intuitive manipulation models for robot-assisted 

surgeries. The lack of haptic feedback significantly affects task performance in anatomical 

spaces. To counteract this, visual information is used to improve intuitive manipulation. This 

involves multi-sensor data modelling and visual perception to ensure accurate tool manipulation. 

Statistical analysis using multi-sensor helps identify manipulation patterns, reaching an 

accuracy of 93.96% in distinguishing between successful and unsuccessful robot-assisted tasks 

across fourteen patterns, revealing the internal relevance between tool manipulation and 

systems for specific robot-assisted surgical tasks. 

The effectiveness and safety of tool manipulation rely heavily on the seamless collaboration 

between the surgeon and the robotic system. Intuitive manipulation plays an important role in 

improving the performance of surgical tasks using robot assistance, influencing both the force 

or speed of manipulation and the degree of cooperation between the operator and the robot. 

This process involves utilizing machine learning based on manipulation patterns to assess the 

operator-robot synergy, aiming to calculate the synergy ratio between the actions of the operator 

and the real-time response of the robot. This study used a convolution neural network 

considering factors such as no delay, constant delay, and variable delay to calculate the synergy 

ratio for precise prediction of the operator’s pattern of manipulation associated with the 

movement of the controlled robot. Simulations with a vascular interventional robot indicate that 

the model performs excellently in recognizing manipulation patterns and calculating the 

synergy ratio. In addition, operators experienced in manual percutaneous coronary 

interventions show significantly improved cooperative performance with the robotic system 

over inexperienced operators, achieving synergy ratios of 89.66%, 90.28% and 91.12% in the 

three delay considerations. Experiments involving animals and simulations with multi-sensor 
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data-driven modelling demonstrate that intuitive manipulation significantly impacts robot-

assisted surgical task performance and operator-robot synergy. Thus, improving intuitive 

manipulation provides significant aid in accurate and safe instrument delivery in robot-assisted 

interventional surgeries. 

The master-slave vascular interventional robots assisted surgery primarily depends on the 

surgeon’s use of real-time 2- or 3-dimensional medical imaging to match the patient’s anatomy 

with the images, ensure precise tool positioning, and enhance manipulation to reduce contact 

with nontarget tissues. Thus, accurate visual perception of the endovascular instrument’s 

trajectory for providing guidewire position and direction details to offset the absence of tactile 

feedback, is crucial for instrument navigation, reducing vessel wall injury. To achieve this, an 

eight-neighbourhood-based deep neural network was designed to detect the guidewire endpoint 

and its maximum bending region. The method operates in two phases. The first phase involves 

the design of an improved U-Net network, which segments the guidewire to identify regions 

containing endpoints, limiting interference from other anatomical elements and imaging noise. 

The second phase involves extracting skeletons, removing bifurcation points, and repairing 

breaks using pixel correlations in eight-neighbourhood zones.  

Initial results demonstrate that the eight-neighbourhood strategy achieves a mean pixel error 

of 2.02 pixels on a rabbit dataset and 2.13 pixels on a porcine dataset, outperforming state-of-

the-art approaches. This approach, reliant on pixel adjacency relationships based on 

segmentation quality, performs best when the segmentation is strong, showing few false 

negatives and false positives. However, the detection results are unsatisfactory mainly due to 

poor segmentation performance. To further improve visual perception of surgical instruments, 

a multi-branch feature fusion with a triple-pyramid network was designed to refine surgical 

instrument segmentation, aiding surgical decision-making, determining procedural stages, and 

identifying critical surgical zones. This model utilises an encoder-decoder architecture that 

features a sophisticated Visual Geometry Group 13 encoder for improved edge and texture 

detection, along with a triple pyramid decoder that improves feature maps. The method attains 

a mean intersection-over-union of 95.54% in a multimodal fusion dataset, delivering crucial 

visual input for robotic endovascular interventions. 

In conclusion, this thesis focuses on developing multi-sensor-based modelling methods for 

surgeon intuitive manipulation behaviours and visual perception techniques to enhance tool 

manipulation in an underactuated master-slave vascular interventional robotic system with 

spatial flexibility. Key areas of emphasis include the creation of efficient models for highly 

accurate robot tool manipulation along spatially flexible paths, particularly for accessing 

complex and narrow endovascular pathways. The studies are grounded in a developed vascular 

interventional robotic system and aim to establish an intuitive manipulation model that clarifies 

the relationship between the surgeon’s manipulation and the performance of robot-assisted 
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Abstract 

 

 

surgical tasks. Additionally, visual-based modelling is employed to enhance the visual 

perception of interventional instruments. By enhancing tool manipulation, this approach 

facilitates the safe and precise delivery of catheters and guidewires through single-port minimal 

invasion, enabling access to lesion sites along various endovascular pathways. 

 

Keywords: Master-slave robotic system; robot-assisted endovascular interventional surgery; 

sensory force feedback; intuitive manipulation modelling; pattern recognition; synergy 

performance; visual perception; guidewire endpoint detection; interventional instrument 

segmentation 
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Chapter 1: Introduction 

1.1 Research Background  

The development of surgical techniques can be categorized into three main stages: open surgery, 

minimally invasive surgery (MIS), and robot-assisted surgery (RAS). Before the 1840s, surgical 

progress was slow due to unresolved issues such as incision pain, wound infections, bleeding, and 

blood transfusions, resulting in high patient mortality rates [1]. However, as these problems were 

gradually addressed, surgery experienced rapid advancements. In 1881, the world’s first 

gastrointestinal anastomosis was performed [2]; in 1882, the first cholecystectomy was conducted 

[3]; in 1886, the first appendectomy was carried out [4]; in 1933, the first kidney transplant was 

executed [5]; in 1963, the first liver transplant was achieved [6]; and in 1967, the first heart 

transplant was performed [7]. Despite these milestones, open surgery with large incisions and 

prolonged recovery periods, remains the predominant form of surgery worldwide [8, 9]. 

With the advancement of endoscopic and laparoscopic technologies, MIS has rapidly developed 

because of its advantages of smaller incisions, shorter recovery times, and improved treatment 

outcomes. In 1987, French surgeon Philippe Mouret performed the world’s first laparoscopic 

cholecystectomy [10], heralding a new era in surgical practice. The 21st century marked the 

beginning of the “precision surgery” era, characterized by significant advancements in minimally 

invasive techniques. Technologies such as multi-slice computed tomography (CT), intraoperative 

ultrasound, and digital three-dimensional reconstruction have enabled surgeons to target lesions 

with greater accuracy, propelling the rapid development of surgical procedures. Laparoscopic 

surgery has now been extended to include 90% of general surgeries [11], 100% of urological 

surgeries [12], and 100% of gynaecological surgeries [13], achieving both minimal invasiveness 

and precision. 

The quest for even less invasive procedures, which reduce patient pain and accelerate 

postoperative recovery, has driven the development of surgical robots. The precise positioning and 

movements of robots make them particularly valuable in surgeries requiring meticulous operations. 

Consequently, surgical robots have been applied in various fields, including neurosurgery, urology, 

orthopaedics, general surgery, and gynaecology. Based on the target organs, surgical robots can be 

divided into hard tissue robots and soft tissue robots. Hard tissue robots are primarily used in 

neurosurgery and orthopaedic surgeries, while soft tissue robots can be further divided into 

laparoscopic surgery robots, natural orifice surgery robots, vascular intervention robots, and 

percutaneous puncture robots, as shown in Figure 1.1. 

The initial development of surgical robots primarily focused on transitioning from industrial 

robots to surgical applications. In 1985, Yik San Kwoh and his team performed the first 

neurosurgical procedure using the PUMA 200 industrial robot, marking the advent of surgical robots 

[14]. In 1988, the robotic system completed the first robot-assisted prostate surgery [15]. In 1992, 
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the ROBODOC system, developed by Integrated Surgical Systems, successfully performed a total 

hip replacement and received the first “food and drug administration” (FDA) approval [16]. In 

neurosurgery, surgical robots represented a significant shift from traditional craniotomy to 

minimally invasive procedures.  

Precise positioning is crucial in surgery. Traditional neurosurgery uses stereotactic tools that 

require patients to wear a head frame while awake, causing significant discomfort, long operation 

times, and limited surgical views. Surgical robots, with their precise arm positioning, are now used 

in the treatment of epilepsy, brain tumours, Parkinson disease, and intracerebral haemorrhage. In 

orthopaedic surgery, traditional procedures for joint replacements, spinal surgeries, and trauma 

surgeries are plagued by low precision, high osteotomy errors, and poor implant positioning. 

Surgical robots improve accuracy and stability [17], reduce nerve and endovascular damage and 

avoid severe complications such as paralysis. 

The implementation of microsurgery and laparoscopic surgery marked a breakthrough in surgical 

robot development, addressing clinical demands for more flexible, precise movements and reducing 

surgeon fatigue through teleoperation [18]. Unlike early neurosurgery, microsurgery involves direct 

manipulation of nerves without electrode implants. The progression from open surgery to 

laparoscopic and natural orifice surgery reflects the trend towards less invasive procedures. In 1993,  

 
Figure 1.1: Illustration of various surgical robotic systems, including ROSA ONE® Brain Robot for Neurosurgical 

procedure from American Zimmer Biomet, Inc.; Mazor X StealthTM Edition robot for Spinal surgery from American 

Medtronic, Inc.; da Vinci robot for Laparoscopic surgery from American Intuitive Surgical, Inc.; The Ion robot for 

minimally invasive lung biopsy from American Intuitive Surgical, Inc.; CorPath GRX robot for endovascular 

interventional surgery from American Siemens Healthineers, Inc.; XACT ACE® Robotic System for Percutaneous 

puncture surgery from Israel XACT Robotics Inc. 
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the AESOP robot developed by Computer Motion performed the first laparoscopic surgery [19]. 

The da Vinci system by Intuitive Surgical was first tested on humans in 1997 and obtained FDA 

approval in 2000 [15], improving precision and flexibility while reducing patient trauma. The da 

Vinci system addresses clinical challenges in laparoscopic surgery, such as instrument movement 

limitations, the “fulcrum effect” at incision points, poor surgical views, and surgeon fatigue. It 

improves flexibility with articulated joints, allows for natural operations using master-slave controls, 

and provides high-resolution binocular visuals for effective hand-eye coordination. The da Vinci 

system, which dominates 80% of the market today [20], leads the field for Intuitive Surgical, 

although companies like CMR Surgical, Johnson & Johnson, and Medtronic also provide robotic 

surgical platforms. The commercial success of the da Vinci system has driven the diversified 

development of surgical robots, expanding into joint surgeries, spinal surgeries, single-port and 

multi-port laparoscopic surgeries, endovascular interventional surgeries, and neurosurgery.  

Vascular interventional robots (VIRs) [21] is regarded as typic representation, also known as 

robotic catheter systems (RCS), emerged as alternatives to open heart surgery in the late 1990s. 

These robots navigate catheters and guidewires to the target lesion as planned, achieving precise 

treatment while avoiding radiation exposure and reducing surgeon fatigue. Early vascular 

intervention robots utilised magnetic navigation systems, with Stereotaxis designing the first-

generation system, Telstar [22], in 2004, which required special guidewires and catheters and faced 

limitations in balloon and stent operations. In 2006, the Israeli remote navigation system (RNS) [23] 

used electromechanical systems to improve surgical accuracy. Based on RNS, Corindus developed 

the CorPath200 in 2012, later improving it to the more accurate CorPath GRX system [24]. Hansen 

Medical’s Sensei X1 [25] used flexible, actively steerable catheters, Sensei X2 added intervention 

system R-One developed by Robocath [26], a French company, assists cardiovascular force 

feedback at the tip of the catheter and received FDA approval in 2014. The vascular interventionists 

 

Figure 1.2: Top vascular interventional robots available in international markets, including CorPath GRX System® 

Corindus, Inc., USA; Robotic Magnetic Navigation System® Stereotaxis, Inc.,USA; Magellan Robotic System® 

Hansen Medical, Inc., USA; R-One ® Robocath, Inc., France. 
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interventionists in the performance of stent implantation procedures. It obtained CE certification in 

2019 and has been commercially available in Europe and Africa. Despite these potentials, global 

acceptance of robotic catheterization is limited by factors such as hardly handling complex vessel 

bifurcations, chronic total occlusions, severe calcified lesions, high doses of X-ray radiation, limited 

3D imaging, lack of catheter-vessel contact force sensing and compatibility with online devices [27]. 

Consequently, vascular interventional robots are currently employed for cardiovascular 

interventions in only a limited number of hospitals around the world [28]. 

A significant advantage of vascular interventional robotic technologies lies in the design of 

master-salve teleoperation structures [29]. Through teleoperation, operators can manipulate the 

master robotic system to control slave robotic effectors, delivering catheters and guidewires to the 

site of the injury for interventional procedures at the distal end of the mechanism. This setup allows 

surgeons to sit outside the operating room in a shielded area, issuing control commands via the 

master robotic device to manipulate the movements of the slave robot and operate the surgical 

instruments (catheter or guidewire) attached to it. One of the key benefits of this master-slave 

teleoperation system is its ability to minimize orthopaedical injuries and radiation exposure, which 

are major challenges encountered by surgeons during interventional procedures. In addition to their 

master-slave remote control setup, essential technologies in vascular interventional robotic systems 

include image navigation systems for accurate tool placement using endovascular imaging, active 

drive catheters that can adjust to various vessels and procedural requirements, highly flexible and 

precise robotic arms for swift and precise catheter movement, and force feedback mechanisms that 

relay endovascular contact forces to the operator’s interface, minimizing the possibility of 

endovascular rupture [30]. Together, these technological advancements guarantee the precision and 

safety required for successful endovascular interventions. 

Endovascular imaging is essential for positioning catheters, guidewires, stents, and other surgical 

instruments used in endovascular interventions. Currently, digital subtraction angiography (DSA) 

is the main imaging technique in endovascular interventions. However, DSA is limited to providing 

two-dimensional images without depth information, while due to similarities between equipment 

and endovascular structures, interference signals can make it difficult for surgeons to discern 

accurately. In addition, interventional procedures are highly dependent on the experience and 

muscle memory of the operator, posing challenges for achieving precision and standardization in 

operations [31]. Medical professionals require substantial training to acquire the necessary skills for 

performing endovascular intervention surgeries due to the steep learning curve associated with these 

procedures. Moreover, there is considerable variation in the experience and skill levels of surgeons. 

Furthermore, a significant limitation of master-slave interventional robotic systems is the lack of 

force feedback or haptic perception. The lack of feedback on instrument-vessel contacts force 

increases the risk of complications such as thrombosis and endovascular perforation. These risks 

arise from potential issues with the lack of sensory force feedback in intuitive manipulation of robot-

assisted surgical tasks performance [32].  



Chapter 1: Introduction 

 

5  

1.2 Research Motivation and Significance 

In the early 20th century, the advancement of radiology and imaging technology led to the rapid 

growth and widespread use of interventional diagnosis and treatment. In the 1950s, cardiac 

catheterization was extensively used for the diagnosis and treatment of heart disease [33]. By the 

1970s, with the advent of angiography, interventional medicine began to address endovascular 

diseases [34]. Subsequently, with the continuous emergence of various new technologies and 

equipment, interventional diagnosis and treatment achieved significant advances in cardiovascular 

diseases, oncology, neurological disorders, and other fields [35]. Interventional therapy, guided by 

imaging devices such as X-rays, CT, magnetic resonance imaging (MRI), and ultrasound, involves 

the use of interventional materials such as catheters, guidewires, and puncture needles to treat 

diseases [36, 37]. It also obtains histological, bacteriological, biochemical, and physiological data 

and uses imaging data for disease diagnosis and treatment, including both endovascular and non-

endovascular interventions.  

Endovascular interventional treatment, which involves making a minimum incision of about 3mm 

on the skin surface without exposing the lesion surgically, enables precise targeting of suspected 

lesions directly under the guidance of devices such as DSA [38]. Due to minimal trauma, safety, 

efficiency, wide applicability, and fewer complications, it has become the preferred treatment 

method for cardiovascular diseases. However, conventional endovascular interventional procedures 

still have drawbacks: surgeons and patients must wear heavy lead aprons for extended periods while 

exposed to X-rays, which poses significant health risks over time. The procedures are also 

challenging, requiring high precision and extended durations, with high risks and a strong 

dependence on the individual experience and skill level of the surgeons. In addition, high-quality 

medical resources are currently concentrated in a few developed countries and major metropolitan 

areas. Populations in underdeveloped or remote regions and those with low incomes often lack 

access to these advanced medical technologies [39]. This disparity underscores the critical need for 

innovative solutions to bridge the gap and ensure that cutting-edge medical care becomes available 

to all individuals, regardless of their geographical location or economic status. Therefore, given the 

uneven distribution of medical resources worldwide, achieving a balanced distribution of medical  

 

Figure 1.3: Motivations towards robot-assisted interventional medicine. 
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resources worldwide require urgent involvement of advanced technologies such as robotics, remote 

assistance, and artificial intelligence (AI). 

Medical robots are increasingly being adopted for minimally invasive surgical interventions due 

to the varying benefits provided. For instance, patients can experience reduced perioperative pain, 

haemorrhage and trauma associated with traditional surgery while they are also able to recover faster 

after interventions. Currently, the da Vinci surgical robots, which is the most widely used minimally 

invasive surgical robot, have been adopted for clinical use across all continents with more than 8,887 

units already installed worldwide. The da Vinci surgical robot can be used to assist surgeons in 

different procedures such as urological, cardiothoracic, gynaecological, and abdominal surgery [40]. 

Moreover, other minimally invasive surgical robots, such as the Sensei robotic catheter system [41] 

and the XACT ACE™ Robotic System [42], are also increasingly becoming crucial for minimally 

invasive surgeries in the cardiovascular and orthopaedical fields. 

Cardiovascular diseases (CVD) lead to serious threats to the lives and health of patients while 

their family and the healthcare insurance shoulder huge financial responsibility thus, presenting 

significant challenges to social and economic development. With this, there is an urgent need to 

accelerate research, development and application of medical robotic technologies for timely CVD 

diagnosis and treatment. Moreover, it is crucial to promote the nationwide dissemination of 

advanced medical technologies and improve the uneven distribution of medical resources to 

alleviate the substantial public health pressure caused by cardiovascular diseases [21]. Vascular 

interventional robots, a category of minimally invasive surgical robots, typically operate under a 

master-slave mode, advancing catheters or guidewires to the lesion site in specific branch vessels, 

such as the Magellan system [43] of Hansen Medical (USA), the Amigo system [44] of Catheter 

Robotics (USA), the CorPath system [45] of Corindus Vascular Robotics (USA) and the R-one 

system of Robocath (France) [46]. Their performance depends on the precise control of guidewires 

during surgery, visual navigation, and the integration of multi-modal pathological information. 

Their main indications include coronary balloon dilation or stent implantation, percutaneous 

coronary angioplasty, and cardiac radiofrequency ablation for atrial fibrillation or tachycardia. 

Through master-slave design, interventional robots significantly reduce the harm of X-ray exposure 

to surgeons during surgery, decrease doctor fatigue, and mitigate the impact of subjective factors 

such as manual operation instability on surgical quality.  

Global surgical statistics indicate that approximately 6 million robot-assisted procedures are 

performed annually [47]. Compared with the widespread adoption of surgical robots in laparoscopic 

and orthopaedic interventions, the clinical acceptance and utilization rate of robot-assisted vascular 

interventions can be said to be significantly lower, accounting for only 4.6% of total procedures 

[48]. A mainly reason for this disparity lies in the unresolved challenges of manipulation under 

under-actuated conditions. In conventional surgery, surgeons grasp, hold, and manipulate surgical 

instruments based on dexterous hand movements, tactile sensation, visual perception, muscle 

memory, clinical experience and brains’ cognitive control. However, robot-assisted surgery 
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Figure 1.4: The significantly difference of manipulation between robot-assisted surgery and conventional MIS. 

introduces significantly different manipulation, as show in Figure 1.4. These include altered visual 

input conventions, causes direct haptic feedback loss, and hinders multi-agent collaborative 

mechanism involving surgeons operating the patients with a robotic platform. 

In robotic vascular interventions, surgeons must sense information across multiple screens and 

dimensions, integrate visual perception with indirect feedback, and simultaneously manage a more 

complex hand-robot-patient system. This complexity often leads to increased cognitive load, 

distracted attention, and reduced manipulation efficiency, ultimately requiring a much higher level 

of sensory adaptation and mental focus. 

However, current robot-assisted systems still fail to provide an adequate sensing of manipulation. 

The lack of intuitive feedback and perceptual transparency limits the surgeon’s ability to execute 

precise movements. Therefore, to improve the lives and health of indigenous peoples, our research 

team at the Centre for Medical Robotics and Minimally Invasive Surgical Devices, (SIAT-CAS, 

China) has developed a number of robotic prototypes for endovascular interventions. The master-

slave structure robot with two degrees-of-freedom (DoF) is designed that can be used for the 

navigation of under-actuated flexible endovascular tools, such as catheter and guidewire, during 

endovascular interventions. The robotic systems involve spatial navigation of surgical instruments 

from an entry point to desired lesion sites in patient’s vasculature. Utilizing dexterous, steerable 

endovascular tools, or highly flexible robots with high degrees of freedom can enhance 

interventional procedures through complex natural orifice. However, due to the lack of human 

(patient)-machine (robotic arm) coordination capabilities and the absence of an effective force 

feedback mechanism, the spatial positioning accuracy and safety of guide wires in the interventional 

robotic systems currently used are still inadequate. Moreover, the time required for intervascular 

navigation can be very long due to related constraints from communication delay, lack of 

experienced interventionists, intelligent level and automatic degree for operations of interventional 

robotic systems. Thus, this thesis is focused on learning-based modelling for improved spatially 

accurate operating and teleoperation control during robot-assisted surgery path navigations in 

human complex endovascular pathway. These are part of development projects for cardiac surgery 

through a single minimally incised port. 
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1.3 Key Research Challenges, Aim and Objective 

The main goal of this research is to develop functional models using multi-sensor data-driven 

approaches to enhance interventional tool manipulation for the precise execution of tasks in robot-

assisted endovascular interventions. However, robotic systems used for vascular interventional 

surgery features an underactuated mechanism. This presents significant manipulation challenges 

when navigating and positioning the distal tips of the flexible surgical instruments used in 

endovascular interventions. Moreover, the tool, robot, and surgeon collectively constitute a highly 

abstract and unstructured manipulation environment. This presents challenges in enhancing the 

surgeon’s perception and control during manipulation. Thus, to improve manipulation perception, 

it is necessary to ensure visual clarity, operational precision and efficiency, manipulation flexibility, 

and effective human-robot collaboration to achieve a high degree of procedural comfort, as shown 

in Figure 1.5. Typically, accurately modelling the highly abstracted and unstructured surgeons’ 

manipulation skills to improve surgeons' sensing of manipulation during robot-assisted surgery 

remains unresolved. This involves: (1) visual perception modelling to ensure reliable identification 

of complex states and accurately assist surgical decision-making, (2) manipulation behaviour 

modelling to support flexible and precise tool control, and (3) surgeon-robot synergy evaluation to 

assess the quality of human-robot collaboration during endovascular interventions. This research 

aims to address each of the above-mentioned specific challenges, as described below: 

 

Figure 1.5: The framework of dissertation’s research logic. 

• Enhancing the effectiveness and accuracy of interventional instrument manipulation: A 

major challenge lies in developing efficient models for intuitive manipulation through multi-

sensor data analysis to improve the technical success of surgeons during robot-assisted 

endovascular procedures. This involves distinguishing between successful and unsuccessful 

manipulation patterns, understanding the internal relationships between intuitive 

manipulation and robotic task performance, and enabling real-time adjustment of 

manipulation strategies. 
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• Collaborative strategies modelling for optimization synergy between operators and 

robot: This challenge is to model cooperative strategies that account for varying 

manipulation skills among operators to enhance the intuitive delivery of tools, optimizing the 

synergy between surgeons and the robotic system. This requires improving the collaborative 

performance of human-machine manipulation to ensure precise and efficient task execution. 

• Improving the perception characteristic of interventional instrument for upscaling tool 

manipulation: A critical challenge is the development of models for precise segmentation of 

interventional instruments and accurate endpoint localization, which are essential for 

improving robot-assisted surgical task performance by enhancing the visual perception of 

interventional instrument. This involves overcoming the difficulty of visualizing and 

analysing the surgical scene to minimize the risk of instrument collisions with non-target 

tissues, while enhancing the precision and safety of endovascular surgeries. 

Remote interventional robots consist of multiple entities, such as surgeons, robots (comprising a 

master operational mechanism and a slave actuator mechanism), and patients. To ensure the safe, 

precise, and efficient performance of robot-assisted interventional surgeries, coordinated 

management of these participants is necessary. Consequently, this thesis intends to design multi-

modal, data-driven models to enhance tool manipulation of endovascular interventional robotic 

systems. Furthermore, it aims to enable interventional robotic systems to accurately traverse narrow 

endovascular pathways, thus enhancing the ability to manipulate in human-guided robot-assisted 

surgeries. This is achieved through several goals that address the key research challenges, including: 

1.3.1 Efficiency improvement of surgeon-robot interaction  

The performance results of robot-assisted interventional procedures are largely dependent on the 

surgical experience of the operator, making manipulation behaviour modelling crucial for achieving 

successful outcomes. The vascular interventional robotic system introduces a new operational 

paradigm that separates the surgeon’s manipulation for interventional tools, changing traditional 

surgical habits. This system, designed to maintain the surgeon’s natural operating habits, involves 

complex manipulation of catheters and guidewires that mainly includes three main types of 

operational actions: translation, twisting, and composite actions. Surgeons perform push-and-pull 

manoeuvres on the guidewire along its axis. Axial translation is used to advance the guidewire 

through the endovascular lumen to reach the target lesion, or to pull it back if it enters an incorrect 

vessel. When the guidewire encounters a branch in the vessels, the surgeon uses their thumb and 

index finger to twist the guidewire, causing it to rotate around its circumference to navigate the 

bifurcation and enter the correct vessel branch. In certain narrow or calcified lesions, due to the high 

flexibility of the guidewire tip, surgeons often simultaneously push and twist the guidewire to adjust 

its movement, resulting in both axial and circumferential motion. These interventional 

manipulations are the result of the combined movements of the surgeon’s hands, fingers, wrists, 

elbows, and shoulders. Multi-modal sensory data from these areas can define manipulation patterns 
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of interventional procedures, and data-driven machine learning models can identify various 

operational patterns resulting in successful or failed robot-assisted outcomes, thereby enabling 

interventional tools to accurately reach the desired target along the anticipated path. A multi-sensor 

data-driven manipulation model was proposed to uncover the inherent connection between intuitive 

manipulation and robot-assisted task performance, concentrating on the manipulation patterns that 

lead to successful outcomes in robot-assisted interventional tasks. 

1.3.2 Optimization of cooperative manipulation between operator and robot 

The delay encountered between the master and slave mechanisms in robot-assisted interventional 

surgery extends beyond mere communication factors. Variations in collaboration between the 

robotic system and operators of different technical skills also add to the delays. Inefficient 

transmissions from proximal to distal points can occur due to inaccurate motion control, 

communication lags, and excessive force application. While inaccurate motion control and 

communication lags are linked to the inherent capabilities of the robotic system, the application of 

excessive force is primarily influenced by the operator’s level of skill. The absence of a feedback 

force affects operators in their real-time perception of distal and proximal forces, leading to abrupt 

changes in haptic force, manipulation speed, or behaviour patterns based on technical skill 

differences. As a result, the robotic system may have difficulty adjusting and reacting quickly to the 

surgeon’s instructions, leading to less effective cooperation between the operator and the robot. This 

thesis suggests efficient evaluation methods to evaluate synergistic performance between the 

surgeon and the robot. These methods involve modelling the cooperative dynamics between 

operators and the master-slave robotic system and examining the effects of delay factors such as no 

delay, constant delay, and variable delay on proximal-to-distal transmissions during robot-assisted 

interventional procedures. In addition, it examines the interaction details, including the distal force 

of the tool-tissue interaction, the proximal force of the tool and mechanism, and the control force 

exerted on the hand-controlled ring. 

1.3.3 Enhancement of visual perception of interventional instrument in endovascular 

pathway 

In robot-assisted endovascular interventions, imaging guidance is crucial for safe manoeuvring 

of robots through tight endovascular routes. This involves the swift injection of a contrast agent 

through a catheter into the heart chambers or blood vessels to illuminate the endovascular lumen 

under X-ray imaging, helping to identify the lesion site. Surgeons must recognize instruments such 

as catheters, guidewires, balloons, and stents in X-ray fluoroscopy images to accurately direct these 

instruments to the lesion for efficient restoration of the endovascular pathway.  In addition, the loss 

of force feedback coupled with potentially strong delivery forces may lead to excessive tissue 

damage. These reasons further increase the risk of robot-assisted endovascular interventional 

surgery. Studies have shown that visual feedback can partly compensate for the lack of haptic 

feedback in robot-assisted surgeries [49, 50], emphasizing the need to optimize visual systems to 
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simulate tactile sensations and improve manipulation accuracy. Thus, accurate visual feedback is 

critical, enabling surgeons to adjust surgical procedures effectively and ensure precise instrument 

manipulation, which is vital for procedural success. However, it can be challenging to visualize and 

track these endovascular tools through images because their appearance can resemble endovascular 

structures or other tissues. The guidewire often appears almost invisible, and the simple design of 

the instruments can easily blur with similar outlines of other objects such as bones or lungs. 

Therefore, the accurate tracking of endovascular tools on fluoroscopy images is essential for a fast 

and precise navigation through narrow endovascular pathways. Correctly identifying these tools 

relies on the model’s capacity to derive semantic feature maps and handle contextual semantic 

information. In this study, models for segmenting and localizing surgical instruments were designed 

to ensure precise identification and effective positioning of these instruments in a variety of 

interventional scenarios. 

1.4 Main Contributions 

This dissertation focusses on intuitive manipulation of underactuated environments and 

improving robot-assisted interventions to enable precise and safe handling of interventional 

instruments for the endovascular stenosis targets within patients. These are key challenges in 

achieving precision manipulation control of interventional robots through intraluminal pathways. 

Significant research challenges in the advancement of intuitive manipulation are explored for 

vascular interventional robots (VIRs), with the primary research breakthrough being the main 

contributions of this thesis, which is as follows:  

• To develop a model for manipulation based on multi-sensor data for statistical analysis, 

aiming to unveil the intrinsic connection between intuitive manipulation and the performance 

of surgical tasks with robotic assistance. This multi-layer recognition model can efficiently 

identify manipulation patterns in both successful and unsuccessful robot-assisted surgical 

tasks, emphasizing learning from successful manipulation behaviours. This process serves to 

alert operators to modify their manipulation techniques to prevent tissue rupture.  

• To explore the utilization of a modelling technique to investigate the collaborative 

performance of the operator and the robot, with the aim of determining the synergy between 

the operator’s actions and the robot’s immediate responses. This ratio is calculated using a 

convolution neural network (CNN) trained with delay factors such as no delay, constant delay, 

and variable delay, to accurately predict the operator’s manipulation pattern necessary to 

match the motion pattern of the slave robotic delivery device. 

• To propose a design of an eight-neighbourhood deep neural network for detecting guidewire 

endpoints and the area of maximum bending achieves leading detection outcomes. This visual 

information modelling provides information on the position, direction, and posture of the 

guidewire to surgeons, thus compensating the absence of sensory force feedback to enhance 
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intuitive control of performance in robot-assisted surgical procedures. 

• To present a design that integrates multiple-branch feature fusion with a triple-pyramid deep 

neural network aims at improving the visual information for segmenting interventional 

instruments. This approach ensures accurate segmentation to provide essential instrument 

visual data for surgical decision-making in robot-assisted endovascular procedures, such as 

identifying the surgery stage and pinpointing high-risk areas to improve intuitive 

manipulation. 

1.5 Thesis Organization 

This thesis comprises seven chapters that outline the background and advancements in general 

interventional robotic systems from research and industrial progress, as well as key contributions in 

interventional tool manipulation, cooperative performance of humans and robots, and visual 

perception of interventional instruments. Each chapter highlighted the main contributions of the 

work conducted, and the overview of each chapter is detailed below: 

• In Chapter 1 provides an overview of open surgery, minimally invasive surgery, and 

interventional robots, and includes a description of the progress in the development of surgical 

robotic systems used in cardiovascular intervention procedures for the safe and precise 

handling of interventional surgery. In addition, this chapter emphasizes the research 

motivation for the master-slave interventional robot in endovascular interventional surgery 

and the importance of associated interventional techniques. Finally, the chapter outlines the 

central research challenges, along with the objectives and main contributions of this thesis. 

• In Chapter 2 presents the literature review on interventional robots, emphasizing intuitive 

manipulation and precise visual perception to improve safety in robot-assisted surgeries. It 

outlines the transition from manual to robotic interventional procedures, specifically in 

endovascular surgery while detailing the successful research and clinical applications of these 

robots. Furthermore, intuitive manipulation modelling, force information acquisition and 

precise visual information perception of the interventional robots that have been proposed for 

optimization manipulation characteristic of the robotic system. In addition, it identifies 

technological challenges that must be addressed to improve the safety and acceptance of 

interventional robots. The design of the catheter-based interventional robotic systems upon 

which the research works carried out in this thesis, are presented.  

• In Chapter 3 explores the robot-assisted catheterization, highlighting its impact on 

cardiovascular procedures. Traditional manual surgery depends on the precise handling of the 

tools by surgeons, but robotic systems have changed these techniques significantly, despite 

their challenges. These systems face difficulties in emulating manual manipulation skills and 
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have a high learning curve, which poses a concern not yet addressed in research. This 

proposed multi-sensor data driven-based manipulation model aims to connect surgeon 

manipulation behaviour with the effectiveness of robot-assisted tasks, emphasizing on the 

learning of manipulation patterns with successful interventional procedures to enhance safety 

and efficiency of tool manipulation in robotic interventions. Moreover, statistics analysis was 

carried out to understand the redundancy of surgeon’s natural behaviours or features and their 

relationship with the robot-assisted interventional tasks. 

• In Chapter 4 addresses the design of an isomorphic master-slave interventional system in 

vascular intervention robots, highlighting the inevitable system response delays. While these 

delays are unavoidable, communication delays significantly affect human-machine synergy 

performance. The chapter emphasizes how operator expertise leads to different manipulation 

strategies and behavioural adaptations, impacting the robot’s response time and overall 

system cooperation. This proposed manipulation-based evaluation framework aims to 

improve cooperative performance by integrating data on operator muscle activity, finger 

movements, contact forces, and position and rotation data from both master and slave devices. 

In addition, three delay factors are assessed for their influence on performance and real-time 

system adaptability, ensuring that safety standards are maintained. 

• In Chapter 5 discusses the importance of visual perception of interventional instrument in 

guiding surgeons’ manipulation during interventional procedures, specifically focusing on 

intuitive handling of surgical instruments. Therefore, the chapter highlights the use of 

segmented and located instruments to facilitate tracking and pose estimation, which improves 

the safety and effectiveness of surgeries. It emphasizes the crucial role of guidewires in 

endovascular surgery, noting the challenges in visualizing and tracking them due to 

interference and their flexible nature. To address these issues, a novel detection framework is 

introduced that uses an enhanced U-Net approach for extracting the entire guidewire from 

DSA images, followed by an eight-neighbourhood method for precise endpoint detection. 

This framework aims to improve manipulation strategies and reduce the risk of instrument 

collision while also helping to develop automated interventional procedures. 

• Chapter 6 focusses on further improving the segmentation accuracy of interventional 

instruments using a technique called MBTPDS-Net, which involves multi-branch feature 

fusion and a triple-pyramid deep neural network (MBTPDS-Net). This chapter highlights the 

importance of precise segmentation in multi-modal fusion images utilizing the eight-

neighbourhood detection method discussed previously, aiming to furtherly improve accuracy 

of the interventional instruments’ segmentation performance. Even though this method works 

well with good segmentation quality, it fails if segmentation is poor. Challenges include low 

contrast, complex surgical environments, mirror reflections, and size and shape differences, 
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particularly with guidewires, which can be mistaken for bones or lungs in fluoroscopy images 

due to their simple appearance. These factors complicate accurate segmentation and can result 

in operational errors, longer surgery times, and higher patient risks. 

• Chapter 7 summarizes the technical achievements of previous chapters, identifies limitations 

in interventional robot designs explored in the research, and presents these as open research 

questions for future exploration. 

1.6 Publications1 

In this thesis, the research works that were carried out to solve manipulation modelling and 

improve the visual perception of the interventional instruments for upscaling interventional tool 

manipulation in prototypes of the interventional robotic system developed at the Centre for Medical 

robotics and Minimally Invasive Surgical Devices. Some of these works have appeared in previous 

publications as thus; system designs for vascular interventional robot, outlined in Chapter 2, were 

first presented in Wenjing Du et al. [1] and Wenjing Du et al. [2], respectively; the multi-modal 

sensing data driven-based manipulation framework proposed for surgeons’ manipulation technical 

pattern recognition of robot-assisted endovascular interventional procedure and analysis the 

redundancy of behaviours or features on robot-assisted performance of interventional tasks, outlined 

in Chapter 3, were first presented in Wenjing Du et al. [1, 6, 7]; the synergy performance 

assessment model proposed for exploring the cooperative capability between surgeon with different 

technical skill and master-slave to improve the efficient proximal-to-distal transmission based on 

machine learning method, outlined in Chapter 4, was first presented in Wenjing Du et al. [2]; the 

endpoint location method of endovascular tools proposed for robot-assisted interventional procedure, 

outlines in Chapter 5, was first presented in Wenjing Du et al. [3, 4]; while interventional 

instrument segmentation model proposed for optimization intuitive manipulation of master-slave 

isomorphic robot, outlined in the first part of Chapter 5, was first presented in Wenjing Du et al. 

[3, 4]; the interventional instrument segmentation models based on multi-modal images fusion, 

outlined in Chapter 6, were first presented in Wenjing Du et al. [3]. The specific details for each of 

these studies are described in the respective chapters of this thesis. 

 
1 Details please see "List of Publications" in page III. 
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Chapter 2: Literature Review 

Despite increasing evidence that supports surgical robots as a reliable and effective platform for 

diagnosing and treating internal organs, advanced robotic technologies, such as the da Vinci surgical 

system, have inherent limitations when it comes to anatomical access through restricted pathways. 

These constraints involve multiple-port access, extended procedures, and challenges in docking 

during patient-care operations [51]. This chapter offers an overview of the background and 

developments in robot-assisted interventional surgeries, together with a comprehensive review of 

the literature on the design, master-slave controls, haptic feedback, and clinical application of 

interventional robots. Furthermore, it explores the levels of robotic intelligence used for minimally 

invasive interventions within the narrow natural channels of the human body. The chapter also 

provides a comprehensive review of the robotic systems designed for interventional surgery, current 

methods for learning and evaluating intuitive manipulation, force feedback systems, improved 

visual perception of the interventional instrument, as well as the limitations and technical challenges 

of existing robotic systems and tool manipulation. 

2.1 Concept and the Development Trends of Interventional Medicine 

Interventional medicine is described as a set of diagnostic and therapeutic procedures that identify 

and treat diseases using medical imaging equipment, such as needles, guidewires, and catheters [52]. 

The key characteristics of interventional medicine include being minimally invasive, precise, safe, 

and effective. From a clinical practice viewpoint, interventional medicine includes all diagnostic 

and therapeutic procedures performed with the help of medical imaging equipment, regardless of 

the clinical department responsible for them. However, interventional radiology, also known as 

interventional therapy, is understood from the diagnostic technique viewpoint. Using imaging 

devices such as digital subtraction angiography machines and ultrasound, it uses needles, catheters, 

and other materials to insert specific instruments into affected areas of the body through minimally 

invasive methods for various treatments, such as puncture techniques, catheter operation, 

angiography, radiofrequency ablation, and cryoablation. Essentially, both interventional medicine 

and interventional radiology refer to the same concept, but from different viewpoints. Interventional 

radiology is considered a developing diagnostic and therapeutic technology, whereas interventional 

medicine is seen as a new medical specialty. 

The roots of interventional medicine can be traced back to cardiac catheterization in the early 

20th century, initially used to evaluate heart function in individuals with heart disease [53]. 

Interventional medicine expanded rapidly with the evolution of radiology and imaging technology, 

having its inception in 1896 with the first diagnostic application of X-ray [54]. In 1929, Werner 

Forssmann achieved a significant milestone by performing the first cardiac catheterization [55]. He 

inserted a catheter into his own vein at the elbow and navigated it to the right atrium while X-ray 
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monitoring. Further advancements followed with Sven-Ivar Seldinger’s method for catheter 

insertion in 1953 [56] and Charles Dotter’s groundbreaking transluminal angioplasty in 1958 [57], 

which laid the foundation for contemporary endovascular interventions. The evolution of 

endovascular interventional surgery progressed, with Dotter and Melvin Judkins introducing 

catheters and guidewires in 1964 [58]. 

During the 1970s, interventional medicine expanded its scope to include endovascular diseases 

with the introduction of angiography technology. In 1973, Andreas Gruentzig carried out the first 

percutaneous coronary angioplasty, laying the foundation for interventional coronary heart disease 

treatment [59]. He also created the balloon catheter in his kitchen, enabling effective treatment of 

stenotic conditions and igniting a “balloon fever”. In 1976, Alexander Margulis coined the term 

“interventional” [60], signalling the creation of a new specialized branch in radiology. This 

development was followed by the emergence of various interventional devices, driving the rapid 

growth of interventional medicine. Julio Palmaz invented the balloon-expandable stent in 1978 [61], 

which provided essential technical support for coronary stent implantation. The balloon catheter 

designed by Thomas J. Fogarty’s in 1990 [62] further improved thrombectomy and angioplasty 

capabilities in endovascular interventions. 

In the following decades, significant advances were made in interventional medicine that included 

cardiovascular disease, tumours, nervous system disorders, and beyond. For example, the first 

successful radiofrequency ablation for liver cancer was recorded in 1994 [63], inaugurating a new 

era in tumour interventional therapy. Subsequently, in 1996, the Cyber-Knife stereotactic 

radiotherapy system [64] emerged, offering new advances in interventional radiotherapy. It was not 

until 1998 that the US FDA approved the first cryoablation system for addressing cardiac 

arrhythmias [65]. From the 2000s onwards, interventional radiology experienced rapid advancement, 

notably with the introduction of drug-eluting steroids in 2000 [66], which significantly decreased 

the rate of coronary artery restenosis. In 2004, the first successful application of irreversible 

electroporation for liver cancer marked a breakthrough in tumour ablation technology [67]. By 2005, 

cryoablation began to be implemented clinically for the treatment of kidney cancer in the US [68], 

and this technology gradually gained acceptance as a standard method of treatment for kidney cancer. 

In 2008, the US FDA approved the first cryoablation system for lung cancer treatment [69]. In 2010, 

high intensity focused ultrasound [70] technology was developed and put to clinical use as a non-

invasive method for tumour treatment, while cryoablation was used to ease the pain of bone 

metastases, thereby effectively alleviating pain symptoms in patients. In 2011, the fenestrated 

endovascular aortic repair technique [71] had matured to treat aortic aneurysms, reducing the risks 

associated with aortic aneurysm surgery.  

Furthermore, in 2012, advances in drug-eluting stents, including biodegradable variants, were 

made, improving the long-term success of coronary stent implantation. Concurrently, cryoablation 

began to be used more in the treatment of liver and pancreatic cancers, slowly becoming a 

complemental treatment approach [72]. In 2013, the Mitra-Clip system [73] was effectively used  
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Figure 2.1: Overview of the progression trends in endovascular interventional surgery technologies. 

for transcatheter mitral valve repair, decreasing the risks associated with cardiac surgery. By 2015, 

transcatheter heart valve replacement methods, such as transcatheter aortic valve replacement [74] 

and transcatheter tricuspid valve replacement [75], offered safer valve replacement alternatives for 

high-risk patients. In 2016, transvenous thrombectomy greatly improved outcomes in the treatment 

of patients with acute ischemic stroke [76]. In the same year, the US FDA approved a cryoablation 

system for clinical trials aimed at the treatment of breast cancer [77]. In 2017, the National medical 

products administration (NMPA) in China approved Hai-Jie-Ya’s cutting-edge devices, the “Low-

Temperature Cryoablation Surgery System” [78] and the “Disposable Sterile Cryoablation Needle” 

[79], through the special approval process for pioneering medical devices. By 2018, stereotactic 

radiotherapy technology [80] was used for accurate radiotherapy of malignant tumours, including 

lung and pancreatic cancers. In the same year, US researchers began investigating the joint efficacy 

of cryoablation and immunotherapy to improve treatment outcomes [81].  

The advancement of the field progressed with breakthroughs in robotic surgery technologies, such 

as FDA approval of the da Vinci robot by the American Intuitive Surgical Company in 2000 [82], 

the introduction of AI-assisted diagnostics in 2019 [83], and the creation of new interventional 

materials such as drug-eluting microspheres and biodegradable stents in 2020 [84]. Figure 2.1 

highlights the major technological progress in interventional medicine. 

Currently, interventional radiology is the preferred approach for treating cerebrovascular and 

cardiac diseases, replacing traditional surgical methods with minimally invasive endovascular 

procedures. Many open endovascular surgeries have been replaced by endovascular techniques. In 

addition, transcatheter arterial chemoembolization [85], iodine-125 seed implantation, and tumour 

ablation are now crucial components of cancer therapy. Furthermore, the use of interventional 

radiology extends to various organ systems, including the respiratory, digestive, and urinary systems, 

highlighting its extensive clinical influence. During the past three decades, interventional therapy 

has become a leading clinical discipline worldwide, known for its minimal invasiveness, rapid 

effectiveness, and low complication rates [86]. The formation of specialized interventional 
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departments in numerous hospitals emphasizes its role as the third largest clinical specialty after 

internal medicine and surgery. 

Unlike conventional medical therapies that involve drug intake or injections, as well as open 

surgeries, interventional procedures use specialized catheters or minimally invasive instruments 

directed by sophisticated imaging technology. This approach ensures minimal trauma to the patient 

and provides prompt therapeutic results. Interventional procedures aim to address five major issues, 

including infusion, embolization, recanalization, ablation, and biopsy, using minimally invasive 

surgical instruments, as guided by clinical needs, with further details detailed as follows:  

• Infusion: Administering medications directly to the site of the lesion via a catheter inserted 

within the natural pathways of the body. 

• Plugging up: Utilizing catheters or other surgical tools with embolic substances to block 

blood vessels, stopping bleeding, or removing tumours. This technique is applied for acute 

arterial bleeding conditions such as haemoptysis, bleeding from a ruptured liver, spleen, 

kidney, postpartum haemorrhage, nosebleeds, etc. 

• Unclogging: Using guidewires along with balloons and stents to clear narrowed or blocked 

blood vessels or other lumens is used for occlusive diseases such as peripheral arterial 

stenosis, carotid artery stenosis, renal artery stenosis, lower limb arterial stenosis, among 

others. 

• Ablation: Involves the use of a catheter or surgical instrument to directly deliver 

radiofrequency, microwave, cryoablation, and particles into cancerous tissue to remove 

lesions, and is utilised in the treatment of cancers such as uterine fibroids, lung cancer, 

kidney cancer, pancreatic cancer, and liver cancer, among others. 

• Clamping: Removal of tissue from deep-body lesions for pathological examination using a 

catheter or endoscope working channel to insert biopsy forceps or puncture needles, as seen 

in lung nodule biopsies. 

2.2 Vascular Interventional Robots in Interventional Surgery 

2.2.1 Rationale of vascular interventional robot development 

Despite significant advances in endovascular interventional technology, the techniques used in 

performing these surgeries still face several challenges. First, X-ray imaging, which is crucial during 

interventional procedures, exposes surgeons to extended radiation exposure. Although lead aprons 

or radiation shielding panels are currently used to reduce this exposure, they do not eliminate 

radiation risk. Prolonged exposure to high-radiation environments increases the risk of developing 

conditions such as skin cancer, leukaemia, thyroid cancer, and other diseases. Furthermore, wearing 

heavy lead aprons for long periods of time compromises the precision of guidewire and catheter 

handling by surgeons, while also increasing the probability of joint injuries. Current interventional 

surgeries also heavily depend on surgeon expertise and muscle memory, making it difficult to ensure  
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Figure 2.2: Overview of the endovascular interventional procedure. 

accurate and standardized procedures. For example, hand movements while manoeuvring guide 

wires and catheters can lead to vibrations, misplacement, or excessive rotation. Complex scenarios, 

including multiple or diffuse lesions, are harder to handle and require more time to handle. 

Endovascular interventional surgery also involves a steep learning curve, necessitating extensive 

training for clinical surgeons to perform these surgeries, with considerable differences in surgical 

experience and proficiency among practitioners. 

The introduction of VIRs is intended to address these issues. These robots transform medical 

tasks into mechanical processes, enhancing accuracy to millimetre level and force feedback to 0.01N. 

This capacity facilitates complex interventional surgeries that are difficult to perform manually, thus 

increasing surgical precision, safety during operations, and recovery of blood vessels after surgery. 

VIRs function as master-slave electromechanical tools that enable surgeons to remotely manage 

catheters and guide wires in coronary, neuro and peripheral endovascular procedures. By merging 

surgical robot technology with endovascular interventional methods, these robots assist surgeons in 

precisely pinpointing lesions, creating 3D models of patient vessels from preoperative and 

intraoperative images, and evaluating features such as endovascular intersections, curves, elasticity, 

and plaques. This supports the accurate tracking and placement of surgical tools, optimizes the use 

of balloons, stents, and catheters, and encourages the standardization of surgical procedures, as 

shown in Figure 2.2. 

2.2.2 Evolution of VIR system 

The introduction of VIRs has significantly minimized surgeon exposure to X-ray radiation, while 

improving precision and stability in surgical procedures. Over nearly two decades, various 

companies have developed different robotic systems. In 2006, Beyar et al. [23] at Haifa Hospital in 

Israel designed a RNS for percutaneous coronary intervention (PCI). This system uses multiple 

friction wheels to steer the tools (guidewire or catheter). Unlike magnetic drive catheters, RNS does 

not require the creation of special instruments, thus expanding its versatility. 

Later, in 2007, the FDA granted approval for the Hansen Medical Sensei X1 system [87], which 

subsequently began its application in coronary intervention and ablation therapy. This system 

operates on an electromechanical principle, using an electric mechanical hand to manage a bendable, 
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specialized catheter and sheath. By manipulating the tail end and embedding connecting lines 

around the catheter or sheath, the bending direction can be modified. The Sensei X2 system [88], an 

upgrade of the Sensei X1, integrates visual and tactile force feedback, although it requires special 

head-end components. Originally from the Sensei system, the Magellan system [89] is adapted to 

aid in the treatment of peripheral endovascular diseases. It improves catheter flexibility and allows 

forward and backward motion through a series of clamping rollers. The FDA approved both the 

Sensei X series and the Magellan system in 2012, but they do not support standard intraluminal 

devices. Both systems are composed of a remote device manipulator, a surgeon workstation, and a 

robotic catheter [90]. The remote device manipulator includes two manipulators for controlling 

flexible endovascular instruments, along with a friction drive belt that ensures stable delivery and 

precise control of the distal tip of tools like catheters and guidewires [91]. The Magellan system, 

specifically designed for peripheral endovascular procedures, supports multi-specialty applications. 

One major benefit is its uniquely engineered flexible bending catheter, which facilitates seamless 

entry into complex small peripheral vessels, ensures steady placement of the guidewire, and reduces 

the likelihood of endovascular damage caused by contact with and friction against the vessel wall 

[92]. However, the system is disadvantaged by the requirement for manual placement of 

interventional devices (for example, balloons and stents) after surgical access is achieved, the high 

cost of the robotic system, and the absence of haptic feedback [93]. The necessity of specially 

developed catheters and sheaths also limits their usage. 

Given the drawbacks of earlier design concepts in clinical settings, the creation of commercial 

intraluminal devices operated by robots began to more effectively meet the needs for endovascular 

intraluminal interventional surgery, as shown in Figure 2.3. Catheter Precision Co. developed the 

Amigo system [94], receiving FDA approval in 2012. The outer tube of the Amigo system can hold 

the internal catheter in place and perform movements in forward, backward, and rotational directions 

like a rail, enabling the catheter’s multidirectional movement. The open design allows compatibility 

with certain commercially available catheters of varying thicknesses, but it is unable to deploy stents 

or carry out more complex intraluminal interventional procedures. Corindus Vascular Robotics 

launched a robotic system for endovascular surgeries, beginning with CorPath200 [95], which 

gained FDA approval in 2012. Subsequently, they advanced to the CorPath GRX system [95], 

obtaining FDA approval in 2016 and CE certification in 2019. This new system stands as the leading 

commercial solution for vascular interventional surgery robots, applicable to the coronary and 

peripheral arteries using an open platform. The system functions by moving the guidewire and 

catheter forward and backward through a clamping roller, with the roller’s rotation dictating the 

rotation of the interventional tools (catheter or guidewire). It is compatible with 0.014" guidewires, 

rapid-exchange balloon catheters, and balloon-expandable stent catheters. Operation at the bedside 

involves a single use control box containing the roller, which can be prepped with guidewires, 

catheters, balloons, and related equipment after infection. The second generation CorPath® GRX 

robotic system [95] is equipped with a single-use disposable cassette, an extended reach arm, and a 
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Figure 2.3: Development of vascular interventional robots. 

lead-shielded robotic control workstation. This system can simultaneously guide catheter balloon, 

manage the guidewire, and stent catheter. In addition, the automation and accuracy of the system 

have been improved with features such as “dotter”, “constant speed”, “active device fixation (ADF)”, 

and “auto rotate-on-retract” [96-99]. In general, the compact design of the robotic system facilitates 

easier management of endovascular instruments through the control workstation and includes a 

sterilizable disposable drive cassette. Despite its advances, the system is limited by its ability to 

operate only one set of guidewires and catheters, which makes it less ideal for complex lesions, 

along with the high cost of consumables and lack of distal force feedback [100, 101]. 

In 2019, Siemens Medical invested $1.1 billion in cash to acquire Corindus Vascular Robotics 

and develop vascular interventional surgery robots [102]. In the same year, Robocath, a French 

company, received CE certification for its R-One robotic system [103]. In 2020, the FDA approved 

the Genesis RMN system [104] from the American company Stereotaxis. In early 2020, the Israeli 

company Microbot Medical introduced the Liberty robotic system [105], acknowledged as the first 

fully disposable robotic system worldwide, targeted at surgeries involving the nervous system, 

cardiovascular, and peripheral endovascular regions. This system is built similarly to an old tape, 

featuring a specially designed catheter that is pre-rolled within the robot. The Liberty robotic system 

features a self-developed cost-effective catheter head known for its active rotation capability, 

compactness, and simplicity, which obtained FDA approval in 2023. These products are mainly 

available on the EU and US markets, where the development of the vascular interventional robot 

industries was initially developed.  

Compared to the global market, domestic development of vascular interventional robot 

technology began at a later stage, as detailed in Table 2.1. Professor Xiao Nan of Beijing Institute 

of Technology established wire science and pioneered the first domestic multi-site remote coronary 

intervention, which is currently in the animal experimentation phase. Guo Shuxiang, an international 

academic member of the Japanese Academy of Engineering, founded Abrobo Medical and 

developed a pan-vascular interventional robot, which has successfully completed its first clinical 

trial for neurovascular intervention, receiving the fourth NMPA approval for vascular interventional 
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robots in China in 2024. The Shanghai Operation Robot company developed the ALLVASTM 

vascular interventional robot, in partnership with Shanghai Chang-hai Hospital and Shanghai Jiao 

Tong University. In addition, RainMed Medical and RAYSIGHT Medical are known for their 

capabilities in artificial intelligence and imaging software, concentrating on comprehensive 

planning for functional endovascular diagnosis and treatment; they collaboratively developed the 

Flash Robot and an interventional vascular robot with SIAT, respectively. The CAFFR system from 

RainMed Medical, along with the CTFFR and coronary intelligent post-processing platforms from 

RAYSIGHT Medical, obtained approval from the NMPA.  

WeMed’s first product, the ETcath vascular interventional robot, which is a DSA machine, has 

passed the national innovation medical instrument examination and approval. Shanghai Huihe 

Healthcare technology, in collaboration with Shanghai Jiao Tong University, cofounded an  

Table 2.1: Technology transfer from Chinese companies in vascular interventional robots. 

Robotic systems Company Main features Description 

 
R-ONE®  

Wisdom Pulse 

Robotics 

(Shanghai) 

The French company 

Robocath S.A. and 

Minimally Invasive 

Robot have formed a 

joint venture in China. 

NMPA in 2023 

 
VAS HERO 

VAS ROBOT 

A surgical robotic system 

for minimally invasive 

endovascular 

interventions invented by 

the clinical research team 

led by Professor Li 

Youxiang at Beijing 

Tiantan Hospital and the 

Beijing Institute of 

Technology 

First approved 

interventional NMPA 

 
ETcath 

WeMed 
Integration of DAS with 

AI for image synthesis 

Has successfully 

completed the national 

innovation medical 

device examination and 

received approval 

 
ALLVAS™ 

Shanghai 

Operation Robot 

Features an adaptable 

hand gripping technique 

Achieved the world 

first PTA stenting 

 
Pan-vascular Interventional Robot 

Abrobo 

Cooperative management 

and supervision of 

several catheter 

guidewires, 

comprehensive vascular 

interventional robot 

First clinical trial for 

neurovascular 

intervention, securing 

120 million yuan in 

Pre-A funding, and the 

fourth NMPA-

approved interventional 
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Flash Robot 

RainMed 

Integrating the digital 

function diagnosis unit, 

merging diagnosis and 

treatment 

Conducted the initial 

experiments on animals 

 

Vascular interventional robot 

RAYSIGHTME

D 

RAYSIGHTMED & 

SIAT 

Using 5G for remote 

telesurgery with force 

feedback, RuiXin-

FFR(NMPA) is 

engaged in an extensive 

multicentre clinical 

trial with a robot. 

 
Interventional robot 

Wire Science 

First domestic multi-

location remote coronary 

intervention with initial 

study conducted on 

animals 

Secured 10 million 

CNY in a Series A 

funding round. 

 
Robvas 

LANCET 

Robotics 

Real-time master-slave 

regulation, accurate 

movement management 

of interventional 

supplies, combined force 

and visual feedback 

mechanism 

Advanced to the phase 

of registered clinical 

trials 

 
VasCure robotic system 

Beijing Hongtai 

Medical 

Technology co. 

Cooperation with 

Institute of Automation 

CAS 

Numerous successful 

clinical trials in human 

science research and 

remote 5G surgeries 

K-Clip™ 

Shanghai Huihe 

Healthcare 

technology co. 

Global initiative for 

ultrasonic localisation 

Received fast-tracked 

approval for cutting-

edge medical devices 

 
TITIAN® 

MEIO 

CARDINAV 

MEDICAL 

Electrophysiological 

intervention that is 

compatible with the 

standard catheter sheath 

Received fast-tracked 

approval for cutting-

edge medical devices 

 

Interventional robot R&D centre, resulting in the development of the ultrasound-locating 

interventional tricuspid valve shaping device K-Clip. Moreover, LANCET Robotics and Beijing 

Hongtai Medical Technology each developed the Robvas and VasCure robotic systems, which have 
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both entered the registered clinical trial phase and have demonstrated preliminary clinical 

practicability. MEIO CARDINAV MEDICAL designed the TITIAN® electrophysiology 

interventional robot, which is currently under review for innovative medical equipment. Hebei Yidu 

Robotics Technology Co., Ltd., a VAS ROBOT subsidiary, created the “VAS HERO” 

interventional robotic systems, certified by the NMPA in March 2023, marking it as the first 

approved vascular interventional robot in China. In addition, Minimally Invasive Electrophysiology 

has exclusive distribution rights for Stereotaxis magnetic navigation electrophysiology robots in 

China. To bring R-ONE to China, MicroPort Robotics collaborated with French Robocath S.A.S in 

2020, forming Wisdom Pulse (Shanghai) Robotics Co., Ltd., which developed the R-ONE® robotic 

system, now achieving NMPA approval as the second certified vascular interventional robot in 

China. In 2021, Siemens medical’s CorPath GRX interventional surgery robot was approved by 

NMPA in 2023, making it the third certified vascular interventional robot in China. Generally, these 

clinical systems are remarkable, and the competitive advantage provided by local companies has 

played a crucial role in the rapid expansion of the vascular interventional robot sector in China. 

In May 2023, Siemens chose to stop the development of the Corindus vascular interventional 

robot after discovering significant flaws in the CorPath product, such as its inability to support 

sheaths, guide catheters, or mechanisms for the deployment of self-expanding stents. The robot is 

limited to moving the interventional tools (guidewire or catheter) forward and backward, as well as 

making small rotational adjustments, but cannot perform complex intraluminal interventions. In 

addition, it is incapable of performing multiple activities involving the guidewire, balloon catheter, 

or stent at the same time and lacks a tactile feedback force feedback system. 

Currently, numerous research projects are focused on force or haptic feedback, operational safety 

strategies, and multi-instruments collaborative delivery technology for robotic-assisted 

endovascular procedures. Various vascular interventional robots have been designed to meet the 

essential requirement in catheterization laboratories for robotic systems capable of handling 

multiple tools (guidewires or catheters) simultaneously during the treatment of complex coronary 

lesions (type B2), which is a technology that is the subject of ongoing studies [106]. The treatment 

of complex lesions depends on the coordinated use of multiple instruments. To address this issue, 

Wang et al. [107] developed a mechanism capable of simultaneously handling both the catheter and 

guidewire. The guidewire is delivered via an axial reciprocating motion, while its rotation is 

facilitated by three rollers that clamp and rotate the guidewire at the same speed and direction. This 

mechanism allows for the clamping and rotation of two guidewires, with switching between them 

achieved by replacing the crank rocker with a different roller set. However, despite enabling multi-

instrument movement, the mechanism’s large size and weight, along with the potential for multi-

segment bending in the wire clamping section, may pose risks of damaging the instrument. In 

contrast, Cha et al. .[108] utilised a combination of linear reciprocating motion and rotating gear 

teeth for catheter movement and rotation, coupled with a friction wheel and gear arrangement to 

drive the guidewire’s movement and rotation [109]. They performed an in-vivo study to confirm the 
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suitability and efficacy of the system to manage, control, and navigate multiple instruments [110]. 

highlighting its advantageous in straightforward disassembly and sterilization of components. 

On a global scale, VIRs are considered the newcomers among major surgical robots. In 

comparison, orthopaedic robots have already seen the rise of leading companies, such as Stryker’s 

Mako joint robot, approved by the FDA in 2006. Stryker’s MAKO now commands a global market 

share of 9%, alongside Medtronic’s Mazor and China’s Tianzhihang. Intuitive Surgical’s da Vinci 

leads the field of laparoscopic robots, being the first of its kind to receive FDA approval and has 

maintained a stronghold in the global market for many years. Meanwhile, vascular interventional 

robots see only a 0.5% penetration rate in the US markets. The VIRs, which require significant 

advances in imaging, materials science, and robotics technology, are distinct and complex to 

develop compared to other surgical robots, as they merge multiple disciplines, including medicine, 

mechanics, biomechanics, imaging, and computer science, leading to substantial technical 

challenges. 

Unlike orthopaedic and laparoscopic robots, VIRs need to manoeuvre through more delicate 

human blood vessels and operate catheters, guidewires, balloons, and other interventional 

instruments within them. This requires high standards for product performance and stability. 

However, Laparoscopic robots integrate relatively few types of mechanical arms and hands. On the 

other hand, VIRs must handle hundreds or even thousands of consumables, which differ in thickness, 

length, and hardness. The robot must be able to control these pre-existing endovascular intraluminal 

devices to complete all surgical steps and accommodate various endovascular interventional 

procedures. These features present considerable technical challenges for VIRs. 

2.2.3 Clinical trials of applications of vascular interventional robots 

Domestic and international VIRs currently utilise a master-slave mode of operation, where the 

robotic propulsion mechanism accurately navigates catheters or guidewires to specific branch 

vessels or lesion locations. On the other hand, this master-slave setup effectively protects medical 

staff and patients from radiation in the surgical setting, thereby decreasing the risk of radiation-

related injury, and lessens the dependence on the surgeon’s expertise and muscle memory, which 

can often affect the accuracy and standardization of procedures. In addition, they alleviate the steep 

learning curve and the disparities in surgical expertise and skill levels among clinicians, which 

traditionally require extended training periods to achieve proficiency in such procedures. On the 

contrary, the use of small instruments such as catheters and guidewires allow minimally invasive 

procedures with lower bleeding, limited radiation exposure, and greater accessibility. However, the 

system’s underactuated nature and numerous DoF constrain the positioning accuracy of the 

interventional robot. 

Surgical robots, such as the da Vinci system, are mainly built for laparoscopic operations. These 

robots have distal robotic arms equipped with rigid tools, such as grasping forceps, cutting forceps, 

and ligation forceps. The tools are integrated with the robot, creating a unified system, although the 

range of available instruments is limited. During the development process of these robots, robotic 
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arms and manipulators are designed as a single unit, enabling complete control over rigid tools. In 

contrast, the design of vascular intervention robots involves the surgeon operating a primary robotic 

arm, which then remotely controls a secondary device to handle instruments like guidewires, 

catheters, balloons, and stents that vary in size and length (from 1 to 3 meters) for precise forward, 

backward, and rotational movements within blood vessels. Even though these movements are 

relatively simple, the extended pathways add complexity. Moreover, instruments that vary in size, 

length, and flexibility are inherently non-rigid, which presents challenges in managing their 

movement paths through complex, narrow endovascular pathways with limited trajectory control. 

Consequently, achieving accurate placement of the catheter or guidewire and its delivery mechanism, 

which together form an underactuated configuration, continues to be a significant challenge in 

interventional surgery.  

Robot-assisted endovascular interventions in underactuated environments are typically performed 

in a two-stage process. The first stage involves manual procedures to establish stable arterial access 

using flexible surgical instruments, followed by robotic navigation, often assisted by a surgeon or 

aide. The second stage is the robot-assisted intervention, where the interventionalist remotely 

operates the robot to insert guidewires, balloons, and stent catheters into endovascular lesions, 

guided by real-time two-dimensional imaging. These stages are illustrated in Figure 2.4. VIRs are 

categorized into four main types: robot-assisted percutaneous coronary intervention (R-PCI), robot-

assisted peripheral endovascular intervention (R-PVI), robot-assisted neurovascular intervention 

(R-NVI), and robot-assisted electrophysiological intervention (R-EPI). R-PCI, R-PVI, and R-NVI 

share similarities in their procedural workflows, differing primarily in the anatomical regions 

involved—such as coronary arteries, lower extremities, and cranial vasculature. Initially, 

commercial robotic systems were designed as specialized tools for either R-PVI or R-PCI. The 

Hansen Magellan system exemplifies an R-PVI system, while the CorPath and R-One systems 

(Robocath Inc., Rouen, France) are tailored for R-PCI. Attempts have been made to adapt these 

systems for broader applications in endovascular interventions with minimal modifications. For 

instance, the CorPath® GRX robotic system has been evaluated for R-PCI, R-PVI, and R-NVI, 

making it a multi-specialty vascular robotic platform [111-113]. R-PCI, R-PVI, and R-NVI all 

involve the use of flexible tools like catheters, guidewires, balloons, and stents, which VIR systems 

navigate to specific sites within blood vessels. In contrast, R-EPI focus on distinct anatomical targets 

and procedural flows that differ significantly from the endovascular procedures. Consequently, 

electrophysiological interventional robots (EPIRs) are typically specialized systems, designed with 

features suited for cardiac ablation procedures. These include catheter-tip flexibility, distal force 

measurement, enhanced catheter manoeuvrability, magnetic navigation, and comprehensive cardiac 

mapping. These attributes are crucial for accurately positioning the steerable catheter, particularly 

when treating cardiac arrhythmias and atrial flutter. 

Robot-assisted endovascular interventional therapy has demonstrated promising results in early 

clinical trials. In 2006, Beyar et al. performed the first robot-assisted PCI using the RNS system in  
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Figure 2.4: Overview of the robot-assisted endovascular interventional processing procedure. 

18 patients. The trial successfully completed guidewire crossing through the lesion in 17 patients, 

resulting in a clinical success rate of 100%, a technical success rate of 94%, and an overall surgical 

success rate of 83% [23]. This trial marked a significant milestone in the development of vascular 

interventional surgery robots. As these robots continue to improve, they enable surgeons to perform 

robot-assisted endovascular interventions in various specialties, including interventional cardiology, 

peripheral endovascular surgery, neurovascular surgery, and cardiac electrophysiology. 

Granada et al. reported the first human trial of the CorPath® 200 robotic system for percutaneous 

coronary artery intervention [114]. This clinical trial involved the robot-assisted delivery and 

manipulation of coronary guidewires, balloons, and stents in eight patients, assessing the system’s 

safety and feasibility. The results showed a 97% reduction in radiation exposure to surgeons 

compared to manual surgery, with a technical success rate of 97.9% and no equipment-related 

complications. In 2013, Weisz et al. evaluated the safety and clinical efficacy of CorPath® 200 R-

PCI in the PRECISE (Percutaneous Robotically Enhanced Coronary Intervention) clinical trial 

[115]. Among 164 subjects, 112 patients (68.3%) had A or B1 lesions, while the remaining cases 

involved type B2 (18.9%) or type C (12.8%) lesions. The maximum lesion length was 24 mm. In 

this trial, 160 patients (97.6%) experienced clinical success, and the operator’s radiation exposure 

was reduced by 95.2% compared to the operating table (0.98 vs. 20.6 µGy). This demonstrated that 

R-PCI addresses some occupational hazards for interventionalists without compromising patient 

safety or procedural performance. 

Mahmud et al. [116] recruited 315 patients with complex type B2 and C lesions in the CORA-

PCI (Complex Robotically Assisted Percutaneous Coronary Intervention) study, dividing them into 

two groups: R-PCI and manual PCI (M-PCI). The results indicated that the clinical success rate of 

R-PCI was 99.1%, comparable to that of M-PCI, thus confirming the feasibility, safety, and high 

technical success of R-PCI in treating complex coronary disease. Subsequently, Smitson et al. [111] 

reported the first human clinical trial of the second-generation robotic system, CorPath® GRX, in 

treating complex coronary artery disease, achieving a clinical success rate of 97.5%. This further 

validated the safety and effectiveness of CorPath® GRX in managing complex coronary artery 

disease. 
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In a clinical report on robot-assisted PVI, Mahmud et al. demonstrated that feasibility and safety 

of CorPath® 200 in treating peripheral arterial diseases [117]. The study enrolled 20 subjects, 

primarily with Rutherford class 2 to 3 symptoms (90%), and treated 29 lesions. The system achieved 

a 100% technical success rate, safety, and clinical success rate, with no adverse events related to the 

robotic system. This led to FDA approval of the device for peripheral interventions. 

For NVI, the CorPath® GRX system was modified, including the addition of an active device 

fixation feature that stabilizes the guidewire during microcatheter movement and enables guide-

catheter manipulation. Clinical studies reported satisfactory outcomes with this modified robot in 

NVI. Weinberg et al. [118] confirmed the feasibility and safety of trans-radial carotid artery stenting 

(TRCAS) assisted by the CorPath® GRX robot. A comparison between robotic and manual 

procedures revealed no significant differences in baseline characteristics, contrast-agent dose, 

radiation exposure, catheter replacement, technical success, or transfemoral artery-conversion rates. 

There were also no technical or procedural complications, demonstrating that robot-assisted TRCAS 

is feasible, safe, and effective. 

However, concerns remain regarding the lack of effective force feedback in current robotic 

systems compared to manual procedures and the extended learning curve required for mastering 

robotic manipulation skills. Perera et al. [119] published a clinical report indicating that arch-

catheter placement reduces cerebral embolization during thoracic endovascular aortic repair 

(TEVAR) with the Magellan robot. A comparison of robotic and manual procedures showed 

improved outcomes with robotic catheter placement. 

Several retrospective studies have evaluated the use of the Sensei X robotic navigation system in 

the ablation of atrial fibrillation and atrial flutter, showing that remote-controlled robotic systems 

are feasible for cardiac mapping and radiofrequency ablation, with prolonged ablation duration and 

a low recurrence rate of atrial fibrillation [120]. Studies have investigated the feasibility and safety 

of using the Amigo remote catheter system for Cavo-tricuspid isthmus ablation in patients with 

typical atrial flutter, particularly in right heart mapping. The results indicate that Amigo is effective 

and safe [121], though procedural times may be extended in resource-limited settings [122]. This 

finding highlights the need for optimizing the system’s efficiency to facilitate broader clinical 

adoption. 

Other studies assessed the feasibility, efficiency, and safety of Cavo-tricuspid isthmus ablation 

using the Amigo remote catheter system in patients with typical atrial flutter and in mapping the 

right side of the heart. The results demonstrated that Amigo is safe and effective for these procedures 

but may result in longer procedural times in resource-limited setting. Meanwhile, VIR systems have 

shown significant disadvantages, as they often lack tactile feedback, which is essential for 

manoeuvring through tight vessels. Furthermore, current robotic systems do not yet accommodate 

guidewire coronary intervention. Even though they facilitate balloon operations, two vital 

procedures, gaining arterial access and handling the guide catheter, remain manual tasks. 

Furthermore, in resource-limited settings, robot-assisted PCI might lead to longer procedures than 
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traditional manual PCI [123]. Table 2.2 summarizes the main clinical trial studies focusing on VIRs. 

Table 2.2: Summary of main clinical trial studies of VIRs. 

 

2.3. Intuitive Manipulation of VIR  

Several modern robotic systems have been developed and commercialized to address stenosis and 

plaque in blood vessels without the need for large or multiple incisions in patients, as shown in 

Table 2.3. Although the effectiveness of commercial interventional robots has been clinically 

proven, they present difficulties for surgeons due to the steep learning curve, particularly for 

procedures that differ from the usual skills of a surgeon [127]. Surgeons may need extensive training 

to effectively operate these complex systems. Isomorphic teleoperation uses ergonomic master 

interfaces that allow surgeons to mimic their natural hand movements during interventions. In this 

configuration, the master and slave systems have similar structural and functional designs, ensuring 

that the commands on the master side are accurately mirrored by the slave device. This allows the 

slave device to demonstrate the interventionalist’s dexterity with hands and fingers for precise tool 

handling. Isomorphic configurations are relatively new in the field of endovascular intervention. 

However, recent studies have shown that they can reduce the surgeon’s learning curve by allowing 

him to directly apply his inherent catheterization skills. 

Clinical trial Device Intervention 
Treated 

lesions 

Technical 

success rate  

Clinical 

success rate  

Radiation 

reduction 

rate 

Year  

Granada et al.  

[114]  
CorPath 200 R-PCI 8 97.9% 100% 97% 2011 

Weisz et al.  

[115]  
CorPath 200 R-PCI 164 98.8% 97.6% 95.2% 2013 

Lopez‐Gil et al. 

[121]  
AMIGO R-EPI 60 98 100% 70.73% 2014 

Mahmud et al.  

[117]  
CorPath 200 R-PVI 20 100% 100% 52.67% 2016 

Dello Russo et al. 

[120]  
Sensei X R-PVI 40 100 90% 35% 2016 

Mahmud et al.  

[116]  
CorPath 200 R-PCI 315 91.7% 99.1% 5% 2017 

Perera et al. 

[119]  
Magellan R-TEVAR 11 72.08% 100% N/A 2017 

Smitson et al. 

[111]  

CorPath 

GRX 
R-PCI 40 90% 97.5% N/A 2018 

Hoffmayer et al. 

[122]  
AMIGO R-EPI 25 100% 100% 1.79% 2018 

Patel et al.  

[124]  

CorPath 

GRX 
R-PCI 5 100% 100% N/A 2019 

Weinberg et al. 

[118]  

CorPath 

GRX 
R-EPI 13 100% 100% N/A 2020 

Häner et.al. 

[125]  

CorPath 

GRX 
R-PCI 21 81% 100% N/A 2023 

Leung et al. 

[126]  

CorPath 

GRX 
R-PCI 21 81% 100% 1.04% 2024 
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Table 2.3: Summary of related VIR systems. 

Group 
Manipulation 

strategy 

Control 

scheme 

Teleoperat

ion setup 

Guidanc

e systems 

Haptic 

perception 
Areas Figure 

CorPath® 

200&GRX 

[111-113]  

Friction roller-

based or 

Rotating 

Clamped 

Wheel 

Position 

and 

velocity 

Non-Isom. DSA 
Obstacle 

feedback 

PCI 

PVI 

NVI 
(Siemens 

Healthineers) 

Magellan® 

[90, 128]  

Friction roller-

based or 

Friction wheel-

based rotation 

Position 

and 

velocity 

Non-Isom. 
DSA or 

CT 
Haptic 

PVI  

EPI 

(Hansen Medical) 

Amigo® 

[129]  

Linear actuator 

or Linear 

Relative 

Motion Drive 

Position 

and 

velocity 

Non-Isom. DSA N/A EPI 
 

(Catheter Precision) 

Guo et al.  

[130, 

131]  

Clamped-based 

or Rotating 

Clamped 

Wheel 

Position 

and force 

Non-Isom.  

or Isom. 
DSA 

Haptic or 

Proximal 

force 

PCI  
Beijing institute of 

Technology 

Wang et 

al. 

[132, 133]  

Clamped-based 

or Rotating 

Clamped 

Wheel 

Position 

and force 
Isom. DSA 

Haptic or 

Proximal 

force 

PCI 
 

Yanshan university 

Wang et 

al.  

[134, 135]  

Friction roller-

based or Bionic 

finger-based 

rotary 

Position 

and 

velocity 

Non-Isom. 

or Isom. 
DSA N/A NVI  

Beijing University 

of Aeronautics and 

Astronautics 

Robotics Institute 

Wang et 

al. 

[136, 137]  

Clamped-based 

or Rotating 

Clamped 

Wheel 

Position 

and 

velocity 

Non-Isom. DSA N/A 
PCI 

PVI 

Shanghai Jiao Tong 

University 

Thakur et 

al. 

[138]  

Friction roller-

based or 

Rotating 

Clamped 

Wheel 

Position 

and 

velocity 

Isom. N/A N/A PCI 
 

The University of 

Western Ontario 

Cha et al. 

[108, 139]  

Friction roller-

based or 

Rotating 

Clamped 

Wheel 

Position 

and force 
Non-Isom. DSA 

Haptic or 

Proximal 

force 

PCI 

 
Hanyang University 

Choi et al. 

[140]  

Friction roller-

based or Bionic 

finger-based 

rotary 

Position 

and 

velocity 

Non-Isom. DSA N/A PCI 

University of Ulsan 

College of Medicine 
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Payne et 

al. 

[141]  

Friction roller-

based or 

Rotating 

Clamped 

Wheel 

Position 

and force 
Isom. N/A 

Distal and 

Proximal 

force 

PCI 

 
Imperial College 

London 

Tanimoto 

et al. 

[142]  

Friction roller-

based or 

Rotating 

Clamped 

Wheel 

Position 

and force 
Isom. CT 

Haptic or 

Distal and 

Proximal 

force 

PCI 

 
Nagoya University 

Wang et 

al. 

[29, 143, 

144] 

Clamped-based 

or Rotating 

Clamped 

Wheel 

Position 

and force 
Isom. DSA 

Haptic or 

Proximal 

force 

PCI 
 

SIAT, CAS 

Bian et al. 

[145, 146]  

Friction roller-

based or Bionic 

finger-based 

rotary 

Position 

and 

velocity 

Isom. DSA N/A PCI  
Institute of 

Automation, CAS 

Langsch et 

al.  

[147]  

N/A 

Position 

and 

velocity 

N/A US 
Proximal 

force 
PCI 

 
Technische 

University Munich 

Li et al. 

[148]  

Clamp-based or 

Rotating 

clamped wheel 

Position 

and 

velocity 

N/A 
IVUSOC

T 
N/A PCI  

University of 

Southern California 

Sankaran 

et al. 

[149]  

Friction roller-

based or 

Rotating 

Clamped 

Wheel  

Position 

and force 
Isom. N/A 

Haptic or 

Proximal 

force 

PCI 
University of Illinois 

at Urbana 

Champaign 

Zhou et al. 

[150]  

Clamped-based 

or Rotating 

Clamped 

Wheel  

Position 

and force 
Non-Isom. N/A 

Proximal 

force 
PCI  

Xiamen 

University 

 

Thakur et al. [138] developed an isomorphic design that uses a real input catheter as the master 

device, with a sensor to capture catheter motion, while the slave device replicates this movement to 

guide a catheter inside the vessel. Similarly, Payne et al. [141] designed a novel master-slave force-

feedback system that aligns with the surgeon’s natural operating preferences and ergonomics. The 

interface of this system is user-friendly and easy to learn, leading to a wider adoption in recent 

studies [151-153]. However, these systems still face challenges to achieve improvements in 

intervention visualization, clinical application efficiency, and operational convenience 

simultaneously. 

The clinical application of VIRs is still in an early stage and its widespread acceptance is restricted. 

Since endovascular interventional procedures require flawless cooperation between the surgeon and 

the robot to achieve safe, accurate and skilful manipulation of instruments within the patient’s blood 
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vessels, ensuring the safety of interventional procedures remains a significant challenge in the 

advancement of these systems. The performance of robot-assisted interventional tasks depends on 

the surgeons’ intuitive manipulation, and researchers have extensively explored the intuitive 

manipulation aspects of master-slave isomorphic interventional robots for precisely and safely 

handling interventional instruments. The relevant progress is presented in Table 2.4. 

Table 2.4: The progression of previous research. 

Group Surgery 

Manipulation 

Dataset Instruments Methods Results 
Manual Robot-

assisted  
Sánchez et al. 

[154] 
laparoscopic √ - 

Accelerometer 

Data 

Surgical 

forceps 

Statistic 

difference 

Novice and 

expert 

Rolls et al. 

[155] 

Vascular 

intervention 
√ - X-ray video Guidewire 

Statistic 

difference 

Novice and 

expert 

RafiiTari et al. 

 [156, 157] 

Vascular 

intervention 
√ - 

Tool forces, 

contact forces 
Guidewire SVM 

90% Novice and 

expert 

King et al. 

[158] 

Laparoscopic 

surgery 
√ - Glove 

Surgical 

forceps 

HMM 

 

92% Novice and 

expert 

Zhou et al. 

[159, 160] 

Vascular 

intervention 
√ - 

EM, EMG, 

fibre-optic 

sensors 

Guidewire GMM 

92% Novice and 

expert, 90% 

manipulation 

pattern 

Du et al. 

 [144] 

Vascular 

intervention 
√ √ 

EM, sEMG, 

glove, force 
Guidewire 

MLP, SVM, 

RF, HAR-

CNN 

94.11% 

manipulation 

pattern 

Shen et al. 

[161] 

Laparoscopic 

surgery 
- √ 

2017 and 2018 

EndoVis 

endoscopic 

images, Lapavis 

dataset 

Surgical 

forceps 
BAANet 

52.62% MIoU, 

40.64% MIoU 

Yang et al. 

[162, 163], 

Bian et al. 

[164] 

Laparoscopic 

surgery 
- √ 

2017 and 2018 

EndoVis 

endoscopic 

images 

Surgical 

forceps 
MSDE-Net 

94.17% MIoU 

(2024) 

Zhang et al. 

[165, 166] 

Vascular 

intervention 
√ - 

Self-collected 

DSA images 
Guidewire BRA 89.9% f1-score 

Omisore et al. 

[167] 

Vascular 

intervention 
- √ 

Self-collected 

DSA images 
Guidewire MLB-Net 84.89% MIoU 

Zhou et al. 

[168, 169] 

Vascular 

intervention 
√ - 

Self-collected 

DSA images 

Guidewire, 

retinal 

microsurgery 

dataset 

Real-Time 

Endpoint 

Localization 

2.20 pixels MPE, 

5.30 pixels MPE, 

 

2.3.1 Underactuated intraluminal manipulation modelling 

Endovascular interventional surgery is a highly intricate and delicate task. Safely manoeuvring 

flexible endovascular instruments through blood vessels for tasks such as stent and balloon 

placement requires the surgeon’s skill in using their forefinger and thumb [170]. These skilful hand 

movements entail precise manipulation of endovascular tools, allowing the surgeon to deftly steer 

the slender, elongated, and flexible devices back and forth within the vessels. In the case of a 

bifurcation, the fingers collaborate, shifting relative to one another to change the guidewire tip’s 
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direction, thereby successfully navigating the bifurcation. Figure 2.5 shows a schematic diagram of 

guidewire manipulations and the force analysis performed by the surgeon’s thumb and index finger. 

Robot-assisted interventional surgery relies on intuitive control, which requires executing three 

basic actions: pressing, translating, and rotating. These actions allow for two degrees of freedom 

(axial and rotary) in manoeuvring endovascular instruments within blood vessels.  

Surgeons perform angioplasty using 2D fluoroscopic images and tactile sensations experienced 

through their fingertips when handling instruments. This procedure is highly dependent on the 

surgeon’s familiarity with 3D anatomical models of blood vessels and the operation of instruments 

[156]. Previous research has shown that the success rate of endovascular interventional surgery is 

significantly influenced by the skills and experience of the operator [171]. However, the learning 

curve to master endovascular catheterization is extensive and challenging. To quickly improve 

operator proficiency and precision in surgical methods, researchers have conducted comprehensive 

studies focusing on the inherent manipulation behaviour of surgeons.  

Recent investigations have begun to investigate the implementation of innate behaviours, such as 

bodily motion signals from surgeons during surgery, within the medical field. Srimathveeravalli et 

al. [172] used EM sensors on the thumb and index finger to monitor interventionist hand movements, 

analyses the data of typical finger movements to establish design criteria for safe movements and 

forces in robotic systems. Villarruel et al. [173] designed a robotic surgical apparatus governed by 

muscle activity utilizing non-invasive electromyography (EMG) sensors to perform surgery 

remotely. Similarly, muscle activity was used in [174] for automatic identification of surgical 

manipulations and real-time detection of irregularities during simulated laparoscopic operations. Li 

et al. [175] implemented 14 bespoke bend sensors to fully record finger movement, reflecting 

clinical hand performance. Sánchez et al. [154] utilised accelerometers placed on the dominant 

wrists of surgeons assessed the force exerted during surgical procedures. Rolls et al. devised 

semiautomated catheter tracking software to scrutinize motion in videos from a virtual reality 

simulator frame by frame, calculating the path length at the end of a 2D catheter. Using it as a 

criterion for evaluation in carotid stenting, experienced operators were shown to generally follow a 

shorter path compared to novice surgeons [155]. Rafii-Tari et al. introduced a novel force 

measurement platform that measures the operator’s proximal propulsion force and the catheter’s 

interaction force with tissue. This platform also collects position sensor data linked to the catheter 

tip as an objective skill indicator for interventionists in a realistic simulation setting, evaluating the 

 
Figure 2.5: The manipulation analysis in endovascular interventional procedure [30]. 
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natural behavioural data of operators with diverse degrees of experience [156, 157]. 

Efforts have been made to integrate various motion capture sensors to achieve a more precise and 

complete depiction of surgeons’ diverse natural behaviours. For instance, Tercero et al. [176] from 

Nagoya University used photo-elastic stress analysis to display the contact stress between medical 

instruments and a specific endovascular model. They used an optical encoder to track the movement 

of the proximal catheter and implemented an EM tracker to monitor the motion of the operator’s 

fingers and wrists. This system was created to assess and measure skill levels by obtaining 

parameters related to hand movements and the motion of endovascular devices. King et al. [158] 

developed a wireless glove that includes seven accelerometers and a fibre-optic bend sensor to 

capture force data and finger motion during laparoscopic procedures. Similarly, Perez-Duarte et al. 

[177] used EMG sensors to examine muscle activity, and a motion capture glove equipped with 

bend sensors to study finger motion, with a focus on evaluating surgeon ergonomics during single-

site laparoendoscopic surgeries. 

To date, the natural behaviours observed during surgical operations have mainly been used to 

evaluate skills. However, these behaviours can be used to identify endovascular tool manipulation 

patterns, helping to develop novel human-robot interfaces. However, current methods face obstacles 

such as inadequate information for real-time recognition that involves two forms of natural 

behaviour and a lack of redundancy analysis. For example, research conducted by [172] and [176] 

showed that hands movements, as recorded by EM sensors on closely positioned fingers, showed a 

significant level of correlation, suggesting redundancy. Furthermore, not all behaviours detected by 

motion sensors are relevant for the movements of the endovascular tool. Multi-DoF sensors generate 

multi-dimensional data that represent various sub-behaviours, some of which do not pertain to tool 

motions. However, the significance of these behaviours has not been thoroughly investigated in the 

present studies. 

These limitations have driven the exploration of various motion sensors to capture the diverse 

natural behaviours of interventionalists during standard PCI. Previous studies [178, 179] have 

effectively used motion capture sensors to identify hand postures, gestures, and movements. Zhou 

et al. [159, 160] introduced a behaviour-based assessment approach, where four natural behaviours 

(hand movement, proximal strength, muscle activity, and finger movement) of the surgeon’s arms 

were used as behavioural indicators to qualitatively and quantitatively evaluate the skill levels of 

interventionists at various stages. Du et al. [144] explored surface electromyography, hand 

movement, and tactile signals of the operator’s right arm during endovascular intubation, focusing 

on hand and finger movement patterns of the operator to assess the precision of integrating surgeon 

operational patterns into robot-assisted PCI. Xie et al. [180] developed an innovative multimodal 

information fusion framework based on deep learning (DL) to recognize and analyse eight common 

interventionist operating behaviours using four types of sensors [159, 160, 180].  

It is crucial to manipulate the robotic system accurately to guide the tool to the target site 

efficiently and safely in endovascular interventions. Expert operators typically exhibit superior 
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control skills compared to novices, leading to higher success rates. Nevertheless, both experts and 

novices can encounter failed attempts, and such errors elevate the risks of endovascular 

interventions. Therefore, understanding and distinguishing successful manipulation patterns is more 

critical than differentiating between expert and novice performance when transferring operator skills 

to robotic systems. Thus, creating an analytical framework to assess the redundancy of behaviours 

or characteristics and their significance to successful or unsuccessful robot-assisted interventional 

performance is crucial. An effective classification framework could pinpoint relevant behaviours 

and characteristics, enhancing the detection of endovascular manipulation patterns to improve the 

optimization of robot-assisted safety manipulation. 

2.3.2 Force-based information fusion robot-assisted manipulation 

In robotic endovascular intervention procedures, acquiring multi-sensor behaviour data is crucial 

for identifying manipulation patterns, while measuring proximal and distal forces is vital for 

maintaining safety and enhancing operational strategies. Proximal forces are gauged near the 

catheter’s operating end using commercially available force sensors, whereas distal forces, which 

are more significant to the interventionalist, are assessed at the catheter’s distal tip. Detecting the 

contact force between the catheter tip and vessel walls to measure distal force necessitates a 

miniaturized sensor within the coronary catheter, with important features including size, resolution, 

biocompatibility, measurement capacity, and precision. Force-sensing catheters are used in both 

endovascular and electrophysiological procedures. In these settings, they measure the contact force 

between the catheter electrode and the myocardium, aiding in avoiding excessive force and forming 

scars on abnormal heart tissue. This technology has been commercialized, featuring products like 

the IntelliSense® System and TactiCath® Catheter (Endosense SA, Geneva, Switzerland). The 

TactiCath catheter is a steerable 7-F radiofrequency ablation device equipped with a force sensor at 

its distal tip, which measures the contact force between the catheter tip and the cardiac tissue. 

To improve stability during dynamic conditions in endovascular procedures, force-sensing 

catheters commonly integrate strain gauges or pressure-sensitive rubber, with the active component 

of the catheter encased for biocompatibility. For instance, Guo et al. [181] placed pressure-sensitive 

rubber sensing units in a frontal duct array and sealed them to sense forces at various nodes. Omisore 

et al. [143], Payne et al. [141], and Wei et al. [182] have engineered catheters with over-the-wire 

force sensing (e.g. using strain gauges) to assess endovascular contact forces. Even though resistive 

and strain sensors exhibit excellent linearity, their associated hardware, including circuits and metal 

substrates, is susceptible to electromagnetic (EM) interference during operations, and their 

dimensions are often too large for narrow endovascular passages. However, fibre bragg grating 

(FBG) sensors provide advantages such as compact size, resistance to electromagnetic interference, 

and high sensitivity. Recently, researchers have embedded FBG-based fibre optic force transducers 

in catheters to mitigate size limitations and electromagnetic interference problems. He et al. [183] 

devised a catheter that integrates four FBGs to measure endovascular forces and compensate for 

temperature. The distal force measuring catheter faces challenges in packaging, sterilization, and 
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size configuration, restricting its clinical use in narrow blood vessel lumens. 

To address these challenges, researchers are placing more emphasis on techniques that indirectly 

infer distal force using proximal force readings. The proximal force consists of four components of 

endovascular force: the viscous force of the blood, the impact force at the front of the instrument, 

the friction force between the blood vessels, and the potential elastic force of the guidewire [184], 

as presented in Figure 2.5. Typically, proximal force measurement is sensor-based, involving the 

installation of a high-precision, high-resolution force sensor on the device delivery setup to gauge 

the contact force between the device and the blood vessel. However, there are differences in sensor 

installation and the methods of measuring force. Yang et al. [185] engineered a system for 

measuring force in guidewires that uses the lever principle, with the pressure sensor located on the 

propulsion finger and resistance transmitted to the force measurement setup through the guidewire. 

The lever magnifies the signal, making the force measurement system less prone to interruptions in 

the transmission framework. Bao et al. [186] mounted the force sensor on the clamping side of the 

guidewire, used a linear bearing to limit friction interference on the resistance of the guidewire 

during transmission, and proposed a multi-level safety control strategy based on force levels to 

decrease operational risks. Also, Zhou et al. [150] and Wei et al. [182] applied the technique of 

placing a sensor in the guidewire clamping section to assess and analyse the guidewire’s resistance, 

thus improving robot safety control. Sankaran et al.[149]. applied the current from the drive motor 

to assess the guidewire’s resistance and adopted a double-layer optimization approach for 

calibration. Sensor-based methods to measure the proximal force are generally the most sensitive 

and can accurately assess the resistance whiling the low translation speed, the inclination angle is 

minimal, and the friction of the mechanism is insignificant [187]. However, during robotic 

operations, the proximal resistance value is often inaccurate and prone to interference, principally 

due to poor resistance resulting from friction forces in the actuator, inertia forces, or jerks in the 

linear drive system [188, 189]. 

This thesis integrates high-precision sensors into the master-slave mechanisms of the surgical 

robot to assess the performance of interventional manipulation through dynamic variations in 

proximal and distal forces. The thesis investigates the correlation between these forces and 

interventional manipulation, leading to improved robotic system manipulation performance and 

ultimately increasing the accuracy and dependability of robot-assisted interventional procedures. 

2.3.3 Visual perception of interventional instruments for tool manipulation 

In robot-assisted interventional procedures, surgeons rely on their intuitive manipulation skills 

that are guided by real-time perception of the movement of their instruments. Broad visual and 

complex working environments, accompanied by challenges such as specular reflection, blood 

presence, complex backgrounds, and fogging of camera lenses, raise the risk of manipulation errors 

and the potential damage of tissue [190]. The use of visual data can help mitigate these risks by 

offering segmented surgical instruments, real-time tracking, and pose estimation [191]. Segmenting 

surgical instruments is a vital aspect of robot-assisted procedures, as it provides crucial 
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intraoperative guidance information that supports decision making [192]. Furthermore, segmenting 

these instruments is essential to track them, estimate their pose, use augmented reality overlays, and 

analyse surgical phases to ensure surgical safety and assess surgeon situational awareness to reduce 

manipulation errors [193].  

Surgical scenes comprise 2D images or videos depicting surgical tools and patient tissues, with 

numerous tools used depending on surgical needs. For example, gastrointestinal endoscopy does not 

require an incision and only a few surgical tools like biopsy forceps, balloon dilation, snares, and 

submucosal injection techniques. Other surgical instruments include pro-grasp forceps, cadiere 

forceps, bipolar forceps, monopolar curved scissors, a large needle driver, an ultrasound probe that 

can be dropped into, and a vessel sealer. Segmenting surgical tools is challenging due to the variety 

of surgical instruments, the occlusions seen, and the anatomy of the background tissues [193].  

Several studies have investigated several DL techniques for segmenting surgical instruments, 

which have yielded promising results. For example, Sestini et al. [194] proposed a fully 

unsupervised method for segmenting surgical instruments in endoscopic images. It uses implicit 

motion data and shape priors to train a segmentation model per frame, achieving performance nearly 

on par with fully supervised methods in minimally invasive surgery. Shen et al. [161] introduced a 

lightweight network for instrument segmentation. This network integrates a branch balance 

aggregate module for optimizing features and reducing noise, and a block attention fusion module 

for integrating global and local contexts, outperforming existing methods by up to 4.03% in mean-

intersection-over-union (MIoU) scores on the Laparoscopic Vision dataset. A transformer-based 

network was introduced to segment surgical tools in endoscopic images [162], which uses a 

trapezoid ASPP block, multi-scale attention fusion, and a dual encoder unit to enhance the 

representation of features and the precision of segmentation. Experiments conducted on the Kvasir-

Instrument and Endovis2017 datasets indicate that it outperformed the state-of-the-art (SOTA) 

methods. Yang et al. [163] developed a multi-scale dual encoding network for surgical tool 

segmentation. This network, named MSDE-Net, integrates CNN and transformer branches with 

attention and context fusion blocks to improve feature extraction across multiple scales, achieving 

significantly superior results in the endoscopic image datasets from Endovis2017 and the Kvasir-

Instrument compared to previous methods. Bian et al. [164] presented a dual branch fusion network 

that merges CNN and transformer architectures for surgical instrument segmentation, providing 

MBTPDS models and offering excellent segmentation performance in endoscopically viewed sinus 

surgery images. Using visual information from these surgical instruments, surgeons can adapt their 

manipulation strategies in real time, reducing the risk of interventional instrument collisions with 

non-target tissues and thus improving surgical efficiency.  

The above these surgical instrument segmentation methods during surgical procedures have 

primarily been used for rigid instruments of endoscopic images based on the popular Da Vinci robot-

assisted surgery. However, these methods could also be applied to segmentation and location of 

endovascular tools, facilitating the development of position or posture visual information of catheter 
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or guidewire on upscaling master-salve endovascular interventional manipulation. Unfortunately, 

research on this application is limited. Endovascular intervention surgeries are based on visual 

feedback displayed on a screen, including guidewire and catheter paths under X-ray fluoroscopy 

and angiographic imaging. Precise manipulation of endovascular devices (such as catheters and 

guidewires) within blood vessels is crucial for MIS. In these operations, surgeons must constantly 

perceive the exact position of endovascular tools to navigate catheters or guidewires safely within 

blood vessels. At present, DSA is the leading imaging technique among specialists due to its 

excellent spatial and temporal resolution. Using the DSA system, surgeons can determine the best 

interventional route or assess the size and distribution of the lesion using 2D angiography and 

fluoroscopy sequences in real time, supported by their anatomical expertise. Technologies such as 

image recognition, decomposition, fusion, and tracking are capable of effectively using these visual 

inputs and combining them with surgical planning and robotic motion programming to achieve 

precise control, thus increasing the safety of the surgical robot with endovascular intervention.  

Clinicians rely on delicate tactile feedback from handheld devices to evaluate the condition of the 

guidewire or catheter within vessels and to reduce risks during manual endovascular procedures. 

However, the current surgical robots available commercially have not developed an ideal solution 

for mechanical force feedback and touch perception. A major drawback of these systems is their 

inability to detect and offer feedback on the contact forces between the tool and the vessel during 

operations. Without this feedback, the risk of complications such as thrombosis and vessel 

perforation increase, which may be due to the reliance on unclear visual feedback, inadequate hand-

eye coordination, and the mental and cognitive strain on the operator [127]. This drawback is one 

of the impediments to precise control and broader acceptance of VIRs. Although several strategies 

have been tried to address this problem, the technology still lacks maturity and stability. Researchers 

are investigating various methods to mitigate the deficiency caused by the absence of sensory force 

feedback on the handling performance of robot-assisted interventional processes. Many skilled 

robotic surgeons believe that the lack of haptic force feedback can be compensated for sufficiently 

using visual cues [195-197]. 

Thus, improving the perception of the position or location of catheters and guidewires is crucial 

to increasing the manipulation performance in robot-assisted endovascular intervention procedures. 

Surgeons need to perform precise and rapid manipulations based on accessible real-time data, such 

as the configuration and guidewires’ position visible in X-ray images, tactile feedback, and patient 

physiological signals. To this end, real-time and precise guidewire segmentation and tracking can 

improve guidewire visualization and provide visual information to surgeons during the intervention, 

as well as help scale robot-assisted interventive manipulation. Nevertheless, this task faces 

challenges with elongated, deformable structures and non-rigid bodies that appear with low contrast 

or can be easily mistaken for similar objects like bones or lungs in the noisy fluoroscopic image 

sequences depicted in Figure 2.6, which diminishes segmentation and location precision.  

Zhang et al. [165] introduced a jigsaw-training-based background reverse attention (BRA) 
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transformer network to segment single and dual guidewires in X-ray fluoroscopy sequences. The 

method features a BRA module to mitigate background distractions and uses robust principal 

component analysis to create background maps, achieving an F1 score of 89.4% and a precision of 

89.9%. Zhang et al. [166] also proposed a deep learning framework for real-time guidewire 

segmentation and tracking, utilizing a Yolov5s detector refined with spatiotemporal enhancements 

for guidewire localization, and leveraging Hessian-based enhancement alongside dual self-attention 

for segmentation, resulting in an 89.9% dice score for low-quality images. Omisore et al. [167] 

presented a multilateral branched network for guidewire segmentation in angiograms during robotic 

catheterization, achieving robust segmentation with an MIoU of 84.89% and F1 scores of 89.01% 

[198], outperforming state-of-the-art methods such as DeepLabV3+, SegNet, and U-Net in both 

accuracy and speed.  

Meanwhile, a two-stage framework using a YOLOv3 detector was proposed for real-time 

localization of dual-guidewire endpoints in fluoroscopic images, attaining top-tier localization 

results with an average pixel error of 5.30 pixels on a retinal microsurgery dataset and 2.20 pixels 

on the guidewire dataset [168, 169]. These visual information modelling techniques allow surgeons 

to observe interactions between instruments and tissues during operations. Therefore, creating a 

visual-based detection framework for interventional instruments aims to increase the detection 

precision of their position or posture, improving surgeons’ precise perception of interventional 

instrument motion in robot-assisted tasks. A well-designed segmentation and location framework 

can emphasize crucial feature maps, thus improving the segmentation and location accuracy of 

endovascular interventional instruments for optimal robot-assisted safety operations. It also helps 

surgeons adapt operational strategies in response to changes in endovascular instruments, thus 

reducing surgical workload while improving accuracy and safety. 

 

Figure 2.6: Illustration of DSA images in endovascular interventional procedure. 

2.4. Technical Challenges and Future Development 
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The use of robotic-assisted endovascular procedures in different endovascular tissues in the 

human body is gaining acceptance due to the significant potential of robotic technology to improve 

procedural precision, improve safety, reduce health risks, and offer clear benefits to both patients 

and surgeons. However, despite these advancements, there are still several technical issues that need 

to be resolved to support the wider adoption of VIR in tertiary care facilities. 

2.4.1 Cooperative mechanisms of multi-instruments and teleoperation setup 

Through ongoing advancements and innovations in VIR technology, clinical constraints are 

progressively reducing. For example, the CorPath® GRX system, which is the second iteration of 

the Corindus robotic platform, has improved guide catheter handling, guidewire retraction, and other 

functions, thereby significantly improving the capability of robot-assisted treatment for intricate 

lesions and broadening the range of robot-assisted endovascular interventions. Endovascular 

intervention surgeries require the surgeon to work with a variety of endovascular devices such as 

guidewires, catheters, balloons, and stents. These procedures encompass a wide array of treatments 

including cardiovascular, cerebrovascular, peripheral vascular, aortic, and tumour vascular 

interventions. Given the multitude of guidewires, catheters, balloons, and stents available, which 

differ in size, length, and stiffness, creating a robot solely for proprietary instruments would be very 

restrictive. This involves moving forward, pulling back, and rotating guidewires, catheters, and 

sheaths; moving forward, pulling back, and deploying balloons; and positioning and releasing stents. 

If the robot is restricted to basic capabilities such as advancing and retracting guidewires or catheters 

with minor rotations and is unable to perform complex endovascular manoeuvres or handle more 

than one guidewire, balloon catheter, or stent at a time, its practical value in clinical settings would 

be limited. Therefore, the robot must be equipped to manipulate these commercially available tools 

and compatible with most commercially available endovascular instruments while providing the 

capability to perform most surgical manoeuvres to satisfy both clinical and market needs. 

Currently, commercial VIRs are restricted to handling a single coronary guidewire and placing 

one balloon and stent at a time, which proves inadequate for supporting balloons and stents in 

intricate vasculatures and cannot handle the over-the-wire apparatus. Generally, these robotic 

systems are apt for simple lesion tasks, but their effectiveness in intricate procedures that require 

the concurrent operation of two guidewires is low. Significantly, complex lesions, such as chronic 

total occlusions, severe calcification, and bifurcation lesions, account for more than 50% of 

interventional treatments for cardiocerebrovascular conditions. Thus, there is an urgent requirement 

for a multi-instrument robotic delivery system that is compatible with standard endovascular 

intervention tools. This calls for improvements in both software and hardware control modules for 

the management of multiple instruments, which could ease some of the challenges surgeons face 

during complex lesion procedures. 

Generally, teleoperation continues to be the most effective standard method for performing 

surgery. Interventional surgeons can perform endovascular procedures from great distances through 

remote teleoperation, helping to resolve the uneven regional distribution of healthcare services. The 
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ongoing improvement, reliability, and widespread availability of communication networks serve as 

a technical basis for the feasibility and safety of remote surgery. Clinical trials have shown that 

remote robot-assisted endovascular interventions can provide solutions and guidance to emergency 

centres that lack cardiovascular specialists in remote and underdeveloped regions. However, 

providing high-fidelity visual and tactile feedback with minimal transmission delay remains a key 

research challenge hindering the progress of remote telesurgery. 

2.4.2 Automatic surgery 

The activities involved in endovascular intervention procedures are often repetitive and follow 

specific patterns, such as repeated advance and release movements during the handling of the 

guidewire. This creates the potential for programming robots for semi-automated or automated 

performance after suitable programming. By automating routine and repetitive surgical duties, 

surgeons could focus more on the complex and critical parts of surgery. AI holds the promise to 

improve the automated capabilities of future surgical robots. Some robotic systems under 

development for surgery already integrate AI, such as those led by Ron Alterovitz [199], who has 

been working on developing robots that can autonomously navigate through a patient’s anatomy to 

perform procedures with exceptional precision and safety. With advances in AI technology, the 

move towards surgical automation is emerging as the future trajectory in the development of surgical 

robots. In January 2022, for the first time, a robot independently conducted a laparoscopic small 

bowel anastomosis in pig soft tissue, signifying a significant milestone in the progress of surgical 

automation. 

Surgical automation is categorized into six levels, ranging from 0, indicating no automation, to 5, 

representing full automation. Currently, most surgical robots are positioned in the robot-assisted 

phase, which poses both major challenges and significant opportunities for the ongoing 

advancement of surgical automation. The primary objective of medical robotics is to enable robots 

to independently perform certain surgical tasks, with automation degrees divided into six categories. 

Currently, VIRs are at automation level 1 and are moving toward achieving level 2. VIRs possess a 

natural advantage in pushing forward surgical automation compared to other surgical robots due to 

their relatively predictable and repeatable actions within the endovascular lumen. However, the 

adaptability of endovascular tools and the intricate, ever-changing environment inside the body pose 

substantial difficulties in precisely forecasting and adjusting for device movements, which is 

essential to reach advanced automation levels in VIRs. Moreover, ethical and legal issues related to 

patient safety add another layer of complexity to the increase in automation in VIRs. Consequently, 

progressing to higher levels of automation in future VIRs will require addressing these current 

challenges. 

2.5 Endovascular Robotic System Design and Prototyping  

This section provides a simple introduction of the vascular interventional robot our developed 
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that support research on safe handling and accurate guidance of interventional procedures outlined 

in the paper, acquiring multi-sensor data in Chapter 3-6 based on this interventional platform for 

upscaling tool manipulation. It features prototypes of the 3.0 and 3.5 generation robotic 

endovascular interventional systems created at the Medical Robotics and Minimally Invasive 

Surgical Instruments Research Centre (SIAT-CAS). The key design priorities for these systems 

include optimizing structure, controlling manipulation, and providing force feedback, which are 

essential to maintain high safety standards in interventional surgeries. These issues are tackled 

through multi-sensor data-driven manipulation modelling and perception modelling based on 

interventional instruments to achieve accurate and secure manipulation of instruments in robot-

assisted endovascular interventional procedures.  

2.5.1 Master-slave isomorphic robot-assisted system 

A. Design motivation 

Endovascular interventional surgery has become a crucial standard in the treatment of 

cardiovascular diseases. Traditionally, these procedures require the operator to direct the wire and 

catheter into the blood vessels, while using imaging technologies such as DSA, CT, ultrasound, and 

MRI for navigation and observation. However, this approach exposes practitioners to X-ray 

radiation during operations, which can pose considerable health hazards over time. Furthermore, the 

high-risk nature of the procedure demands an elevated level of expertise, restricting these surgeries 

to highly specialized practitioners. This situation leads to challenges such as the scarcity of skilled 

professionals and the high costs and extended duration of training programmers. Furthermore, 

physiological tremors, manipulation mistakes, and long surgeries can cause practitioner fatigue, 

significantly compromising operational safety. 

The intrinsic link between life and health greatly impacts the progression of medical technology. 

With a growing emphasis on health, the creation of robotic systems is motivated by the need to 

improve the safety, precision, and efficiency of endovascular interventions. Significant progress has 

been made in endovascular therapy through the integration of robotic systems to manipulate flexible 

catheters, as well as force feedback technology, cutting-edge imaging technologies, and AI. These 

innovations are enabling new methods to improve the safety, precision, and independence of 

endovascular disease management. Using minimally invasive vascular interventional surgery robots 

can reduce radiation exposure of surgeons, partially replace their efforts, reduce work intensity, limit 

physiological tremors and operational errors, and greatly improve the precision and accuracy of 

surgeries. Therefore, precise control devices for endovascular interventional tools are crucial for 

these procedures. 

B. VIRs 

• The 3.0-generation robotic system 

Various vascular interventional robotic systems have been developed to assist in minimally  
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Figure 2.7: 3.0 generation of VIR system. 

invasive single port surgeries, which are generally divided into two components: 1) the radiation 

room, where the slave mechanism manages tasks, such as holding, twisting, and advancing the 

catheter, and 2) the control room, where the surgeon operates the master console. Despite their 

technological advancements, these systems face significant limitations, such as the lack of force 

feedback. Force feedback, also known as haptic feedback, is essential for surgical precision and 

safety as it provides sensory information about the forces applied to tissues. Without this feedback, 

surgeons cannot accurately gauge the resistance and texture of tissues, which leads to a loss of 

control over surgical instruments. This can result in unintentional damage to delicate tissues or blood 

vessels, as surgeons can apply excessive pressure, increasing the risk of complications such as vessel 

perforation or bleeding. Effective manipulation of guidewires and catheters often requires precise 

tactile adjustments, and the absence of force feedback impairs the ability to make these fine 

adjustments accurately, potentially compromising procedural success. Therefore, the lack of force 

feedback in master-slave robotic systems impacts hand-eye coordination and operational experience, 

which can diminish surgical efficiency and increase the risk of complications.  

To address this issue, we have designed a VIR that incorporates a high-fidelity force feedback 

system, as shown in Figure 2.7. This system features isomorphic master and salve devices, each 

with 3-DoF navigation capabilities, enabling the robotic catheter to perform axial translation, rotary 

motion, and adjustment of interventional angles. Surgeons can remotely teleoperate the master 

console, avoiding direct X-ray exposure, while the slave robot operates beside the patient’s bed to 

manoeuvre interventional tools along the vasculature. The VIR utilises a two-finger operation mode 

to simulate wire feeding and rotation, with the master-side device transmitting motion commands 

to the slave-side using analogous mechanical propulsion. This design retains the clinical manual 

interventional surgery manipulation model, which reduces the time required for interventional 

surgeons to master tool manipulation techniques and improves their proficiency in performing 

surgeries. 

• The 3.5-generation robotic system 

Furthermore, an update force feedback system is designed to improve interventionalists’ 

perceptual senses for better motor control. The control architecture proposed for the VIR is 

presented in Figure 2.8. It demonstrates that the VIR uses multiple layers for intravascular 

catheterization. The current version is designed for a shared control paradigm in which  
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Figure 2.8: 3.5-generation of VIR system. 

interventionists and the robotic system collaboratively manipulate the guidewire and catheter. The 

system includes a network communication based on the transmission control protocol (TCP), and a 

buffer of 1024 bits on each side of the TCP connection temporarily holds the incoming data. With 

multithreading coding, the VIR could perform the different commands and hand movements utilised 

for robotic-assisted catheterization independently. 

The robotic system includes a force box used to measure the tactile force that interventionalists 

exerted with their fingers. This force is considered the interventionalist operative force on the 

guidewire or catheter in regular surgery. The force box includes a 32-prism, 32 tiny flexible strip 

sensors, PCBs, and batteries. A flexible sensor is folded and wound around the force box surface, 

and its data is logged as a 32-channel data multiplexed over an analogue multiplexer (Texas 

Instruments, Dallas, Texas, USA). Thus, interventionalists also operate the master device by 

manipulating the flexible sensor with their finger. Force data are processed in a STM32 

microcontroller (STMicroelectronics, Geneva, Switzerland) and transmitted over a HC-04 

Bluetooth module (HC Tech, Guangzhou, China) to the slave console in real time. The force box 

also reflects information on the rigidity of the flexible tool as it is held with a clamping mechanism 

on the slave manipulator. The guidewire is tightly clamped when the surgeon presses hard on the 

force box, and vice versa. 

For measuring proximal force, an S-shaped force sensor is positioned at the rear of the clamping 

device to monitor the force exerted during tool handling. This sensor captures the force data 

proximally. The slave robot is designed to meet the requirements for precise hand motions needed 

in endovascular interventions, enabling actions such as pushing, pulling, and rotating the guidewire 

or catheter in clockwise or counterclockwise directions, allowing for tools delivery through blood 

vessels. 

2.5.2 Validation of the robot-assisted interventional system 
The performance of the master-slave vascular interventional robotic system encompasses the 

axial feed accuracy, the axial rotation error, the response time of the master-slave control system. 

To evaluate these aspects, we established a performance testing platform for vascular interventional 

surgery robots, as shown in Figure 2.9(a), validating the developed system by measuring key 
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indicators such as axial feed accuracy, radial rotation error, and real-time performance of the master-

slave operation. The overall verification process is illustrated in Figure 2.9(b). 

A. Axial feed accuracy verification 

To accurately evaluate the axial feed performance of the slave controller in the vascular 

interventional robotic system, we systematically measured the actual axial displacement of the slave 

mechanism. This was achieved by entering displacement commands with various preset values into 

the slave propulsion mechanism and utilizing a high-precision calliper (Mitutoyo) as the 

measurement tool. The specific experimental steps are described subsequently.  

First, the slave propulsion mechanism was positioned at a randomly selected initial location and 

the axial coordinates of this position were precisely recorded using a Vernier calliper as a reference.  

 

Figure 2.9: Testing platform and processing of interventional robotic system. 

Table 2.5: Error measurements of axial feed. 

Data Test1 Test2 Test3 Test4 Test5 

Average error 

(mm) 

Initial position (mm) 187.66 172.68 157.60 142.68 127.66 

Set value (mm) 15 15 15 15 15 

Real position (mm) 172.69 157.65 142.65 127.62 112.66 

Real distance (mm) 14.97 15.03 14.95 14.06 15.00 

Error (mm) -0.03 0.03 -0.05 0.06 0.00 0.034 

 

Table 2.6: Error measurement of twisting angle. 

Data Test1 Test2 Test3 Test4 Test5 

Average error 

(°) 

Initial position (°) -40.84 -26.92 -11.56 3.34 18.3 

Set value (°) 15 15 15 15 15 

Real position (°) -25.9 -11.64 3.34 18.3 33.52 

Real rotated angle (°) 14.94 15.26 14.9 14.96 15.22 

Error (°) -0.06 0.26 -0.1 -0.04 0.22 0.136 
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Next, a series of preset displacement setpoints were input into the slave controller via dedicated 

control software to simulate the feed commands used in surgical operations. After each command 

was input, the vernier calliper was employed to measure and record the actual axial displacement of 

the slave mechanism, ensuring real-time data accuracy. This process was repeated five times. After 

collecting all displacement data, we calculated the slave displacement error based on the differences 

between the preset and measured values. The results are presented in Table 2.5. 

B. Twisting angle error evaluation 

To accurately assess the control precision of the slave controller regarding the circumferential 

displacement of the rotating mechanism in the vascular interventional robotic system, we measured 

the actual angular displacement of the slave mechanism by inputting various preset angle values 

into the slave rotating mechanism, utilizing a high-precision digital angle display (Japanese three 

measurement digital display angle box) as the measurement tool. Prior to the experiment, the slave 

end rotation mechanism was calibrated to an initial horizontal position, which was recorded using 

the digital angle display as the starting reference point. Subsequently, the control software was used 

to input a series of preset angle setpoints to the slave controller, simulating the control instructions 

for the rotating mechanism during surgery. After each angle command was input, the digital angle 

display was used to measure and record the actual circumferential angular displacement of the slave 

end rotating mechanism, ensuring the immediacy and accuracy of the measurement data. Upon 

completion of the tests, the control software returned the rotating mechanism to the initial horizontal 

position, preparing it for subsequent tests. The circumferential displacement of each experiment was 

recorded, and the angular displacement error of the rotating mechanism was calculated based on the 

differences between the preset and measured values. The results are presented in Table 2.6. 

C. Response time of the master-salve structure robotic system assessment 

To accurately quantify the response time from the master to the slave in the vascular 

interventional robotic system (master-slave system), we employed a timestamp marking and 

comparative analysis method. First, the robotic system is initiated, and when the master is ready to 

send instructions, the current system time is captured as timestamp T, which is seamlessly integrated 

into the instruction packet. Subsequently, this instruction packet is sent to the slave for processing. 

When receiving the instruction containing timestamp T, the slave immediately begins to execute the 

required tasks. Once the task is completed, the slave captures the current system time again and 

calculates the time difference from the previously recorded timestamp T. This time difference, 

representing the interval between when the master sends instructions and when the slave completes 

execution, is defined as the master-slave response time of the prototype system, as shown in Table 

2.7. 

The results indicate that our self-developed master-slave homogeneous vascular interventional 

robotic system achieves an average axial delivery precision of approximately 0.034 mm. In the 

radial rotation dimension, the error is effectively maintained within approximately 0.136°, ensuring 
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the accuracy of the rotational movements. Additionally, the master-slave response time has been 

reduced to approximately 7.7956 s, providing surgeons with a more efficient and convenient surgical 

experience. 

This section describes the specific mechanisms of robot-assisted systems designed for 

endovascular interventional surgery, including two prototypes of catheter-based robotic systems. 

Focusing on the precise manipulation of interventional systems for endovascular surgery, notable 

design benefits arise from the master-slave structure coupled with unique force perception devices 

that enhance spatial navigation of surgical tools and radiation sources. The spatial flexibility of 

endovascular tools depends on endovascular pathways and is further enhanced by control commands 

issued to the 2-DoF robotic prototypes. The following chapters propose various manipulation 

modelling based on multi-sensor data-driven and perception modelling of interventional instrument 

motion for upscaling intuitive manipulation on robot-assisted performance of interventional tasks. 

These models incorporate multi-sensor manipulation behaviour information and instrument 

perception visual information to address issues related to lack of force perception and hysteresis in 

surgeon-robot synergy, aiming for efficient and upscaling intuitive manipulation through 

anatomically flexible pathways. 

Table 2.7: Response time of axial feed. 

Time (s) Test1 Test2 Test3 Test4 Test5 Average 

response 

time (s) 

Master 19:56:54.469 19:56:56.488 19:56:58.501 19:57:00.517 19:57:02.530 

Slave 19:56:54.478 19:56:56.495 19:56:58.509 19:5:00.524 19:57:02.537 

Response 8.541 7.189 8.519 7.393 7.336 7.7956 

 

2.6 Chapter Summary 

In recent decades, the domain of VIR has seen significant progress, notably with the integration 

of advanced robotic systems that improve precision using superior manipulation and control 

technologies, force and haptic feedback, and the integration of AI. However, despite these advances, 

there are still several challenges that affect the wider clinical adoption of VIRs. It remains important 

to balance the improvement of capabilities of robotic systems through ensuring safe handling of 

endovascular interventional instruments. 

One of the primary challenges in developing VIRs is the accurate and safe handling of 

endovascular interventional tools. This requires intuitive manipulation skills despite the absence of 

direct sensory force feedback to achieve the spatial precision necessary for intricate endovascular 

procedures. Unlike the more fixed systems used in traditional MIS, robot-assisted interventional 

tasks are especially vulnerable to perception errors in instrument motion, particularly for novice 

surgeons lacking effective haptic or force feedback. Surgeons depend on DSA imaging for guidance, 

which can impact precision due to overlapping tissue contours obscuring instrument paths, 

inadequate contrast between surgical tools and surrounding structures, and imaging artefacts like 
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noise and motion-induced distortions, which may affect the surgeon’s ability to manipulate 

instruments. 

These challenges are compounded by problems such as the use of undue force, the joint 

performance of both the surgeon and the robotic apparatus, and delays in communication between 

the master and slave elements of the robot during teleoperation. These factors together make 

achieving accurate manipulation of interventional instruments during procedures even more 

challenging. The modelling of technical behaviour-based manipulation and the improvement of 

perception for interventional instruments have emerged as effective methods for analysing and 

refining the safety and precise manipulation of these master-slave robotic systems. Therefore, 

ongoing research into intuitive manipulation modelling and scaling up intuitive manipulation with 

improved perception of the movement of interventional instruments is essential to advance the 

effectiveness of VIRs in carrying out precise and safe endovascular interventions. 
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Chapter 3: Modelling and Analysis of Manipulation Pattern  

3.1 Introduction 

This chapter focusses on modelling manipulation-based methods to improve the safety and 

precision of robotic-assisted endovascular interventional surgery. Controlled in vivo studies were 

conducted to capture four types of operator natural behaviour during 60 robotic catheterization trials, 

and activity signals were recorded to represent operator skills. A multilayer recognition model was 

developed to identify hand technical skill manipulation performed during the procedures. The model 

employs dense and convolutional layers to integrate features extracted from single and multiple data 

modalities. Beginning with an initial decision layer, the model is designed to train and classify 

catheterization trials recorded by nine interventionists as successful or unsuccessful. Subsequently, 

a motion decision layer was created to recognize the hand movements of interventionists using 

features from various data modalities. Finally, a mixed decision layer was integrated to identify 

manipulation patterns in successful and unsuccessful trials, analysing redundancy manipulation 

behaviour or features in robot-assisted performance of interventional tasks. 

3.2 Related Work 

In clinical trials, safety and efficacy evaluations of interventional robots have been reported. 

While it is possible to mitigate associated risks, the evaluation of the experience and skills of 

interventionists remains an understudied area of research [200]. While recent advancements in 

design have aimed to create more ergonomic master interfaces that replicate the natural motion 

patterns of interventionalists [201], several persistent issues remain. Robotic catheter systems 

operating under a master-slave configuration fail to replicate the natural manipulation skills 

observed in manual percutaneous interventions [202]. RCSs currently being developed in various 

laboratories often neglect the integration of natural skills [143, 201, 203]. These include limited 

flexibility in navigation and restricted tool manipulation ranges [143]. As a result, robotic systems 

struggle to consistently reproduce the natural motions of interventionalists, significantly hindering 

their practical application.  

Moreover, there has been a growing interest in investigating the use of natural behaviours, 

specifically the motion signals generated by surgeons’ manipulation behaviour during surgical 

procedures, within the medical field. Zhou Tao et al. [204] conducted an initial study analysing hand 

movements using surface EMG during PCI catheterization, showing that EMG signals can reveal 

distinct muscle activities linked to different hand movements. This study of hand and finger 

movement activities is reliable for intravascular catheterization. Stauder et al. [205] applied machine 

learning techniques to assess surgical workflow phases, utilizing random forests on tool usage data 

during laparoscopic cholecystectomy, achieving a recognition accuracy of 68.78%. Zhou et al. [159] 
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introduced a gaussian mixture model assessment model to evaluate operator skills. Rafii-Tari et al. 

[157], have designed frameworks aimed at automating skill evaluation in RCSs, employing operator 

motion and tactile signatures to validate assessment models. Previous research has demonstrated a 

correlation between a surgeon’s hand movements and their level of surgical technical skill [206]. 

Thus far, the one or two types of surgeons’ natural behaviours calculated during manual surgical 

procedure are mainly used for operators’ natural learning and technical skills assessment.   

Studies have shown that various types of surgeons’ natural behaviours and features can more 

effectively characterize the manipulation patterns of endovascular catheterization. Zhou et al.[160] 

employed a hidden Markov model to extract a variety of features in the time and frequency domain, 

such as standard deviation, variance, and mean, from kinematic data that include muscle activity, 

hand movement, finger activity, and proximal force. They simulated the acquisition of operational 

skills by interventionists in traditional PCI using a endovascular simulation model, achieving an 

accuracy rate of 91.01%. Zhou et al. [170] introduced a data fusion framework that integrates hybrid 

motion and tactile behaviours to track guidewires during PCI, interpreting surgeons’ natural 

behaviours through multimodal data sourced from electromagnetic sensors, sEMG, fibre optics, and 

acceleration data. Qualitative analyses of these multimodal signals have been carried out to 

understand the impact of surgeon manipulation behaviours on surgical outcomes. Wang et al.[180] 

proposed a deep learning-based multimodal information fusion architecture for recognizing eight 

common operating behaviours of endovascular interventionists, achieving an accuracy of 98.5%, 

which surpasses both existing machine learning classifiers and unimodal data. In particular, 

significant differences in surgeon natural hand behaviours have been observed at varying levels of 

technical skill in open surgery [207], laparoscopic surgery [208], and minimally invasive surgery 

assisted by robots [209]. Qualitative analyses of these multimodal signals obtained better results in 

manual interventional surgery, have been conducted to understand the relationship between 

surgeons’ natural behaviours and manipulation technical skills. It is envisaged that modelling 

methods of such manipulation behaviour can be also applied to the manipulation pattern recognition 

of robot-assisted interventional procedure for skill learning, adaptation, and transfer application.  

It is essential to consider not only the internal relationship between the natural behaviour of the 

operation and the surgical skill, but also the connection between operational behaviour and the 

outcome of the interventional procedure, particularly the natural behaviours or features that 

contribute to the success of the surgery. However, surgeons’ manipulation behaviour is rarely 

involved in the master-slave robot-assisted interventional surgery, the behavioural analysis of 

interventionists’ natural skills in robot-assisted endovascular interventions has yet to be fully 

integrated to ensure safe and efficient practices. Omisore et al. [210] proposed a novel deep 

integrated network model based on weighted parameters to learn the operational modes of 

interventional surgeons during traditional PCI and robot-assisted PCI procedures. The accuracy 

achieved in traditional PCI skill learning was 97.2%, while the accuracy for robot-assisted PCI skill 

learning was 47.8%. This disparity confirms the differences in skill transfer between traditional PCI 
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and robot-assisted PCI surgeries. The underlying reason is that the skills utilised by interventionists 

for tool delivery in robotic PCI typically differ; manual PCIs involve direct tool manipulation with 

the hand, whereas RCSs are employed for tool delivery in the latter. Therefore, new data-driven 

methods to learn manipulation skills in robot-assisted interventional surgery are essential to improve 

the precision of underactuated robotic systems.  

3.3 Multi-Modal Sensing Data Pre-Processing 

Using advanced sensors and data processing units, the system collects comprehensive and diverse 

control data from the intricate interaction cycle between the doctor, the vascular interventional robot, 

and the patient during robot-assisted endovascular procedures. These abundant data are then pre-

processed, and features are extracted to facilitate further exploration of the relationships between 

successful and potentially failed interventions and the manipulation employed by the operators, as 

well as to investigate technologies to identify and categories the manipulative actions of 

interventional surgeons. 

3.3.1 Integrated data acquisition and analysis platform for interventional surgery 

A. The platform of multi-sensor data acquired interventional procedure  

To thoroughly investigate the intuitive manipulation characteristic and automation processes of 

robot-assisted endovascular interventional surgery, a simulation platform integrated with a robotic 

system has been built. This platform accurately reproduces the clinical operating environment of 

endovascular interventional surgery using live animal models (rabbit and pig). It combines a 

precision manipulator system, advanced image navigation technology, and a control system to 

enable robot-assisted interventions to perform precise operations within small endovascular 

structures. By utilizing a real-time feedback and closed-loop adjustment mechanism based on DSA 

images, the system simulates the decision-making processes and operational behaviour of 

physicians in a real surgical environment. All experimental activities were conducted under a strict 

ethical framework. These in vivo studies were performed using the third-generation vascular 

interventional robotic system mentioned in Chapter 2. The robot-assisted catheterization trials 

involved navigating a 0.014" guidewire (Abbott Vascular, Diegem, Belgium) along endovascular 

pathways under X-ray guidance, which provides a means for CT image feedback. The experimental 

setup used for the mammalian subjects is presented in Figure 3.1. 

The operators were thoroughly briefed on the catheterization trials and allowed to conduct them 

independently. Each trial commenced with a tutorial session in which operators were informed about 

the desired pathway. To ensure data consistency, the guidewire was prepared to maintain a similar 

initial pose at the start of each trial, allowing operators to initiate manipulation in a standardized 

mode. Kinematic motion data were obtained using EM trackers and an EM field generator placed 

in front of the master unit to ensure a stable measurement range. The sensors used for multimodal 
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Figure 3.1: Experimental setup showing the original data collected procedure. 

data acquisition is resistant to electromagnetic interference, ensuring no mutual interference among 

them. Each trial involved recording and deriving specific information from surface EMG data of 

pre-selected muscles, including EM signals related to the motion of the operator’s thumb and index 

fingers, glove data for right-hand finger activities, and the position of the guidewire tip. The dataset 

recorded from the interventional procedure was labelled according to two predefined conditions: 

Level-S, which indicates successful path cannulation completed in less than the median time (82.5 

seconds for rabbits and 92 seconds for pigs), and Level US, which includes unsuccessful trials that 

did not meet both conditions. The latter encompasses cases of cannulating incorrect pathways and 

instances of incomplete trials within the maximum allotted time. Overall, the acquired 26-channel 

signals include 4 channels for muscle activity (MA) EMG data, 6 channels for finger motion (FM) 

EM data, 14 channels for hand motion (HM) glove data, and 2 channels from CT images for 

guidewire trajectory (GT), all used to represent the operator’s technical manipulation skills. 

B. Manipulation pattern during endovascular interventional procedure 

In manual PCI surgery, complex interventional manipulation involving the guidewire consists 

mainly of three types of manipulation: translational, twisting, and composite. Axial translational 

manipulation allows the interventional surgeon to push and retract the guidewire along its axis in 

two opposing directions. The aim of the pushing manipulation is to deliver the guidewire to the 

distal end of the lesion within the endovascular lumen. The surgeon pinches the guidewire between 

the thumb and index finger of their dominant hand and moves their entire hand to perform axial 

pushing manipulation (PH). 

In contrast, when the guidewire reaches an incorrect vessel, the interventional surgeon must pull 

it (PL) in the opposite direction to return to a designated initial point, then reselect the path to deliver 

the guidewire to the correct endovascular branch. The coronary vascular system is intricate and has 

numerous branches. When the guidewire tip encounters an endovascular bifurcation, the surgeon 

must use two fingers to twist the guidewire, causing it to rotate circumferentially until its J-shaped 

tip is orientated toward the correct bifurcation. At this point, the surgeon pushes the guidewire to 

pass through the bifurcation and enter the correct endovascular branch. Similarly, the twisting 

manipulation encompasses two sub-manipulations: counterclockwise rotation (CCR) and clockwise  
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Figure 3.2: Manipulation pattern of endovascular interventional surgery. 

rotation (CR). In certain narrow or calcified lesions, the flexibility of the guidewire tip can make it 

difficult for either of these single motion types to navigate through such lesions. Therefore, 

experienced surgeons often push and twist the guidewire simultaneously to dynamically adjust its 

movement state, generating motion both axially and circumferentially.  

The composite manipulation of the guidewire includes four sub-manipulations: pushing 

combined counterclockwise rotation (PHCCR), pushing combined clockwise rotation (PHCR), 

pulling combined counterclockwise rotation (PLCCR), and pulling combined clockwise rotation 

(PLCR). Thus, there are eight operational modes in the endovascular interventional surgery process, 

which will aid future surgical robots in achieving automated standardized interventions. The self-

developed master-salve vascular interventional robotic system preserves the operational paradigm 

of traditional interventional surgery to reduce the learning curve for interventional surgeons 

performing robot-assisted procedures. Thus, the robot-assisted interventional procedure also 

comprises eight sub-manipulations: PH, PL, CR, CCR, PHCR, PHCCR, PLCR, and PLCCR, as 

shown in Figure 3.2. 

To acquire multimodal sensing information from surgeons with different technical skills, nine 

operators with varying PCI experience were recruited from Shenzhen Advanced Animal Study 

Service Centre and Shenzhen Institutes of advanced Technology. These include two veterinarians 

and seven novices with more than 50 and ∼10 animal procedures completed, respectively. Subjects 

were introduced to the proposed study and trained on using the master-slave robotic system for 

endovascular tool navigation in an endovascular model. Training was done to prepare the operators. 

Similarly, subjects were introduced to the desired endovascular pathways in rabbits and pig animals 

a month before the acquisition of experimental data. 

C. Endovascular cardiac pathways in mammals 

The animal experiment was approved by the Shenzhen Institutes of Advanced Technology under 

Application No. SIAT-IACUC-200528-YGS-WL-A1289 and by the Shenzhen Advanced Animal 

Study Service Centre under application no. AAS191204P, which was carried out on two different 

mammalian animal models that are accessible. The subjects include six rabbits (2.21 ± 0.29 kg) and  



Upscaling Robot-assisted Endovascular Tool Manipulations based on Intuitive Multimodal Data Analysis 

 

 54 
 

 

Figure 3.3: Three chosen catheterization routes and path navigation analyses. 

a pig (32 kg) who were premedicated intravenously and intramuscularly, respectively.  

The robotic catheterization trials started with path creation in which an indwelling needle was 

inserted through the auricle vessel in rabbits and the introducer sheath through the femoral vessel in 

pig. Sixty catheterization trials (that is, 26 in rabbits and 34 in pigs) were performed to catheterize 

the guidewire from the different start points A in the animals to the target points B, as shown in 

Figure 3.3. The three pathways are auricle to corona in rabbits (Figure 3.3(a)), femoral-to-right-

renal artery and femoral-to-left-renal artery in pigs (Figure 3.3(b) and Figure 3.3(c), respectively). 

Before a catheterization trial, operators were allowed to visually analyse the desired path to plan 

tool navigation. 

3.3.2 Data acquisition and feature extraction  

A. Multi-modal sensing data acquisition 

The delivery of the guidewire in robot-assisted endovascular intervention is driven by the natural 

manipulations performed by the interventional surgeon on the primary mechanism. These natural 

manipulations result from coordinated movements of the hand, fingers, wrist, elbow, shoulder, and 

other joints. Consequently, the key factors that influence natural manipulation behaviour include 

muscle activity, hand movement, and finger movement. Therefore, data acquisition was achieved 

by recording operator manipulation behaviours through sEMG, fibre optic gloves, EM sensors, and 

CT imaging data. For labelling purposes, videos were recorded during 60 trials, and actual hand 

movements were extracted to create the labels necessary for training and validating the proposed 

recognition model. These offline analyses were used to label seven distinct hand movements. Each 

video was processed at 30 frames per second, and each frame was analysed to assess the 

catheterization motions performed by the operators and their progression along the desired path. 

The multi-modal data recording procedures are detailed in the following. 

• Acquisition of sEMG signals 

For the acquisition of muscle activity by interventional surgeons, four key skeletal muscles were 

selected for analysis: abductor pollicis brevis (APB), flexor carpi radialis (FCR), dorsal interossei 

(DI), and extensor carpi radialis (ECR). SEMG signals from these muscles were systematically 

collected and analysed using high-precision EMG sensors to fully characterize subtle changes and 

dynamic patterns of muscle activity during surgical procedures. Typical sEMG signals are captured 
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noninvasively to obtain physiological data that trigger limb movements corresponding to seven hand 

motions. A commercial configurable EMG system (BIOPAC Systems, Inc., Goleta, CA, USA) was 

utilised for the acquisition of the sEMG signal at a sampling rate of 1000 Hz. To ensure high signal 

quality, the operator’s skin was thoroughly cleaned with alcohol prior to each trial. The centre-to-

centre distance between each electrode in a channel was maintained at less than 20 mm. Each trial 

progressed from source A to target B, with the operator employing different hand motions (i.e. PL, 

PH, CR, CCR, PHCR, PHCCR and PLCR) for guidewire delivery. The signals related to each 

muscle motion were acquired and saved in separate files for further processing. 

• Acquisition of EM signal of finger motion  

For the acquisition of finger motion, an electromagnetic tracking system was used to record the 

finger movements of the interventionist during the procedures. Two electromagnetic tracking 

sensors were affixed to the thumb and index fingertip, respectively, to capture movement behaviours 

throughout the intervention. EM position sensors, specifically the Aurora 6-DoF Flex Tube (Φ1.3 

mm, 40 Hz) from Northern Digital Inc. (Canada), were employed to collect motion data from the 

operators’ fingers during the trials. Each EM sensor records three-dimensional (x, y, z) position 

information and orientation data (pitch, yaw, roll) using a field generator with a measurement 

volume of 20 × 20 × 7cm. The EM field generator transmits electromagnetic signals to enable the 

EM sensors to function effectively. It provides position and orientation tracking accuracy of 0.9mm 

and 0.8°, respectively, with approximately 20ms latency for stable closed-loop control. The spatial 

pose of the surgeon’s finger motion and distances are calculated based on the planar reflection of 

the coordinates and used for further processing. 

• Acquisition of glove signal of hand motion 

For the acquisition of hand movement, a fibre optic glove is used to capture the complete hand 

motion and finger flexion data of the operators. During robot-assisted interventional surgery, the 

right hand is typically the dominant hand used by the surgeon. The Data Glove 14 Ultra (Fifth 

Dimension Technologies, Orlando, FL, USA) records the activities of the right fingers. This data 

glove is embedded with fiber bending sensors fixed at 14 joint points on each finger, including the 

proximal, middle, and distal joints. Signals are obtained from 14 channels corresponding to thumb 

near (tn), thumb far (tf), thumb/index (ti), index near (in), index far (if), index/middle (im), middle 

near (mn), middle far (mf), middle/ring (mr), ring near (rn), ring far (rf), ring/little (rl), little near 

(ln) and little far (lf), all at a fixed sampling rate of 60 Hz. The sensor processing unit processes this 

information to output the bending curvature of the hand. The glove captures kinematic data, 

providing flexion and abduction information between the fingers. These values are used as 

displacement information for hand motion and to model manipulation skills. 

• Acquisition of CT Images of guidewire trajectory 

In robot-assisted interventional surgery, the dynamic mapping between the operator’s 

manoeuvres and the movement trajectory of the distal endovascular device is a crucial dimension 
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Figure 3.4: Multi-modal sensing information. 

for assessing the operator’s skill level. Each subtle action of the operator is directly and accurately 

reflected in the trajectory changes of the distal instrument within the blood vessel. This 

transformation process not only signifies the accuracy of the surgical operation but also provides 

insight into the operator’s skill proficiency and decision-making abilities. Consequently, the motion 

trajectory data of the distal endovascular instrument serves as core information to quantitatively 

characterize the surgical skills of the operator. A custom X-ray machine [211] was used to produce 

a real-time image of the intravascular catheterization procedure. Continuous CT images tracked the 

motion of the guidewire in the endovascular pathways, and it was used to judge the success of the 

trials. Thus, guidewire pixels were segmented from CT images, and tip poses were obtained. 

B. Signal processing 

The study used a resolution-based dynamic time warping fusion model to align the multimodal 

data, given the diverse data sources used [212]. Each signal from the various sources was 

individually processed and the distinctive features within the signals were extracted. The sEMG 

signals acquired from the operators were subjected to a 10-500 Hz band-pass filter to remove 

unwanted components outside the specified bandwidth. Subsequently, a 50 Hz and 40 Hz notch 

filter was designed in the ACQ-Knowledge software to mitigate potential disturbances from power 

frequencies and EM sensor devices during signal acquisition. After noise reduction, a normalization 

procedure was implemented using the maximum voluntary contraction (MVC) method to ensure a 

consistent basis for comparing sEMG signals across operators, regardless of individual differences. 

A CT image dataset was collected to capture the motion of the guidewire in vivo, the participants 

wearing sensors and performing a series of endovascular interventional surgery tasks. The data set 

consisted of trials recorded at 10 frames per second for rabbit experiments and 15 frames per second 

for pig experiments, resulting in approximately 1480 and 1545 images, respectively. To enhance 
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image quality, median filtering was applied to reduce nonlinear noise and diminish artefacts. 

Similarly, median filters were used to smooth signals from EM sensors and fibre optic gloves, 

eliminating spurious spikes and outliers. To synchronize the video, sEMG, EM, and fibre optic 

kinematics data, all four systems were connected to a computing device and time-stamped 

consistently throughout the experiments. The near instantaneous capture, processing, and time 

stamping of all incoming data streams ensured that no significant lag or temporal distortion occurred 

during the synchronization process. 

C. Feature extraction 

According to sensor specifications, the sampling rates for the muscle activity signal, EM data for 

finger motion, fibre optic glove data for hand motion, and CT images of guidewire motion are 1000 

Hz, 40 Hz, 60 Hz and 10 frames per second, respectively. To synchronize the high-sampling-rate 

data with the lower-sampling-rate data, all signals were aligned in the time domain. A 0.1-second 

window length was used as the standard unit for each sequential signal to extract the features 

corresponding to the standard unit points. Data points were processed using various methods within 

this 0.1 second window to obtain feature values. 

Following signal processing and normalization, the pre-processed EMG data were analysed using 

the root mean square method with a window length of 0.1 seconds, where each value was computed 

as the square root of 100 consecutive data points. Furthermore, the average rectified value and the 

zero-crossing rate, both with a window length of 0.1 seconds, were extracted to analyse the sEMG 

signals of each operator, facilitating the evaluation of muscle activity during robot-assisted 

endovascular interventions. Similarly, finger displacements were determined by averaging four 

consecutive data points, with each point representing the 3D coordinate distance between two 

consecutive finger motions recorded by the EM sensors. These values were calculated as the square 

root of the coordinates x, y, and z. The fibre optic glove sensors provided 14 channels of data 

corresponding to hand joint movements. The displacement values for each joint were obtained by 

calculating the absolute difference between two adjacent data points and averaging six consecutive 

values.  

Thus, 14 types of joint displacements were derived from glove sensors. Finally, displacement data 

for the guidewire tip were extracted from CT images recorded during robot-assisted trials and added 

to the features used for outcome prediction and motion recognition. The feature extraction 

procedures are detailed below. 

a) Manipulation feature based on muscle activity 

• Root mean square (RMS) is used to evaluate muscle force during hand movements by 

measuring muscle activity. It is defined as the square root of the average sEMG signal 

acquired over a specific time, T. The RMS of a signal can be expressed as follows (3.1), 

where represents the i-th data point of the signal, and N is the number of samples. In this 

case, N corresponds to the number of data points within a 100ms window. 
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𝑅𝑀𝑆 = √
∑ 𝑑𝑎𝑡𝑎 [𝑖]2𝑁

𝑖=1

𝑁
                                                     (3.1) 

• The average rectified value (ARV) is used to assess the innervation input from the sEMG 

signals acquired from all activated muscles during a given movement. This is a parameter 

analysed in the time domain, and it is also a single-valued parameter that is not associated 

with time series of the sEMG signal. ARV is calculated as the mean amplitude of the sEMG 

signals over a 100ms window, as shown in equation (3.2). 

 𝐴𝑅𝑉 =
∑ |𝑑𝑎𝑡𝑎[𝑖]|𝑁

𝑖=1

𝑁
                                                     (3.2) 

• Zero crossing rate (ZCR) provides indirect information about the frequency of a signal in 

the time domain. It measures the number of zero crossings where the amplitude exceeds a 

set threshold to avoid low voltage fluctuations and background noise. In this study, the 

threshold (T) was set to three times the standard deviation of the background noise segment. 

ZCR reflects changes in the amplitude of sEMG signals recorded during muscular activities 

and is used for further analysis. This study investigated the speed of changes in muscle 

activities by analysing the ZCR of sEMG signals captured during different movements. The 

threshold (T) for this analysis was set at 10e-7. A total of 12 features, including RMS, ARV, 

and ZCR from four muscles during muscle activity, were extracted for further analysis of 

the operators’ technical manipulation skills based on single-modal MA data.  

𝑍𝐶𝑅 =  
1

𝑁−1
∑ 𝑠𝑖𝑔𝑛(𝑑𝑎𝑡𝑎[𝑖] × 𝑑𝑎𝑡𝑎[𝑖 + 1]),𝑁−1

𝑖=0

𝑠𝑖𝑔𝑛(𝑥) = {
1     𝑖𝑓 𝐶1 < 0 ^ 𝐶2 ≥ 𝑑
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                  (3.3) 

b) Manipulation feature based on finger motion 

• 3D spatial displacements: Operator’s hand dexterity is assessed by calculating the spatial 

motion of the thumb and index fingers during each finger movement. This is determined as 

the Euclidean distance (3.4) between the two fingers using the 3D position data recorded by 

the EM sensors. Here, 𝐷𝑗𝑘  represents the displacement for any two consecutive finger 

motions; 𝐷𝑇𝑘(𝑗 = 𝑡ℎ) corresponds to the thumb’s displacement, and 𝐷𝐹𝑘(𝑗 = 𝑓𝑓) refers to 

the index finger’s displacement. Similarly, 𝑚∀{𝑥, 𝑦, 𝑧} denotes the displacement in different 

directions, which is computed for every 𝑑𝑎𝑡𝑎𝑚  obtained within a 100ms window. This 

results in six parameters of the two EM sensors. Consequently, the recognition of behaviour 

patterns in single-modal FM is based on the features extracted from the movements of the 

thumb and index finger. 

𝐷𝑗𝑘
ℎ𝑎𝑛𝑑 =

∑ √[𝑑𝑎𝑡𝑎𝑚(𝑗)−𝑑𝑎𝑡𝑎𝑚(k)]2
𝑚∀{𝑥,𝑦,𝑧}

3
                                   (3.4) 

c) Manipulation feature based on hand motion  

• Hand-tool displacement: The interaction between the operator’s hand and the lever of the 

master robot generates various types of displacement based on grasping and releasing 

motions. While some interruptions have limited effects on catheterization procedures, the 
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touch and frictional forces between the guidewire and the blood vessel can create significant 

resistance, prompting the operator to adjust their grasp or release the knob. To evaluate this 

in relation to manipulation skill, displacements from 14 joints are measured using a fibre 

optic glove sensor. Mean displacement values are calculated from data points within a 0.1-

second window. The displacement values in this study are computed using equation (3.5), 

where 𝑑𝑎𝑡𝑎𝑖represents the 𝑖 − 𝑡ℎ data point in the sequence obtained from the fiber optic 

glove sensor, 𝑗 is the 𝑗 − 𝑡ℎ joint of the right hand, and N is the number of data points within 

a 100 ms window. This provides 14 displacement parameters from the fibre optic sensor, 

which are used to develop the recognition model. 

𝐷𝑗𝑘
𝑘𝑛𝑜𝑏 =  

∑ |𝑑𝑎𝑡𝑎𝑖−𝑑𝑎𝑡𝑎𝑗|𝑁
𝑖=1

𝑁
                                                       (3.5) 

d) Manipulation feature based on guidewire trajectory 

• Guidewire trajectory: The guidewire trajectory was obtained directly from CT images by 

calculating the coordinate values of the guidewire tip in each frame. The x and y coordinates 

of the CT images were used to determine the displacement of the guidewire, as shown in 

equation (3.6). The displacement values derived from the CT images were then used for 

further analysis.  

𝐷𝑔 =
∑ √(𝑑𝑎𝑡𝑎𝑥(𝑖+1)−𝑑𝑎𝑡𝑎𝑥(𝑖))

2
𝑗∀{𝑥,𝑦}

2
                                        (3.6) 

A total of thirty-one features were extracted and used for outcome prediction and motion 

recognition. These features include twelve from the MA, two from the FM, fourteen from the HM, 

and three from the GT. For ease of reference, the features were defined as follows: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏,

𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟, 𝑍𝐶𝑅𝑓𝑐𝑟, 𝐴𝑉𝑅𝑑𝑖 , 𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 ,  𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 ,  which were 

extracted from the muscle activity signals; 𝐷𝑡ℎ and 𝐷𝑓𝑓from the finger motion; 𝐷𝑡𝑛, 𝐷𝑡𝑓 , 𝐷𝑡𝑖 ,  𝐷𝑖𝑛, 

𝐷𝑖𝑓,  𝐷𝑖𝑚,  𝐷𝑚𝑛, 𝐷𝑚𝑓,  𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 , 𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓 from the hand motion data; and 𝐷𝑥, 𝐷𝑦 , 𝐷𝑔 from 

the angiogram data of guidewire motion. 

3.4 Multi-Layer Classification System 

3.4.1 Manipulation technical skill framework 

In the complex and demanding field of robot-assisted interventional surgery, the technical skill 

of the operator plays a pivotal role in determining the success of distal endovascular procedures. 

The quality of surgical outcomes is closely related to the operator’s ability to master and apply 

various intricate operational modes during surgery. These skills are multidimensional and 

hierarchical, consisting not of isolated abilities but of interdependent and mutually influencing 

operational modes. These modes encompass fundamental hand-eye coordination, spatial perception, 

precise control of surgical instruments, real-time decision-making, and judgment during the surgical 

process, forming an intricate and sophisticated skill system. However, traditional approaches that 
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rely on the optimization of a single objective function are insufficient to capture and optimize all 

the essential elements of such a complex skill system. To address these challenges, this study 

introduces a novel hierarchical skill pattern learning framework driven by multimodal data, as 

shown in Figure 3.5. 

The framework follows a structured four-step process. First, this framework integrates data from 

multiple sensors and sources, including visual feedback, mechanical sensor data, and physiological 

indicators, to construct a comprehensive and multi-layered skill learning system. In the second stage, 

advanced signal processing techniques are applied to pre-process and extract key features from 

multimodal data, revealing critical skill characteristics embedded within the data. Data recorded 

from operators during 60 trials are pre-processed through filtering and normalization to retain salient 

information in the multimodal signals. Feature extraction is conducted to enhance the performance 

of the multi-layer classifier. In the third stage, a three-layer recognition framework, consisting of an 

initial decision layer, a motion decision layer and a mixed decision layer, was implemented in the 

robot-assisted guidewire delivery system. The framework incorporates machine learning and deep 

learning algorithms, particularly those suited for handling complex non-linear relationships, to 

automatically identify and classify various operational skill patterns. This enables hierarchical 

modelling of skills, from lower-level concrete actions to higher-level abstractions, while also 

providing insights into the internal relationships and transformation rules among different skill 

patterns. The machine learning algorithms underpin a multi-layer classification system, which 

classifies skills at the skill level, motion level, and mixed level. The recognition results of these  

 
Figure 3.5: Recognition framework manipulation during robot-assisted interventional surgery. 
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layers, generated based on distinct objective functions, are compared. Finally, significant 

differences in operator manipulation skills across the 60 trials were analysed, providing deeper 

insights into skill variability and performance. 

3.4.2 Manipulation technical modelling for control mode classification 

Given the complexity and diversity of manipulation skills, four classical machine learning 

algorithms-KNN, SVM, RF, MLP, and HAR- are employed to investigate the accuracy and 

efficiency of skill learning by integrating various data types, including sensor and video data. 

A. K-nearest neighbours (KNN) 

Unlike training-based models, KNN classifiers keep all training examples in memory to search 

for the K nearest neighbours that match a sample. For classification based on imbalanced data, the 

KNN model seems to show good handing performance [213] Hence, it is significant to use KNN 

classifiers identify human activity for imbalanced data classification applications. The k-NN 

algorithm is a non-parametric, instance-based learning method, where the classification decision is 

based on the majority label of the nearest neighbours in the feature space. This model is particularly 

effective for rare event classification and multi-modal problems where objects may have multiple 

class labels. 

• The k-NN algorithm classifies a test sample by finding the 𝑘-nearest training samples in the 

feature space. Most of the label among these 𝑘-neighbours is assigned to the test sample. 

The distance between samples is typically calculated using the Euclidean distance in 

equation 3.7. 𝑑(𝑥𝑖 , 𝑥𝑗) is the distance between samples 𝑥𝑖  and 𝑥𝑗 , m is the number of 

features in the dataset. 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖,𝑙 − 𝑥𝑗,𝑙)2𝑚
𝑙=1                                        (3.7) 

The main hyperparameter of the k-NN algorithm is the value of k, which represents the 

number of nearest neighbours considered during classification. A small k-value makes the 

model sensitive to noise, while a large k-value may include distant points that lead to 

incorrect classifications. Therefore, choosing an optimal k value is crucial to achieve high 

classification accuracy. 

• To determine the optimal value of 𝑘, a cross-validation procedure is performed. The dataset 

is split into training and test sets, and cross-validation is used to evaluate different values of 

k in the training set. The accuracy is computed for each value of k and the value that 

maximizes the cross-validation accuracy is chosen as the optimal 𝑘. The cross-validation 

accuracy for each 𝑘 is given in equation 3.8. 𝑛 is the number of samples in the validation set, 

𝑦𝑖 is the true label, �̂�𝑖 is the predicted label, ∏ is the indicator function that returns 1 if the 

prediction is correct and 0 otherwise.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑉(𝑘) =
1

𝑛
∑ ∏(𝑦𝑖 = �̂�𝑖)

𝑛
𝑖=1                                   (3.8) 

• Once the optimal k is determined, the model is trained on the full training set using this value 
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of 𝑘. The KNN model is trained using the training set with the optimal value of 𝑘. In the 

implementation, the optimal 𝑘 was found to be 25, meaning the 25 nearest neighbours are 

considered for classifying a new sample. The model is then trained on the entire training 

dataset. 

B. Support vector machine (SVM) 

SVM is a powerful supervised learning algorithm widely used for classification tasks, particularly 

when data are not linearly separable, and is a supervised machine learning model that creates a 

maximum-margin hyperplane(s) to solve classification and prediction problems. SVM classifiers 

transform entities in the input space into different classes. SVM is a better performer in the 

recognition of manipulations and technical skills [214]; therefore, the SVM classier was used to 

recognize operators’ manipulation skills in the trials. In the context of control mode classification, 

SVM helps to find an optimal hyperplane that maximizes the margin between different control mode 

classes in the feature space. The SVM algorithm aims to find a hyperplane that best separates the 

data points of different classes. For multiclass classification, SVM uses a one-vs-one or one-vs-all 

approach, where multiple binary classifiers are trained to distinguish between pairs of classes. 

• The optimization problem solved by SVM is as follows in equation 3.9 and 3.10. Where 𝑤 

is the weight vector defining the hyperplane, b is the bias term, C is the regularization 

parameter controlling the trade-off between maximizing the margin and minimizing 

classification errors, 𝜉𝑖 are slack variables allowing for some misclassification of data points. 

min
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1                                                   (3.9) 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0                                        (3.10) 

• The kernel function used in the model is the Radial Basis Function (RBF) kernel, which is 

suitable for non-linear classification problems. The RBF kernel is defined as in equation 

3.11. Where 𝛾 is a kernel hyperparameter that controls the influence of a single training 

example. The hyperparameters used in the model including Regularization parameter 𝐶 =

1.0, Kernel function RBF, degree 𝑑 = 8, Gamma 𝛾 = 1/𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , where 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒  is the 

number of features. 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)                                   (3.11) 

• The SVM model is trained on the standardized training data and the corresponding labels. 

The kernel function of the SVM model learns the optimal hyperplane that separates the 

control mode classes. The trained model is then used to predict the labels for the test data, 

and the predicted labels are compared with the true labels to evaluate the performance of the 

model. 

C. Random forest (RF) 

The RF classifier is constructed by generating multiple decision trees during training and 

aggregating their predictions to enhance both the performance and robustness of the model. This 
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technique is particularly effective for classification tasks involving complex and high-dimensional 

data, such as control mode classification. The RF model operates by building a collection of decision 

trees, and the final prediction is obtained by combining the outputs of all the trees, typically through 

majority voting in classification tasks. The key advantage of RF is its ability to reduce overfitting 

while maintaining high performance by averaging the predictions of multiple weak learners. 

The primary components of the RF model are as follows: a) decision trees, each tree is trained on 

a randomly selected subset of features and data points, using bootstrapping (sampling with 

replacement); b) aggregation, the model outputs the class most frequently predicted by the 

individual trees. The RF model mitigates overfitting by relying on the diversity of decision trees, 

each of which votes on how to classify instances of input data. Consequently, this RF model is 

adopted for the identification of operator hand patterns during robot-assisted guidewire delivery 

procedures. 

The algorithm to build each decision tree in the RF model is described below. 

• Bootstrap Sampling: For each tree, a random subset of data points is selected with 

replacement (bootstrapping). The size of this subset is controlled by the subsampling 

parameter, which is the proportion of data points used to train each tree. 

• Random Feature Selection: A random subset of features is selected for splitting at each node 

of the decision tree. The size of this feature subset is controlled by the column sampling 

parameter, which is the number of features to consider for splitting at each node. This 

randomness reduces correlation between trees and improves generalisation. 

• Node Splitting: At each node, the algorithm finds the best feature and corresponding split 

point that maximize the splitting criterion. In classification tasks, the Gini impurity is used 

as a splitting criterion. The Gini impurity is defined as in equation 3.12. Where 𝐶 is the 

number of classes, and 𝑝𝑖 is the proportion of samples that belong to class 𝑖 at the node. 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖−1                                                      (3.12) 

• Stopping Condition: The tree is recursively grown by splitting nodes until the maximum tree 

depth, which increases model complexity, is reached. The number of samples at a node is 

smaller than the minimum samples for splitting parameter, which is the minimum number 

of samples required to split a node. The Gini impurity gain is less than a minimum threshold. 

• Aggregation: When all trees are constructed, the final prediction for a sample is obtained by 

majority voting across all the trees in the forest. 

D. Multi-layer perceptron (MLP) 

The MLP is a neural network model utilized for recognizing operators’ manipulation skills. As a 

standard feedforward artificial neural network, the MLP is valued for its non-linear mapping and 

generalisation capabilities. This makes it suitable for applications in signal processing domains. The 

control mode classification task is formulated as a supervised learning problem, with the MLP 

employed for classification due to its ability to effectively model nonlinear relationships in data. 
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The architecture of the MLP is as follows: 

• The input layer processes a vector of 31 features (𝑚=31).  

• A fully connected dense layer with 100 neurons uses a 𝑅𝑒𝐿𝑢 activation function, defined as 

follow in equation 3.13. 𝑅𝑒𝐿𝑢 is chosen for its capacity to introduce non-linearity while 

remaining computationally efficient. 

𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥)                                              (3.13) 

• The output layer consists of 2 neurons with a softmax activation function for multi-class 

classification. The softmax function, given by following in equation 3.14. Where 𝑍𝑖 is the 

input to the output neuron corresponding to class 𝑖, and 𝐶 is the number of classes, ensures 

that the output is a probability distribution over the classes. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =  
𝑒𝑍𝑖

∑ 𝑒
𝑍𝑗𝐶

𝑗=1

                                               (3.14) 

• This model is trained using stochastic gradient descent (SGD) with momentum. The loss 

function is categorical cross-entropy, appropriate for multi-class classification problems. It 

is defined as follow in equation 3.15. Where, 𝑛 is the number of samples, 𝐶 is the number 

of classes, 𝑦𝑖,𝑐 is a binary indicator (0 or 1) if class 𝑐 is the correct label for sample 𝑖, and 

�̂�𝑖,𝑐  is the predicted probability for class 𝑐 for sample 𝑖  

ℒ = − ∑ ∑ 𝑦𝑖,𝑐log (�̂�𝑖,𝑐)𝐶
𝑐=1

𝑛
𝑖=1                                                 (3.15) 

• The optimization parameters include a learning rate 𝑙𝑟 = 0.01, decay-rate 𝜆 = 1 × 10−6, 

and momentum 𝜇 = 0.9. These parameters ensure a smooth and effective learning process, 

preventing the model from getting stuck in local minima. 

E. Human activity recognition model (HAR) 

This architecture leverages 1D convolutional neural networks to extract temporal features from 

input data, followed by fully connected layers for classification. This model aims to classify control 

modes by capturing complex temporal dependencies in input signals. The HAR model is made up 

of two main parts: the feature extractor and the classifier. The feature extractor is responsible for 

learning rich feature representations from the input signal data, while the classifier maps these 

features to specific control mode classes. 

• The input data 𝑥𝜖𝑅𝑛×𝑚, where n is the batch size and m is the number of features, is passed 

through the convolutional layers to extract temporal features. 

• The feature extraction part of the model is composed of a sequence of 1D convolutional 

layers. Each convolutional layer applies a set of filters to the input data, detecting local 

patterns and producing feature maps. This operation can be mathematically described as 

follow in equation 3.16. Where 𝑓(𝑙) is the feature map output from the 𝑙 − 𝑡ℎ convolutional 

layer, 𝑊(𝑙) represents the convolutional filter weights for the 𝑙 − 𝑡ℎ layer, 𝑥(𝑙) is the input 

to the 𝑙 − 𝑡ℎ layer, 𝑏(𝑙) is the bias term. 𝜎 is the activation function (𝑅𝑒𝐿𝑈 in this case), each 

convolutional layer is followed by a 𝑅𝑒𝐿𝑈 activation function to introduce non-linearity. * 
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denotes the convolution operation. The three convolutional layers are parameterized, Layer 

1 applies 64 filters of size 5 to the input, Layer 2 applies 64 filters of size 5 to the output of 

the first layer, Layer 3 applies 64 filters of size 5 to the output of the second layer.  

𝑓(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝑥(𝑙) + 𝑏(𝑙))                                       (3.16) 

• The model includes dropout layers to prevent overfitting and enhance the generalisation of 

the model. Dropout works by randomly deactivating a fraction of the neurons during training, 

thus improving the model’s robustness. 

• The classifier consists of two fully connected (Dense) layers, first fully connected layer 

receives the flattened feature vector and reduces its dimensionality to 128 using the 

following operation in equation 3.17. 𝑊𝑐 are the weights and bias for the fully connected 

layer, 𝑓 is the input feature vector, 𝜎 is the 𝑅𝑒𝐿𝑈 activation function. 

ℎ =  𝜎(𝑊𝐶𝑓 + 𝑏𝑐)                                                  (3.17) 

The second fully connected layer maps the 128-dimensional hidden representation to the 

final number of control mode classes. The softmax activation function is used to output a 

probability distribution over the classes, as defined in equation 3.18. Where �̂�𝑖  is the 

predicted probability for class 𝑖, and 𝑍𝑖 is the unnormalized logit for class 𝑖. 

�̂�𝑖 =  
𝑒𝑍𝑖

∑ 𝑒
𝑍𝑗𝐶

𝑗=1

                                                       (3.18) 

The output of the convolutional layers is flattened into a vector of size 4032.The flattened 

vector is passed through the fully connected layers to produce the class probabilities. 

• The model is trained using SGD with momentum, and using Cross-Entropy Loss as the loss 

function for classification. The update rule for each weight 𝑤 is given in equation 3.19. 

Where 𝜂 is the learning rate, ∇ℒ𝑡is the gradient of the loss function at time step 𝑡. 𝜇 is the 

momentum coefficient, which helps to smooth out the optimization process, allowing the 

model to converge faster and avoid getting trapped in local minima. 

𝑤𝑡+1 =  𝑤𝑡 − 𝜂∇ℒ𝑡 + 𝜇(𝑤𝑡 − 𝑤𝑡−1)                                       (3.19) 

3.4.3 Evaluative index of manipulation technical skill framework 

A. Evaluation metrics 

Data frames were collected from the robot-assisted interventional platform, with an average 

duration of 148 seconds per trial (26 trials in rabbits) and 103 seconds per trial (34 trials in pigs), 

using a window length of 0.1 seconds. This produced a total of 65,536 samples, which were used to 

develop a manipulation technique model for robot-assisted PCI. A key step in supervised machine 

learning is proper dataset division. Consequently, the sample datasets were randomly split into 

training and testing sets in a 7:3 ratio to ensure a well-generalized model with sufficient statistical 

power to accurately identify manipulation motions from new operators. The performance of the 

manipulation skill framework was evaluated using several metrics: 

• Accuracy measures the overall proportion of correctly classified instances, including both true 
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positives (TP) and true negatives (TN), and is calculated as follows (equation 3.20): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                        (3.20) 

where TP represents the number of correctly predicted positive instances, TN is the number of 

correctly predicted negative instances, false positives (FP, Type I error or false alarm) occurs 

when a negative instance is incorrectly predicted as positive, and false negatives (FN, Type II 

error) occurs when a positive instance is incorrectly predicted as negative. 

• Precision, positive predictive value measures the accuracy of the model’s positive predictions. 

For a given class 𝑐, precision is defined as follows (equation 3.21). Where TP represents the 

number of true positives for class 𝑐, and FP is the number of false positives for class 𝑐. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                    (3.21) 

• Recall, or sensitivity, measures the model’s ability to correctly identify positive instances. For 

class 𝑐, recall is given as follows (equation 3.22). Where FN is the number of false negatives 

for class 𝑐. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               (3.22) 

• Specificity, Specificity (true negative rate, TNR) evaluates the proportion of actual negative 

instances correctly classified as negative: 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                              (3.23) 

• Negative predictive value (NPV) measures the proportion of predicted negative instances that 

are true negatives: 

𝑁𝑃𝑉 = 1 −
𝐹𝑁

𝐹𝑁+𝑇𝑁
=

𝑇𝑁

𝑇𝑁+𝐹𝑁
                                        (3.24) 

• False discovery rate (FDR) quantifies the proportion of predicted positives that are actually 

false positives: 

𝐹𝐷𝑅 =  
𝐹𝑃

𝑇𝑃+𝐹𝑃
                                                              (3.25) 

• Matthew’s correlation coefficient (MCC) offers a balanced evaluation of prediction 

performance, especially on imbalanced datasets, by considering true and false positives and 

negatives: 

𝑀𝐶𝐶 =  
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                      (3.26) 

• F1 Score is the harmonic mean of precision and recall, offering a balanced measure of 

classifier performance for class 𝑐: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                  (3.27) 

B. Evaluation & training strategy 

To thoroughly explore the manipulation skills of interventional robots, several training strategies 

are employed to comprehensively evaluate and optimize their operational performance: 

• Single-modal training strategy:  
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This approach uses a single type of training data, such as image data based on visual feedback or 

electromyography data based on muscle activity, to enhance robot manipulation ability. It aims to 

identify which characteristic provides the most effective representation to improve manipulation 

skills in specific scenarios of robot-assisted interventional surgery. 

• Strong representation mode training strategy:  

This strategy focusses on extracting highly representative features from training data by 

constructing complex feature extraction and representation models. It seeks to enhance the robot’s 

understanding and adaptation of manipulation skills in the context of robot-assisted interventional 

surgery. 

• Significant difference mode training strategy:  

This approach uses statistical analysis to identify training modes with significant differences in 

robot manipulation performance under various conditions. Explore how significantly different 

characteristics represent interventional manipulation skills. 

• Multi-modal hybrid training strategy:  

This strategy integrates training data from multiple modalities (e.g., vision, touch, kinematics) to 

create a more comprehensive and diverse training environment. By leveraging the complementary 

nature of different modalities, it examines the representation capabilities of multi-modal features for 

robot-assisted interventional surgery, as well as the robustness and adaptability of the manipulation 

skill framework. 

3.5 Model Evaluation and Analysis 

Data on manipulation behaviours recorded during robot-assisted catheterization trials were 

analysed to assess technical proficiency and natural behaviours of the operators in relation to the 

results of the trials. Initially, significant differences in motion patterns between successful and 

unsuccessful trials were evaluated. The Mann-Whitney U-test, a nonparametric statistical method, 

was employed to analyse intergroup behaviour. This nonparametric approach was chosen to 

determine the influence of key features on outcome prediction between the two groups.  

The interventionists’ manipulation skills were analysed using multiple modalities, including MA 

features derived from sEMG signals, HM features obtained from the 15 sensors embedded in the 

fibre gloves, FM features from EM sensors, and the guidewire tip coordinates captured in CT images 

acquired via C-Arm X-ray during in vivo procedures. To identify the operators’ natural behaviours 

and objectively classify the robot-assisted trials, we implemented a HAR model based on a CNN 

(HAR_CNN), which was applied to classify HM patterns. 

1）Single-modal feature includes:  

• Muscle activity feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟, 𝐴𝑉𝑅𝑑𝑖 , 

 𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 
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• Hand motion feature: 𝐷𝑡𝑛, 𝐷𝑡𝑓 , 𝐷𝑡𝑖 ,  𝐷𝑖𝑛,  𝐷𝑖𝑓,  𝐷𝑖𝑚,  𝐷𝑚𝑛, 𝐷𝑚𝑓,  𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 ,  𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓 

• Finger motion feature: 𝐷𝑡ℎ and 𝐷𝑓𝑓 

• Guidewire trajectory feature: 𝐷𝑥, 𝐷𝑦 , 𝐷𝑔 

2）Fusion-modal feature includes:  

• MA fused HM feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟, 𝐴𝑉𝑅𝑑𝑖 , 

𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟and 𝐷𝑡𝑛, 𝐷𝑡𝑓 , 𝐷𝑡𝑖 , 𝐷𝑖𝑛,  𝐷𝑖𝑓,  𝐷𝑖𝑚,  𝐷𝑚𝑛, 𝐷𝑚𝑓, 𝐷𝑚𝑟 , 

𝐷𝑟𝑛, 𝐷𝑟𝑓 , 𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓 

• MA fused FM feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟, 𝐴𝑉𝑅𝑑𝑖 ,  

𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 , 𝐷𝑡ℎ and 𝐷𝑓𝑓 

• MA Fused GT feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟, 𝐴𝑉𝑅𝑑𝑖 , 

𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 , 𝐷𝑥, 𝐷𝑦 , 𝐷𝑔 

• HM fused FM feature: 𝐷𝑡𝑛, 𝐷𝑡𝑓 , 𝐷𝑡𝑖 ,  𝐷𝑖𝑛,  𝐷𝑖𝑓,  𝐷𝑖𝑚,  𝐷𝑚𝑛, 𝐷𝑚𝑓,  𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓,  𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓 

𝐷𝑡ℎ and 𝐷𝑓𝑓 

• HM fused GT feature: 𝐷𝑡𝑛, 𝐷𝑡𝑓, 𝐷𝑡𝑖 ,  𝐷𝑖𝑛,  𝐷𝑖𝑓,  𝐷𝑖𝑚,  𝐷𝑚𝑛, 𝐷𝑚𝑓,  𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 ,  𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓, 

and 𝐷𝑥, 𝐷𝑦, 𝐷𝑔 

• FM fused GT feature: 𝐷𝑡ℎ, 𝐷𝑓𝑓 and 𝐷𝑥, 𝐷𝑦 , 𝐷𝑔 

• MA fused HM and GT feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟, 

𝐴𝑉𝑅𝑑𝑖 , 𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 and 𝐷𝑡𝑛, 𝐷𝑡𝑓, 𝐷𝑡𝑖 , 𝐷𝑖𝑛, 𝐷𝑖𝑓, 𝐷𝑖𝑚, 𝐷𝑚𝑛, 𝐷𝑚𝑓, 

𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 , 𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓 and 𝐷𝑥, 𝐷𝑦 , 𝐷𝑔 

• MA fused HM and FM feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟, 

𝐴𝑉𝑅𝑑𝑖 , 𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 and 𝐷𝑡𝑛, 𝐷𝑡𝑓 , 𝐷𝑡𝑖 , 𝐷𝑖𝑛, 𝐷𝑖𝑓 , 𝐷𝑖𝑚, 𝐷𝑚𝑛, 𝐷𝑚𝑓 , 

𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 , 𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓 and 𝐷𝑡ℎ, 𝐷𝑓𝑓 

• HM fused GT and FM feature: 𝐷𝑡𝑛, 𝐷𝑡𝑓, 𝐷𝑡𝑖 , 𝐷𝑖𝑛, 𝐷𝑖𝑓, 𝐷𝑖𝑚, 𝐷𝑚𝑛, 𝐷𝑚𝑓, 𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 , 𝐷𝑟𝑙 , 

𝐷𝑙𝑛, 𝐷𝑙𝑓 and 𝐷𝑥, 𝐷𝑦, 𝐷𝑔,and 𝐷𝑡ℎ, 𝐷𝑓𝑓 

• MA fused HM, FM, and GT feature: 𝐴𝑉𝑅𝑎𝑝𝑏, 𝑅𝑀𝑆𝑎𝑝𝑏, 𝑍𝐶𝑅𝑎𝑝𝑏, 𝐴𝑉𝑅𝑓𝑐𝑟, 𝑅𝑀𝑆𝑓𝑐𝑟,  𝑍𝐶𝑅𝑓𝑐𝑟,

𝐴𝑉𝑅𝑑𝑖 , 𝑅𝑀𝑆𝑑𝑖 , 𝑍𝐶𝑅𝑑𝑖 , 𝐴𝑉𝑅𝑒𝑐𝑟 , 𝑅𝑀𝑆𝑒𝑐𝑟 , 𝑍𝐶𝑅𝑒𝑐𝑟 and 𝐷𝑡𝑛, 𝐷𝑡𝑓, 𝐷𝑡𝑖 , 𝐷𝑖𝑛, 𝐷𝑖𝑓, 𝐷𝑖𝑚, 𝐷𝑚𝑛, 𝐷𝑚𝑓, 

𝐷𝑚𝑟 , 𝐷𝑟𝑛, 𝐷𝑟𝑓 , 𝐷𝑟𝑙 , 𝐷𝑙𝑛, 𝐷𝑙𝑓, and 𝐷𝑡ℎ, 𝐷𝑓𝑓, and 𝐷𝑥, 𝐷𝑦, 𝐷𝑔 

3.5.1 Inter-group behaviour analysis in the initial-decision layer 

A. Statistical analysis of inter-group trial outcome prediction 

To investigate the differences in operator skill during robot-assisted interventional surgery, the 

Mann-Whitney U test, a non-parametric statistical hypothesis test, was employed to assess 

differences between two groups. This test is suitable for independent groups when it cannot be 

assumed that the population distribution follows a normal distribution. The U test was first applied 

to compare skill levels (Level-S or Level-US) in various motion cases in both successful and- 



Chapter 3: Modelling and Analysis of Manipulation Pattern 

69  

 

Figure 3.6: Statistical differences of features between successful trials and unsuccessful trials. 

 
Figure 3.7: Distribution of operating time for two groups. 

unsuccessful trials. The significant differences between S and US manipulations of all features are 

illustrated in Figure 3.6, with statistically significant behavioural differences indicated by an 

asterisk (*). 

In PL operations, features have significant differences between S and US manipulations except 

for the RMS feature from the DI muscle and Dtf from hand motion. Similarly, in PH operations, 

aside from the Dmf feature, other features have significant differences between the S and US 

manipulation. For CR operations, the features have significant differences, except for the ZRC, Dmr, 

and Drl features. In CCR operations, features also have significant differences between S and US 

manipulations, except for Dth, Din, and Dlf features. Statistical differences in features were also 

evident between S and US manipulations in PHCR operations, except for the AVR and RMS 

features from ECR muscle activity and Dy from GT. Likewise, except for the Dim, Drl, and Dg 

features, the features have significant differences between S and US manipulations in PHCCR 
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operations. Finally, all features have significant differences between S and US manipulations in 

PLCR operations. 

Moreover, there is a close and intricate relationship between the operator’s technical skill and the 

operating time in interventional surgery. Therefore, we analysed the differences in surgery time 

between surgeons in successful and unsuccessful trials. The results demonstrated that operators with 

Level-S completed guidewire delivery from point A to target B faster than those with Level-US, as 

shown in Figure 3.7. These findings suggest that the operator behaviour may vary when controlling 

the RCS to deliver the guidewire from the starting point to the target. This variation can be attributed 

to differences in experience, cognitive ability, and individual control strategies. Consequently,  

Table 3.1: Performance for S vs.US classification. 

Method TPR TNR NPV FDR MCC F1-score Accuracy 

KNN 0.9889 0.9772 0.6651 0.02173 0.9665 0.9836 0.9832 

SVM 0.9838 0.9765 0.5799 0.0222 0.9605 0.9808 0.9802 

RF 0.9911 0.9930 0.4264 0.0066 0.9840 0.9923 0.9920 

MLP 0.9921 0.9969 0.2681 0.0029 0.9888 0.9946 0.9944 

HAR_CNN 0.9617 0.9615 0.4868 0.0364 0.9231 0.9626 0.9616 

 

Figure 3.8: Performance of S/US based on single-modal and fusion-modal features with MLP classifier. 
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operators’ behaviour strategies reflect varying levels of catheterization skills, which can result in 

successful or unsuccessful navigation of the endovascular pathway. 

B. Performance analysis of Level-S vs. Level-US 

The five classifiers were validated using the dataset obtained from the in vivo studies to assess 

their performance in predicting each trial as Level-S or Level-US based on thirty-one characteristics, 

as shown in Table 3.1. The results showed that the MLP demonstrated the best performance in 

recognizing the technical skills of Level-S and Level-US. The MLP method achieved the highest 

performance with a recognition accuracy of 99.44%, outperforming other classifiers.  

Therefore, the MLP classifier was used to investigate the influence of relevant behaviours on skill 

level classification, distinguishing between Level-S and Level-US. The recognition accuracy based 

on the single-modal and fusion-modal characteristics was obtained using the MLP method, as shown 

in Figure 3.8 (a)-(g) and (a’)-(g’). The results show that the recognition accuracy using fusion-

modal features outperformed that of single-modal features across different manipulation patterns. 

For the single manipulation patterns PL, PH, CR, and CCR, the single-modal feature of HM 

achieved the best recognition performance compared to other single modalities such as MA, GT, 

and FM. Similarly, for the composite manipulation patterns PHCR, PHCCR and PLCR, the single-

modal feature of MA demonstrated the best performance compared to other modalities. Furthermore, 

the recognition accuracy of the single-modal FM feature was the lowest among the seven 

manipulation patterns compared to MA, HM, and GT. 

Recognition performance for single-modality features revealed that MA and HM achieved better 

accuracy compared to FM and GT, and HM showed the best overall performance. To evaluate the 

impact of fusion-modal features on model accuracy, we explored the performance of bimodal and 

multimodal feature combinations. By combining the two best single modalities, MA and HM, as 

input parameters for the framework, recognition accuracy improved by 3.68% compared to using 

only the best single modality, HM, as shown in Figure 3.9. Combining HM and GT features yielded 

an accuracy of 97.10%, a 2.15% improvement over HM alone. Additionally, the combination of 

MA and GT resulted in a recognition accuracy of 96.82%, an increase of 1.87% compared to HM. 

However, combining FM with MA, HM, or GT led to lower accuracy compared to individual single  

 
Figure 3.9: Performance of S/US based on different feature with MLP classifier. 
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modalities. Specifically, fusion of FM with MA resulted in a 1.65% decrease in accuracy compared 

to MA alone. Similarly, combining FM with HM and GT resulted in a 5.40% decrease in precision 

compared to HM combined with GT. These findings suggest that finger motion characteristics may 

not contribute significantly to the recognition of behaviour skills or may underperform in the 

recognition of behaviours during robot-assisted endovascular interventions. 

The MLP method achieved the highest precision of 99.44% in recognizing Level-S and Level-

US trials in the data set based on the MA, FM, HM, GM, and mixed-modal characteristics in the 

initial decision layer. Compared to single-modality schemes, multimodal behaviour showed 

improved performance, with 94.95% precision in distinguishing Level S from Level US trials. 

Similarly, natural behaviours based on a three-fusion model achieved 99.24% accuracy, which is 

higher than that of bimodal features. Furthermore, combining two modalities performed better than 

single-modal features, with an accuracy of 98.63% for the former. These results suggest that single-

modality data has a lower recognition performance, whereas fusing multiple data modalities 

significantly improves recognition accuracy. Therefore, defining the appropriate number of 

combined features is essential for a better identification of operators’ skill levels. Additionally, the 

single-modal HM features yielded the best performance, with recognition accuracy exceeding that 

of the MA, FM and GM modalities, indicating that hand motion information should be a primary 

feature in skill recognition. When merging two modalities, the best performance was achieved by 

combining features of muscle activity and hand motion (MA+HM), as the combined information 

improved the accuracy of the recognition model. 

Moreover, without fusing FM features, the results show that the recognition accuracy based on 

bimodal features is higher than that based on single-modality features. Similarly, the accuracy based 

on three-modal fusion exceeds that of bimodal fusion, and the accuracy based on four-modal fusion 

is slightly higher than that of three-modal fusion. These findings indicate that incorporating features 

from multiple modalities provides richer insights into operator behaviours compared to single-

modality data during robot-assisted catheterization trials and can better represent the operator’s 

technical behaviour. 

3.5.2 Inter-group natural pattern analysis in the motion-decision layer 

A. Significant difference of features 

To investigate whether features with significant differences impact recognition accuracy, 

statistical analyses were performed using Kruskal-Wallis and Mann-Whitney methods to assess the 

statistical differences between the two sample groups. The nonparametric test was used to compare 

features from seven behaviour patterns that exhibited significant differences. In in vivo studies, 

statistical analysis was conducted to explore the significant differences between PL, PH, CR, CCR, 

PHCR, PHCCR, and PLCR by evaluating 31 characteristics derived from MA, FM, HM and GM 

activities. 

These results explain the influence of features with significant differences between movements  
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Figure 3.10: Distribution of statistical differences of features. 

on the accuracy of the recognition of behaviour patterns. Pairwise comparisons among the seven 

movements yielded a total of twenty-one combinations. A feature was defined as efficient if it 

showed no significant difference in no more than two out of the 21 combinations. Thus, 19 features 

exhibited significant differences when comparing successful and unsuccessful trials. A significance 

level of p < 0.05 was used to identify these differences. The results are shown in Figure 3.10. In 

both successful and unsuccessful trials, the same 19 features with significant differences were 

identified: seven from muscle activities, one from finger motion, eight from hand motion, and three 

from guidewire motion. 

B. Influence of different fusion-modal features 

The recognition accuracy based on single-modal feature: The performance analysis of the 

classier method based on single-modal features is analysed by recognizing seven manipulation 

patterns, as shown in Figure 3.11. The result show that the recognition accuracy based on HM-  

 
Figure 3.11: The recognition accuracy of manipulation patterns. 
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Figure 3.12: Performance of manipulation pattern based on fusion-modal features and statistical differences. 

 

Figure 3.13: Performance of manipulation patterns based on thirty-one features. 

feature has best performance than that of accuracy based on other single-modal feature in successful 

trails, except for RF method. Meanwhile, in unsuccessful trails, the recognition accuracy based on 
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MA feature has a better performance than that of accuracy based on other single-modal feature, 

except for MLP and HAR_CNN method. Moreover, the recognition accuracy based on the single- 

modal HM and MA feature is higher compared to that of single-modal FM and GT, respectively. 

Thus, the single-modal MA and HM feature was fused to improve the recognition accuracy 

performance. Fusion-modal features have 26 features, including 12 muscle activity features and 14 

hand motion features. 

The recognition accuracy based on fusion-modal features: The recognition accuracy based on 

single-modal MA features and HM features can obtain better performance compared to the single- 

modal FM feature and GT feature in the above discussion. Thus, using single-modal MA feature 

fused HM features, the accuracy achieved better performance on recognizing seven manipulation 

patterns, as shown in Figure 3.12(a) and (b). Furthermore, the recognition accuracy based on 19 

features with statistical differences were obtained using different methods during robot-assisted 

interventional surgery, as shown in Figure 3.12(a’) and (b’). 

The recognition accuracy based on all thirty-one features: The recognition accuracy of 

different classier method based on all thirty-one features is shown using different classier methods 

in Figure 3.13. The result showed that the MLP method obtained the best 98.55% performance to 

recognize seven manipulation patterns compared to the other four classier methods in successful 

trails, meanwhile achieving 98.44% recognition accuracy in unsuccessful trails. 

In surgical robotics, a precise representation of manipulation patterns is essential to improve 

accuracy and efficiency. Therefore, this study compares the impact of different fusion methods of 

characteristics on the effectiveness of manipulation patterns in both successful and unsuccessful 

trials, with the aim of identifying the most suitable fusion approach to optimize the performance of 

robotic-assisted surgical systems in Figure 3.14. 

The results indicate that the recognition accuracy based on fused-modal features is significantly 

higher compared to that using single-modal features. In successful trials, a recognition accuracy of 

82.95% was achieved using 19 statistically significant characteristics. When 26 characteristics 

derived from the two best single modalities, MA and HM, were used, the accuracy increased to  

 

Figure 3.14: Performance of manipulation pattern based on different fusion-modal features. 
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84.90%. Using all thirty-one features, the HAR_CNN method demonstrated an increase of 6.24% 

and 4.29% in recognition accuracy compared to using 19 and 26 features, respectively. Similarly, 

the RF method resulted in an increase in precision of 0.48% and 4.40% with 31 features compared 

to 19 and 26 features, respectively. On the contrary, the SVM method showed an increase in 

precision of 3.91% and 2.95% when using 31 features compared to 19 and 26 features, respectively. 

Furthermore, the KNN method exhibited an increase of 2.19% and 1.46% in recognition accuracy 

with thirty-one features compared to 19 and 26 features, respectively. Finally, the MLP method 

showed a decrease in accuracy of 1.83% and 1.56% when using 19 and 26 features instead of thirty-

one features, respectively. 

In unsuccessful trials, the HAR_CNN classifier achieved a significant increase in precision with 

31 features, improving by 3.65% and 2.02% compared to using 19 and 26 features, respectively. On 

the contrary, the RF method resulted in a 1.00% decrease in accuracy when using 19 features and a 

2.19% increase when using 26 features. The SVM method saw increases of 1.46% and 1.47% in 

recognition accuracy with 31 features compared to 19 and 26 features, respectively. The KNN 

method exhibited increases of 0.79% and 0.92% with thirty-one features compared to 19 and 26 

features, respectively. Lastly, the MLP method achieved higher recognition accuracy by 1.02% and 

1.19% with thirty-one features compared to 19 and 26 features, respectively. 

Consequently, during successful trials, the recognition accuracy based on 19 features was lower than 

that of 26 features, except when using the RF method (Figure 3.14(a)). In unsuccessful trials, the 

recognition accuracy based on 19 features was higher than that of 26 features, except when using 

the HAR_CNN method (Figure 3.14(b)). This suggests that statistically significant characteristics 

play a key role in the recognition of behaviour patterns during unsuccessful trials. However, this 

indicates that the features used as input to the classifiers significantly affect the recognition 

accuracies in successful trials and improve the recognition accuracies in unsuccessful trials. 

Within the recognition framework, different feature sets were analysed to explore their influence 

on accuracy. In the Level-S group, feature sets comprising nineteen statistically significant features 

showed significantly lower recognition accuracy compared to feature sets with twenty-six features, 

which combine the best single-modalities MA and HM, across different classifier methods, except 

for the RF method. This indicates that selecting relevant muscle activity and hand motion features 

can potentially improve the overall recognition performance of the model. However, in the Level-

US group, feature sets with 19 parameters generally exhibited higher accuracy than those with 26 

parameters when using classifiers other than the HAR_CNN model. This suggests that behaviours 

with statistical differences contribute to improved recognition performance. Therefore, the features 

derived from the manipulating behaviours perform differently in the Level-S and Level-US groups. 

In addition, five methods were used to generate various fused feature sets from the thirty-one 

features. 

Consequently, it indicated that the combined modality with more features from muscle activity, 

finger motion, hand motion, and guidewire motions have higher recognition accuracy compared to 
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when using a single modality with few features during robot delivering guidewire passed through 

endovascular path from A to target B. Thus, this suggests that more relevant behaviours are achieved 

from the four sources, including muscle activity, finger motion, hand motion, and guidewire motion 

comprehensive information on operators’ behaviour activities when performing endovascular 

guidewire delivering for robot-assisted interventional surgery. 

3.5.3 Level-S and Level-US pattern analysis in the mixed-decision layer 

In the mixed-decision layer of the recognition framework, 14 behaviour patterns including PL,  

 

Figure 3.15: Performance of manipulation patterns based on different classifiers.  
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PH, CR, CCR, PHCR, PHCCR, and PLCR movements from the Level-S and Level-US groups were 

identified using different classifier methods. The results of each model were presented as a 

confusion matrix, representing the results of the recognition of manipulation behaviour, as shown 

in Figure 3.15(a-e). The recognition accuracy of different candidate decoupling classifiers was 

80.33% for HAR_CNN, 83.36% for RF, 87.19% for SVM, 91.06% for KNN, and 93.96% for MLP 

when using fusion-modal behaviours. When comparing the five classifiers, the MLP model achieved 

the highest classification performance with 31 features derived from MA, FM, HM, and GT. 

The recognition performances for the motion patterns (i.e. PL, PH, CR, CCR, PHCR, PHCCR, 

and PLCR) are shown in Figure 3.15(f). For the seven movements, the highest accuracy in 

recognizing Level-S vs. Level-US was achieved by the MLP method using fusion-modal features. 

Additionally, the Level-S vs. Level-US accuracy for PH and PL movements was higher than that 

for other movements, indicating that the operator’s manipulation skill may have a stronger impact 

on these movements in robot-assisted PCI. Another reason may be that high-frequency movements 

are more suitable to assess operational skills. On the contrary, complex movements likely require 

additional information sources to accurately assess manipulation skills in robot-assisted PCI. 

3.6 Chapter Summary 

This chapter elaborates on a proposed operator-behaviour-based three-layer decision template 

designed to assess technical skills in robot-assisted PCI. Using this template, operator manipulation 

behaviours, including MA, FM, HM, and GM, are seamlessly integrated by analysing data from 

sEMG, EM, fibre optic glove sensors, and CT imaging. This integration enables the identification 

of the link between manipulation behaviours and guidewire delivery movements (that is, translation 

and rotation) within fusion-modal, dual-modal, and single-modal frameworks. Through fusion-

modal analysis, the selection of suitable natural behaviours and the amalgamation of crucial 

information enhances the discernment of operator skill levels. 

Comprehensive comparative experiments and statistical evaluations offer strong evidence that 

operators demonstrate distinct manipulation behaviours during successful compared to unsuccessful 

procedures while employing the robotic control system to navigate the wire to the target location. 

Building upon the operator-behaviour-based decision template developed in this chapter, which 

quantitatively captures the relationship between natural manipulation behaviours and guidewire 

delivery performance, the next chapter further explores how these behaviours interact with the 

robotic system during the execution of interventional tasks. Specifically, Chapter 4 investigates the 

synergy performance between the operator’s manipulation strategies and the robotic system’s 

response, aiming to evaluate the quality of human-robot collaboration under various manipulation 

conditions. By analysing cooperative performance indicators, such as operation delay, interaction 

force, and manipulation speed, the following chapter reveals how the effectiveness of intuitive 

manipulation influences overall procedural fluency, system responsiveness, and surgical safety in 

robot-assisted PCI. 
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Chapter 4: Synergy Performance Between Manipulation 

Behaviour and Robotic System 

4.1 Introduction 

This chapter introduces efficient interactive force analyses and a framework for synergy, designed 

to optimize collaboration between operators and robotic systems at different skill levels, thus 

enhancing collaborative catheterization in robot-assisted cardiovascular interventions. A 

manipulation-orientated evaluation framework is suggested to evaluate cooperative performance 

between operators and the robot during robotic interventional procedures using the robotic system 

platform described in Chapter 2. This framework combines various data sources, including 

kinaesthetic, kinematic, and haptic data from the surgeon’s operating hand, along with motion and 

force data from the robot, gathered through multi-sensor technologies. The study also investigates 

interaction data, including distal force between tools and tissue and contact force from the hand 

control ring, to understand how operators with different technical abilities adapt their control 

strategies. This adaptation is intended to avoid endovascular injury from excessive force while 

providing sufficient tension to navigate complex pathways. Furthermore, the study examines the 

effect of delay factors on enhancing cooperative control strategies in master-slave isomorphic 

robotic systems. 

4.2 Related Work 

The master-salve structure of the vascular interventional robot enables precise navigation of 

catheters and guidewires through complex and branched pathways. Effective cooperation between 

the operator and the robot is essential for safe and accurate intraoperative navigation, ensuring 

skilled control of both the master and the salve robot components to maintain stability and prioritize 

patient safety. Typically, in traditional procedures, a surgeon manipulates instruments directly, such 

as catheters or guidewires. However, in a vascular interventional robotic system, the surgeon 

operates a master console that transmits control signals to the slave robot. The slave robot then 

grasps and directs the instrument, establishing cooperative dynamics, such as effective or inefficient 

master-slave synchronization, between the operator and the robot, which significantly influence the 

success of navigation. Consequently, designing an optimal control system for interventional 

endovascular robots requires understanding and incorporating manipulation techniques that create 

varied cooperative interactions between the operator and the robot. 

Currently, there are limited models for synergistic performance analysis and interaction force 

measurement in vascular interventional robots. Existing studies have highlighted that imprecise 

motion control, communication delays, and excessive force application contribute to inefficient 

transmission of proximal to distal forces [215, 216]. Critical factors, including communication 
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delays, RCS dynamics, and operator manipulation skills, require further examination to improve 

performance in robot-assisted cardiovascular interventions. Although some studies explore delay 

factors in the context of haptic force, manipulation speed, and technical skills, research is still 

limited in this area. Smirnov et al. [217] proposed a cooperation index to coordinate human-machine 

intelligence in collaborative robot-assisted interventions, noting that network transmission time, 

packet rates, and bandwidth limitations often impact master-slave operation efficiency. Their 

findings suggested that teleoperation delays are unavoidable, recommending event-driven 

frameworks as more effective than time-driven approaches to ensure smooth master-slave 

operations in RCS systems [218, 219]. Xi et al. [220] also advocated for an event-driven approach 

to optimize RCS performance, while studies indicate that integrating event-based robotic 

intelligence with human cognition can enhance tool manipulation, potentially laying the 

groundwork for manipulation-driven systems in robot-assisted endovascular interventions [221]. 

Beyond communication delays, interaction forces, particularly excessive force application, play 

a significant role in cooperative performance between the operator and the robotic system. A major 

limitation in current master-slave systems is the lack of reliable haptic feedback, forcing surgeons 

to rely solely on visual cues. Without real-time tactile feedback, operators struggle to perceive distal 

and proximal forces accurately, leading to sudden force fluctuations, inconsistent speeds, or 

behavioural changes that vary by technical skill level. This lack of tactile feedback can hinder the 

responsiveness of the robotic system to surgeon commands, resulting in suboptimal cooperation. To 

address these issues, understanding the dynamics of surgical robots, endovascular tool tracking, and 

tool-vessel interactions, as well as the behaviours of interventionalists, is essential. Huang et al. 

[222] reviewed recent developments in modelling tool-tissue interactions, while Reiley et al. [223] 

suggested using tool-vessel interaction forces and motion data to assess catheterization skills. Zhou 

et al. [159] introduced a behaviour-based framework for skill assessment through proxies such as 

hand movement, proximal force, muscle activity, and finger motion. Du et al. [144] developed a 

model integrating kinematics, kinaesthetic feedback, and robot motion data to explore the transfer 

of surgical skills to robot-assisted PCI. Patel et al. [224] found that incorporating haptic and tactile 

feedback optimizes minimally invasive interventions. Gao et al. [225] and Gan et al. [226] advanced 

haptic feedback technology through magnetorheological fluid and fibre-optic sensors, respectively, 

allowing real-time measurement of distal forces at the catheter tip in minimally invasive procedures. 

Such innovations hold great potential for enhancing synergy between human operators and robots 

in robot-assisted PCI. 

Selecting appropriate models for robotic intervention requires consideration not only of time-

based communication delays and tool-tissue interaction frameworks but also of their applicability 

to specific surgical tasks. Modelling interactive forces and synergy performance through a 

manipulation-based evaluation framework remains underdeveloped. To address this gap, we 

propose a manipulation-based evaluation framework to improve cooperative performance between 

operators and master-slave robotic systems in robot-assisted interventions. This framework is 
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designed to assess cooperative performance during robotic-assisted cardiovascular interventions, 

contributing to advances in robotic-assisted surgical techniques and their clinical applications. 

4.3 Methodology 

4.3.1 System design 

A. Experimental platform for multi-modal data acquisition 

Multi-sensor technologies were employed to capture multimodal data during successful robot-

assisted catheterization procedures. These data included video streams, time-series signals, robotic 

motion information, and interaction forces. These data were acquired using the master-slave 

isomorphic RCS platform developed for this study, as depicted in Figure 4.1. The RCS is capable 

of master-slave teleoperation and features multiple DoF for intravascular catheterization in emulated 

R-PCI. It includes a smart grasper that can change the orientation of clamped endovascular tools, 

such as guidewires and catheters, while sensing operational forces during R-PCI. Additionally, the 

RCS is equipped with potentiometer sensors for decoding control signals and transmitting them to 

the slave robot in real-time. This system implements all hand movements used by interventionists 

for tool navigation during endovascular interventions. 

Compared to the third-generation RCS described in Chapter 2, the improved prototype logs both 

proximal and distal forces. A 32-channel flexible tactile sensor was designed and attached to acquire 

tactile forces between the interventionalist’s hand and the sleeve during procedures, as shown in 

Figure 4.1 (B1). The prototype also includes a proximal sensor attached to the slave robot slider to 

measure frictional forces resulting from endovascular resistance, as illustrated in Figure 4.1(B2). 

 

Figure 4.1: Experimental setup. 
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Additionally, a distal sensor was installed under the endovascular model to capture interaction forces 

between the instrument and the vessel or tissue, as depicted in Figure 4.1(B3). This configuration 

facilitates the acquisition of multiple signals during R-PCIs, enabling an investigation of the synergy 

manipulation characteristics between the operator and the master-slave isomorphic robotic system. 

To enhance the realism of the simulation of the endovascular environment, a 1:1 ratio adult 

endovascular simulator was used to replicate actual endovascular pathways. The steps followed in 

clinical practice were emulated by introducing a guidewire through the lumen of a guide catheter 

into the anterior descending branch of the phantom. The vessel path was filled with a blood-like 

fluid that flows in real time, assisted by a cycling pump connected to the endovascular phantom. 

Each procedure required subjects to catheterize the endovascular tool (guidewire) from a starting 

point to a target point. 

The studies began with the creation of a path, during which a guide catheter was inserted through 

the femoral artery along the vessel to the coronary artery ostia in the simulator. The guidewire was 

then introduced via the coronary artery ostia along the anterior descending branch to the target point, 

as shown in Figure 4.1(B4). T This path consisted of one branch (Part A), two stenoses (Parts B 

and C, rated 37.45% and 42.69%, respectively), and tortuous routes (Part D). 

B. Endovascular interventional manipulation behaviours Interpretation 

A total of fourteen operators were recruited from the University of the Chinese Academy of 

Sciences Shenzhen Hospital and the Shenzhen Institutes of Advanced Technology in Shenzhen, 

China. During robot-assisted catheterization, the RCS facilitates the control of flexible endovascular 

tools (such as guidewires or catheters) with axial translational movement, radial rotational 

movement, and compound movement. Generally, the operator delivers the guidewire or catheter 

using nine hand motions to direct the RCS for guidewire delivery. These include pulling actions and 

axial retraction (that is, pull [PL] and push [PH]), radial rotation (clockwise rotation [CR] and 

counterclockwise rotation [CCR]), compound axial-radial motions (clockwise rotation with push 

[PHCR], clockwise rotation with pull [PLCR], counterclockwise rotation with push [PHCCR], 

counterclockwise rotation with pull [PLCCR]) and a static stage [SS], as presented in Figure 4.2. 

When intravascular catheterization was performed in the simulator with the master-slave RCS 

depicted in Figure 4.1, the catheterization behaviours of the operators were obtained. In this study, 

a total of 168 robot-assisted trials were completed, which included exactly twelve trials per subject. 

In all cases, the operators were reinformed about the chosen endovascular path through visual 

analysis of a pre-recorded video stream. Categorizing behaviours were characterized by hand 

kinaesthesia and kinematic data from operators during the completion of the robot-assisted task. To 

quantify the robot’s contribution, low-order motion data (i.e., position and orientation) from the 

guidewire angiogram video stream, as well as the operational forces from the distal and proximal 

parts of the RCS and the haptic force received on the operator’s side were also obtained. The 

surgeon-side and robot-side data was multiplexed to develop a manipulation-based evaluation 

model for the evaluation of human-machine synergy. Each session begins with a brief tutorial in  
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Figure 4.2: The nine manipulation patterns during robot-assisted interventional surgery. 

which the operators are informed about the experimental procedure and provide a signed informed 

consent form. Operators were allowed to complete the task independently. For data consistency, the 

guidewire was prepared to start from a similar position during each experimental session. 

Consequently, the operators initiated the manipulation in a specific mode. 

4.3.2 Signal acquisition and processing 

A. Multi-sensors data acquisition 

The dataset obtained from the 168 trials comprises 58 channels of signals, including 4 channels 

for electromyography data related to muscle activities, 14 channels of glove data for hand motion, 

3 channels of distal force data for interaction information between endovascular tools and tissue, 1 

channel of force data from the tool-robotic instrument, 32 channels of haptic force data for the hand-

control ring, and 4 channels for position and rotation information. These various data sources are 

used to assess the synergistic characteristics between the operator and the robot. For further details 

regarding the devices used for each data source, please refer to Table 4.1. 

• SEMG signal acquisition 

Typically, sEMG signals are used to capture neuromuscular activity during movements of the 

upper and lower extremities in the human body. However, these conventional sEMG signals are 

designed primarily for the non-invasive acquisition of physiological signals that trigger movements 

of the limb. In our study, we specifically acquired sEMG signals to characterise the muscle activity 

of the interventionists’ hand and arm. To achieve this, we used a commercial multi-channel wireless 

EMG system (BIOPAC Systems, Inc., Goleta, CA, USA) to capture the muscle activity signals from 

the operators’ right hand and right arm at a sampling rate of 2000 Hz. Simultaneously acquired 

sEMG signals included those of the abductor pollicis brevis, flexor carpi radialis, dorsal interossei  

Table 4.1: Summary of the acquired data. 

Recorded Data Source # of Channels 

Surface EMG Pre-selected muscles 4 

Glove data Finger activities 14 

Video stream 
Guidewire tip motion, slave device Motion, and manipulation 

behaviours 
3 

Distal force Tools-tissue contacting 3 

Proximal force Tool and instrument contacting 1 

Contact force Fingers with control ring contacting 32 

Position and rotation data Position and rotation value from master and slave robot 4 

Multi-sensors data Human-in the loop 61 
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and extensor carpi radialis muscles, as shown in Figure 4.4 in Chapter3. To ensure high signal 

quality, the operator’s skin was thoroughly cleaned with alcohol prior to each experimental session, 

and the centre-to-centre distance between the electrodes of each channel was maintained at less than 

20 mm. In each experimental trial, the operator used the interventional robot to deliver the guidewire 

from point A to the target point B. Consequently, signals associated with each muscle movement 

were collected and saved separately for further processing. 

• Glove signal acquisition 

During the intervention, the interventionists used axial translational movement, radial rotational 

movement, and compound movement to deliver the guidewire, resulting in distinct patterns of hand 

movement. To capture these data, a fibre optic glove, specifically the Data Glove 14 Ultra (Fifth 

Dimension Technologies, Orlando, FL, USA), was employed to obtain information on the bending 

of the operators’ fingers. The hand motion data includes finger flexion and abduction. Thus, 14-

channel signals were obtained from thumb near (tn), thumb far (tf), thumb/index (ti), index near (in), 

index far (if), index/middle (im), middle near (mn), middle far (mf), middle/ring (mr), ring near (rn), 

ring far (rf), ring/little (rl), little near (ln) and little far (lf) at a fixed rate of 60 Hz. The collected 

values provide displacement data for hand movements and are utilized to develop the evaluation 

framework for assessing human-machine synergy in robot-assisted endovascular interventions. 

• Contact force data acquisition  

During manual PCI procedures, the interventionist exerts a direct contact force on the catheter 

and guidewire, relying on various visual cues and haptic feedback to adjust his manipulation strategy 

to safely reach the site of the injury. However, this dynamic shift occurs in robot-assisted PCI 

procedures, as robotic systems lack the capability to provide surgeons with sufficient haptic sensory 

data. To address this limitation, we designed a pressure measurement device featuring a 

multichannel flexible pressure sensor that is attached to the control ring of the master robotic device. 

The sensing unit incorporates a flexible sensor attached to the surface of the coaxial control ring, 

which the operator grasps while touching the flexible haptic sensor to complete guidewire delivery 

(see Figure 4.3); these were calibrated using an ESM303 force calibration platform (MARK-10 Inc., 

USA). The haptic sensor ranges from 0.01 N to 19.6 N. The 32-channel flexible pressure sensor 

utilized in this set-up has a sensitive area of 2 mm by 12 mm and a force range from 0.01 N to 19.6 

N. This haptic force data is essential for understanding the forces applied by operators to guide the 

tip motion of the endovascular tool during robot-assisted catheterization and for evaluating the tool 

performance by both the surgeon and the robot. 

 

Figure 4.3: Designed 32 channel flexible haptic sensor system. 
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• Proximal robot-tool operational force data acquisition 

The proximal force comprises the interaction force between the tool and the tissue, together with 

the friction force between the robotic device and the tool during robot-assisted intervention 

procedures. This proximal force serves as an indirect measurement method for assessing the 

interaction force between tools and tissue within the blood vessel. To achieve this, we developed a 

point-contact proximal sensing platform to obtain information on the proximal force, as illustrated 

in Figure 4.1(B2). The maximum measurement range of the proximal force sensor (SBT674-2kg, 

SIMBATOUCH) is 19.6 N, with a sensitivity of 1.0±10% mV/V, and the sensor provides force 

readings in z-axis direction. Once the flexible endovascular tool (guidewire) is secured within the 

slave robot and begins to move forward along the endovascular path, the force sensor captures the 

operational forces in real-time. 

• Distal tool-tissue operational force data acquisition 

In typical endovascular interventional procedures, 2D real-time fluoroscopy serves as the primary 

method of visual guidance in endovascular interventions. However, in instances where surgeons 

lack 3D anatomical information regarding blood vessels, force feedback becomes crucial for 

interventionists. This is particularly pertinent for remote vascular intervention robots, where the 

interaction force between instruments and tissues remains imperceptible, thus increasing the risk of 

thrombosis and endovascular perforation due to excessive force during surgery [227]. To directly 

measure the contact force between the instrument and the tissue during the delivery of the guidewire, 

we designed a distal force sensing platform. This platform comprises a silicone-based 

anthropomorphic endovascular model mounted on a plate and rigidly coupled to a six-degree-of-

freedom (6-DoF) force/torque (F/T) sensor (SBT308, SIMBATOUCH, Guangzhou, China), with a 

composite error of 1.0%. The sensor is mounted close to the centre of gravity of the platform and 

provides force readings in each of the three directions (x, y, and z). The maximum measurement 

range in all three directions is 49 N, with sensitivities of x = 1.038093 mV/V, y = 1.03985 mV/V, 

and z = 0.97937 mV/V, respectively, as shown in Figure 4.1(B3). 

• Position and rotation data acquisition 

To capture the motion of the operator’s hand manipulation, a magneto-strictive position sensor 

(SDM20T-0150-MR2P-MEP03-1, Soway Tech., Shenzhen, China) and a rotary encoder (E40H12-

1000-3-N-5, Autonics, Busan, South Korea) are used to measure axial position and rotation motion, 

respectively. The handle operated by the operator consists of a hollow magnetic ring, a hollow rotary 

encoder, and a bracket connected to the slider, enabling simultaneous rotational and axial 

movements while preserving the operator’s natural catheterization skills. 

• Video stream data acquisition 

To document the robot-assisted intervention procedure, three distinct cameras were used for 

specific purposes. The first camera recorded the operator’s hand motions while manipulating the 

master robotic device, thereby providing a comprehensive view of their catheterization manoeuvres 
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along the paths illustrated in Figure 4.1(B4). The video data from this camera, acquired at a frame 

rate of 30 frame per seconds (Fps), captured both the operators’ behaviour and their manipulation 

of the robotic master mechanism. The second camera was dedicated to capturing the motion 

procedures associated with the delivery of the guidewire from the slave robotic device. Illustrated 

how the slave device executed actions in response to commands received from the master device. 

The footage from this camera provided valuable insight into the coordination between the master 

and slave robotic components. Finally, the third camera was specifically used for offline video 

analysis. It facilitated the identification and annotation of pathological segments within the video 

frames, including Part A: branch, Part B: stenosis, Part C: stenosis, and Part D: tortuous path. This 

analysis was instrumental in understanding and evaluating the effectiveness of the robot-assisted 

intervention procedure in addressing various challenging scenarios.  

B. Signal processing  

Operators were tasked with catheterizing the guidewire from the coronary ostium (starting point) 

to the target point on the anterior descending branch. Data from multiple sources were saved 

separately for further processing, as described below. 

• Data Pre-processing:  

The sEMG signal is a non-stationary micro-electrical signal characterized by an amplitude range 

of 0 to 1.5 mV and a useful frequency range of 0 to 500 Hz. To enhance signal quality, a bandpass 

filter with a range of 10 to 500 Hz was applied to eliminate components outside the desired 

frequency bandwidth. Additionally, a 50 Hz notch filter was employed to remove power frequency 

disturbances. To ensure uniformity across different operators in the sEMG dataset, we utilized 

minimum and maximum normalization functions to standardize the sEMG signal, facilitating fair 

comparisons among signals from all operators. For the remaining data obtained from glove motion, 

distal and proximal interaction forces, haptic force, and position and rotation displacements of the 

master-slave system, smoothing was applied using an average filter. This step effectively removed 

abnormal data and spikes in motion, resulting in a more reliable and consistent dataset for further 

analysis. 

• Resampling:  

The sampling rates of the different signals in the setup vary; the sEMG signals have a sampling 

rate of 2000 Hz, which is higher than that of finger motion (60 Hz), position and rotation data in the 

RCS (60 Hz), tool-vessel distal force (60 Hz), haptic force signals (50 Hz), and proximal force of 

the tool instrument (100 Hz). These acquired sequences do not match in the time domain. To ensure 

alignment of the signals for developing the proposed learning-based system, the high-frequency 

signals are synchronized with the low-frequency signals according to their timestamps. 

C. Manipulation technical skill classification 

A total of fourteen operators were recruited from the University of Chinese Academy of Sciences  
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Figure 4.4: Overview of technical skill classification. 

Shenzhen Hospital and the Shenzhen Institutes of Advanced Technology in Shenzhen, China. The 

operators participating in the study were classified into two groups: Group A, which consists of ten 

subjects with no prior experience in M-PCI and Group B, which consists of five subjects with 

experience in M-PCI. 

Within Group A, further division was performed using the k-means clustering method, based on 

the time spent cannulating the endovascular pathway and the number of training sessions completed 

on the endovascular simulator for robot-assisted interventional procedures. This division resulted in 

two subgroups: Group AA included operators demonstrating longer manipulation times and fewer 

training sessions, and Group AB, consisting of operators exhibiting shorter manipulation times and 

more training sessions. Consequently, Groups AA, AB, and B represented different technical skill 

levels, defined as Level A, Level B, and Level C, respectively, as shown in Figure 4.4. 

4.4 Manipulation-Based Synergy Characteristic Modelling 

4.4.1 Manipulation pattern recognition modelling 

Since the operator directly manipulates the master robotic device, with the manipulation pattern 

categorized as Label A∈(PH, PL, CR, CCR, PHCR, PLCR, PHCCR, and PLCCR). Meanwhile, the 

slave robot follows the control model instructions sent by the master robot to deliver instruments, 

and its motion pattern is classified as Label B∈(PH, PL, CR, CCR, PHCR, PLCR, PHCCR, and 

PLCCR). Thus, the cooperation between the human operator and the robot is reflected in the 

consistency and synchronization of the master-slave mechanism’s operation patterns. To assess the 

synergy between operators with varying technical skills and the robot, a manipulation pattern 

recognition framework based on convolutional neural networks is proposed. This framework 

integrates convolutional and dense layers, augmented by an attention block to capture relevant 

gradients from multimodal data. The CNN model is chosen for its efficiency in learning within a 

simplified network structure. 

The framework is composed of three stages: (1) signal acquisition and data processing, (2) feature 

extraction using the CNN model, and (3) manipulation pattern recognition through a fully connected 
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network. After aligning all data by timestamps, the pre-processed dataset is input into the CNN-

attention module, which extracts deep features from the high-dimensional data consisting of 58 

channels. These channels include 4 from sEMG muscle activity, 14 from finger flexion, 32 from 

contact force, 1 from proximal force, 3 from distal force, and 4 from the position and rotation 

displacement of the master-slave robotic system. The data is structured into matrices with 

dimensions (6, 𝑋𝑖
𝑚), which are then processed by the CNN model. 

The CNN model for feature extraction consists of three types of layers: (1) an input layer with 

units 𝐿𝑖
0, where the input dataset has fixed values; (2) hidden layers with units 𝐿𝑖

𝑚, where values are 

derived from previous layers (m-1); and (3) an output layer with units 𝐿𝑖
𝑀, where values are derived 

from the last hidden layer. A set of weights, denoted as 𝑤𝑖,𝑗
𝑚, is adjusted during training, where 

𝑤𝑖,𝑗
𝑚 represents the weight from an input unit 𝐿𝑖

𝑚 to an output unit 𝐿𝑗
𝑚+1. The total input is denoted 

as (6, 𝑋𝑖
𝑚), and 𝑌𝑖

𝑚 represents the output of unit 𝐿𝑖
𝑚. Deep feature vectors (F) are extracted from 

data chunks, segmented using a unique sliding window approach with window sizes of 6 × C × S. 

This segmentation reduces the impact of transient and random fluctuations in non-stationary signals. 

The window properties are carefully chosen to ensure that most segments encompass complete 

cycles of each motion type during the robot-assisted guidewire delivery procedure. Consequently, 

each segment represents a set of hand movements by the surgeon and is organized as a matrix, where 

C denotes the number of channels and S indicates the number of segments. 

Figure 4.5 illustrates the CNN component, which consists of multiple convolutional blocks 

(n=2,3,...,N). Each block includes a convolution layer with 32 or 64 kernels of size 1, a stride of 1, 

and padding of 1 for feature extraction, resulting in multi-dimensional feature maps. To optimize 

the model by eliminating redundant features, a CNN-attention network is employed to operate on 

both local and global feature maps. The channel attention module extracts significant features by 

learning the characteristics of the multi-dimensional time series. Initial feature maps are processed 

through a convolutional layer with max pooling to aggregate features along the channel dimension. 

These feature maps are then processed using average pooling to extract vector-level local features,  

 

Figure 4.5: Overview of the evaluation framework of surgeon-robot synergy. 
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with the salient features recalculated using a weight vector. To capture global information and 

further enhance model performance, a spatial attention module is introduced. This module includes 

max-pooling, average-pooling, and sigmoid operations, along with four convolution operations. The 

sigmoid function constrains the output range between 0 and 1, where 0 indicates an irrelevant feature 

and 1 represents a highly important feature. This process transforms the feature maps into a global 

feature vector, and the procedure is repeated twice to obtain refined feature maps. Finally, the 

extracted features are passed into a SoftMax logistic module for manipulation pattern recognition, 

enabling the framework to effectively categorize different manipulation patterns. 

4.4.2 Training strategy and evaluation metric 
The network utilizes the categorical cross-entropy loss function, as defined in equation (4.1):  

𝐿𝑜𝑠𝑠 = − ∑ �̂�𝑖1𝑙𝑜𝑔𝑦𝑖1 + �̂�𝑖2
𝑛
𝑖=1 𝑙𝑜𝑔𝑦𝑖2 + 𝐿 + �̂�𝑖𝑚𝑙𝑜𝑔𝑦𝑖𝑚                (4.1) 

where n represents the number of samples, m is the number of classes m>2, �̂�𝑖𝑚 is 1 if the sample 

belongs to class m, and 0 otherwise. 𝑦𝑖𝑚 denotes the predicted probability that the sample belongs 

to class m. The dataset consists of 348,760 samples, which are split into training (70% or 244,132 

samples), validation (10% or 34,876 samples), and testing (20% or 69,752 samples). The Adam 

optimizer was selected for training, which ensures efficient and fast convergence during training.as 

defined in equation (4.2): 

𝐹𝑓𝑠 =
1

𝑛
∑

1

𝑡𝑖
 𝑛

𝑖=1                                                                   (4.2) 

 

The network underwent 100 epochs of training, with performance assessed using a variety of 

validation metrics. Throughout training, the model’s parameters were dynamically adjusted based 

on the flow of multimodal data, ensuring that the network adapted to the dataset. Training continued 

until the loss value stabilized and ceased to decrease.  

The manipulation pattern recognition framework can be regarded as a nine-class manipulation 

classification task. Model performance was evaluated using precision (Pre), recall (Rec), and 

accuracy (Acc), calculated as follows: 

𝑃𝑟𝑒 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄                                                           (4.3) 

𝑅𝑒𝑐 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄                                                            (4.4) 

𝐴𝑐𝑐 =  (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)⁄                               (4.5) 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, 

respectively. The model, trained with a learning rate of 0.0002, achieved the highest accuracy on 

both the training and validation datasets, as shown in Figure 4.6. Furthermore, a 10-fold cross-

validation was applied during training, yielding an average training accuracy of 99.50±0.16% and 

validation accuracy of 99.85±0.20%. These results demonstrate that the extracted features provide 

a solid foundation for the proposed synergy framework in evaluating human-robot coordination 

performance.  

The evaluation framework was developed using multiple data sources, with the target function  



Upscaling Robot-assisted Endovascular Tool Manipulations based on Intuitive Multimodal Data Analysis 

 

 90 
 

 

Figure 4.6: Performance of the proposed recognition framework based on different learning rate. 

for model training based on the master device manipulation patterns. The effectiveness of this 

framework in assessing the cooperative performance between the human operator and the robot is 

contingent upon the accuracy of the model’s prediction of the master device’s motion pattern. For 

the framework to function as a reliable evaluation tool, it is critical that the model predicts the master 

device’s motion pattern with high accuracy, minimizing both false positives and false negatives. 

Inadequate performance in predicting the motion pattern of the master device would undermine the 

framework’s ability to assess human-robot cooperation accurately. Therefore, the reliability of the 

evaluation of the framework is directly related to the accuracy of the model in predicting the motion 

pattern of the master device. 

To evaluate the performance of the model, we assessed its accuracy, recall, and precision. The 

results demonstrated an exceptional accuracy of 99.99% on the test data set. Additionally, the 

precision values for each motion pattern were notably high: PH-100%, PL-100%, CR-100%, CCR-

99.96%, PHCR-100%, PLCR-100%, PHCCR-99.96%, PLCCR-99.87%, and SS-99.99% (Figure 

4.6(e). These results indicate that the proposed evaluation framework is reliable and effective, 

providing strong evidence for its potential to capture the synergy ratio in human-robot interactions. 

4.4.3 Human-machine synergy evaluation strategy 
Cooperative performance in robotic systems, particularly in human-robot interaction, is defined 

by the ability of the system to effectively synchronize and harmonize the actions of the operator and 

the robot. A key indicator of successful cooperation is the seamless interaction between the master 

and slave devices, which allows for the timely and accurate execution of tasks. This interaction is 

influenced by the flow of information between the operator and the robotic system. Key factors, 

such as the accuracy of motion replication by the slave robot and the responsiveness of the system 

to operator inputs, play a pivotal role in determining the level of synergy. 

IIn teleoperating robotic systems, a critical factor in human-robot synergy is the ability of the 
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slave device to promptly and accurately replicate the motion pattern of the operator’s manipulation 

of the master robot. Any delays in the robotic system can reduce the synergy between the operator 

and the robot. To evaluate this synergy, GH uses the proposed manipulation recognition framework. 

When the slave robot successfully mimics the operator’s motions with high precision, it indicates 

strong cooperation between the human and the robot. Conversely, if the slave robot’s motion pattern 

becomes erratic or lacks synchronization with the master robot, this suggests poor cooperation. 

To quantify the synergy, the master manipulation pattern (Label A∈ (PH, PL, CR, CCR, PHCR, 

PLCR, PHCCR, and PLCCR)) obtained based on the master robot’ position and rotation dataset, 

and the recognition accuracy achieved by the proposed framework in identifying master 

manipulation pattern, is denoted as 𝐴𝑐𝑐𝑚𝑎𝑠𝑡𝑒𝑟. Similarly, the slave manipulation pattern (Label B∈

( PH, PL, CR, CCR, PHCR, PLCR, PHCCR, and PLCCR)) obtained based on the slave robot’s position 

and rotation dataset, the recognition accuracy achieved by the proposed framework in identifying 

slave manipulation pattern, is denoted as 𝐴𝑐𝑐𝑠𝑙𝑎𝑣𝑒 . When the framework achieves high accuracy 

(𝐴𝑐𝑐𝑚𝑎𝑠𝑡𝑒𝑟) in recognizing the master device’s manipulation pattern, whiling also achieving high 

accuracy (𝐴𝑐𝑐𝑠𝑙𝑎𝑣𝑒) in recognizing the slave device’s manipulation pattern, which indicates that 

surgeon and robot existed a good cooperative performance. However, when cooperation is poor, the 

framework typically achieves high accuracy for the master device’s manipulation pattern, but 

obtains low accuracy for the slave device’s motion pattern. To quantify the overall synergy 

performance, the synergy ratio is calculated as follows: 

 Synergy Ratio = (𝐴𝑐𝑐𝑚𝑎𝑠𝑡𝑒𝑟 ×  𝐴𝑐𝑐𝑠𝑙𝑎𝑣𝑒) × 100%                           (4.6) 

where a synergy ratio nearer to 1 signifies enhanced collaboration between the operator and the 

robot, whereas a ratio tending towards 0 denotes inadequate cooperation. 

The synergy ratio is assessed from three perspectives. First, under the assumption of no system 

delays, the evaluation framework assesses operator-robot cooperation. Second, the impact of a 

constant communication delay (0.254 s) on the synergy ratio is considered. Finally, variable delays, 

which depend on the manipulation pattern, are evaluated to better capture the real-time delay 

characteristics of the system. This approach enables the optimization of the cooperative strategy for 

improved performance. 

4.5 Cooperative Performance Analysis in Human-Robot Systems 

In a master-slave isomorphic robotic system, delays can impact real-time interactions between 

operators and the master-slave mechanism, leading to a reduction in overall system control. Poor 

cooperation between operators and the robot can significantly compromise the stability and 

effectiveness of the surgical robot, posing risks and challenges to the smooth execution of PCI 

procedures. This section analyses the cooperative performance between human operators and the 

robotic system, focusing on three key delay factors: no delay, constant delay, and variable delay. 

The objective is to examine how these delays influence operator performance at different skill levels, 
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with the goal of improving the safety and effectiveness of the robotic system during robot-assisted 

PCI. 

A critical component of this analysis is the investigation of contact forces between the operator’s 

hand and the instrument, as well as the distal forces between the endovascular tool and vessel tissue. 

This approach aims to understand how operators with varying technical skills adjust their control 

strategies to avoid excessive force that could damage endovascular tissues while navigating complex 

anatomical pathways. 

The proposed framework integrates multiple data sources to assess cooperative performance in 

three specific scenarios: 1) no delay, 2) constant communication delay, and 3) variable delay based 

on manipulation patterns. The Kruskal-Wallis (ANOVA) statistical method was then applied to 

analyse significant differences in manipulation time, haptic force, and distal force in the three levels 

of operator skill during delivery of robot-assisted guidewire through branches, stenotic, and tortuous 

vessels. 

4.5.1 Performance evaluation of the synergy between operator and robotic system  

This study examines cooperative performance between operators with varying technical skills 

and a robot, focusing on the impact of three delay factors-no delay, constant delay, and variable 

delay- during robot-assisted PCI procedures. The synergy ratios between the operator and the robot, 

as presented in Figure 4.7, were calculated for three operator groups with different skill levels: AA, 

AB, and B. The structural design of the master-slave isomorphic robotic system inherently introduces 

a delay factor. When this delay remains within an acceptable range, the system can be classified as 

Satisfied or Extremely Satisfied [124]. Initially, we assumed the system operated with no or minimal 

delay and evaluated cooperative performance accordingly. In this scenario, the synergy ratios were 

49.84% for operator AA, 51.84% for operator AB, and 53.42% for operator B (Figure 4.7(a)). These 

results indicate a low synergy ratio across all groups, suggesting that inherent delay factors in the 

master-slave system may hinder the robotic device’s ability to replicate operators’ manipulations in 

real-time. 

When a constant communication delay was introduced, the synergy ratios increased slightly to 

51.88% for operator AA, 56.17% for operator AB, and 58.71% for operator B. This modest 

improvement suggests that a constant delay factor accounts for only part of the overall delay, with 

additional factors still unaddressed. Further analysis using a variable delay factor based on 

manipulation patterns revealed a more substantial influence on cooperative performance. When a 

manipulation-based variable delay was applied, the synergy ratios rose significantly to 89.66%, 

90.28%, and 91.12% for operators AA, AB, and B, respectively. These findings demonstrate that the 

variable delay factor considerably enhances operator-robot cooperation compared to a constant 

delay. 

The results shows that operators with different experience perform different synergy ratio under 

variable delay factor. Operators B with clinical PCI experience have a higher synergy ratio, which 

indicated that between operators and robot has better cooperative performance, while operators AA 
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Figure 4.7: Performance of surgeon-robot synergy in operator with three different skill level. 

and AB without clinical PCI experience shows slightly poor cooperation. The synergy ratio between 

operators and robot can help operators to know whether current manipulation is appropriate, if not, 

surgeon can change manipulation strategy in time to avoid damage to the blood vessel. For example, 

when the synergy ratio is low, operators can immediately change their manipulation patterns (push, 

pull, CCR, CR, PHCR, PHCCR, PLCR, PLCCR), manipulation forces, manipulation speeds to 

better use the robot to deliver the catheter or guidewire for reducing the risk of vascular rupture. 

However, when the synergy ratio is high, the operator can continue current manipulation strategy 

and focus more attention on more complex vascular paths, reducing the operators’ attention load. 

Moreover, an in-depth analysis of different manipulation patterns under each delay factor, as 

shown in Figure 4.7(a1-a3), reveals that patterns with no delay exhibited significantly lower 

synergy ratios compared to those with variable delays. Among manipulation types, push, pull, and 

SS achieved higher synergy ratios, whereas more complex patterns, such as CR, CCR, PHCR, PLCR, 

PHCCR, and PLCCR, have lower ratios. These findings suggest that complex manipulation patterns 

exhibit reduced cooperative performance, especially when guiding the guidewire from the start to 

target B. Additionally, these complex patterns are associated with greater delays than simpler 

manipulations like push, pull, and SS. This trend persists even when considering a constant delay 

factor.  

Figure 4.7(a3) illustrates that simple manipulation patterns, such as push, pull, CR, and CCR, 

generally had higher synergy ratios than compound patterns like PHCR, PLCR, PHCCR, and 

PLCCR. This finding indicates better cooperation between the operator and the robot during simpler 

manipulations. Furthermore, the synergy ratios are consistently higher for operator group B than for 

groups AA and AB, implying that operators with greater experience (group B) adopted more effective 

control strategies, resulting in better cooperative performance. The application of manipulation-

based delay factors, where motion patterns serve as units for determining delay times, proved more 

effective in mitigating delays caused by packet loss than time-based units. This approach is 

advantageous because manipulation-based delay factors maintain the integrity of entire 

manipulation patterns, even if there is short-term packet loss, making them more suitable for master 

slave isomorphic robotic systems. 
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Table 4.2: Delivery speed among three different groups. 

Manipulation 

speed 

(mm/s) 

Master Slave 

 

Figure 4.8: Speed manipulation of robot master 

and slave mechanism based on different 

movement patterns. 
 *: significant difference (*: at 0.05 level, **: at 0.01 

level). 

AA AB B AA AB B 

PH 53.65 55.69 51.32 52.99 54.51 51.57 

PL  53.33 57.31 54.03 54.18 57.97 54.45 

CR 299.05 135.41 117.67 107.89 122.63 105.27 

CCR 581.83 275.19 107.83 314.22 118.49 97.39 

PHCR 114.58 108.25 108.22 123.19 107.48 91.77 

PLCR 88.69 82.73 111.09 81.59 87.24 103.16 

PHCCR 88.91 93.19 205.68 239.58 75.69 146.93 

PLCCR 65.42 77.15 91.59 132.14 74.19 91.59 

 

Finally, an analysis of the manipulation speed of each operator group provides information on the 

impact of the control strategy on cooperative performance (Table 4.2). Figure 4.8 shows significant 

speed differences between the three skill groups. Operators B display slower speeds to push the 

guidewire compared to operators AA and AB. However, their pulling speeds are well calibrated, 

positioned between the faster speeds of AB and the slower speeds of AA. In contrast, AA operators 

exhibit faster speeds during rotational manipulations to adjust the direction of the guidewire, 

possibly due to limited technical skills and experience in manual PCI procedures, which could 

increase the risk of complications. 

In complex endovascular pathways, operators often deliver and retract the guidewire through 

stenosis or branch sites. Operators B use higher speeds for the PLCR, PHCCR, and PLCCR 

compound motions than operators AA and AB. However, they use slower speeds for PHCR, 

particularly when navigate challenging endovascular pathways. These results suggest that operators 

B adopt more appropriate control strategies based on their manual PCI experience. 

Regarding the slave device, its manipulation speed is varied by operator group. For AA operators, 

the slave device’s speeds for push and pull motions closely match those of the master device. 

However, the slave speeds for CR and CCR are lower, indicating difficulty in synchronizing with 

the master device, which could lead to data loss. In contrast, for the PHCCR and PLCCR motions, 

AA operators exhibit higher manipulation speeds on the slave device than on the master device, 

suggesting inconsistencies in following the master’s actions. For operators AB and B, the 

manipulation speeds of the master and slave devices are similar, indicating better synchronization 

between the operator and robot. 

These results and analysis show that operators with different manipulation technical skill perform 

different synergy ratio, manipulation speed in different manipulation patterns (push, pull, CR, CCR, 

PLCR, PLCCR, PHCR, PLCCR). Composite manipulation patterns (PLCR, PLCCR, PHCR, 

PLCCR) show low synergy ratio, while single manipulation patterns (push, pull, CR, CCR) perform 

relatively high synergy ratio. The main reason is that operators need to perform radial translation 

with axial rotation in composite manipulation patterns, but slave delivery robot cannot switch in-

time between radial translation and axial rotation due to operators’ manipulation speed and force, 
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which cause that slave robot cannot follow the operators’ composite manipulation patterns in real-

time. This can help the operator to pay attention to the synergy ratio of composite manipulation 

patterns when performing complex vascular paths, such branch vascular pathways or stenosis site. 

When the synergy ratio of composite manipulation patterns is low, operators should pay attention 

to changing the manipulation strategies, such as manipulation force and manipulation speed, to 

ensure efficient and safe delivery of the catheter or guidewire. 

4.5.2 Manipulation time analysis 

Manipulation time in surgical procedures is a critical indicator of a surgeon’s technical skill. In 

the context of PCI procedures, longer manipulation times lead to increased exposure to X-rays for 

both the patient and the surgeon, potentially compromising safety and efficiency. To assess the 

effect of technical skill levels on manipulation time, a non-parametric independent test was 

conducted to compare manipulation times across various operator groups. The results revealed a 

statistically significant difference (p = 0.001 - 0.01, p < 0.05) in manipulation times between the 

three groups when navigating the guidewire through different vessel paths, including branch path 

A, stenosis paths B and C, and tortuous path D (Figure 4.9(a-d)). 

Operators in group B demonstrated shorter manipulation times when manoeuvring the guidewire 

through the branch vessels (path A) and stenosis (path B) compared to operators in groups AA and 

AB. This suggests that the operators in group B, with more advanced technical skills, exhibited better 

performance and more efficient control strategies on these pathways. However, when traversing the 

stenosis vessel (path C) and the tortuous vessel (path D), the operators in group B took slightly 

longer than the operators in group AB but still outperformed the operators in group AA. This indicates 

that operators in group B, despite their greater skill, may have hesitated due to limited familiarity 

with the robotic system. These results highlight the superior technical skills of the operators in group 

B, attributed to their extensive knowledge of surgical techniques and effective navigation strategies 

for complex endovascular pathways, gained from prior experience in manual PCI surgeries. 

Further analysis of manipulation times suggests that operators in group B, with manual PCI 

experience, adapted their technical skills and control strategies more effectively than operators in 

groups AA and AB, who lacked PCI experience. For example, when navigating the branch vessel, 

operators in group B quickly adjusted their manipulation strategy to ensure efficient passage of the 

guidewire through complex pathways, demonstrating a faster learning curve. On the contrary, the 

operators in the AA and AB groups relied on their existing cognitive strategies and manual skills, 

resulting in longer manipulation times as they adjusted the hand movements to guide the wire to the 

target point.  

Temporal metrics often correlate with skill level [228]. Manipulation times and speeds for each 

motion pattern confirmed that operators with different technical skills applied different 

manipulation strategies. The various technical skills they have, such as surgical knowledge, control 

methods, manipulation speed, applied contact force, and behavioural patterns, all contributed to 

improving the collaborative interaction between the operators and the robot. The positive results of 
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this study suggest that the proposed evaluation framework has significant potential to assess the 

cooperative interaction between operators and robot. 

 

Figure 4.9: Time manipulation of operators with different technical skill among three groups. 

4.5.3 Interaction force analysis 

In R-PCI procedures, a key factor is controlling the robotic system to deliver the catheter or 

guidewire to the target site safely and efficiently. Although experts typically have more precise 

control skills than novices in cardiac interventional surgery, it remains unclear whether this 

advantage extends to R-PCI, where robotic manipulation skills are required. To address this, we 

statistically analysed robot-assisted procedures in terms of manipulation time, distal force between 

tools and tissues, and contact force between the fingers and the control ring. Data from these 

analyses characterize technical skill levels when navigating branched, stenotic, and tortuous vessels, 

providing a benchmark for skill evaluation in R-PCI procedures.  

The analysis involved assessing both the distal force between tools and tissues and the contact 

force between fingers and the control ring, categorized by the operators’ expertise levels. A non-

parametric Kruskal-Wallis ANOVA test was employed for statistical analysis, with significant 

differences indicated by asterisks (* for p < 0.05 and ** for p < 0.01). This approach provided 

valuable insights into the relationship between operator skill and the delicate balance of applying 

sufficient force to ensure safe and effective navigation during the procedure. 

The findings offer critical insights for designing haptic feedback systems tailored to operators 

with varying levels of expertise. Specifically, this information is essential for selecting sensor 

materials, precision, range, and stability to enhance force feedback accuracy. Proper selection of 

components in these areas also supports the evaluation of interaction forces during robot-assisted 

PCI, providing an efficient mechanism for alerting operators to adjust their applied force to safely 

guide the guidewire through complex endovascular paths. 

A. Distal force between instrument and tissue 

The generated endovascular force, measured as both the average distal force and the maximum 

distal force, was found to be higher for the operators in group AA than for those in group B when 

navigating the guidewire through a branch vessel, as shown in Figure 4.10(a1) and (a2). This 

finding suggests that operators in group AA may not have the ability to adjust their manipulation 

strategy effectively to navigate the branch vessel safely and efficiently during robot-assisted 

catheterization. Elevated force between tool and tissue increases the risk of endovascular rupture, 
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highlighting the importance of controlled force application. 

Similarly, operators in group B exhibited greater average and maximum distal forces between the  

 

Figure 4.10: Comparison of the average distal force among three groups, including AA, AB and B.  

tool and tissue compared to operators in groups AA and AB when providing the guidewire through 

two stenotic sites. This observation suggests that their manipulation strategy includes applying 

enough tension to navigate stenosis pathways effectively. Furthermore, during guidewire delivery 

through a tortuous vessel (Figure 4.10(d1)), operators in group AB applied a manipulation strategy 

that resulted in higher average and maximum distal forces between the guidewire and tissue 

compared to those applied by operators in groups AA and B. This result may be due to the absence 

of complex anatomical features, such as stenosis or branches, in the tortuous vessel, allowing 

operators to guide the wire more freely along the blood flow direction. Furthermore, the operators 

in group AB have more experience in robot-assisted interventional procedures than those in groups 

AA and B, which may contribute to their distinct manipulation strategy. 

Furthermore, the operators in group B applied a manipulation strategy that generated a higher 

average and maximum distal force when delivering the guidewire through a more severe stenosis 

pathway (42.69%) compared to a less severe stenosis pathway (37.45%). This finding suggests that 

navigating higher degrees of stenosis requires greater applied tension to safely guide the wire 

through the constricted areas. 

B. Proximal force 
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The proximal force is defined as the resulting force generated by interactions between tools and 

robot, including resistance at the tip of the tool against the wall of the vessel, as well as friction 

between the tool, endovascular tissue, and the wall of the vessel. As shown in Figure 4.11, we  

 

Figure 4.11: Proximal force among three skill group. 

analysed the differences in proximal force among the three operator groups while navigating through 

branch, stenotic, and tortuous vessel paths. The results indicate that the operators of group AB 

applied higher proximal force values when cannulating through stenotic and tortuous vessels 

compared to groups AA and B, except in the branch vessel path. 

This finding suggests that operators in the AB group, who have experience with robotic systems 

but lack manual PCI experience, tend to control the RCS with greater force. Their limited experience 

in direct manual manipulation may mean that they lack the cognitive and haptic perception needed 

to accurately sense endovascular forces. Consequently, their focus may be on skilfully operating the 

robotic system to guide the guidewire to the target site, potentially overlooking the risks associated 

with higher manipulation forces or frequent operational adjustments, which could damage the 

endovascular wall. 

C. Contact force between finger and manipulation-ring 

A significant difference in the average contact force between the finger and the manipulation ring 

was observed among the three operators’ groups, as shown in Figure 4.12. Specifically, operators 

in group B, who have manual PCI experience, exhibited substantially higher average contact forces 

when performing PL (81.10 mN), CR (83.87 mN), CCR (66.07 mN), PHCR (96.58 mN), and 
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PHCCR (79.87 mN) movements compared to operators in groups AA and AB, who lack prior PCI 

experience, during guidewire delivery through the branch vessel pathway (Figure 4.12(a1)). This 

increased contact force among operators in group B can be attributed to their familiarity with 

manually handling the guidewire in traditional PCI surgery, where firm grip is essential to prevent 

slippage. Consequently, when gloves are used to manipulate the catheter and guidewire in robot-

assisted PCI, the grip strength developed from the manual PCI experience inadvertently affects its 

contact force during robotic procedures. 

Furthermore, operators in group AA applied the lowest average contact force compared to groups 

AB and B on various endovascular pathways, including branch, stenotic, and tortuous paths (Figure 

4.12(a1, b1, c1, d1)). This finding suggests that operators in the AA group, lacking both surgical 

experience and robotic manipulation skills, approached catheter and guidewire handling with 

caution to avoid vessel rupture or potential damage to the robotic system. Additionally, Figure 

4.12(a2, a3; b2, b3; c2, c3; d2, d3) shows significant differences in maximum and minimum contact 

forces between the three groups, highlighting the influence of experience on the application of 

contact force. 

The results for distal, proximal, and contact forces showed significant differences when the 

operators navigated the guidewire through branched, stenotic, and tortuous vessel pathways. For 

example, when operators in the AA group delivered the guidewire through the branched pathway, a 

greater distal force was observed between tools and tissues (average 100mN) compared to the AB 

(25mN) and B (50mN) groups. Although the contact force between the finger and the control ring 

for the operators of group AA was relatively low (average 20mN), their higher manipulation speeds, 

especially during rotation, could contribute to a larger distal interaction force. This elevated force  
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Figure 4.12: Performance of haptic force in operator with three different skill level. 

 

Figure 4.13: Performance of distal forces in 4 complex vessel pathways for 3 different skill groups. 

suggests that operators in group AA, who lack the control strategies and cognitive experience 

required to navigate complex vessel pathways, may face an increased risk of vessel rupture. 
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Operators in group B, in contrast, applied higher contact forces to manipulate the control ring, 

but exhibited lower distal interaction forces when passing through branch and tortuous pathways. 

This finding suggests that the operators in group B were able to transfer their manipulation strategies 

and cognitive skills from manual PCI to robotic PCI, effectively adapting their guidewire control. 

In manual PCI, operators rely on greater contact force to detect forces of endovascular interaction 

and prevent accidental slippage of the catheter or guidewire. Consistent with these practices, in 

robot-assisted PCI, operators applied greater contact force to ensure control. 

Furthermore, when navigating stenotic pathways, the application of larger contact forces was 

correlated with an increase in distal force (average 100mN). This higher force was necessary to 

maintain sufficient tension to manoeuvre through narrow sections of the vessel and to overcome 

potential obstacles that could hinder passage. These findings are consistent with previous research 

[229], underscoring the importance of appropriate force application in the safe navigation of 

complex endovascular pathways. 

D. Comparison of interaction force 

Distal forces and contact force recorded during guidewire catheterization along vessels with 

different lesion types were analysed to quantify tool-vessel interactions and haptic force. 

Quantitative data on force metrics, including maximum and minimum forces, were collected to 

establish endovascular force measurement standards and inform the design of haptic feedback 

systems. Specifically, the maximum force serves as an alert for operators to adjust their approach to  

 

Figure 4.14: Performance of contact forces in 4 complex vessel pathways for 3 different skill groups. 

prevent vessel damage when the catheter or guidewire contacts the vessel wall or surrounding tissues. 
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The significant differences in the interaction forces between branched, stenotic and tortuous 

vessels are presented in Figure 4.13 and Figure 4.14, with statistically significant results indicated 

by an asterisk (*). These findings suggest that the operators used different control strategies to 

navigate the guidewire through branched, stenotic, and tortuous pathways, with the aim of 

preventing endovascular rupture among the three groups of operators. Such results could also be 

instrumental in evaluating the characteristics of endovascular lesions (e.g. branches, degrees of 

stenosis, calcification, and other complex lesions) in populations with coronary heart disease. 

In Figure 4.13(a2, a5, b2, b5), operators in the AA and AB groups exhibited higher distal 

maximum forces when navigating tortuous vessels compared to branch and stenotic vessels, except 

during the PHCCR motion pattern. On the contrary, the operators of group B, who have PCI 

experience, generated greater maximum forces in stenotic vessels than in branching, slight stenosis, 

or tortuous pathways, as shown in Figure 4.13(c2, c5). This observation suggests that the operators 

in group B applied greater tension to maintain control through more complex paths. 

The characteristics of contact force between the fingers and control ring are displayed in Figure 

4.14. For operators in group AA, the maximum contact force when cannulating tortuous vessels was 

higher than when navigating branched and stenotic vessels, except for the PHCCR pattern. 

Meanwhile, the operators in group AB exhibited a higher maximum contact force in branch vessels 

than in stenotic and tortuous paths. Operators in group B generated the highest contact force in 

tortuous vessels when using single-motion strategies and in stenotic vessels when employing fusion-

motion strategies. These results indicate that each group of operators applied different control 

strategies in response to the specific challenges posed by different endovascular lesions. 

Furthermore, the study revealed significant differences in both the distal force between the tool 

and the tissue and the contact force between the operator’s finger and the control ring across different 

pathways (branch A, stenosis B, stenosis C, and tortuous D) between the three groups of operators. 

These variations highlight that different manipulation strategies are required to navigate complex 

vessels safely in robot-assisted interventional procedures. Given these insights, it may be beneficial 

to develop a numerical model that allows operators to forecast the type of endovascular pathway 

(branch, stenosis, or tortuous path) in advance. Such a tool would serve as a valuable guide, allowing 

operators to adapt their manipulation strategies, accordingly, thereby reducing the risk of 

endovascular rupture in future procedures. 

4.6 Chapter Summary  

This chapter presents a manipulation-based framework designed to assess cooperative 

performance between operators of varying technical skills and a robot within a 3-D endovascular 

simulator for robot-assisted interventional procedures. The framework integrates multiple data 

sources, including muscle activity, finger motion, contact force between fingers and the control ring, 

distal force between tools and tissues, proximal force between tool instruments and tissues, as well 

as position and rotation data from both the master and slave devices in the RCS. Using training, 
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validation, and testing datasets, the framework demonstrates reliability and effectiveness in 

calculating the synergy ratio, a key measure of operator-robot cooperation. 

The investigation explores three delay factors: no delay, constant delay, and variable delay. 

Among these, the manipulation-based variable delay factor shows significant potential to enhance 

operator-robot cooperation, allowing for more seamless and efficient interactions during procedures. 

Additionally, this chapter examines the distal forces between the catheter or guidewire and tissue, 

as well as the contact forces between fingers and the control ring, to understand how operators with 

differing technical skills adjust their control strategies. This analysis aims to prevent endovascular 

damage due to excessive force while ensuring sufficient tension to navigate complex pathways. 

These insights are instrumental in informing sensor selection and the design of haptic feedback 

systems with appropriate perceptual resolution, contributing to safer and more effective robot-

assisted procedures. 

This chapter focuses on evaluating the cooperative permeance between operator and robot by 

analysing multi-sensor manipulation data and quantifying cooperative performance through the 

synergy ratio value, which suggests that operators with different manipulation technical skill (AA, 

AB, B) use different manipulation strategies. However, operators change their manipulation 

strategies based on the visual perception for vascular instruments’ motion. Thus, changing 

manipulation patterns is closely relationship with the accuracy of tool perception. Moreover, the 

lack of direct haptic feedback increases the risk of vascular rupture, because the operator cannot 

intuitively sense the interaction force between instruments and vascular tissues. 

Therefore, the next Chapter 5 proposes a guidewire endpoint detection model based on visual 

information, enhancing the perception of endovascular instruments (guidewire). By providing 

operators the relationship between tools and surrounding anatomical structures (branch vessel or 

stenosis) based on guidewire’s position and bending angle, the proposed models compensate the 

lack of directly haptic force. This visual perception enhancement of vascular instruments is essential 

for improving manipulation accuracy, enabling safer navigation through complex vascular pathways.  
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Chapter 5: Visual Data Modelling of Instrument Endpoints for 

Enhancing Tool Manipulation 

5.1 Introduction 

Minimally invasive surgery commonly involves multiple tools guided by medical imaging. 

Expert operators significantly influence outcomes, relying on precise control over instruments. 

Accurate visual perception and real-time response systems are vital for managing robotic systems 

and executing tasks securely. Real-time processing of 2D or 3D images is essential for merging 

patient anatomy with images to accurately locate the surgical site, reducing the risk of tool collisions 

[230, 231]. Guidewires are critical in endovascular procedures, directed by live fluoroscopy images, 

but tracking them is challenging. Issues include limited visibility (only the last 3 cm is visible), 

simplistic shape, flexibility, and low signal-to-noise ratio with X-ray images causing navigation 

errors. Model-based learning systems are needed to accurately track guidewire endpoints. This 

chapter suggests an eight-neighbourhoods-based approach to enhance the precision of the guidewire 

endpoint localization. This framework addresses the challenges of tiny target detection in two stages: 

first, extracting the entire guidewire from X-ray images using an improved U-Net method and 

second, implementing guidewire endpoints detection based on the proposed eight-neighbourhood 

method after guidewire segmentation. An eight-neighbourhood-based method was designed to 

detect the endpoint of all guidewires, including the introduction of skeletonization extraction, 

removal of bifurcation points, repair of fracture points, and the design of method details. 

5.2 Related Work 

Numerous studies have focused on tool segmentation to facilitate and visualize tool navigation in 

X-ray angiograms. The medical guidewire, a key surgical instrument in interventional procedures, 

requires accurate end point location for effective navigation. Current computer vision approaches 

address challenges in the segmentation, detection, and localization of surgical instruments in 

medical images. These algorithms typically extract features hand-made from the images to identify 

and track surgical tools based on their appearance characteristics. However, such traditional 

methods are limited in their ability to obtain high-level semantic information from images, reducing 

their effectiveness in complex tasks. 

In recent years, deep-learning methods have been increasingly applied to surgical tool 

segmentation [232, 233], detection [234], and key-point localization [235] with validation on 

endovascular datasets. The high-resolution network (HRNet), a heatmap estimation framework, is 

used in object detection and semantic segmentation to achieve high spatial precision [236, 237]. The 

HRNet model, a novel bottom-up approach to human pose estimation, enables precise location of 

key points for small objects [238]. Similarly, the Hourglass network, known for human pose 
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estimation, uses dense residual blocks within an encoder-decoder structure to enhance precision 

[239]. For guidewire detection tasks, which involve small, flexible structures within X-ray images, 

high detection precision is essential, particularly for the guidewire endpoint. 

The rapid growth of surgical instrument research has led to the development of heatmap 

regression methods that offer new approaches to surgical tool detection. To improve the precision 

of small object detection, ResNet-50 is frequently used to locate key points of surgical tools [240]. 

ResNet-101 and ResNet-152, extensions of ResNet-50, generate high-quality object predictions 

[241-243]. The Hourglass network model, widely used in instance segmentation, performs detection 

and segmentation for individual instances in a unified model [244]. Zhou et al. [245] introduced an 

enhanced RetinaNet model, incorporating a ResNet-18-based encoder and a specialized subnetwork 

for needle detection. These deep-learning approaches significantly improve detection accuracy over 

traditional methods by extracting high-level semantic information from images. 

Despite their advantages, direct application of these methods has limitations. First, these models 

were primarily designed for rigid tools in laparoscopic and retinal surgeries, where points on the 

tool maintain relatively fixed spatial relationships. This makes them unsuitable for detecting the 

guidewire tip, which has a flexible, radiopaque-coated endpoint. Second, the small and soft 

appearance of the guidewire differs from that of larger instruments such as catheters, forceps, or 

endoscopes. Consequently, current key-point detection methods for large targets are inadequate for 

the precise detection of guidewire endpoints because of the need for higher accuracy with tiny 

targets. 

Existing literature reveals a limited focus on the location of the guidewire endpoint in X-ray 

images. For example, Cronin et al.[246] applied impedance-based electroanatomic mapping for 

real-time guidewire localization. Bedel et al.[247] used transthoracic echocardiography to optimize 

central venous catheter positioning, also employing point-of-care ultrasound to refine catheter tip 

localization [248]. Rapid advances in deep learning [249] have furthered the development of 

computer vision applications for guidewire localization [250-252]. Given the strong performance of 

CNN in medical image segmentation [253], commonly used guidewire localization models are often 

CNN variants [254]. Zhou et al. [255] developed a real-time multifunctional framework for 

morphological analysis of the guidewire using a fast attention recurrent network. Li et al. [168] 

improved guidewire localization accuracy by proposing a two-stage framework that first uses the 

YOLOv3 detector to detect the guidewire, followed by post-processing with a segmentation 

attention hourglass network for endpoint prediction. This approach yielded high performance; 

however, the original segmentation was modified to focus on large targets rather than small ones, 

creating a new dataset for localization by labelling the entire guidewire within a bounding box. 

Li et al. [169] further proposed a CNN model based on the key-point localization region to detect 

and localize the guidewire endpoint. This approach relied on a bounding-box dataset of guidewires 

as the model input. Although these methods achieved efficient localization accuracy, they altered 

the scale of the guidewire within the overall image, overlooking the complexity and variability of 
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surgical procedures and shifting the focus from detecting small objects to large target detection tasks. 

5.3 Methodology  

In this chapter, we propose a novel detection framework for tiny targets, as illustrated in Figure 

5.1. The framework addresses the challenges of detecting tiny targets in two stages: first, by 

extracting the entire guidewire from X-ray images using an improved U-Net method, and second, 

by detecting the guidewire endpoints with an eight-neighbourhood-based method after guidewire 

segmentation. When the guidewire is extracted from the complete X-ray image, both background 

(BG) removal and isolation of the guidewire (GW) are achieved, which diminishes visual 

interference and simplifies the issue created by the guidewire’s straightforward appearance before 

detecting its endpoints. 

With recent advancements in deep CNNs (DCNNs) in medical image processing [256, 257], we 

designed an improved U-Net network based on a CNN for the first stage of our framework. This 

network segments the guidewire from the full X-ray image, minimizing interference from 

background elements, and can also be applied to other instruments for key-point detection. In the 

second stage, an algorithm based on eight neighbourhoods is implemented for precise detection of 

tiny endpoints of the guidewire. This algorithm relies on spatial relationships between pixels in eight 

neighbouring regions, facilitating processing for guidewire key-point tasks, including 1) medial axis 

skeletonization, 2) bifurcation point removal, 3) breakage-band repair, and 4) endpoint detection. 

A surgical guidewire tip is soft and flexible and forms complex shapes (twist and circle), which 

easily deforms the guidewire body such that it can no longer pass through the branch or stenosis 

path. In such a case, the operator can increase the risk of endovascular rupture if they attempt to 

pass the guidewire through this complex path. To mitigate this risk, we compute angle information 

based on the distance between each pixel and the line connecting the start and endpoint pixels after 

endpoint detection. This information helps inform operators or surgical robots of the current bending 

angle of the guidewire, guiding them to adjust their manipulation strategy and reduce surgical risk. 

 

Figure 5.1: Overall framework for guidewire endpoint detection. 
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5.3.1 Dataset acquisition 

The research datasets utilized in this chapter were gathered through the robot-assisted 

endovascular interventional platform outlined in Chapter 2. Figure 5.2 shows the comprehensive 

framework for acquiring datasets. Two datasets were compiled: Dataset A, derived from in vivo 

experiments with a rabbit endovascular model, and dataset B, sourced from in vivo studies involving 

a porcine model. 

Dataset A: The master-slave robotic system performed several in vivo interventional procedures 

by cannulating the endovascular pathway in six rabbits (average weight: 2.21 ± 0.29 kg), navigating 

a 0.014-inch guidewire along the auricle-to-coronary arterial path. All experimental protocols were 

approved by the Shenzhen Institutes of Advanced Technology (Application No. SIAT-IACUC-

200528-YGS-WL-A1289). A proprietary X-ray machine [211] (a custom five DoF C-arm machine 

equipped with a 70 kV, 5 mA generator, and a flat detector) was used to capture real-time images 

during endovascular catheterization. This X-ray system produced sequences of fluoroscopic images 

at an average rate of 10 fps, resulting in a total of 3300 images from the six in vivo rabbit experiments, 

capturing the guidewire’s motion trajectory. Each image had a resolution of 1560 × 1440 pixels at 

96 dpi, yielding a spatial resolution of 0.26 × 0.26 mm². The guidewire trajectories in all images 

were annotated using the LabelMe interface and saved as JSON files for further processing. 

Furthermore, continuous CT images were used to verify the successful navigation of the guidewire 

to the target site within the endovascular pathways. 

Dataset B: A porcine model (weight: 35.5 kg) was used to simulate the human renal artery system, 

closely replicating clinical practice. All other experimental setups mirrored those typically 

employed in clinical settings. The robotic slave system was operated under a commercial CT arm 

(digital subtraction angiography), providing real-time angiograms for visualization of the 

procedures. The commercial C-arm was configured to capture image sequences at an average rate 

of 15 fps, with a window level and width of 128 and 256, respectively. A total of 206 angiogram 

sequences were processed to create X-ray images, each transformed into a “.jpg” format with 

dimensions of 515 × 512 pixels at 96 dpi, resulting in a resolution of 0.26 × 0.26 mm². After filtering 

for images containing the guidewire trajectory, a total of 1880 effective X-ray images were selected 

for Dataset B. Guidewire trajectories were annotated using LabelMe and saved as JSON files. 

During catheterization with the vascular interventional robot, a contrast dye was injected to enhance 

angiographic views of both endovascular tools and endovascular anatomy. The 2D or 3D X-ray 

images, with or without angiographic subtraction, enabled the visualization of operator navigation. 

The experimental protocol was approved by the Shenzhen Advanced Animal Study Service Centre 

(No. AAS 191204P). 

5.3.2 First stage: guidewire segmentation methods 

The proposed guidewire endpoint detection framework consists of two stages: (i) guidewire 

segmentation and (ii) guidewire endpoint detection. In the first stage, an improved U-Net network 

is used to segment the entire guidewire from each X-ray image, producing a feature image. 
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Figure 5.2: Image acquisition framework during robot-assisted endovascular interventional procedure. 

A. Improving the U-Net network  

Guidewire segmentation in X-ray images is particularly challenging due to the small size and 

flexibility of the target. In the first stage of our proposed approach, the entire guidewire is segmented 

as an object with a pixel value of 255, while the background is assigned a pixel value of zero. 

Although existing semantic segmentation networks developed for real-world and medical imaging 

scenarios address general segmentation needs, they often lack the accuracy needed for detecting tiny 

targets such as guidewires. The U-Net model, with its well-structured encoder-decoder architecture 

and skip connections [258] (illustrated in Figure 5.3(a)), provides a promising solution. U-Net++, 

an extension of U-Net, incorporates nested skip pathways at each network level [259], improving 

its applicability for small medical image datasets [260, 261].  

In this study, the U-Net model was adapted for guidewire segmentation to capture high-level 

semantic information from X-ray images. To enhance performance, batch normalization was 

implemented throughout the U-Net network to standardize input values across layers, achieving a 

normalized distribution with a mean of 0 and a variance of 1. This adjustment accelerates 

convergence, reduces initialization requirements, and improves overall network performance. 

Within the encoder stage, an improved convolution strategy was implemented to boost local 

feature extraction and strengthen global feature representation. Specifically, a convolution operation 

with padding was used to replace traditional convolution, preventing feature map size reduction and 

retaining more spatial information. Additionally, in the feature extraction stages (f2, f3, f4, and f5), 

we replaced the standard 3x3 convolution kernel with the Xception module, as shown in Figure 

5.3(b). Leveraging depthwise separable convolution, the Xception module not only reduces 

computational load but also enhances the fusion of local features with global context information 

by combining depthwise and pointwise convolutions. This integration makes the network more 

adaptable to features of varying scales, enhancing its ability to handle complex scenes while 

maintaining computational efficiency. 
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Figure 5.3: Improved U-Net model structure. 

Further modifications were made to the decoding structure. The original U-Net uses cropping to 

match the encoding and decoding network sizes for concatenation, which can lead to information 

loss. In our enhanced U-Net, we replaced the original 3x3 convolution with a 3x3 padding 

convolution in both the encoding and decoding stages to maintain consistent feature map sizes 

without cropping. Additionally, 3 × 3 padding convolutions were introduced to reduce the number 

of channels to one-fourth of those in the original U-Net, and the middle convolution layer in the 

decoding structure was removed to reduce network redundancy, as shown in Figure 5.3(c). 

Finally, a 3x3 convolution with zero padding was applied after each bilinear up-sampling step, 

and once more in the final layer, to serve as input to the SoftMax layer. This approach optimizes the 

limited receptive field of the preceding 1x1 convolution, enhancing segmentation precision. 

B. Design of decoding network 

The activation function is a crucial component in connections within convolution layers. 

Compared to the sigmoid function, the rectified linear units (ReLU) activation function [262] 

accelerates the convergence speed and prevents the gradient from vanishing when it is greater than 

zero. Additionally, ReLU has low computational complexity, making it an effective choice for 

improving the decoding block of a network. The ReLU activation function is defined as follows:  

𝑅𝑒𝐿𝑈 = max(0, 𝑥)                                                            (5.1) 
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The output size of the convolution layer is determined by: 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 =  
(𝐼𝑠𝑖𝑧𝑒−𝐾𝑠𝑖𝑧𝑒+2𝑃𝑠𝑖𝑧𝑒)

𝑆𝑠𝑖𝑧𝑒
,                                        (5.2) 

where W, K, P, S and O represent the input feature size, kernel size, padding size, stride, and output 

feature size, respectively. The convolution process is illustrated in Figure 5.3(c), where p = 1, k = 

3, and s = 1. If the output is set to the input, applying a 3 × 3 convolution with padding can generate 

equally sized input and output feature maps. This convolution operation in the decoding process is 

used to resize the feature map to its original dimensions and prevent information loss. The decoding 

network structure is shown in Figure 5.3(b). 

During the convolution process, the number of convolution kernels is significantly reduced, and 

convolution layers with the same number of channels are not stacked in the up-sampling process. 

This design minimizes the number of network parameters to be trained, enhancing efficiency. 

Furthermore, the encoder part of the improved U-Net integrates elements of ResNet50 [256] to 

enhance the segmentation performance. ResNet50 consists of identity and convolutional blocks. By 

removing the fully connected layer of ResNet50 and integrating the remaining layers into the 

improved U-Net, we obtain an optimized U-Net model. 

5.3.3 Second stage: guidewire endpoint detection  
In the second stage, the segmented guidewire is analysed using our proposed eight-

neighbourhood algorithm to accurately detect the guidewire endpoint. Guidewire endpoints 

represent the connections between different pixels [263]; therefore, we propose an eight-

neighbourhood endpoint detection method that takes advantage of these connections. This method 

tracks the guidewire endpoint by examining pixel points within eight neighbouring relationships. 

Each pixel in the binarized image is assigned a value of either 0 or 255, where 0 represents the black 

background and 255 represents the target guidewire. Each pixel has up to eight neighbouring pixels, 

forming the basis for the eight-neighbour algorithm. 

Following binarization, the entire guidewire skeleton is extracted based on these pixel points. 

However, the segmented guidewire often exhibits non-smooth characteristics, resulting in 

discontinuities or fractures between the start and endpoints. Despite skeleton extraction, the 

guidewire may remain fragmented. To address this, we implemented post-skeleton processing, 

which involves removing branch pixels and repairing fractured pixels to preserve the continuity of 

the guidewire skeleton across consecutive pixels. Finally, using the eight-neighbourhood algorithm, 

we completed the guidewire endpoint detection. The overall framework is illustrated in Figure 5.4. 

A. Guidewire skeletonization extraction 

Skeletonization captures the topological structure of an object and is used in image recognition 

to reduce redundancy and eliminate extraneous information. Skeletonization extraction is defined 

as the removal of boundary pixels while preserving the connectivity of the image. The objective is 

to reduce a connected region to a single-pixel width, where the skeleton is mathematically defined 

as the set of central points of the maximum tangent hypersphere along the boundary. This process 
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Figure 5.4: Guidewire endpoint detection based on pixel-adjacent-relation method. 

can be envisioned as if the target’s edge lines are uniformly illuminated and a fire front propagates 

evenly towards the interior. As the fronts intersect, the “flame” extinguishes, and the union of these 

extinguished points forms the skeleton. 

The skeletonization procedure begins by assuming that a white pixel (value 255) represents the 

object, and a black pixel (value 0) represents the background. For each pixel in the image, we check 

its surrounding pixels in all directions. If the current point of the pixel (𝑥, 𝑦) is a white pixel, we 

evaluate four neighbouring pixels: [(𝑥 − 1, 𝑦 + 1), (𝑥 − 1, 𝑦), (𝑥 − 1, 𝑦 − 1), and (𝑥, 𝑦 − 1)]. The 

current pixel point is assigned a new layer value of 0 if it is a black pixel or an incremented layer 

value based on the minimum value of its neighbours if it is white. This procedure is defined as 

follows: 

𝐹(𝑥, 𝑦) =  {
min (

𝐹(𝑥 − 1, 𝑦 + 1), 𝐹(𝑥 − 1, 𝑦),

 𝐹(𝑥 − 1, 𝑦 − 1), 𝐹(𝑥, 𝑦 − 1)
) + 1,  if 𝑃1(𝑥, 𝑦) = 255

0,                                                                      if 𝑃1(𝑥, 𝑦) = 0

       (5.3) 

The second step of this algorithm mirrors the first. We scan each pixel from the bottom up and 

from right to left, evaluating the same neighbouring pixels around each point (𝑥, 𝑦). The process 

for this layer is defined as follows:  

𝐺(𝑥, 𝑦) = {
min (

𝐺(𝑥 − 1, 𝑦 + 1), 𝐺(𝑥 − 1, 𝑦),

 𝐺(𝑥 − 1, 𝑦 − 1), 𝐺(𝑥, 𝑦 − 1)
) + 1, if 𝑃2(𝑥, 𝑦) = 255

0,                                                                     if 𝑃2(𝑥, 𝑦) = 0

           (5.4) 

The first step calculates the value of the upper enclosing layer, while the second step calculates 

the value of the lower enclosing layer. The final layer value for each pixel is the minimum of the 

values from these two enclosing layers:  

𝑀(𝑥, 𝑦) = min(𝐹(𝑥, 𝑦), 𝐺(𝑥, 𝑦))                                          (5.5) 

In the last step, the layer values of the eight neighbouring pixels around each pixel are compared 

to the current pixel value. If the current pixel layer value is the maximum, it is retained; otherwise, 

it is removed. The result of skeletonization extraction is illustrated in Figure 5.5. After semantic 

segmentation, the guidewire is processed using this skeletonization method to obtain a topological 

structure that captures essential shape features, such as intersections, inflection points, and fracture 

points. 
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B. Removing of pixel bifurcation points 

 

Figure 5.5: Overall processing of skeletonization extraction. 

 

Figure 5.6: Detection and removal of bifurcation point. 

The extracted guidewire often appears irregular after semantic segmentation, resulting in 

bifurcation points after skeletonization. To accurately detect the endpoint of the guidewire, these 

bifurcation points must be removed from the skeletonized feature map. Figure 5.6 shows that 

bifurcation points are defined by three pixels within the eight-neighbourhood area, with each pixel 

linking to another pixel outside this area, creating branch paths through the joining of neighbouring 

pixels across different layers. In comparison, non-bifurcation points are linked by just one or two 

pixels. 

 This structural distinction allows us to identify and eliminate bifurcation points efficiently. Upon 

locating a bifurcation point, we computed the concatenated paths in three directions within the eight-

neighbourhood region. Figure 5.6(a) illustrates these paths depicted with red, blue, and green dotted 

lines. The abnormal branch at the bifurcation point is recognized as the shortest path, which is 

subsequently eliminated to uncover the actual guidewire endpoint. 

C. Repairment of pixel fracture points  

The precision of the semantic segmentation method directly affects the quality of the extracted 

guidewire feature map; higher accuracy results in fewer fracture points in the segmented guidewire. 

Although our proposed segmentation method outperforms other semantic segmentation techniques, 

some fracture points still appear in the guidewire after segmentation. These fractures persist even 

after skeletonization. Therefore, a repair process was implemented to address all fracture points, 

from the initial point to the final pixel, with the aim of restoring guidewire connectivity, a critical 

factor for accurate endpoint detection. 

To begin with, each point on the pixel was evaluated to determine if it was a fracture point. If 

identified as a fracture, the two adjacent pixel points around it were connected to ensure continuity 

in the guidewire. The detailed repair process is illustrated in Figure 5.7. Each pixel points on the  
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Figure 5.7: Overview process of the repairment of fracture points. 

guidewire skeletonization feature map was examined sequentially from bottom to top and from left 

to right to assess the number of connected pixels in its eight-neighbourhood. If the current pixel had 

more than one connected neighbour, it was not a fracture point; if only one connected neighbour 

was found, it indicated a fracture. 

In this case, pixel 𝑃1 represented one endpoint of the fracture, and pixel 𝑃2 represented the other. 

To repair the fracture, 𝑃1 and 𝑃2were connected with a straight line that traversed background pixels. 

Background pixels closest to the line, based on the shortest center-to-line distance, were reassigned 

a pixel value of 255 to mark them as guidewire points, thereby restoring connectivity. 

D. Guidewire feature map detection  

The result of the feature map of the guidewire after semantic segmentation indicated that the 

detection stage was responsible for predicting the coordinates of the endpoints of each guidewire. 

First, skeletonization processing was applied in the feature map of the guidewire to obtain the 

skeletonization structure of the guidewire. The bifurcation point in this structure was removed and 

the fracture points were repaired. The given guidewire feature map was used as input to complete 

further detection processing. The guidewire feature map used skeletonization and defect 

interpolation processing, and therefore there is only one pixel connected to the endpoint in the eight- 

neighbourhood region of the endpoint and two-pixel points connected to the non-endpoint in the  

 
Figure 5.8: Adjacent point relationships within the eight-neighbourhood scope.  
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eight-neighbourhood region of the non-endpoint pixel (Figure 5.8). The eight-neighbourhood 

detection method based on this idea used the output feature maps of the removal and repair 

processing as input to scan each pixel to detect the guidewire endpoint. 

E. Guidewire bending detection 

In endovascular interventional surgery, the guidewire, though tiny and flexible, can cause 

mechanical damage to the arterial lining when it bends excessively. This damage can lead to platelet 

aggregation and stimulate intimal hyperplasia, increasing the risk of endovascular rupture. To 

mitigate this risk, we calculate the bending angle of the guidewire based on its current pose. This 

angle provides the operator with valuable information to adjust the control strategy and reduce the 

potential damage to the vessel. 

To compute the bending shape of the guidewire, we calculate the bending angle using the 

connecting line between the starting point 𝐴(𝑥1𝑖 , 𝑦1𝑗) and the endpoint 𝐵(𝑥2𝑖 , 𝑦2𝑗). The process 

begins by performing a reverse-to-forward search to identify the starting pixel. Once identified, the 

line is drawn connecting the starting point to the endpoint. Next, we calculate the perpendicular 

distance from each pixel along the guidewire to this line. The pixel with the greatest distance from 

the line is identified as the highest point, denoted as  𝐶(𝑥3𝑖 , 𝑦3𝑗) . The bending angle is then 

determined by the angle formed at point 𝐶 between the line segments from 𝐴 to 𝐵 and from 𝐶 to 𝐵. 

This angle represents the degree of bending of the guidewire, as shown in Eq. (5.6-5.9).  

𝑎 =  √(𝑥2𝑖 − 𝑥3𝑖)
2 + (𝑦3𝑗 − 𝑦2𝑗)22

                                 (5.6) 

𝑏 =  √(𝑥3𝑖 − 𝑥1𝑖)2 + (𝑦3𝑗 − 𝑦1𝑗)22
                                  (5.7) 

𝑐 =  √(𝑥2𝑖 − 𝑥1𝑖)2 + (𝑦2𝑗 − 𝑦1𝑗)22
                                   (5.8) 

𝑎𝑛𝑔𝑙𝑒 =  𝑐𝑜𝑠−1(
𝑎2+𝑏2−𝑐2

2𝑎𝑏
)                                                   (5.9) 

In the calculation of the bending angle, let 𝑎 represent the length of the line connecting the highest 

point 𝐶(𝑥3𝑖 , 𝑦3𝑗) to the endpoint 𝐵(𝑥2𝑖 , 𝑦2𝑗), 𝑏 represent the length of the line connecting the 

highest point 𝐶(𝑥3𝑖 , 𝑦3𝑗)  to the start point 𝐴(𝑥1𝑖 , 𝑦1𝑗), and 𝑐  represent the length of the line 

connecting the start point 𝐴(𝑥1𝑖 , 𝑦1𝑗) to the endpoint 𝐵(𝑥2𝑖 , 𝑦2𝑗) . The points (𝑥1𝑖 , 𝑦1𝑗) , 

(𝑥2𝑖 , 𝑦2𝑗), and (𝑥3𝑖 , 𝑦3𝑗) are pixel coordinates, where 𝑖, 𝑗 ∈ (1,2, … , 𝑚), with 𝑚 being the total 

number of pixels in the image. 

The bending pose of the guidewire can be evaluated using both the longest distance and the 

bending angle, which serve as crucial reference points for the operator to adjust the manipulation 

strategy as shown in Figure 5.9. Using the methods described above, we perform a sliding window 

scan across the entire guidewire segment, where the length of the scanned guidewire and the 

scanning interval are key parameters. During each scan, the following steps are performed: 

1) Calculate the included angle for all segments of the guidewire. 

2) Measure the distance from each pixel of the guidewire to the corresponding straight line, 

determining the point with the maximum distance, known as the “highest point”. 



Upscaling Robot-assisted Endovascular Tool Manipulations based on Intuitive Multimodal Data Analysis 

115  

Compute the bending angle based on the positions of the start point, endpoint, and the highest 

pixel. 

 

Figure 5.9: Overview process of determining the maximum bending region and angle values. 

5.3.4 Training strategy and evaluation index 

A. Training strategy  

The improved U-Net model, referred to as JSUNet due to its J-shaped decoder network design, 

utilizes the categorical cross-entropy loss function [242], which is defined as:  

𝐿𝑜𝑠𝑠 =  − ∑ �̂�𝑖1𝑙𝑜𝑔𝑦𝑖1
𝑛
𝑖=1 + �̂�𝑖2𝑙𝑜𝑔𝑦𝑖2 + 𝐿 + �̂�𝑖𝑚𝑙𝑜𝑔𝑦𝑖𝑚,                   (5.10) 

where 𝑛 denotes the number of samples, 𝑚 represents the number of classes (with m ≥ 2), �̂�𝑖𝑚 is 1 

if sample 𝑖 belongs to category 𝑚 and 0 otherwise, and 𝑦𝑖𝑚  denotes the probability that sample 𝑖 is 

predicted to belong to class 𝑚. 

The experimental setup to train the networks included a Windows 10 operating system, an 

NVIDIA GeForce® GTX 1080 graphics card, the NVIDIA CUDA 10.1 acceleration toolkit, and a 

Pytorch-based Keras interface as a training framework. The experiments utilised two self-

constructed datasets: Dataset A, comprising 3300 X-ray images, and Dataset B, consisting of 1800 

fluoroscopy images. Each dataset was divided into training, validation, and test sets in an 8: 1: 1 

ratio. Specifically, Dataset A (in vivo rabbit model) included 2640 images for training (173,015,040 

pixels), 330 images for validation (21,626,882 pixels), and 330 images for testing (21,626,882 

pixels). Similarly, Dataset B (in vivo porcine model) included 1440 images for training (94,371,840 

pixels), 180 images for validation (11,796,482 pixels) and 180 images for testing (11,796,482 

pixels). All images were in “.png” format with a resolution of 256 × 256 pixels. 

Parameter initialization employed the Xavier normal distribution to generate random tensors. The 

Adam optimizer [243] was selected due to its efficiency in deep learning applications. During 

training, if the validation loss did not decrease after every 3 epochs, the learning rate was halved to 

facilitate convergence. Each dataset was trained for a total of 50 epochs, with the model achieving 

the lowest validation loss selected for segmentation and prediction comparisons. 

B. Performance evaluation index 

The intersection-over-union (IoU) is commonly used as a performance evaluation metric to 

measure the overlap between the segmentation results for each category and the original labelled 

image. MIoU is also employed to assess the network model’s effectiveness in semantic 
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segmentation, calculated as:  

𝑀𝐼𝑜𝑈 =  
1

𝑛+1
∑

𝑞𝑖𝑖

∑ (𝑞𝑖𝑗+𝑞𝑗𝑖−𝑞𝑖𝑖)𝑛
𝑗=0  

𝑛
𝑖=0                                             (5.11) 

where 𝑛 + 1 represents the number of pixel categories in the image, 𝑞𝑖𝑖  is the total number of 

correctly classified guidewire pixels, 𝑞𝑖𝑗 represents the total number of guidewire pixels classified 

as background, and 𝑞𝑗𝑖 represents the total number of background pixels misclassified as guidewire 

pixels.  

Additionally, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝐹1 − 𝑠𝑐𝑜𝑟𝑒, and 𝑚𝑎𝑐𝑟𝑜 − 𝐹1 are used as performance metrics 

for segmentation accuracy, defined as follows: 

𝑟𝑒𝑐𝑎𝑙𝑙 𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
                                                          (5.12) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                                                     (5.13) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑖 =  2 
𝑟𝑒𝑐𝑎𝑙𝑙 𝑖× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑟𝑒𝑐𝑎𝑙𝑙 𝑖+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
                                (5.14) 

𝑚𝑎𝑐𝑟𝑜 − 𝐹1 =  
∑ 𝐹1−𝑠𝑐𝑜𝑟𝑒𝑖

𝑛
𝑖=1

𝑁
                                          (5.15) 

In these equations, TP denote correctly detected guidewire pixels, FP represent background pixels 

misclassified as guidewire pixels, and FN are guidewire pixels incorrectly classified as background. 

The 𝐹1 − 𝑠𝑐𝑜𝑟𝑒  balances model accuracy and recall, which is critical in medical image 

segmentation where missing or extra foreground regions can impact clinical outcomes. 

To evaluate the model’s processing speed, the forward feedback processing speed (FFPS) is 

calculated as: 

𝐹𝐹𝑃𝑆 =  
1

𝑁
∑

1

𝑡𝑖𝑚𝑒𝑚

𝑁
𝑚=1                                                     (5.16) 

where 𝑁 is the total number of test samples, 𝑚 denotes the 𝑚 − 𝑡ℎ sample index, and 𝑡𝑖𝑚𝑒𝑚 is the 

forward feedback processing time for each sample. FFPS, measured in frames per second, indicates 

the efficiency of forward feedback propagation within the network model. 

The mean pixel error (MPE) is used to assess the accuracy of endpoint detection, calculated as 

the average Euclidean distance between the predicted and ground-truth pixel points:  

𝑀𝑃𝐸 =  
1

𝑁
∗ ∑ (‖𝑃𝑖 − 𝐺𝑖‖)𝑁

𝑖=1                                             (5.17) 

where 𝑁  is the total number of test samples, ‖. ‖ is the total number of test samples,  𝑃𝑖  is the 

predicted endpoint pixel for the 𝑖 − 𝑡ℎ sample, and 𝐺𝑖 is the ground-truth endpoint pixel. 

5.4 Model Detection Performances  

5.4.1 Segmentation performance  
Semantic segmentation was applied to guidewire extraction to enhance its suitability for 

guidewire endpoint detection in robot-assisted interventions. The improved U-Net model, known as 

JSUNet, was used to evaluate segmentation performance by processing images of tool trajectories 

from these interventions. After segmentation, the results of the proposed method were validated 
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using training data from Datasets A and B, with frame intervals of 10 fps for Dataset A and 15 fps 

for Dataset B. 

The performance of the improved U-Net model, measured in terms of training accuracy, training 

loss, and validation accuracy and loss, is depicted in Figure 5.10(a) and (b). The model was trained 

for 50 iterations. For Dataset A, training accuracy started at 60% in the first iteration and reached a 

maximum accuracy of 83.45% by the 40th iteration. Dataset B showed similar performance, with 

the accuracy rate remaining stable from the 35th iteration onward. Training loss began at 0.4 in the 

initial iteration and decreased to 0.2 by the 50th iteration, indicating good model characteristics. The 

improved U-Net model achieved validation accuracies of 89.46% and 92.43% on Datasets A and B, 

respectively. Validation loss decreased rapidly within the first 10 epochs for Dataset A and the first 

15 epochs for Dataset B, reflecting effective learning within those epochs. Throughout training and 

validation, the model demonstrated stability, indicating that it did not overfit, as evidenced by the 

alignment between training and validation losses.  

The performance of the improved U-Net model was further validated in the test Datasets A and 

B in Figure 5.10(a’) and (b’). Confusion matrix analysis showed that the model accurately 

segmented guidewire pixel data, achieving Macro-F1 scores of 94.57% on the rabbit data set and 

95.48% on the porcine dataset. Detailed analysis of the confusion matrix revealed high recall and 

precision for both background and guidewire pixels: for the rabbit dataset, recall and precision 

reached 99.94% and 99.95% for background pixels, and 90.53% and 87.87% for guidewire pixels, 

respectively. For the porcine dataset, the background pixel prediction achieved 99.89% recall and 

99.91% precision, while the guidewire pixel prediction achieved 92.07% recall and 90.07% 

precision. 

 

Figure 5.10: Performance analysis of proposed improved U-Net model. 
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Table 5.1: Performance evaluation of different models for guidewire segmentation. 

Network model 
IoU [%] Macro-F1 

[%] 

FFPS 

[fps] 
Dataset 

Pars. No 

[M] BG GW MIoU 

U-Net 
99.54 52.93 51.35 85.47 51.35 A 

7.76 
99.73 60.13 39.32 87.34 39.32 B 

U-Net++ 
99.86 74.92 87.39 92.8 38.32 A 

9.04 
99.7 74.78 87.24 92.71 28.14 B 

DeepLabV3+ 
99.89 78.86 89.38 94.07 31.39 A 

6.44 
99.69 73.51 86.60 92.29 30.57 B 

Improved U-Net 
99.90 80.47 90.19 94.57 45.79 A 

8.58 
99.80 83.58 91.69 95.48 31.40 B 

 

 

Figure 5.11: Guidewire segmentation results using the test set from in vivo rabbit model. 

To comprehensively assess the improved efficiency of U-Net, a comparison was made with three 

other models: U-Net, U-Net++, and DeepLabV3+ in the datasets. Evaluation metrics that include 

MIoU, FFPS and model parameters were recorded during training on both datasets, with the results 

summarized in Table 5.1. The improved U-Net achieved an MIoU of 99.90% for background pixels 

and 80.47% for guidewire pixels, resulting in an overall MIoU of 90.19% for Dataset A. For Dataset 

B, it achieved 83.58% for guidewire pixels and 99.80% for background pixels, with an overall 

segmentation accuracy of 91.69%. Compared to the original U-Net, the improved U-Net 

demonstrated a significant performance increase, with MIoU increments of 13.95% for Dataset A 

and 11.76% for Dataset B. U-Net++ performed better than the base U-Net, but the improved U-Net 

still showed an MIoU increase of 2.8% for Dataset A and 4.45% for Dataset B compared to U-

Net++. 

Moreover, the improved U-Net model also required fewer parameters than the classic U-Net and 

U-Net++ models, although DeepLabV3+ required the fewest parameters at approximately 6.44 

million. The improved U-Net used 8.85 million parameters, striking a balance between memory 

efficiency and performance. It outperformed the other models in MIoU and Macro-F1 metrics, 

achieving feedforward image processing speeds of 45.79 fps on Dataset A and 31.40 fps on Dataset 

B. Figure 5.11 displays the segmentation results for the improved U-Net and the three comparison 
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models. Given the small target size of the guidewire relative to the background, accurately 

segmenting guidewire pixels remains challenging. The high accuracy achieved by the improved U-

Net model demonstrates its effectiveness in using batch normalization and an enhanced decoding 

structure to accurately segment the guidewire in X-ray images, ultimately improving the 

performance of the model. 

5.4.2 Comparison of detection performance for heatmap methods  
After completion of guidewire segmentation, the guidewire feature maps were processed in the 

second stage to detect the endpoint. Using the eight-neighbourhood characteristics of the pixel 

distribution, skeletonization extraction was applied to the feature maps to derive the topological 

structure of the guidewire in pixel form. Subsequently, abnormal branches were removed, and 

fracture bands were repaired within the guidewire topology to accurately identify the ground truth 

endpoints. The performance of the eight-neighbourhood-based detection method was then assessed 

and compared with existing methods using the MPE metric, evaluated in data sets A and B. For 

comparison purposes, four standard approaches, including Hourglass, PoseResNet, HRNet, and 

HigherHRNet, were implemented and evaluated for their performance in addition to the newly 

introduced method, as shown in in Table 5.2.  

The results indicate that our method achieved the best performance, with an MPE of 2.02 (±0.14) 

pixels in Dataset A and 2.13 (±0.37) pixels in data set B. For the rabbit dataset, the MPEs of the 

four other methods were as follows: Hourglass achieved 4.08 (±0.36) pixels, PoseResNet showed 

the lowest endpoint detection accuracy with an MPE of 6.46 (±0.63) pixels, HRNet achieved 5.38 

(±0.54) pixels, and HigherHRNet reached 5.74 (±0.63) pixels. Similar comparisons were made for 

Dataset B, with our method achieving an MPE of 2.13 pixels in guidewire endpoint detection, 

outperforming the other methods. Specifically, in the porcine dataset, the MPEs for the other 

methods were as follows: Hourglass at 2.86 (±0.09) pixels, PoseResNet at 3.46 (±0.13) pixels, 

HRNet at 3.06 (±0.08) pixels, and HigherHRNet at 3.13 (±0.18) pixels, as shown in Figure 5.12(a).     

To provide a more intuitive representation of the model’s performance in guidewire endpoint 

detection, pixel-level detection errors were converted into millimetre-based errors, considering the 

physical dimensions of the images. This conversion is illustrated in Figure 5.12(b). Our proposed 

method achieved the lowest average error, with a 0.53 mm endpoint detection error for the rabbit 

Table 5.2: Comparison of four typical heatmap detection methods. 

Methods 
Dataset A: In vivo rabbit model Dataset B: In vivo porcine model 

MPE [pixel] /[mm] p-value (vs. our) MPE [pixel] /[mm] p-value (vs. our) 

Hourglass 4.08 ± 0.36 /(1.27±0.09) 1.0332E-9 2.86 ± 0.09 / (0.76 ± 0.02) 0.000106 

PoseResNet 6.46 ± 0.63 / (1.71±0.17) 2.9648E-9 3.46 ± 0.13 / (0.92 ± 0.03) 2.7605E-7 

HRNet 5.38 ± 0.54 / (1.42±0.14) 8.9866E-9 3.06 ± 0.08 / (0.81 ± 0.02) 0.000015 

HigherHRNet 5.74 ± 0.63 / (1.52±0.17) 1.488E-8 3.13 ± 0.18 / (0.83 ± 0.05) 0.000003 

Our 2.02 ± 0.04 / (0.53 ± 0.01) - 2.13 ± 0.37 / (0.56 ± 0.09) - 
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Figure 5.12: Mean pixel/distance error of four typical heatmap detection methods. 

experiment and a 0.56 mm error for the porcine experiment, outperforming the other four heatmap-

based methods. Figure 5.12(b) presents the visual results of the detection of guidewire end points 

for all five models. 

A T-test was conducted to determine whether the MPE differences between Hourglass, 

PoseResNet, HRNet, HigherHRNet, and our method were statistically significant for Datasets A 

and B. As shown in Table 5.2, all p-values were less than 0.05, indicating that our method is 

significantly better than the four other typical heatmap-based methods. These findings suggest that 

the eight-neighbourhood method provides significantly improved detection accuracy compared to 

other learning-based methods. In contrast, other guidewire endpoint detection methods tend to have 

higher mean pixel errors, as they do not establish a close relationship between endpoint detection 

and the detection needs for endovascular interventional instruments.  

Compared to the Hourglass network, our proposed method demonstrated superior performance 

in guidewire endpoint detection. While the Hourglass network, based on heatmap methods, is 

effective for human pose estimation and outperforms other models such as PoseResNet, HRNet, and 

HigherHRNet in endpoint detection, it is not optimal for detecting the tiny guidewire endpoint. This 

limitation arises from repeated bottom-up and top-down convolution operations in DCNNs, which 

significantly reduce the initial image resolution and hinder the accurate localisation of small objects 

such as the guidewire endpoint. The PoseResNet method, commonly used for heatmap extraction 

in human pose estimation tasks, addresses network model degradation issues, but is less effective 

for detecting small targets. Our results show that PoseResNet exhibited the largest performance gap 

compared to our method, even more so than the differences with Hourglass, HRNet, and 

HigherHRNet. This finding suggests that while PoseResNet is highly sensitive to human pose 

estimation, it lacks the precision needed to detect small objects such as guidewire endpoints.  

HRNet, however, performed better than other ResNet models in guidewire endpoint detection, 

highlighting the importance of high-resolution representations in tasks requiring precise localization. 

Unlike other models such as PoseResNet, ResNet-50, ResNet-101, ResNet-152, and VGGNet, 

which encode input images into low-resolution representations before recovering higher resolution 

through high-to-low-resolution convolution connections, HRNet preserves high-resolution- 
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Figure 5.13: Guidewire endpoint detection results of four heatmap methods. 

representations throughout the network. This continuity in high-resolution processing appears 

crucial for accurately localizing the guidewire endpoint. HigherHRNet, which combines high-

resolution feature pyramids to learn scale-aware representations, was also tested for endpoint 

detection by estimating feature maps from the combined high-resolution representations. However, 

its performance was like or slightly worse than HRNet in this task. These findings suggest that while 

heatmap and heatmap regression methods, such as Hourglass, PoseResNet, HRNet, and 

HigherHRNet, are well suited for human pose estimation, they are less effective for detecting the 

tiny guidewire endpoint, where precise, high-resolution representation is essential. 

5.4.3 Performance comparison of heatmap regression methods 
To evaluate the performance of the proposed method, we also applied six existing heatmap 

regression methods from previous studies on Datasets A and B. Details of the implementation and 

validation for these existing methods are provided in Table 5.3. The results indicate that the MPEs 

of the six regression methods are significantly higher than those achieved by our method. Although 

the lightweight model MobileNetv2 reduces the number of parameters and computations, it shows 

the worst guidewire endpoint detection performance on both datasets, with MPEs of 13.07 ± 1.43 

and 11.09 ± 0.74 for Datasets A and B, respectively. DenseNet121, which also has a low parameter 

count, performed somewhat better, achieving MPEs of 7.63 ± 1.94 and 8.24 ± 1.42 on Datasets A 

and B, respectively. Hourglass and ResNet50 produced comparable detection results. In particular, 

the deeper 101-layer and 152-layer ResNet architectures did not outperform 50-layer ResNet on 

either dataset. The results for ResNet-101 were slightly better than those for ResNet-152, suggesting 

that deeper layers do not improve performance in guidewire endpoint detection tasks. Furthermore, 

ResNet50 outperformed ResNet-101, indicating that the guidewire endpoint detection task is 

relatively simple and does not require a deeper network to extract additional information for 

successful detection. In general, the accuracy of the endpoint detection of the guidewire is 

significantly improved by using this two-stage detection framework. 
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Table 5.3: Comparison of six typical endpoint detection methods. 

Methods 

In vivo rabbit model In vivo porcine model 

MPE [pixel]/[mm] 
p-value (vs. 

our) 
MPE [pixel]/[mm] p-value (vs. our) 

ResNet50 5.90 ± 0.43 / (1.56 ± 0.11)  3.19E-10 7.71 ± 0.98 / (2.04 ± 0.26)  2.05E-9 

ResNet101 6.73 ± 1.10 / (1.78 ± 0.29)  2.75E-7 8.69 ± 1.60 / (2.30 ± 0.42)  1.86E-7 

ResNet152 8.24 ± 3.51 / (2.18 ± 0.93)  3.35 E-4 10.54 ± 1.28 / (2.79 ± 0.34)  1.08E-9 

Hourglass2 5.76 ± 0.32 / (1.52 ± 0.09)  2.43E-11 7.35 ± 1.79 / (1.94 ± 0.47)  0.50E-5 

DenseNet121 7.63 ± 1.94 / (2.02 ± 0.51)  0.70E-5 8.24 ± 1.42 / (2.18 ± 0.38)  1.02E-7 

MobileNetv2 13.07±1.43 / (3.46 ± 0.38)  1.52E-9 11.09 ± 0.74 / (2.93 ± 0.20)  2.92E-14 

Our 2.02 ± 0.04 / (0.53 ± 0.01)  - 2.13 ± 0.37 / (0.56 ± 0.09)  - 

 
Figure 5.14: Mean pixel/distance error of six typical heatmap regression methods. 

To interpret the model’s detection errors in a clinically relevant context, we converted pixel-level 

errors to millimetre-based measurements, reflecting the actual physical dimensions of the images, 

as illustrated in Figure 5.14. Our proposed method demonstrated superior performance, achieving 

the lowest millimetre error compared to the other six heatmap regression methods. Figure 5.14 

visualizes the guidewire endpoint detection results across different models. To further confirm the 

effectiveness of our approach, we performed a T-test to compare the eight-neighbourhood module 

with other learning methods. Table 5.3 shows the differences between the seven guidewire endpoint 

detection methods are statistically significant. 

We present the improvement to the skeletonization-repair approach implemented in the eight-

neighbourhood area of each pixel. The eight-neighbourhood detection technique is specifically 

designed to generate regional information maps for each pixel, which can effectively remove 

bifurcation zones and repair breaks in the guidewire structure within the segmented feature maps. 

Using the relationships between adjacent pixels in the guidewire, this method achieves more 

accurate endpoint detection. 

The proposed method also demonstrated superior performance compared to six commonly used 

heatmap regression methods. Among the ResNet models, ResNet50 outperformed ResNet101 and 

ResNet152 in the detection of guidewire endpoints, suggesting that a smaller network architecture 

is better suited for low resolution images where the average resolution of the guidewire is 

significantly limited. The ResNet-50 architecture, featuring residual blocks with identity 

connections, allows it to preserve and combine existing information with newly learnt features,  
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Figure 5.15: Comparison of guidewire endpoint detection of six heatmap regression methods. 

resulting in improved detection accuracy for small targets. This combination makes ResNet-50 more 

effective than DenseNet121 and MobileNetv2 for guidewire endpoint detection in X-ray images, 

indicating that residual blocks provide a distinct advantage for detecting tiny targets.  

In contrast, MobileNetv2 performed worse than our proposed method, as well as ResNet50, 

ResNet101, ResNet152, Hourglass, and DenseNet121. Although MobileNetv2’s inverse residuals 

and linear bottleneck structures optimize memory use and reduce computational load, the model 

lacks sensitivity to small target features. The deeper network structure of MobileNetv2 may affect 

the detection of tiny objects such as guidewire endpoints, as this task does not benefit from 

additional network depth and instead requires efficient feature extraction from shallow layers. This 

finding suggests that, for guidewire endpoint detection, deeper layers may reduce the model’s ability 

to learn the essential features needed for accurate localization. 

5.4.4 Comparison of heatmap and regression methods 

In the guidewire endpoint detection task, methods based on the heatmap model outperformed 

those based on the heatmap regression model on both Datasets A and B, as shown in Figure 5.16. 

This suggests that heatmap-based methods are more effective in handling noise and image errors. 

With increased down-sampling, image resolution decreases, simplifying classification tasks while 

making regression tasks more challenging. Heatmap-based methods exhibit better fault tolerance to 

noise and errors, whereas heatmap regression models are more sensitive to input noise, leading to 

inaccuracies in key-point localization. In contrast, our proposed method, based on the pixel-adjacent 

relationship approach, differs from both heatmap and regression models, achieving the highest 

performance. 

Although many models perform well in training and standardized public datasets, they may 

struggle with real-world data. To evaluate unbiased performance, we tested our proposed method 

and other standard detection methods on self-acquired X-ray images from robot-assisted 

endovascular interventions. Our approach, employing various deep neural networks, demonstrated 

competitive performance in X-ray image analysis without requiring highly specialized deep learning 

hardware or extensive datasets. The proposed method maintained high detection accuracy for 

guidewire endpoints, highlighting the effectiveness of the two-stage pixel-adjacent-relation-based  
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Figure 5.16: Overview of the performances of guidewire endpoint detection methods. 

method in accurately identifying guidewire endpoints in 2D angiograms, even with a limited training 

dataset. 

An analysis of 10-fold cross-validation results for detecting guidewire endpoints in Dataset A 

(derived from an in vivo rabbit model) and Dataset B (derived from an in vivo porcine model) shows 

analogous performance across both datasets. Although acquired with different equipment, both 

datasets contain X-ray images with similar pixel points that require localization. This uniformity 

indicates that our method demonstrates robust generalisation capabilities for pinpointing small 

object endpoints and can efficiently handle new datasets not encountered during training. In addition, 

this model can be applied to key-point detection tasks on other surgical instruments. 

5.4.5 Guidewire bending angle 
The angle of bending of the guidewire is a critical parameter that reflects its posture within the 

endovascular pathway. Accurate detection and measurement of the guidewire’s bending angle can 

provide valuable feedback to the surgeon, helping them adjust their manipulation strategy to 

minimize the risk of endovascular rupture during surgical procedures. To this end, the proposed 

method identifies regions of maximum bending and calculates the bending angle after completing 

the guidewire endpoint detection. This approach offers a quantitative assessment of the degree of 

bending at specific points along the guidewire. 

The performance of the guidewire bending detection method was validated using Datasets A and 

B. Examples of detected bending regions and corresponding angle values using the pixel-adjacent-
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relation-based method are presented in Figure 5.17. The proposed method achieved an average 

accuracy of 91.13 ±1.12% in Dataset A and 93.18% in Dataset B, demonstrating its sensitivity and 

effectiveness in detecting maximum bending regions.  

Finally, bending angles are extracted as a reference for operators to adjust their control strategy 

and minimize the risk of endovascular rupture. The strong performance of the maximum bending 

region detection method, validated in multiple datasets, underscores its potential clinical utility 

[264]. This bending detection approach provides a reliable solution for the identification of 

guidewire bend poses. In the future, bending angle and maximum distance parameters could be 

integrated into a human–computer interaction interface, allowing operators to adopt optimal 

manipulation strategies that enhance the safety and stability of robot-assisted interventions [265]. 

 

Figure 5.17: Evaluation of guidewire bending angle detection using the eight-neighbourhood method. 
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5.5 Chapter Summary  

This chapter introduces a two-stage, eight-neighbour approach for guidewire endpoint detection. 

The first stage uses an improved U-Net network to segment guidewire data, improving ROI 

extraction and reducing interference from anatomical structures and imaging artefacts. The second 

stage detects guidewire endpoints using segmented data through pixel adjacency within the eight-

neighbourhood framework. It involves pixel-level skeletonization, removal of the bi-furcation point, 

and repair of the fracture point to preserve structural integrity. Validation in a benchmark dataset 

showed mean pixel errors of 2.02 (0.534 mm) in in-vivo rabbit X-ray and 2.13 (0.563 mm) in in-

vivo porcine X-ray, surpassing ten conventional heatmap methods. This method can also detect 

endpoints of other surgical tools, such as needle tips, stents, and balloons, while maintaining 

guidewire flexibility. 

The improved U-Net model excels at segmenting tiny guidewire instances from X-ray images. 

Although the eight-neighbourhood detection method requires high-quality segmentation to 

minimize false positives and negatives, superior results are achievable with accurate segmentation. 

Our modified U-Net outperformed standard U-Net, U-Net++, and DeepLabV3+ models in 

guidewire segmentation tests. Effective endpoint detection relies on two main aspects: (1) targeted 

segmentation of small objects, reducing interference, and (2) skeletonization-to-repair processing. 

This approach improves pixel proximity, limiting non-essential pixels and removing anomalies 

during endpoint detection, thus improving precision based on pixel-adjacent relationships. Our 

method yielded the best detection results on Datasets A and B, outperforming standard heatmap and 

regression models. In addition, it offers precise angle measurements and valuable feedback to 

surgeons, which aids in human-robot interaction for safer catheterization. Challenges remain as the 

application of the methods to multi-instrument scenarios is untested, and performance on Datasets 

A (rabbit model) and B (porcine model) may not fully reflect human surgery variability, highlighting 

the need for future research to use diverse datasets for broader applicability. Detecting maximum 

bending regions is also a limitation; although effective for complex bends, the method struggles 

with simpler bends, affecting the accuracy of identifying the highest bending point. 

To further advance visual perception capabilities in more complex and clinically realistic settings, 

the next Chapter 6 proposes a multi-modal image fusion framework for the comprehensive 

modelling of interventional instruments. Unlike the single-modality detection approach discussed 

here, the upcoming work uses visual information from multiple imaging modalities to 

simultaneously enhance instrument segmentation, feature extraction, and perceptual robustness 

across various tools and conditions (DSA images, video, simple and complex vascular pathways, 

different size guidewires). This enables the operators to better sense the surgical environment, 

perception the instruments with greater accuracy, and adapt to procedural complexity. By 

integrating multi-source image data, the visual perception model aims to help surgeons improve 

intraoperative guidance, reduce ambiguity in instrument localization, and support more intuitive 

manipulation.  
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Chapter 6: Visual Perception Modelling of Interventional 

Instruments Using Multi-Modal Images Fusion 

6.1 Introduction 

Accurate instrument location and intuitive representation of anatomical structures are essential to 

improve tool manipulation in robot-assisted interventions. By providing surgeons with a 

comprehensive perception of the surgical environment, optimized visual perception systems not 

only improve procedural precision and safety, but also increase the overall success rate and reduce 

surgical risks. This chapter proposes a MBTPDS-Net network to achieve precise segmentation of 

surgical instruments in multi-modal fusion images. This method uses an encoder-decoder 

architecture with an improved visual-geometry-group-13 (VGG13) encoder to extract detailed edge 

and texture information. The encoder structure integrates batch normalization after each convolution 

layer, stabilizing and accelerating the training process while extracting multiscale features 

comprising both low-level and high-level semantic information. This design also reduces 

computational complexity and the number of parameters. 

The TPD complements the encoder by combining feature maps from different scales, improving 

the network’s ability to capture global contextual semantics and compensating for the limitations of 

the encoder branch. The decoder structure includes three pyramid modules, each focusing on distinct 

feature fusion methods and enabling parallel processing of information at various scales. These 

advanced segmentation modules form the foundation of the proposed vision-based semantic 

segmentation method, which enables precise and efficient visualization of surgical instrument 

information for safety and precisely intuitive manipulation during interventional navigations with 

robotic systems.  

6.2 Related Work  

Precision surgical instrument segmentation presents significant challenges due to various 

complex factors, including low contrast of surgical instruments, intricate surgical environments, 

mirror reflections, and variations in instrument scale and shape. Furthermore, there is a pronounced 

imbalance between the surgical instrument pixels and the background pixels, often resulting in 

blurred boundaries and misclassification in the results of segmentation. These issues compromise 

segmentation accuracy, potentially leading to errors in surgical navigation, extended operation times, 

and increased risks of complications for patients. 

To address these challenges and improves segmentation accuracy, many scholars have proposed 

and refined various methods to achieve automatic segmentation of surgical instruments. Before the 

advent of DL, surgical instrument segmentation was predominantly performed using model-based 

semiautomatic traditional image segmentation methods. These approaches typically relied on basic 
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image features such as colour, edges, and textures. Common methods included edge detection [266], 

clustering [267], graph theory [268], and thresholding [269]. Although traditional methods found 

extensive applications in medical image segmentation and often succeeded in accurately identifying 

boundaries, they faced limitations such as high computational complexity and low efficiency. These 

limitations restricted their applicability to surgical instrument segmentation tasks, particularly in 

dynamic and complex surgical environments. 

With the advancement of artificial intelligence and big data, DL algorithms have been 

increasingly used in medical image segmentation. These methods excel at processing raw data 

directly and automatically learning complex, abstract and high-dimensional features, enabling 

autonomous image segmentation. The most prominent DL-based image segmentation models 

include fully convolutional networks (FCN) [270], DeepLab [271], SegNet [272], and Unet [273]. 

Shuvo et al. [274] proposed a lightweight segmentation network by integrating a novel CNL module 

with the traditional Unet architecture, improving the focus of the network on the pixels critical to 

segmentation accuracy. While this approach reduced computational costs and energy consumption, 

it suffered from loss of local characteristics due to Unet’s limited capacity to capture localized and 

contextual information effectively. Chen et al. [271, 275] introduced a series of DeepLab networks 

that utilized multi-scale encoders, atrous spatial pyramid pooling (ASPP), and depth-wise separable 

convolutions to improve multi-scale feature extraction. Despite these enhancements, the results 

exhibited detail loss and insufficient contextual understanding. Similarly, Cao et al. [276] combined 

conditional random fields with SegNet to achieve good segmentation accuracy and speed on public 

datasets, but the approach was hampered by complex training processes and misclassification of 

small or local targets due to inadequate contextual information extraction. 

Unet has emerged as a benchmark for medical image segmentation owing to its robust 

performance. Numerous Unet variants have been developed, focusing on two primary improvement 

strategies: incorporating new modules and refining encoder-decoder structures. Feng et al. [277] 

proposed the CPFNet (context pyramid fusion network) for skin lesion segmentation, introducing a 

scale-aware pyramid fusion module in the bottleneck layer to extract advanced multi-scale 

contextual information. Additionally, a module guided by the global pyramid in the skip connection 

provided detailed and contextual information at different resolutions. Similarly, Li et al. [278] 

developed VCE-Net, where a dense atrous convolution block and residual multi-kernel pooling 

blocks extracted high-level semantic and contextual information, improving segmentation 

performance. Leveraging pre-trained classical network structures, such as ResNet [279] and VGG 

[280], as encoders, researchers have enhanced feature extraction for complex tasks. For instance, 

Shen et al. [161] introduced BAA-Net, which incorporated lightweight encoders and novel modules: 

branch balance aggregate (BBA) and block attention fusion (BAF) to optimise global and local 

surgical instrument location. Yang et al. [281] proposed an attention-guided network with a residual 

path module at the encoder for robust propagation of low-level features and a dual-attention module 

at the decoder to emphasise relevant features while suppressing distractions. 
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Despite advancements, segmenting non-rigid, small, soft, and low-contrast guidewires remain a 

challenging task. Unlike forceps, scalpels, and needles, rigid surgical instruments that exhibit good 

contrast and clear, just as the methods mentioned above, continuous relationships in endoscopic 

images during da Vinci-assisted procedures, guidewires face unique segmentation difficulties in 

endovascular interventional surgeries. During interventional endovascular surgery, surgeons rely 

solely on 2D X-ray images generated by DSA equipment, which often provides low spatial 

resolution, so tissue occlusion often occurs during the guidewire delivery process in DSA images, 

further complicating its visualisation. This limitation hampers effective visual analysis, increasing 

the likelihood of misjudgement. Moreover, guidewires, defined by their basic forms, often have 

contours that are hard to distinguish from similar objects. Changes in movement and posture during 

surgery also lead to notable changes in shape and size, making segmentation more challenging. 

Complex surgical environments exacerbate these challenges. Factors such as blood, non-target 

organs and tissues, mirror reflections, and motion artefacts interfere with accurate guidewire 

segmentation. Therefore, it is critical to develop robust automated segmentation methods that are 

tailored to guidewires. Such methods are essential for improving surgical navigation accuracy, 

reducing procedural risks, and improving the success rate of robot-assisted endovascular 

interventions. 

6.3 Methodology 

A method for semantic segmentation is introduced to achieve accurate segmentation of surgical 

instruments (SI). From the segmentation outcomes, the instrument’s pose can be estimated, and its 

usage status can be deduced, providing essential visual data to aid operators in tool manipulation. 

By quantitatively describing the tools’ position and orientation within a complex lumen, this visual 

perception can greatly improve operators’ intuitive control performance in computer-assisted 

procedures. This enhancement is especially crucial to overcome the challenges posed by the lack of 

haptic feedback in master-slave robotic systems used in interventional surgery. 

6.3.1 Multi-modal image dataset 
A semantic segmentation method was designed based on multi-modal image datasets to achieve 

precise segmentation of surgical instruments. Accurate and representative data sets were essential 

for effective segmentation. This section presents images obtained from two self-designed 

interventional robotic systems: a vascular interventional system and a teleoperated robotic 

bronchoscopy system for pulmonary lesion biopsy. In these systems, surgeons operated a robotic 

master control terminal (doctor terminal), while the slave mechanism (patient terminal) executed 

instructions to deliver surgical instruments through natural orifices to the target site. 

Figure 6.1 illustrates the dataset acquisition framework. The vascular interventional robotic 

system was developed to assist surgeons in performing endovascular interventions, aiming to reduce 

exposure to X-ray radiation and alleviate the fatigue associated with the wearing of heavy protective  
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Figure 6.1: Image acquisition during robot-assisted endovascular and bronchoscope interventional procedure. 

lead aprons. Similarly, the robot-assisted bronchoscopy system provided a minimally invasive and 

effective solution for early lung cancer intervention. Guided by a bronchoscope, the system 

navigated through the oral or nasal cavity to reach specific bronchial locations, allowing biopsy 

forceps or needles to obtain tissue samples from the sites of the injury. 

Six datasets were used, including three sets of X-ray angiograms, one set of endoscopic images, 

and two sets of video data to segment surgical instruments. Five of these datasets were derived from 

the two robotic interventional platforms. All experimental procedures adhered to the ethical 

guidelines approved by the respective committees. Details of each dataset are summarised below: 

Dataset-A: This dataset comprised coronary angiographic images of cardiovascular patients 

obtained from angiographic examinations or percutaneous coronary interventions at Shenzhen 

GuangMing District People’s Hospital. Using a 0.025" guidewire, surgeons navigated the radial 

artery to identify endovascular blockage sites. During PCI, a 0.014" guidewire was operated from 

the catheter ostia to the stenotic site. The images were captured by a Philips X-ray fluoroscopy CT 

arm at 16 frames per second. All patient information was anonymised to ensure privacy.  

Dataset-B: Derived from an in vivo porcine model simulating the human renal artery vascular 

system, this dataset involved a robotic slave operating a 0.014" guidewire under Philips X-ray 

fluoroscopy guidance at 15 frames per second. The images provided 2D or 3D visualisations with 

optional angiography subtraction. The study adhered to ethical guidelines approved by the Shenzhen 

Advanced Animal Study Service Centre (No. AAS 191204P).  

Dataset-C: This dataset involved a master-slave robotic system navigating a 0.014" guidewire 

along the auricle-to-coronary arterial pathway of rabbits. Images were captured using a self-



Chapter 6 Visual Perception Modelling of Interventional Instruments Using Multi-modal Images Fusion 

131  

developed X-ray machine equipped with a 70 kV [282], 5 mA generator, and a flat detector, 

producing 10 frames per second. Ethical approval was obtained from the Shenzhen Institutes of 

Advanced Technology (Application No. SIAT-IACUC-200528-YGS-WL-A1289). 

Dataset-D: Derived from an in vivo porcine bronchial model, this dataset involved a robotic 

bronchoscopy system that delivers an endoscope through the oral cavity to specific bronchial 

positions. Biopsy tools, such as 1.0-mm diameter forceps, were guided through the endoscope’s 

working channel to obtain tissue samples from nodules. The bronchoscopy robot included 

components such as electric sliders, rotary motors, and gear sets, with a bronchoscope featuring a 

5.2 mm external diameter and a 2.6 mm working channel capable of bending 160 ° upward and 130 ° 

downward. 

Dataset-E and Dataset-F: These datasets were obtained from simulations of interventional 

endovascular surgeries using self-developed master-slave robotic systems. Dataset E involved a 

simple abdominal aorta model with an empty lumen, where a robot navigated a 0.025" guidewire 

from the proximal cavity to the distal end, guided by a camera at 30 frames per second. Dataset F 

featured a complex endovascular simulator infused with blood-like fluid circulated by a pump, 

simulating real-time flow. A robot operated a 0.025" blue guidewire from the coronary artery orifice 

to the anterior descending branch, with motion trajectories recorded at 30 frames per second. 

6.3.2 Image pre-processing and data augmentation 
Dataset-A consisted of 856 X-ray images with dimensions of 512 × 512 pixels, while Dataset-B 

contained 904 angiogram images sized at 665 × 880 pixels. Dataset-C included 1650 X-ray images, 

each originally sized at 1560 × 1440 pixels. Dataset-D was made up of 1978 images from endoscopic 

videos, sized at 890 × 970 pixels. Dataset-E consisted of 1870 video images with dimensions of 

1280 × 720 pixels, and Dataset-F contained 880 video images sized at 700 × 700 pixels. All images 

were standardised to a resolution of 96 dpi and converted to “.jpg” format for uniform processing, 

resulting in a total of 8138 images. 

To annotate the trajectory information of surgical instruments, LabelMe was used for manual 

marking and the annotations were saved as JSON files. To improve efficiency, the Segmentation 

Anything Model (SAM) developed by Meta AI was evaluated for its ability to automate the marking 

process. SAM successfully annotated instrument trajectories across the dataset, generating JSON 

files for subsequent processing. To enhance the generalisation capability of the proposed model, 

data augmentation techniques were applied to create a diverse training set, thus improving model 

performance. This augmentation process involved generating synthetic data through random 

transformations to simulate various clinical conditions. Transformations were categorised into four 

types: conventional augmentation, deformation, blurring, and affine transformations. Each type of 

transformation had a 20% probability of being applied, with a randomly selected transformation 

performed per image. 

Conventional augmentation: Included brightness and contrast adjustments and Gaussian noise 

addition to simulate environmental effects like lighting variations or equipment noise. Brightness 
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and contrast adjustments reflected changes due to illumination, while Gaussian noise simulated 

electronic or electromagnetic interference. 

Elastic deformation: Applied to replicate non-rigid changes in human anatomy or soft tissues. 

Elastic deformation generated displacement fields using smoothed random noise and warped images 

based on scaling (α) and smoothing (σ) factors. This enhanced robustness to shape variability by 

mimicking real-world anatomical distortions while maintaining structural integrity. 

Gaussian blur: Used to simulate optical effects or motion-induced blurring. By convolving the 

image with a Gaussian kernel, the process smoothed pixel intensity variations, reducing high-

frequency noise while preserving essential structural features. The degree of blur was controlled by 

the standard deviation (σ) of the Gaussian kernel to ensure a realistic balance. 

Affine transformations: Simulated motion effects of the endoscope or surgical instruments. 

These included translations, rotations, and scaling that reflected realistic procedural dynamics.  

Parameter details for each method are summarised in Table 6.1, with the image augmentation 

processing results illustrated in Figure 6.2. Training network models for surgical instrument 

segmentation required an understanding of various spatial information to accurately identify similar  

 

Figure 6.2: Different augmentation methods. 
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Table 6.1: Image augmentation methods and their respective parameters. 

Type Augmentation methods Parameters 

Traditional augmentation 
Adjusting Brightness and Contrast [0.5, 1.5] 

Adding Gaussian Noise scale = [0, 25] 

Deformation Elastic deformation alpha= [10, 20], sigma=5 

Blur Gaussian Blur sigma = [0, 5] 

Affine transformation 
Rotation [-90, 90] 

Translation [-180, 180] 

 

pixel intensities across various contexts. Instead of relying solely on acquiring and annotating 

additional data, the augmentation procedure strategically improved model performance. Thus, the 

augmentation strategies aimed to replicate the complexity of the interventional procedure in the real 

world by addressing both environmental and procedural variability. These enhancements allowed 

the model to better simulate the actual operating environment, improving the accuracy and 

robustness of segmentation in various clinical scenarios. During validation and evaluation, pure 

white masked pixels representing the surgical instrument trajectory were used to facilitate efficient 

matrix matching. 

6.3.3 Surgical instrument segmentation method 
A novel deep segmentation network, termed the MBTPDS-Net, was developed to achieve precise 

surgical instrument localisation at the pixel level, as shown in Figure 6.3. The network employs an 

encoder–decoder architecture, integrating multiple innovative modules to improve segmentation 

performance. The overall architecture of MBTPDS-Net, along with the detailed design of its key 

submodules, including the multibranch encoder unit, feature fusion block, and triple decoder unit, 

is comprehensively described. These components work in tandem to extract and process multi-scale 

features, facilitating accurate segmentation even in complex surgical environments. 

 

Figure 6.3: Multi-branch coupling with MBTPDS-Net model. 
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A. Design of encoder network  

The typical UNet architecture and its variants commonly employ stacked 3 × 3 convolution and 

down-sampling layers in the encoder unit. While this approach enables feature extraction, the 

relatively small kernel size limits the receptive field, restricting the network’s ability to capture 

global contextual information. Although the receptive field gradually expands with increasing layer 

depth, it often remains insufficient for extracting global features, particularly in complex tasks. 

Moreover, simply stacking additional convolutional layers does not consistently enhance 

recognition performance. In some cases, network performance may degrade as depth increases. To 

address this, ReLU activation functions are used to mitigate issues such as gradient vanishing. 

However, at deeper network levels, improperly added convolutional layers can exacerbate loss 

divergence, making gradient issues unavoidable. Therefore, a feature extractor capable of 

effectively enlarging the receptive field and capturing global contextual information is critical to 

achieve optimal semantic segmentation results. 

Despite the advancements in simpler architectures like ResNet and Inception networks, the VGG 

network remains a robust choice for feature extraction due to its high accuracy and larger receptive 

field [283]. VGG excels at filtering out unrelated background information while capturing detailed 

spatial features. Its stacked multi-convolution layers enhance the network’s feature learning 

capabilities, enabling the extraction of sparse and meaningful features. Furthermore, the consistent 

use of 3 × 3 convolution layers and 2 × 2 pooling layers in VGG contributes to its simplicity and 

strong generalisability, making it adaptable to various datasets [284]. 

To enhance performance, this study proposed a multi-branch encoder unit based on an improved 

VGG model. The encoder is designed to preserve the ability to learn both local and global context 

features, as illustrated in Figure 6.4. A branch-based deep feature fusion architecture was introduced, 

enabling efficient encoding of multi-modal image features. Feature maps at various scales were 

extracted and subsequently processed in the decoder. 

The encoder network employed a five-branch structure, where each feature fusion block was 

optimised to learn scale-specific information from a multi-modal training dataset. A modified 

version of the VGG structure was adopted for feature extraction [285], incorporating an alternate  

 
Figure 6.4: Design structure of the encoder model. 
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combination of convolution, batch normalisation, and maximum-pooling layers in each block. Batch 

normalisation was applied after each convolution layer to stabilise activations and accelerate 

training. To preserve spatial dimensions, the same padding was consistently used, replacing the 

mixed use of the same and valid padding found in the original VGG model. Although deeper layers 

are beneficial for capturing complex characteristics, they also increase computational complexity, 

training difficulty, and the risk of parameter explosion. 

For applications requiring precise segmentation, such as detecting small and thin surgical 

instruments such as guidewires and catheters, low-level features are crucial to capture edges and 

textures. To ensure a focus on lower-level features, the last two convolutional layers (conv-512) of 

the VGG13 model were removed. This adjustment allowed the encoder to retain more spatial detail, 

allowing accurate segmentation of small instruments. Additionally, the last three fully connected 

layers of VGG were replaced in the decoder, reducing computational complexity and increasing 

processing speed for real-time navigation systems. 

To improve computational efficiency, convolution operations were optimised to learn features 

within a relatively fixed receptive field, while small convolution kernels were used to minimise 

computational costs and hardware demands. However, relying solely on a limited receptive field 

could impede the extraction of global contextual features. Although depth expansion progressively 

enlarges the receptive field, it may still fail to encompass the entire image, limiting the encoder’s 

ability to capture comprehensive global information. Different layers of convolution capture 

features at varying levels of abstraction: low-level features provide high-resolution spatial detail, 

while high-level features encapsulate rich semantic information [286]. Integrating these features 

into the decoder is critical to producing accurate predictions, especially for segmentation tasks that 

require precision. 

In this section, feature maps were progressively integrated into the decoder after every two 

convolutional and normalisation processes. This strategy enabled the encoder to extract and utilise 

multiscale features, combining lower-level boundary details with high-level semantic information. 

By combining features at different scales, the network maximised the utilisation of layer-specific 

information, achieving comprehensive integration of local and global context during the up-

sampling process. Compared to directly using output feature maps from lower layers, this method 

reduced parameter requirements while enhancing the flow of useful information, resulting in 

improved segmentation performance. 

B. Design of decoding network 

The decoding network was designed to enhance segmentation performance through the 

integration of a triple-pyramid multi-scale feature fusion decoder, as depicted in Figure 6.5. This 

decoder incorporated three pyramid modules, each tasked with up-sampling and fusing feature maps 

from multiple encoder levels to generate refined segmentation maps. When the original image is 

input into the encoding network for feature extraction, it undergoes resizing and subsequent down-

sampling at each layer of the network. This progressive reduction in the size of the output feature  
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Figure 6.5: Design structure of the TPD model. 

map is a natural result of encoding operations. However, to generate the final segmentation output, 

the image must be restored to its original resolution. This restoration process is performed during 

the decoding phase, where up-sampling operations are employed to expand the feature map size, 

mapping it from a lower resolution back to a higher resolution.  

Transposed convolutions, often referred to as deconvolutions, operate by transposing matrices 

before performing convolution, enabling the up-sampling of feature maps to higher resolutions. 

Unlike predefined interpolation methods, transposed convolutions require training, allowing the 

network to dynamically learn optimal reconstruction patterns for feature maps. This adaptability 

makes them highly effective for maintaining pixel-level accuracy and improving feature 

reconstruction in semantic segmentation tasks. 

Bilinear interpolation, on the other hand, is a computationally efficient method that estimates the 

pixel values in the target image using the four nearest pixel values of the original image. By 

performing linear interpolation in two directions, it determines the target pixel’s value without 

requiring training. This makes bilinear interpolation particularly suitable for applications requiring 

fast processing and minimal computational resources, albeit at the cost of reduced adaptability to 

complex feature representations. 

In our decoder design, transposed convolution was utilised at the initial stages of up-sampling 

within each branch, replacing bilinear interpolation. This choice enabled the network to learn a more 

optimal method for increasing the spatial resolution of feature maps, leveraging the flexibility of 

trainable parameters to refine the reconstruction process. At the final stage of up-sampling, bilinear  
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Figure 6.6: Transposed convolution and bilinear up-sampling. 

interpolation was employed to further enhance the feature maps. This complementary use of 

transposed convolution and bilinear interpolation ensured an effective balance between adaptive 

learning and computational efficiency, as shown in Figure 6.6. This hybrid approach improved 

spatial resolution while maintaining the precision necessary for high-quality segmentation outputs. 

Additionally, RMS-Norm normalisation and dropout layers were introduced before the final up-

sampling stage in each branch to enhance stability and mitigate overfitting. 

Convolution operations were used during the decoding phase to decode feature maps, restore their 

original size, and minimise information loss. However, standard convolution operations demand 

significant computational resources and memory. To address this limitation, each feature fusion 

branch utilised depth-wise separable dilated convolutions, which effectively reduced parameter 

requirements and computational load. Depth-wise separable convolution significantly reduces the 

parameter count of the original convolution kernel while preserving network performance, making 

it particularly well-suited for feature recovery tasks. In the multi-scale feature recovery module, 

feature map dimensions are first expanded, followed by the application of dilated convolution based 

on depth-wise separable operations with a dilation rate of 2, as illustrated in Figure 6.7. This 

approach increases the receptive field of the convolution kernel in the preceding feature layer 

without adding additional parameters. Consequently, it enhances the network’s ability to interpret 

and recover image details. By utilising this technique, the proposed network demonstrates an 

improved capacity for reconstructing and interpreting the intricate details of complex images, 

thereby achieving higher segmentation accuracy. This adjustment significantly improved the 

efficiency and processing speed of the model. 

Within each pyramid decoding module, feature maps from encoder levels were first up-sampled 

in individual branches and subsequently fused. These up-sampled feature maps were then combined 

with those produced by other branches, generating multi-scale outputs with rich semantic 

information. Each branch focused on capturing semantic details at varying scales, enabling the 

triple-pyramid decoder to build comprehensive feature representations. This hierarchical fusion 

process enhanced the model’s ability to accurately detect and localize objects, supporting precise 

pixel-level classification. In the final stage, features extracted from the three parallel pyramid 

modules, along with depth supervision information, were merged using a dense layer with a sigmoid 
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activation function to complete the semantic segmentation task. 

The activation function played a critical role in the connectivity between convolution layers. 

Compared to the sigmoid function, the ReLU activation function [287] offered faster convergence 

and alleviated gradient vanishing issues for values of 𝑥 > 0. Its low computational complexity made 

it a preferred choice for optimising the decoding block. The ReLU function is mathematically 

expressed as: 

𝑅𝑒𝐿𝑈 = max(0, 𝑥)                                                     (6.1) 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 =  
(𝐼𝑠𝑖𝑧𝑒−𝐾𝑠𝑖𝑧𝑒+2𝑃𝑠𝑖𝑧𝑒)

𝑆𝑠𝑖𝑧𝑒
                                        (6.2) 

where 𝑊, 𝐾, 𝑃, 𝑆, and 𝑂 represent the input feature size, kernel size, padding size, stride, and output 

feature size, respectively. Figure 6.7 illustrates the convolution process involved parameters set as 

follows: 𝑃 = 1, 𝐾 = 3, and 𝑆 = 1. Setting 𝑂 equal to 𝑊 using a 3 × 3 convolution with padding, it 

was possible to produce input and output feature maps of equal size.  

 

Figure 6.7: Principle of depth-wise with and without dilation. 

6.3.4 Loss function design and data training strategy 

A. Loss function  

Micro-target semantic segmentation often faces a significant imbalance between the number of 

surgical instrument pixels and background pixels in the image dataset. Furthermore, small surgical 

instruments in the background contributed minimally to the update of the image loss function 

parameter. This imbalance in the pixel distribution led to suboptimal results in instrument 

segmentation. To address this issue, a MixLoss function [167] based on multi-task learning was 

proposed to adjust the allocation weights of the losses. This approach transformed the pixel 

discrimination problem into minimising the dissimilarity between two samples, thereby resolving 

the disparity between the instrument and background pixels. The MixLoss formula was as follows: 

𝑀𝑖𝑥𝑙𝑜𝑠𝑠 = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 + 𝐿𝑜𝑠𝑠𝑥𝑦 ∗ 𝜂1                                    (6.3) 

where 𝜂1 = 0.1 adjusted the balance between the contributions of the two loss functions. The 

formulas were detailed follow: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 1 −
∑(𝑦𝑡×𝑦𝑝)+𝜆1

∑(𝑦𝑡+𝑦𝑝−𝑦𝑡×𝑦𝑝)+𝜆1
                                           (6.4)  

where 𝑦𝑡 represented the number of true position pixels, 𝑦𝑝 denoted the number of predicted pixels, 

and 𝜆1 = 1 served as a smoothing parameter to prevent division by zero. The 𝐿𝑜𝑠𝑠 formula was 

detailed as follows: 
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 𝐿𝑜𝑠𝑠𝑥𝑦 =  𝑙𝑜𝑠𝑠𝑥𝑦
1 + 𝑙𝑜𝑠𝑠𝑥𝑦

2 ∗ 𝜂2                                       (6.5) 

𝑙𝑜𝑠𝑠𝑥𝑦
1 =  𝑓(𝑦𝑡) {

[{𝑓(𝑦𝑡) − 𝑦𝑡} ∗ {𝑓(𝑦𝑡) − 𝑦𝑝} + {𝑓(𝑦𝑡) − 𝑦𝑡} ∗ 𝛼2]

+(𝑦𝑡 ∗ 𝑦𝑝 + 𝛼2 ∗ 𝑦𝑡)

+𝜆2

}⁄      (6.6) 

𝑙𝑜𝑠𝑠𝑥𝑦
2 = 𝑓(𝑦𝑡)  {

{((𝑓(𝑦𝑡) − 𝑦𝑡) ∗ 𝑦𝑝) + {𝑓(𝑦𝑡) − 𝑦𝑡} ∗ 𝛼2}

+{𝑦𝑡 ∗ (𝑓(𝑦𝑡) − 𝑦𝑝) + 𝛼2 ∗ 𝑦𝑡}

+𝜆2

}                 ⁄  (6.7) 

where 𝑓(𝑦𝑡) generated a tensor of all ones with the same shape as 𝑦𝑡, 𝛼2 = 0.1 adjusted the balance 

between positive and negative samples, 𝜆2 = 10−7 prevented zero division by smoothing, and 𝜂2 =

0.2  controlled the contribution of the loss function. The 𝐽𝑎𝑐𝑐𝑎𝑟𝑑  and 𝐿𝑜𝑠𝑠𝑥𝑦  functions used 

different strategies to measure the precision of the model in pixel-level target segmentation, 

demonstrating robustness to imbalanced sample issues. 

B. Training strategy 

The proposed model was implemented using TensorFlow, and all experiments were conducted 

on a Linux server equipped with an NVIDIA RTX A6000 GPU with 48GB of memory. To 

accelerate both training and testing, the NVIDIA CUDA 11.1 acceleration toolkit was utilised. 

For model initialisation, random tensors were generated according to the Xavier normal 

distribution. The Adam optimiser was selected with an initial learning rate of 0.0001. This setup 

enabled rapid model iteration. To avoid overfitting and ensure stable training, the learning rate was 

halved if the validation loss did not decrease over ten consecutive epochs. Each dataset was trained 

for 200 epochs and training continued until the loss ceased to decrease. The model with the lowest 

validation loss was selected for segmentation and used to compare the prediction results.  

The self-constructed dataset included five categories of images: Dataset-A, Dataset-B, and 

Dataset-C consisting of fluoroscopy images; Dataset-D containing endoscopic images; and Dataset-

E comprising video streams. These datasets were pre-processed and randomly combined for training, 

with images resized to 256 × 256 pixels and stored in PNG format. The datasets were divided into 

training, validation and test sets following an 8:1:1 ratio, ensuring a balanced distribution throughout 

the experimental pipeline. 

Existing segmentation methods often rely on homogeneous datasets, typically sourced from 

public datasets such as EndoVis2018, EndoVis2017, and Kvasir-Instrument datasets. While these 

methods achieve commendable performance on their respective training datasets, their ability to 

generalise to diverse real-world scenarios is significantly limited, particularly when tested on 

independently collected datasets with heterogeneous characteristics. To address this limitation, two 

training strategies were employed for the proposed model. The first involved training on a multi-

modal fusion dataset integrating six different types of datasets, which aimed to enhance the model’s 

ability to generalise across varying environments. The second strategy used a single dataset to train 

the model, facilitating a focused comparison of performance metrics. The trajectories of surgical 

instruments in robot-assisted interventions were analysed to assess the precision and robustness of 
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the segmentation method under these two training regimes. 

6.3.5 Model performance evaluation metrics  
Commonly used performance evaluation metrics for segmentation tasks include accuracy, 

sensitivity (Sen), specificity (Spe), and the Matthew correlation coefficient, as defined in equations 

6.8 to 6.11. In these metrics, TP represents the number of instrument pixels correctly identified, 

false positive (FP) denotes background pixels incorrectly classified as instrument pixels, TN refers 

to background pixels correctly identified, and FN represents instrument pixels incorrectly classified 

as background. In medical image segmentation, sensitivity to both missing and superfluous 

predictions in the foreground is critical, making it an essential metric. Balances precision and recall, 

providing a comprehensive measure of the model’s segmentation performance.  

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                (6.8) 

𝑆𝑒𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                              (6.9) 

𝑆𝑝𝑒 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                          (6.10) 

 𝑀𝑐𝑐 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
                      (6.11) 

To thoroughly evaluate the proposed method, four additional metrics commonly used in computer 

vision are applied: the area under the curve of receiver operating characteristics (AROC), the area 

under the precision-recall curve (PR-area), the Dice score, and the mean intersection over union. 

The Dice score quantifies the similarity between the predictions and ground truth, providing insight 

into the alignment between the actual and segmented regions. Meanwhile, MIoU measures the 

degree of overlap between predicted and ground truth segmentation, defined as follows: 

𝑟𝑒𝑐𝑎𝑙𝑙 𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
                                                         (6.12) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                                                    (6.13) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑖 =  2 
𝑟𝑒𝑐𝑎𝑙𝑙 𝑖× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑟𝑒𝑐𝑎𝑙𝑙 𝑖+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
                               (6.14) 

𝑚𝑎𝑐𝑟𝑜 − 𝐹1 =  
∑ 𝐹1−𝑠𝑐𝑜𝑟𝑒𝑖

𝑛
𝑖=1

𝑁
                                          (6.15) 

𝐷𝑖𝑐𝑒 =  
2|𝑇∩𝑃|

|𝑇|∪|𝑃|
=  

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                           (6.16) 

𝑀𝐼𝑜𝑈 =  
1

𝑛+1
∑

𝑞𝑖𝑖

∑ 𝑞𝑖𝑗+∑ 𝑞𝑗𝑖−𝑞𝑖𝑖
𝑛
𝑗=0

𝑛
𝑗=0

𝑛
𝑖=0                                (6.17) 

where 𝑛 + 1 represents the total number of pixel categories in the image; 𝑞𝑖𝑖  indicates the total 

number of real and predicted instrument pixels for category 𝑖 , 𝑞𝑖𝑗  represents the count of real 

instrument pixels in category 𝑖 and their incorrect prediction as background pixels in category 𝑗; and 

𝑞𝑗𝑖 refers to the number of real background pixels in category 𝑗 that are incorrectly predicted as 

instrument pixels in category 𝑖 . These metrics collectively provide a robust framework for assessing 

segmentation accuracy, overlap, and precision, ensuring a thorough evaluation of the model’s 

performance in detecting and delineating surgical instruments.  
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6.4 Semantic Segmentation Performance Analysis 

6.4.1 Semantic segmentation results 
Deep learning has advanced the development of data-driven solutions for surgical instrument 

segmentation, yet challenges related to precision, parameter optimisation, and generalisation persist, 

particularly in the dynamic and complex environments of clinical surgery. Surgical instruments vary 

in shape and interact with ever-changing surroundings, complicating segmentation tasks. Traditional 

methods have often relied on deeper or more complex networks to achieve higher precision, but this 

comes at the cost of increased parameter demands and memory usage. The proposed MBTPDS-Net 

model achieved the highest segmentation accuracy with the lowest parameter count among the tested 

methods. The detail description as follow: 

The effectiveness of MBTPDS-Net was evaluated using a multi-modal fusion dataset, and its 

performance was compared to several SOAT segmentation networks. These included CNN-based 

methods such as UNet [273], UNet++[259], FCN_VGG13, FCN_VGG16 [288], SegNet [289], 

DeepLabv3+ [290], and JSUnet [282, 291]. Details of the implementation and validation processes 

for these methods are illustrated in Figure 6.8.  

Table 6.2 shows the MIoU and Dice scores of the seven competing methods were significantly 

lower than those of MBTPDS-Net. The proposed network achieved segmentation results closer to 

ground truth, outperforming other models in terms of accuracy. Specifically, MBTPDS-Net 

recorded the highest segmentation performance with Dice and MIoU scores of 95.44% and 95.54%, 

respectively. Compared to the best performing alternative, JSUnet, MBTPDS-Net improved the 

IoU-SI value for surgical instrument segmentation by 4.09%, while requiring approximately 1.5 

times fewer parameters. Moreover, JSUnet exhibited segmentation discontinuities in Dataset-A and 

deletions in Dataset-D, which undermined its robustness. 
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Figure 6.8: Performances of different segmentation methods. 
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Table 6.2: Performance comparison of segmentation methods. 

Methods 
Params 

(M) 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

Mcc 

(%) 

Macro-F1 

(%) 

Dice 

(%) 

IoU (%) MIoU 

(%) 
AROC 

PR-

area 
Fps 

BG SI 

Unet 7.759 99.17 67.25 99.89 78.96 88.92 78.26 99.16 64.29 81.73 0.8357 0.6366 273.6 

Unet++ 9.041 99.39 79.51 99.84 85.26 92.51 85.33 99.38 74.41 86.89 0.8967 0.7365 241.16 

FCN_Vgg13 128.953 99.23 72.50 99.84 80.89 90.17 80.73 99.19 66.86 83.03 0.8617 0.6663 226.45 

FCN_Vgg16 134.313 99.05 59.29 99.95 75.30 86.50 73.49 99.04 58.09 78.56 0.7962 0.5819 215.40 

SegNet 15.551 99.69 92.45 99.86 92.97 96.49 93.12 99.69 87.13 93.41 0.9615 0.8689 211.79 

DeepLabv3+ 6.435 99.69 87.70 99.97 92.69 96.27 92.68 99.69 86.38 93.03 0.9383 0.8646 202.97 

JSUnet 8.612 99.70 93.20 99.84 93.00 96.50 93.16 99.69 87.19 93.44 0.9652 0.8693 221.89 

Proposed 5.688 99.80 95.22 99.90 95.34 97.67 95.44 99.79 91.28 95.54 0.9756 0.9120 233.83 

 

JSUnet, despite being competitive, achieved an IoU value of only 87.19% for surgical instrument 

segmentation. Similarly, UNet and UNet++ demonstrated poor performance, with IoU values of 

64.29% and 74.41%, respectively. MBTPDS-Net outperformed UNet by improving the Dice score 

by 17.18% and the MIoU value by 13.81%. Compared to UNet++, MBTPDS-Net demonstrated a 

10.11% improvement in Dice score and an 8.65% improvement in MIoU value.  

DeepLabv3+, while achieving a respectable IoU value of 86.38% with the fewest parameters 

among the six competing methods, suffered from segmentation fault zones in Dataset-A and 

Dataset-F, as shown in Figure 6.9 (i). Similarly, FCN_VGG16, which had the highest number of 

parameters (approximately 134 million), performed the worst, achieving an IoU value of only 

58.09%. FCN_VGG13, with fewer parameters, slightly improved upon this performance, achieving 

an IoU value of 66.86%—an 8.77% improvement over FCN_VGG16. These findings suggest that 

deeper networks do not necessarily lead to better segmentation performance for surgical instruments. 

The encoder-decoder MBTPDS-Net framework, built on an improved FCN_VGG13 encoder and 

a triple-pyramid decoder, demonstrated significantly superior performance compared to 

conventional FCN_VGG13 and FCN_VGG16 networks. Both FCN_VGG13 and FCN_VGG16 

failed to segment surgical instruments in Datasets B, C, E, and F, with marginal success observed 

only in Datasets A and D, as depicted in Figure 6.9. Furthermore, SegNet performed moderately 

well, achieving a Dice score of 93.12% and an IoU-SI value of 87.13%. However, these metrics 

were 2.32% and 4.15% lower, respectively, than those achieved by MBTPDS-Net.  

Furthermore, the above experimental results highlighted the superiority of two-stage networks 

over single-stage networks in surgical instrument segmentation tasks, such as UNet++, SegNet, 

DeepLabv3+, and JSUnet, consistently outperformed single-stage networks such as FCN_VGG13 

and FCN_VGG16, except for UNet. Although UNet and UNet++ achieved higher Fps, their 

segmentation accuracy was lower, and their parameter requirements were higher compared to 

MBTPDS-Net. Similarly, SegNet, DeepLabv3+, and JSUnet delivered slightly lower segmentation 

performance than MBTPDS-Net while requiring more parameters and exhibiting slower Fps. 
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Figure 6.9: Performance comparison of the segmentation methods. 

In summary, the suggested multibranch feature fusion network combined with a triple-pyramid 

structure improved accuracy and generalisation while alleviating the parameter load in surgical 

instrument segmentation. Its efficiency and effectiveness established a new benchmark in surgical 

instrument segmentation, tackling key challenges in precision, generalisation, and optimisations of 

computational resources. 

6.4.2 Encoder and decoder performance in semantic segmentation 
To understand the impact of various optimisations in the improved FCN_VGG13 encoder and 

the triple-pyramid decoder on performance, segmentation performance assessments were conducted. 

These assessments compared typical encoders coupled with the triple-pyramid decoder and the 

improved FCN_VGG13 encoder paired with typical decoders, four existing encoder models were 

implemented with the triple-pyramid decoder, and five existing decoder models were paired with 

the multibranch encoder. These were applied to the datasets, as detailed in Table 6.3. 

The results showed that the ResNet50 encoder, when combined with the triple-pyramid decoder, 

required higher memory, with approximately 26.34 million parameters. It showed poorer 

segmentation performance, with a Dice score of 3.21% and an MIoU of 42.45%. The Xception 

model, known for its fast computation and memory efficiency in related computer vision tasks such 

as image object detection [292], showed a slight performance decrease when paired with the triple-

pyramid decoder. It had a 1.18% reduction in the Dice score and a 1.09% reduction in MIoU 

compared to the proposed MBTPDS-Net, despite having higher parameter requirements at 6.114 

million. Although the RepVgg model combined with the decoder had higher parameter requirements 

at 8.893 million, it showed a slight improvement with a Dice score of 95.47% and an MIoU of 95.57%  



Chapter 6 Visual Perception Modelling of Interventional Instruments Using Multi-modal Images Fusion 

145  

Table 6.3: Performance comparison of MBTPDS-Net with different encoders and decoders. 

Type  Method Dice (%) 
IoU (%) 

MIoU (%) 
Params 

(M) BG SI 

Decoder 

ResNet50 3.21 83.26 1.63 42.45 26.340 

XCeption 94.26 99.75 89.15 94.45 6.114 

RepVgg 95.47 99.8 91.34 95.57 8.893 

MobileNetV2 4.34 95.11 3.79 49.45 0.735 

Encoder 

Unet  91.07 99.6 83.6 91.6 18.014 

ResNet  76.33 99.14 61.73 80.44 10.227 

SegNet  78.21 99.19 64.21 81.70 9.047 

JSUnet  7.78 60.9 4.05 32.48 10.227 

Pyramid  10.44 73.72 5.51 39.61 5.084 

 

Figure 6.10: Performance of different encoders and decoders with proposed method. 

compared to the proposed method. On the contrary, MobileNetV2, enabled with the triple-pyramid 

decoder, had the lowest parameter requirements at 0.735 million, but was unsuitable for surgical 

instrument segmentation. It showed poor segmentation performance, with a Dice score of 4.34% 

and an MIoU value of 49.45%. 

These results indicated that the Xception and RepVgg encoders, when paired with the triple-

pyramid decoder, achieved better segmentation performance than ResNet-50 and MobileNetV2, as 

illustrated in Figure 6.10. This indicated that the proposed triple-pyramid decoder was more 

sensitive to the feature representations extracted by the Xception and RepVgg encoders. The use of 

deep separable convolutions by Xception enhanced its ability to capture fine-grained features by 

increasing network depth and width. RepVgg improved inference performance by structural 

reparameterization, resulting in high complexity and expressiveness of the model. Thus, Xception 

and RepVgg were better suited for extracting features for instrument segmentation in multimodal 

fusion data, effectively capturing details and semantic information. 

Moreover, the Unet decoder, when integrating with the multi-branch encoder, achieved a 91.07% 

Dice score and a 91.60% MIoU value. This represented a reduction of 4.37% in the Dice score and 

3.94% in the MIoU value compared to the proposed MBTPDS-Net network. The ResNet and 

SegNet decoders, each integrating the multi-branch encoder module, achieved lower segmentation 
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performance, with Dice scores of 76.33% and 78.21% in Dice score and MIoU values of 80.44% 

and 81.70%, respectively. Additionally, they had higher parameter requirements at 10.227 and 9.047 

million. These results indicated that the Unet decoder coupled with the improved VGG13 encoder 

achieved the highest segmentation accuracy, so that the Unet decoder could better reconstruct image 

details and boundary information when paired with the improved VGG13 encoder. On the contrary, 

the ResNet and SegNet decoders achieved relatively low segmentation accuracy, suggesting that 

they performed worse in feature reconstruction and detail retention. JSUnet, an improved 

segmentation method derived from our previous studies [291], demonstrated suboptimal 

performance when paired with the multi-branch encoder module. Specifically, it achieved a Dice 

score of 7.78% and an MIoU value of 32.48%, highlighting its inability to effectively process multi-

modal fusion feature maps with this combination. This indicates that the JSUnet decoder, when 

integrated with the multi-branch encoder, is unsuitable for handling complex multi-modal surgical 

instrument segmentation tasks. 

Similarly, despite the reduced parameter requirement (approximately 5.084 million), the 

combination of the multi-branch encoder module and the pyramid decoder module performed poorly. 

This pairing resulted in a Dice score of 10.44% and an MIoU value of 39.61%, reflecting an 85% 

decrease in the Dice score and a 55.93% decrease in MIoU compared to the triple-pyramid decoder 

module. These results suggest that the pyramid decoder module failed to preserve critical 

information during the feature fusion and up-sampling processes. It also lacked the capacity to 

effectively couple with the improved VGG13 encoder, which is instructed the traditional single 

pyramid decoder module lacks the sophistication needed to exploit global and local contextual 

features effectively, leading to its inability to improve segmentation outcomes. 

 

Figure 6.11: Results of proposed segmentation methods with different encoders and decoders. 
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The lower accuracy of both the JSUnet decoder and the pyramid decoder highlights their 

limitations in leveraging global contextual information and generating multi-scale image-level 

features, as depicted in Figure 6.11. These deficiencies resulted in poor recovery of edge and texture 

details, which are crucial for enhancing segmentation accuracy. 

6.4.3 Loss functions for semantic segmentation 
To achieve optimal performance in DL architectures for semantic segmentation, it is essential to 

select an appropriate loss function. For tasks with class imbalance, an effective objective function 

not only facilitates model convergence, but also improves segmentation accuracy. This study 

evaluated the performance of the proposed MBTPDS-Net using several well-known loss functions 

commonly applied in medical semantic segmentation. The assessment included six categories of 

loss functions: Dice loss, binary cross-entropy, Jaccard loss, Tversky loss, focal loss, and the 

proposed Lossxy function. The results for each function, listed in Table 6.4 and Figure 6.12, 

provided critical insights into their suitability for surgical instrument segmentation.  

Dice loss, binary cross-entropy, and Jaccard loss prioritise minimising loss, but do not address 

class imbalance. Among these, the Jaccard loss emerged as the most effective, achieving a Dice 

score of 94.59% and an MIoU value of 89.75%. However, these functions often fail in imbalanced 

datasets by disproportionately favouring dominant classes. On the contrary, the Tversky loss, the 

Focal loss, and the Lossxy function incorporate modulating and balancing factors, allowing the 

model to focus more on hard-to-classify examples. Among these, Lossxy demonstrated superior 

performance, achieving a Dice score of 95.13% and an IoU-SI value of 90.71%. This highlights the 

importance of addressing class imbalance through adaptive weighting. 

The proposed MBTPDS-Net leveraged a hybrid MixLoss function, which combined Jaccard loss 

and Lossxy (with alpha = 0.1, gamma = 0.2) to address sample imbalance and improve segmentation 

performance. The MixLoss function enabled MBTPDS-Net to achieve the highest results, with a 

Dice score of 95.44%, an MIoU of 95.54%, and a PR area of 91.20%. Compared to single-loss 

functions, MixLoss showed a significant improvement, outperforming Jaccard loss by 0.85% in the 

Dice score and 1.53% in IoU-SI, and Lossxy by 0.31% in the Dice score and 0.57% in IoU-SI.  

Despite the class imbalance in datasets A through F, the hybrid MixLoss function consistently  

Table 6.4: Performance comparison with different loss functions. 

Category Loss Function PR-Area Dice (%) 
IoU (%) MIoU 

(%) BG SI 

A: minimize loss 

without sample 

imbalance 

Dice loss 0.8811 93.79 99.71 88.30 94.00 

Binary Cross-entropy 0.8884 94.08 99.74 88.83 94.28 

Jaccard loss 0.8961 94.59 99.76 89.75 94.75 

B: minimize loss 

with sample 

balancing factor 

Tversky loss 0.8966 94.63 99.75 89.81 94.78 

Focal loss 0.8989 94.68 99.77 89.89 94.83 

Lossxy 0.9061 95.13 99.78 90.71 95.24 

C: mix loss Our proposed 0.9120 95.44 99.79 91.28 95.54 
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Figure 6.12: Performance of proposed MBTPDS-Net based on different loss function. (Notes: SI: surgical instrument 

pixel, BG: background pixel) 

delivered superior performance. Single loss functions such as Dice loss, binary cross-entropy, and 

Jaccard loss tended to overfit dominant classes, neglecting minority class features, and reducing 

generalisation ability. Although the Tversky loss, Focal loss, and Lossxy partially mitigated the 

class imbalance through parameter adjustment, they occasionally overcompensated for minority 

classes, leading to a trade-off in overall performance. The MixLoss function, by combining Jaccard 

loss and Lossxy, effectively balanced the representation of different classes, enhancing the model’s 

ability to handle imbalanced datasets while ensuring better generalisation. 

The findings underscore that no single loss function is universally optimal for all tasks. While the 

MixLoss function demonstrated superior performance, further improvements could be achieved by 

integrating additional loss functions tailored to specific issues such as curve smoothing and extreme 

class imbalance. Parameter tuning also plays a critical role in optimising segmentation performance, 

particularly for surgical instruments in robot-assisted interventions. Future work could explore the 

combination of complementary loss functions to further enhance the robustness and accuracy of the 

model in complex clinical scenarios. 
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6.4.4 Performance of training strategy in segmentation 
The performance of the proposed MBTPDS-Net model was evaluated using both multi-modal 

fusion datasets and single-modal datasets. Table 6.5 and Figure 6.13 presented that the model 

trained on multi-modal fusion datasets demonstrated superior segmentation accuracy compared to 

training on single-modal datasets, achieving an ultrahigh MIoU value of 95.54%. In particular, the 

segmentation IoU value for surgical instruments using the MBTPDS-Net network trained in 

multimodal fusion datasets exceeded that of single-modal training by 23.45%, 7.45%, 11.53%, 

9.33%, and 17.23% in Datasets-A, -B, -C, -E, and -F, respectively, while showing marginally lower 

performance on Dataset-D. 

Table 6.5: Performance comparison of different models across different datasets. 

Multi-Fusion 
Single-

Model 
Dataset Dice (%) 

IoU (%) 

MIoU (%) Fps 

BG SI 

√ - Multi-

modal 
95.44 99.79 91.28 95.54 233.83 

√ - 
A 

90.82 99.60 83.19 91.39 5.46 

- √ 80.83 99.60 67.83 83.71 23.98 

√ - 
B 

93.65 99.86 88.06 93.96 29.01 

 √ 91.20 99.81 83.83 91.82 50.07 

√ - 
C 

90.69 99.91 82.96 91.44 56.59 

- √ 88.74 99.90 79.75 89.83 60.20 

√ - 
D 

99.12 99.87 98.26 99.06 67.58 

- √ 97.42 99.62 94.96 97.29 111.55 

√ - 
E 

94.75 99.94 90.03 94.99 35.77 

- √ 90.08 99.89 81.95 90.92 28.51 

√ - 
F 

95.22 99.92 90.87 95.40 13.82 

- √ 85.09 99.75 74.05 86.90 25.40 

 

Figure 6.13: Performance of MBTPDS-Net network based on different training strategy. (Notes: the green line indicates: 
the MBTPDS-Net model, was trained based on multi-modal fusion datasets, then to test each single dataset; red line indicated: the MBTPDS-

Net model, was trained based on single-modal datasets, then to test corresponding to single dataset.) 



Upscaling Robot-assisted Endovascular Tool Manipulations based on Intuitive Multimodal Data Analysis 

 

 150 
 

Furthermore, the MBTPDS-Net network, trained on multi-modal fusion datasets, was evaluated 

across various single- modal datasets, as depicted in Table 6.5. The results demonstrated that 

employing multi-modal fusion improved the MBTPDS-Net network’s ability to segment surgical 

instruments in each single modality compared to training solely on the corresponding single-modal 

datasets. For instance, the MBTPDS-Net network from multi-modal fusion training enhanced the 

Dice score by 9.99% and the IoU-SI value by 15.36% in Dataset-A, by 2.45% and 4.23% in Dataset-

B, by 1.95% and 3.21% in Dataset-C, by 1.70% and 3.30% in Dataset-D, by 4.67% and 8.08% in 

Dataset-E, and by 10.13% and 16.82% in Dataset-F, respectively, as shown in Figure 6.13. 

These results indicated that the proposed MBTPDS-Net model demonstrated better 

generalisability when trained on multi-modal fusion datasets compared to single-modal training. 

The diverse nature of multi-modal datasets allowed the model to adapt to various noise levels and 

variations, improving its performance in complex tasks. Furthermore, applying the multi-modal 

fusion-trained model to single-modal datasets consistently resulted in higher segmentation accuracy 

compared to models trained on the respective single-modal datasets. This highlights the role of 

multi-modal datasets in stabilising model performance across different environments and enhancing 

generalisation. 

Moreover, among the datasets, the MBTPDS-Net achieved its best segmentation results on the 

single-modal endoscopic dataset (Dataset-D). The superiority of the results can be attributed to the 

inherent characteristics of the images. Unlike angiographic datasets (Datasets A, B, and C), which 

track slender and flexible guidewires with minimal contrast, endoscopic images capture biopsy 

forceps with a pronounced contrast against surrounding tissue. The rigid nature of the forceps, 

coupled with their high visibility, facilitated accurate segmentation. These factors enabled the model 

to effectively discern the relevant pixel attributes, resulting in higher segmentation accuracy for 

well-connected and rigid instruments. 

In addition, to optimise the efficiency of the model, separable convolutions were used to replace 

standard convolutions in the designed encoder network. The impact of this substitution on 

segmentation performance was analysed, as shown in Table 6.6. Although separable convolutions 

significantly reduced the number of parameters, 1.534 million compared to 5.688 million for 

standard convolutions, standard convolutions outperformed their separable counterparts in 

segmentation accuracy. Specifically, the IoU-SI values for surgical instrument segmentation using 

the MBTPDS-Net network with standard convolutions were 7.6%, 3.07%, 2.5%, 1.47%, 5.38% and 

10.61% higher than those achieved with separable convolutions in datasets A, B, C, D, E, and F, 

respectively. Similarly, the Dice score improvements using standard convolutions were 4.72%, 

1.76%, 1.52%, 0.75%, 3.06%, and 6.17% higher on the same datasets. Moreover, the MIoU values 

for segmentation using the MBTPDS-Net network with standard convolutions reached 95.54% on 

the multi-modal fusion dataset, 91.39% on Dataset-A, 93.96% on Dataset-B, 91.44% on Dataset-C, 

99.06% on Dataset-D, 94.99% on Dataset-E, and 95.40% on Dataset-F. These MIoU values 

consistently surpassed those obtained with separable convolutions in all datasets.  
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These results underscore a trade-off between computational efficiency and segmentation 

performance. While separable convolutions offer a considerable reduction in parameter count, 

standard convolutions deliver superior segmentation accuracy, particularly for tasks requiring high 

precision, albeit with a greater computational cost. 

Table 6.6: Performance of the segmentation model across different convolutions. 

Method  Conv Sepcov. Dataset Dice (%) 
IoU (%) MIoU 

(%) BG SI 

Proposed 

√ - 
MMF 

95.44 99.79 91.28 95.54 

- √ 95.23 99.78 90.89 95.34 

√ - 
A 

90.82 99.60 83.19 91.39 

- √ 86.10 99.40 75.59 87.49 

√ - 
B 

93.65 99.86 88.06 93.96 

 √ 91.89 99.82 84.99 92.41 

√ - 
C 

90.69 99.91 82.96 91.44 

- √ 89.17 99.90 80.46 90.18 

√ - 
D 

99.12 99.87 98.26 99.06 

- √ 98.37 99.76 96.79 98.27 

√ - 
E 

94.75 99.94 90.03 94.99 

- √ 91.69 99.91 84.65 92.28 

√ - 
F 

95.22 99.92 90.87 95.40 

- √ 89.05 99.81 80.26 90.04 

Params 
√ - 5.688 M 

- √ 1.534 M 

 

6.4.5 Performance comparison of SAM annotation and manual labelling  
With advances in AI technology, generative AI applications have been increasingly applied in 

diverse industries. ChatGPT, developed by OpenAI, is a chatbot built on a large language model, 

renowned for its conversational interactivity and human-like performance in various cognitive tasks, 

including those in medicine [293]. In computer vision, the Segment Anything Model has garnered 

significant attention as an innovative foundational model for promotable segmentation [294]. The 

exceptional performance and interactivity of SAM in image segmentation have established it as a 

highly regarded model in the field. However, improving surgical instrument segmentation 

performance remains constrained by the insufficient availability of labelled surgical instrument 

datasets during the model’s pre-training phase. 

To determine whether SAM annotation could replace manual annotation to reduce time and costs, 

this study evaluated the influence of SAM annotations on segmentation performance and assessed 

the gap between SAM and manual annotations. SAM was used to mark surgical instruments and the 

impact of its annotations compared to manual annotation standards on segmentation accuracy was 

investigated. The performance of the proposed MBTPDS-Net network was assessed using manual 

annotation standards as a benchmark against SAM annotations for masking surgical instruments. 

Segmentation results are visualised in Figure 6.14 and Figure 6.15.  

The results showed that the MBTPDS-Net network, using SAM annotations, achieved a Dice  
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Figure 6.14: Performance comparison of MBTPDS-Net network using manual and SAM annotation. (Notes: the green 
line indicates: the MBTPDS-Net model, was trained based on datasets from manual annotation, then to test each datasets including multi-

modal fusion datasets and each single modal dataset; red line indicated: the MBTPDS-Net model, was trained based on dataset from SAM 

large model annotation, then to test corresponding to dataset including multi-modal fusion datasets and each single modal dataset.) 

score of 90.46% and an IoU value of 82.58%. Compared to manual annotation standards, these 

figures represent a decrease of 4.98% in the Dice score and 8.7% in the IoU. The segmentation 

efficacy of the MBTPDS-Net network based on SAM annotations also showed reductions in Dice 

score and IoU values across six single-modal datasets compared to manual annotation standards. 

Specifically, reductions of 32.61% in Dice score and 42.13% in the IoU value of surgical 

instruments were observed in Dataset-A; reductions of 11.72% in Dice score and 18.67% in IoU 

value were observed in Dataset-B; reductions of 22.72% in Dice score and 31.48% in IoU value 

were observed in Dataset-C; reductions of 3.37% in dice score and 6.42% in IoU value were 

observed in Dataset-D; reductions of 21.48% in Dice score and 32.21% in IoU value were noted in 

Dataset-E; and reductions of 54.39% in Dice score and 65.22% in IoU value were noted in Dataset-

F, respectively. 

The findings suggest that manual annotations yield superior segmentation results compared to 

SAM annotations. SAM struggled to accurately segment entire surgical instruments, particularly in 

complex structural environments, often producing fragmented outcomes. This limitation can be 

attributed to the highly specialised appearance of surgical instruments, which differ significantly 

from natural objects typically encountered in SAM’s training data. SAM also encountered 

difficulties in distinguishing adjacent tissues and edges with similar greyscale intensities, as seen in 

Dataset-F. Another challenge for SAM was its dependence on explicit frame-by-frame prompt boxes, 
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which is impractical in surgical contexts. Instruments with extreme aspect ratio differences, such as 

guidewires, further complicated SAM’s performance as it struggled to distinguish target instruments 

from the background. Consequently, SAM exhibited challenges in segmenting elongated and curved 

targets, failing to capture complete objects or misidentifying them as nonsurgical instruments in 

datasets like Dataset-A, Dataset-C, and Dataset-E. The segmented instrument contours generated by 

SAM were irregular and lacked refinement, resulting in lower accuracy and efficiency compared to 

manual annotation. 

 

Figure 6.15: Performance comparison of MBTPDS-Net network using manual and SAM annotations. 

6.5 Chapter Summary  

This chapter presents an innovative network for feature fusion with multiple branches, combined 

with a deep neural structure using a triple-pyramid design, known as MBTPDS-Net, intended for 

precise segmentation of surgical tools. This approach aims to equip surgeons with detailed visual 

data, thus enhancing their natural ability to manipulate instruments during operations. The model 

leverages an enhanced VGG13 as a multi-branch encoder for feature extraction, proficiently 

capturing multi-scale feature representations, including fine edge and texture intricacies. To manage 

these features, the triple-pyramid decoder applies cross-stacked techniques to widen the receptive 

field, facilitating the merging of interconnected multi-scale features and boosting the capture of 

global contextual semantic data. The research validated this proposed approach using self-

constructed multi-modal fusion datasets featuring various surgical instruments. MBTPDS-Net 

showcased exceptional performance, attaining a Dice score of 95.44% and an MIoU of 95.54% in 

these datasets. In addition, it achieved fast segmentation rates of 233.83 frames per second with 

fewer parameter needs. These results surpassed those of other semantic segmentation techniques, 

such as Unet, Unet++, FCN_VGG13, FCN_VGG16, SegNet, DeepLabv3+, and JSUnet, achieving 

top-tier segmentation results. Comparative trials on the multi-modal fusion dataset highlighted 

MBTPDS-Net’s unique benefits. By adeptly extracting global and local contextual features, the 

model delivered accurate segmentation output with a reduced parameter load, as evidenced by 

thorough quantitative and qualitative evaluations. These findings highlight the potential of 
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MBTPDS-Net to establish a new standard in surgical tool segmentation tasks. Furthermore, its 

versatility extends to segmenting additional endovascular and surgical tools, including forceps, 

scalpels, needle tips, stents, and balloons, illustrating its extensive applicability in various medical 

domains. 
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Chapter 7: Conclusions and Future Works 

7.1 Conclusions 

Interventional robotics has recently been implemented to perform procedures such as diagnosis 

and surgery, either through natural openings or by making small incisions into internal cavities. This 

advancement holds significant promise in expanding the boundaries of surgical procedures. The 

limitations posed by traditional interventional surgery, which involve prolonged X-ray exposure for 

both the surgeon and the patient, have driven the development of robotic technology for 

endovascular interventional surgery. This technology involves manoeuvring surgical instruments 

and end effectors through complex anatomical pathways, indicating possible transformative changes 

in endovascular surgical practices. However, this new surgical approach also presents certain 

technological and technical issues, such as the lack of direct tactile feedback, which need to be 

resolved to improve safety and facilitate greater acceptance in clinical settings around the world. 

This research concentrated on developing multi-sensor methods for surgeons’ intuitive 

manipulation behaviours and visual-based feedback approaches for improving intuitive 

manipulation in an underactuated master-slave vascular interventional robotic system with spatial 

flexibilities. The focus was on designing efficient models for precise intuitive manipulation of robots 

along spatially flexible paths, based on the design of vascular interventional robotic systems for 

accessing complex and narrow pathways. The studies were based on a developed vascular 

interventional robotic system, modelling an intuitive manipulation model to demonstrate the internal 

link between intuitive manipulation and the performance of robot-assisted surgical tasks, and using 

visual-based modelling to address the absence of direct force feedback that results in inadequate 

robot-assisted intuitive manipulation characteristics. Improved intuitive manipulation enables this 

robotic system to accurately deliver a catheter or guidewire through minimally invasive single port 

procedures along various blood pathways to reach the lesion site. Hence, in Chapter 3, the clinical 

association between intuitive surgeon manipulation and the performance of robot-assisted 

interventional tasks is explored in detail, highlighting the significant influence of manipulation 

performance on surgical outcomes (success or failure performance). Using multi-sensor quantitative 

analysis of the operator’s manipulation behaviour, the manipulation patterns that lead to successful 

or unsuccessful performance in robot-assisted surgical tasks are identified, offering insights into 

methods for improving intuitive manipulation performance. Chapter 4 further investigates the 

inherent relationship between collaborative performance of humans and robots and intuitive 

manipulation in the context of the absence of direct force feedback in robot-assisted interventional 

procedures. Generally, Chapters 3 and 4 highlight the vital role of manipulation performance in 

improving surgical efficiency and safety. 

Chapter 5 focusses on improving intuitive manipulation in robot-assisted interventional surgery 

without tactile force feedback. This improvement is achieved through visual modelling, specifically 
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tracking instruments in distal blood vessels during procedures. Numerous accomplished robotic 

surgeons believe that visual signals, such as local tissue deformation due to tension, retraction, or 

needle insertion, can effectively compensate for the absence of sensory force feedback. This 

technology plays a crucial role in increasing manipulation performance, especially in master-slave 

robot-assisted interventional tasks where haptic feedback is lacking. Instrument tracking offers not 

only real-time positional data, but also helps predict the instrument’s movement path, thereby 

allowing operators to exercise better control throughout the surgical procedure. 

Chapter 6 emphasises the improvement of instrument recognition accuracy and reliability 

through visual-based modelling techniques. The outcomes not only cover technological 

advancements but also offer a more profound understanding of surgeon manipulation patterns and 

performance improvements. This chapter aims to present a more comprehensive and efficient 

robotic-assisted system for interventional surgery, ultimately striving for optimal surgical results 

and ensuring patient safety. The major research breakthroughs of this dissertation, which also serve 

as its key contributions, include: 

• Modelling a multi-level manipulation recognition model including initial-decision, and 

motion-decision, and mixed-decision layers for indicating the internal relation between 

operators’ manipulation patterns based on multi-sensors different trained strategies and 

outcome of robot-assisted surgical tasks for deeper understanding of surgeons’ manipulation 

patterns during robot-assisted interventional surgeries. This model provides real-time 

feedback, prompting interventionist’ technical skill to adjust control strategies to prevent 

tissue damage and optimize procedural outcomes. When surgeons understand which 

manipulation strategies are critical success factors and learn how to avoid ineffective or 

potentially harmful manipulation patterns, their trust in and acceptance of robot-assisted 

surgery can be significantly improved. This understanding not only enhances their 

confidence during intraoperative decision-making but also promotes more effective human-

robot collaboration by aligning the robotic system’s behaviour with the surgeon’s intent. 

Furthermore, by identifying and modelling successful manipulation strategies, the system 

can provide targeted feedback and training support, contributing to skill acquisition and 

shortening the learning curve for new users. Such contributions are essential for improving 

procedural safety, operational efficiency, and overall user satisfaction in robot-assisted 

vascular interventions. 

• Development of a manipulation-based machine-learning framework designed to analyse the 

synergy performance between operators and the robot. Investigation of the impact of delay 

factors on the synergy ratio between human and robot from three perspectives, namely, no 

delay, constant delay, and variable delay. Analysis of interaction forces, such as distal force 

and haptic force, and manipulation speed concerning complex endovascular paths. This 

analysis offers insights into how operators with different manipulation technical skills to 

adjust their control strategies for achieving good outcome of robot-assisted surgical tasks as 
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well avoiding causing damage to endovascular vessels due to excessive force while still 

providing sufficient tension to navigate complex paths. By evaluating the cooperative 

performance between the surgeon and the robot, the surgeon can more intuitively perceive 

the accuracy and quality of the operative process. Through the analysis of manipulation 

speed and interaction force, the surgeon can derive the most efficient and precise 

manipulation strategies, thereby facilitating more effective use of the robotic system and 

improving both the acceptance and proficiency of robot-assisted surgery. 

• Visual perception modelling method compensates the effects of the lack of direct force 

feedback on the performance of robot-assisted cardiothoracic surgery. An improved U-Net 

model with semantic segmentation is proposed to extract guidewire feature maps from X-

ray images during a robot-assisted endovascular interventional procedure. The proposed 

model obtains a better segmentation performance for a small object. Two experiments are 

carried out to prove the effectiveness of the proposed method for tiny objects detection. 

• A two-stage guidewire endpoint detection method is proposed to track the guidewire 

endpoint position including skeletonization processing, removing the bifurcation pixel point, 

repairing the breakage-band of the guidewire pixel feature maps, and endpoint detection 

based on a pixel-adjacent-relationship. The good performance of our proposed method is 

verified compare four common heatmap methods and six typical heatmap regression 

methods proposed. This contribution enables the surgeon to perceive the position of the 

instrument and its spatial relationship with surrounding tissues more accurately. This 

enhanced perception allows for more efficient control and fine-tuning of the instrument’s 

motion trajectory, thereby improving the surgeon’s manipulation awareness and operational 

safety. Moreover, it facilitates dynamic adjustment of manipulation strategies based on 

anatomical context, helping the surgeon to avoid vessel injury, maintain procedural 

efficiency, and increase confidence in complex navigation tasks.  

• The proposed pixel-adjacent-relationship-based method also demonstrates its effectiveness 

in detecting the maximum bending regions and computing the angle value. By utilizing the 

bending angle information of the instrument, the surgeon can anticipate and respond more 

effectively to unexpected intraoperative situations, such as sudden vascular resistance 

changes or potential deviations in navigation paths. This predictive capability enhances the 

surgeon’s situational awareness and control over the operating environment, particularly in 

complex lesions. Furthermore, bending feedback allows the surgeon to infer tool-tissue 

interaction states, assess anatomical constraints, and make timely adjustments to 

manipulation strategies.  This significantly improves the surgeon’s sensing of tool 

manipulation, supports safer and more precise navigation. 

• A multi-branch feature coupled with a triple-pyramid deep architecture segmentation 

method was proposed based on multimodal fusion dataset, achieved SOAT segmentation 

performance during robot-assisted interventional procedures. The improved VGG13 
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encoder effectively generated feature maps of different scales and reduced parameter 

requirements. The triple-pyramid model fused different scale features to generate better 

output. This lightweighted network, trained on multi-modal fusion dataset, learned target 

characteristics from each modality, and demonstrated better generalisation capability and 

computational efficiency compared to single-modal data. The introduction of a Mixloss 

function into the multimodal fusion dataset segmentation task enhanced the model’s 

adaptability to diverse image data types, effectively addressing class imbalance while 

improving the model’s ability to recognize different classes. 

In summary, these proposed high-precise manipulation models and perception methoeds improve 

the safety of robot-assisted interventional surgery by enhancing the surgeons’ intuitive manipulation 

and the surgeon’s ability to perceive the position of the instrument and its spatial relationship with 

surrounding tissues. They help surgeons identify manipulation strategies that are critical to surgical 

success and avoid techniques that may lead to failure. In addition, the models facilitate intuitive 

assessment of human-robot collaboration during the procedure, enabling more efficient and precise 

manipulation of the robotic system. These advancements enhance the surgeon’s perception of 

manipulation, increase trust in the robotic system, and improve overall acceptance and proficiency 

in robot-assisted surgery. These contributions, discussed in Chapters 3 to 6, address several of the 

unmet technical challenges in robot-assisted endovascular intervention, specifically those related to 

manipulation improvement, the lack of direct force feedback, human-robot cooperation, and precise 

visual perception of interventional instruments. The foundations for these solutions were laid in 

Chapters 1 and 2, which outline the SOAT developments and the key issues in vascular 

interventional robotic systems. 

7.2 Discussions on practical applications 

To translate the proposed models and methods into practical clinical value, it is essential to 

consider their integration within real-world robot-assisted endovascular surgical systems. First, the 

multi-level manipulation recognition model can be embedded into the control software of the robotic 

system as a real-time monitoring and feedback module. This module can continuously evaluate the 

surgeon’s operational inputs using sensor data and classify them into successful or unsuccessful 

manipulation patterns. Real-time feedback can then be displayed on an interface to help surgeons 

adjust their strategies accordingly, especially during complex navigation or resistance changes in 

tortuous vessels. This integration can support intraoperative decision-making and help prevent 

procedural errors, thus improving safety and precision. 

Second, the instrument segmentation framework (MBTPDS-Net) and guidewire endpoint 

localization modules can be integrated into the vision perception subsystem of the robot. By 

embedding these methods into the intraoperative imaging pipeline (e.g., real-time X-ray or 

fluoroscopy feed), the robot system can automatically recognize, segment, and track the surgical 

instruments with high precision. These outputs can be used not only for visualization but also for 
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closed-loop control, enabling adaptive motion planning and haptic substitution strategies when force 

feedback is absent. 

Furthermore, the bending angle analysis module can serve as an advanced alert system. By 

continuously monitoring instrument shape deformation and calculating angle changes in high-risk 

regions, the system can generate real-time warnings or recommend strategy adjustments to avoid 

vessel injury. This predictive feedback can be particularly useful in minimally invasive 

catheterization procedures under restricted visual and tactile conditions. 

To realize these functions in practice, a unified architecture that supports data fusion from multi-

modal sources (force sensors, imaging, manipulation kinematics) is necessary. The proposed 

modules should be encapsulated as lightweight, plug-and-play components—compatible with 

surgical robots’ existing hardware and real-time software constraints. Hardware-level 

synchronization and GPU-accelerated computation will be important for ensuring low-latency 

responses, which are critical in dynamic surgical environments. Their successful deployment will 

require interdisciplinary efforts in system design, real-time computing, and regulatory adaptation.  

7.3 Limitations 

Conducting endovascular interventional surgeries in complex and narrow endovascular pathways 

is naturally labour intensive, often resulting in prolonged radiation exposure to surgeons and 

decreased precision and stability due to physiological tremors. Using master-slave interventional 

robots can alleviate these problems. In the treatment phase, these systems allow surgeons to perform 

minimally invasive, safe, efficient, and radiation-free procedures, allowing for accurate 

identification of critical endovascular stenoses and steering the interventional process to completion, 

especially in intricate cases, thus improving patient outcomes. However, the limitations of the skill 

learning model built on surgical operational methods, the human-robot synergy evaluation 

framework, the endovascular instrument tip localization model, and the instrument semantic 

segmentation model examined in this thesis are summarized as follows. 

A. Surgeon’s skill diversity 

The skill modelling of surgeons using data-driven methods discussed in Chapter 3 relies on the 

procedures performed by a small group of both interventional and nonspecialist surgeons. However, 

studies show that the effectiveness of robotic-assisted interventional surgery is greatly dependent 

on surgeon expertise and muscle memory. A comprehensive dataset that includes surgeons of 

different skill levels, beginning, intermediate and advanced, would enable more precise skill 

acquisition and objective skill evaluation. In addition, the skill modelling in this thesis is centred on 

the use of a single instrument, while clinical situations often require the coordination of several 

instruments, especially in the case of complex lesions. 

B. Difference between simulated and clinical settings 

Effective remote manipulation requires accurate haptic feedback, but current systems struggle to 
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achieve this across interfaces, affecting their support for surgeons. Capturing and using haptic data 

from master, slave, and remote interfaces is important for modelling surgeon skills and creating a 

human-robot collaboration framework for surgery. Our framework uses EMG data, data gloves, and 

force information; however, while sensor-based validation is useful for measuring catheter 

movements, it is not suitable for clinical settings. In-vivo studies are recommended to gain a clearer 

understanding of differences in catheter insertion and tissue interaction. 

C. Limitations of sample datasets 

Developing path planning and navigation is important to improve the autonomy and safety of 

interventional surgeries by providing timely guidance through navigation images, real-time 

instrument position detection, and deformation modelling. The datasets A (rabbit model) and B (pig 

model) used in Chapters 5 and 6 for guidewire tip localization do not reflect human endovascular 

complexity and tissue interference. Integrating imaging data from human vessels is crucial for 

successful training and improved catheterization, and comprehensive datasets covering a range of 

surgical scenarios and endovascular types are needed to assess the generalizability of the methods. 

The study also highlights challenges such as sample distribution mismatches and labour-intensive 

data annotation, limiting model generalisation, and calling for dataset expansion to improve model 

performance. 

7.4 Future Works 

These initiatives are part of development projects focused on minimally invasive cardiac surgery 

at the Centre for Medical Robotics and Minimally Invasive Surgical Devices (SIAT-CAS, China). 

Future work will involve developing efficient technical learning models for operators based on data-

driven approaches, surgical tool endpoint location models, and semantic segmentation methods, in 

response to the above limitations, aimed at increasing the manipulative safety of robot-assisted 

interventional procedures.  

Moreover, building upon the current framework for improving intuitive manipulation and 

perception in robot-assisted vascular interventional surgery, future work can explore two promising 

and complementary research directions: the integration of large-scale pre-trained models (large 

models) and the advancement toward autonomous surgical capabilities. 1) Integration of Large 

Multimodal Foundation Models for Surgical Perception and Decision Support. Recent 

developments in vision-language large models (e.g., ChatGPT, CLIP, LLaVA) and surgical 

foundation models have demonstrated strong generalization across diverse modalities and medical 

contexts. Future work may explore the fusion of pre-trained large models with surgical robotic 

systems to enable richer semantic understanding of surgical environments. For instance, a large 

model could be used to interpret intraoperative imaging, annotate anatomical landmarks, and 

generate natural language guidance during complex procedures. Additionally, by integrating 

surgical manipulation data (force, motion, endoscopic imagery), fine-tuning or prompting these 
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models could yield context-aware reasoning and interactive assistance, especially in ambiguous or 

high-risk scenarios. This would empower the system to transition from low-level reactive feedback 

to high-level semantic support for surgical planning and real-time decision-making. 2) Towards 

Context-Aware and Semi-Autonomous Robotic Surgery. Based on the multi-sensor 

manipulation recognition and perception modules developed in this study, future research can 

advance toward building semi-autonomous or context-adaptive robotic systems. Rather than 

passively executing surgeon commands, the robotic system can actively learn and infer the 

surgeon’s intent, autonomously adjust manipulation strategies, or even pre-emptively suggest tool 

trajectories based on anatomical and manipulation context. This requires the integration of: 1) 

Dynamic scene understanding based on real-time visual and force feedback; 2) Reinforcement 

learning or imitation learning to capture expert manipulation strategies; 3) Hierarchical control 

architectures, where low-level trajectory generation is guided by high-level semantic or task-specific 

goals. 

Combining large-scale model reasoning capabilities with multi-modal manipulation sensing and 

visual modelling can lay the foundation for next-generation intelligent surgical robotics. This will 

enable not only safer and more precise operations, but also pave the way toward more autonomous, 

personalized, and intelligent interventional procedures. 
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