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Abstract

Natural Language Processing (NLP) is one of the most essential technolo-

gies for smart healthcare. In recent years, deep learning-based NLP tech-

niques have gathered significant attention. Despite promising results, exist-

ing deep learning techniques remain limited due to challenges including the

variability and complexity of medical language, the difficulty of integrating

external medical knowledge, and the gap between patient and healthcare

provider’s way of speaking. These challenges lead to issues in healthcare

applications. This thesis aims to leverage deep learning-based NLP tech-

niques towards smart healthcare by addressing these challenges. Specifi-

cally, a novel classification framework is first proposed to categorize chief

complaints from patients’ text, leveraging hierarchical clinical department

label information to improve classification performance. Second, a med-

ical dialogue generation framework is introduced, modeling patients and

doctors separately and integrating external knowledge to generate contex-

tually appropriate patient-doctor conversations. Third, a Rule-Enriched

Attention-Based Deep Neural Network is devised to categorize physician

responses into distinct social support types, supported by the development

of the first dedicated social support lexicon for team-based teleconsulta-

tion, improving the quality of online consultations. Finally, a prompt-

based Named Entity Recognition (NER) framework is developed to better

capture medical entities in clinical text, overcoming challenges posed by
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complex medical terminology and limited annotated data.
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Chapter 1

Introduction

1.1 Background

The surge in digital communication has led to a significant increase in text

data production, necessitating advanced methods for handling and analyz-

ing this information. Over time, the field of Natural Language Processing

(NLP) has developed various techniques to manage this growing volume of

data. As a crucial aspect of artificial intelligence (AI), Natural Language

Processing (NLP) aims to enable computers to understand, interpret, and

generate human language. Originally rooted in computational linguistics,

NLP has transitioned from early rule-based and statistical approaches to

modern, deep learning-driven methods. Deep learning, a subset of machine

learning, utilizes sophisticated neural networks to model complex patterns

in data. The rapid evolution of deep learning techniques has revolutionized

NLP, significantly enhancing the accuracy and efficiency of language pro-

cessing tasks (Nagarhalli et al., 2021; Lauriola et al., 2022). This progress

has profoundly impacted various sectors, especially in addressing challenges

and improving outcomes in healthcare (Velupillai et al., 2018; Roy et al.,

1



1.1. BACKGROUND

2021).

Smart healthcare refers to the integration of advanced technologies, such

as AI, big data analytics, the Internet of Things (IoT), and telemedicine,

into the healthcare system to enhance patient care, improve outcomes, and

streamline operations. Smart healthcare aims to create a more efficient,

patient-centered system that leverages technology to enhance both clinical

and operational processes. Traditional healthcare applications relied on in-

person consultations and manual record-keeping, which often limited acces-

sibility and delayed information retrieval. However, with the rapid growth

of online digital tools, smart healthcare has emerged as an essential resource

to improve patient care and optimizing operations. Such applications offer

a range of functionalities, such as facilitating patient registration, man-

aging appointments, and providing resources for clinical decision-making.

For instance, patients can register online, access their medical records, and

receive reminders for upcoming appointments, which significantly enhances

the overall patient experience.

Despite these advancements, many processes within modern smart health-

care applications still require substantial manual effort, which can reduce

efficiency and hinder patient care (Shamshirband et al., 2021). While NLP

techniques have shown promises in optimizing these platforms, there re-

main challenges that need to be addressed. For example, although NLP

can automate clinical documentation, the integration of these techniques

is not yet seamless, and certain tasks may still necessitate human interven-

tion. Additionally, NLP-driven chatbots, while effective in assisting with

patient triage, may not fully capture the nuances of patient inquiries or pro-

vide comprehensive support. Therefore, automating these processes holds

the promise of improving operational efficiency and enhancing patient out-

comes, but significant advancements in NLP are still required to realize

2



1.2. CHALLENGES

this potential.

This thesis focuses on developing advanced NLP techniques for smart health-

care, ensuring that interactions between patients and healthcare providers

are seamless, accurate, and timely. One of the primary objectives of this

research is to facilitate the automation of patient interactions and the pro-

cessing of clinical information, which are integral to smart healthcare. By

leveraging deep learning-based NLP techniques, this thesis seeks to address

several critical processes in healthcare, from classifying patient records to

simulating doctor-patient conversations and extracting valuable informa-

tion from clinical data.

1.2 Challenges

Despite the promising advancement in NLP, several challenges hinder its

effective implementation in healthcare. One significant issue is the vari-

ability and complexity of medical language, which often includes numerous

abbreviations, synonyms, and context-dependent phrases that can lead to

misunderstandings. This linguistic variability complicates the training of

NLP models, requiring them to accurately recognize and interpret a wide

range of expressions. Additionally, effectively utilizing external medical

knowledge, such as clinical guidelines and medical literature, is vital for

understanding clinical text contextually; however, integrating this knowl-

edge into NLP necessitates sophisticated mechanisms for real-time appli-

cability. Another challenge lies in the differences in language use between

patients and healthcare providers, where patients often communicate in in-

formal language or layman’s terms, while healthcare professionals typically

employ more technical terminology. This disparity can create barriers in

3



1.3. AIMS AND MOTIVATIONS

communication and complicate the NLP model’s ability to interpret and re-

spond accurately. Addressing these challenges, particularly the integration

of external knowledge and understanding the nuances of medical language,

is essential for fully realizing the potential of NLP in enhancing patient

care and operational efficiency within healthcare systems.

1.3 Aims and Motivations

The primary research problem addressed in this thesis is how to leverage the

advanced deep learning-based NLP techniques towards smart healthcare

while overcoming existing challenges. The thesis consists of four distinct

but interrelated studies, including chief complaint text classification, medi-

cal dialogue generation, physician dialogue text classification, and medical

named entity recognition. Each study tackles different challenges men-

tioned above. Figure 1.1 illustrates the relationships between the chal-

lenges and the four studies. Collectively, these studies aim to contribute

to smart healthcare applications by streamlining processes such as clinical

documentation and patient consultations. The motivations and objectives

for each study are integral to the thesis, focusing on automating and ad-

vancing crucial stages in the modern healthcare system. Specifically, the

Figure 1.1: Relationships between the four studies and challenges.

main research objectives are formed as follows:

4



1.3. AIMS AND MOTIVATIONS

1. To investigate a solution for accurately classifying chief com-

plaint text into specific clinical departments by leveraging la-

bel information: A prime aspect in online healthcare applications,

this task involves interpreting patients’ non-medical description of

symptoms. With the growing use of online health portals, patients

frequently express their symptoms using informal and ambiguous lan-

guage, leading to challenges in classification. This text often lacks

precision due to non-standard terms and may include redundant in-

formation or various expressions for similar symptoms. Developing

a solution that can effectively categorize these unstructured descrip-

tions is crucial. Moreover, utilizing label information—such as clini-

cal departments’ names and their descriptions—can significantly en-

hance classification accuracy, yet many existing approaches do not

fully leverage this important information.

2. To devise a solution that can generate contextually appro-

priate medical dialogues: Another prime aspect of the online

healthcare applications, this task aims to facilitate meaningful and

contextually relevant interactions between patients and healthcare

providers. The challenges include accurately understanding and gen-

erating medical terminology while remaining comprehensible to pa-

tients, as well as recognizing the nuances of patient-doctor conver-

sations to produce contextually appropriate responses. Additionally,

integrating external knowledge sources, such as clinical guidelines and

medical databases, enhances the model’s ability to generate informed

and relevant dialogues.

3. To investigate a solution that can classify physician text into

corresponding communication forms: The aim is to accurately

classify physician responses into distinct categories, including direct

5
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informational support, indirect informational support, and emotional

support. Direct informational support involves providing professional

advice on diagnosis and treatment, while indirect informational sup-

port refers to guiding patients to external resources, such as medical

websites or referrals to other specialists. Emotional support reflects

the physician’s role in offering comfort, expressing care, or providing

encouragement. By analyzing and categorizing these communication

forms, the objective is to gain insights into how different strategies

influence patient outcomes, thereby enhancing the quality and effec-

tiveness of online consultations.

4. To investigate a solution for extracting medical-related terms

in clinical text: Extracting key medical entities, such as diseases,

medications, and procedures, is essential for structuring unstructured

medical text in the healthcare applications. The aim is to accurately

position and categorize these entities from medical data. With the

growing volume of electronic health records, making this data more

accessible and actionable is crucial for healthcare providers. More ac-

curate medical entity recognition can support better clinical decision-

making and ensure that relevant medical information is readily avail-

able to professionals.

1.4 Contributions

The main contributions of this thesis are outlined as follows:

The first contribution is casting the medical chief complaint classification

problem as a multi-class classification task with a hierarchical structure of

label descriptions. A novel deep learning-based framework has been devel-

6



1.4. CONTRIBUTIONS

oped, featuring a Sequence Information Encoder that utilizes a pre-trained

BERT model for contextual embedding and a Bi-LSTM to effectively en-

code sequential information. Additionally, a Hierarchical Relational Net-

work with an Attention module is proposed, capable of capturing complex

relationships among the chief complaint text and hierarchical category de-

scriptions. Experimental results demonstrate that this model outperforms

state-of-the-art methods on real-world public medical datasets, illustrating

the effectiveness of explicitly modeling and leveraging the hierarchical re-

lationships among chief complaint label descriptions through the proposed

Hierarchical Relational Network with Attention.

The second contribution is to devise a multi-turn dialogue generation frame-

work consisting of two separate models representing patient and doctor

roles, connected through a memory mechanism. A Knowledge-based Con-

ditional Wasserstein Auto-Encoder is designed to effectively integrate dia-

logue history and external medical knowledge, ensuring the generated re-

sponses are both contextually accurate and medically relevant while en-

hancing the diversity of the outputs. The proposed framework is evaluated

using two real-world medical dialogue datasets, demonstrating superior per-

formance compared to existing baseline models.

The third contribution is to propose the R-ADNN, a hybrid network that

combines rule-based technique with deep learning to classify medical text

provided by physicians during teleconsultations to social support types.

This framework incorporates a custom-built lexicon for social support in

the teleconsultation setting, which to the best of our knowledge is the first

of its kind. The R-ADNN categorizes physician responses into types such

as direct informational support, indirect informational support, and emo-

tional support. It utilizes a combination of 37 domain-specific rules and

a deep-learning model that incorporates contextual information through

7



1.5. THESIS OUTLINE

BERT embeddings, Bi-LSTM, and attention mechanisms. The R-ADNN

demonstrates superior performance against state-of-the-art text classifica-

tion models on real-world teleconsultation datasets, offering valuable in-

sights into patient-physician communication.

The fourth contribution is to devsie a novel medical named entity recog-

nition framework that integrates prompt learning into pre-trained deep

learning models to tackle the complexities of medical entities and the chal-

lenges posed by limited annotated data. It introduces a prompt position

predictor and a prompt type predictor with a relational network, designed

to enhance the prediction of start and end indices as well as the types

of recognized entities, by effectively capturing the relationships between

prompts and medical text. The effectiveness of the proposed framework is

validated through evaluations on a real-world medical dataset, demonstrat-

ing significant performance improvements over existing baseline models.

1.5 Thesis Outline

This thesis is structured as follows. Chapter 2 presents an in-depth re-

view of the essential background information related to the research topics

covered in this thesis. Chapter 3 details the development of a novel tech-

nique to classify chief complaints from patients’ free-text description. In

Chapter 4, the focus shifts to medical dialogue generation, exploring the

challenges and proposing a solution to generate contextually aware med-

ical conversations. Chapter 5 introduces a framework for social support

type classification. Chapter 6 applies advanced NER techniques to clini-

cal narratives, showcasing their effectiveness in extracting and categorizing

critical medical entities. Finally, Chapter 7 concludes the thesis by pro-

8



1.5. THESIS OUTLINE

viding a summary of the key findings. It also addresses the limitations

encountered during the research and outlining potential future work.

9



Chapter 2

Literature Review

This chapter provides an overview of the essential background knowledge

related to the thesis. It focuses on six key areas: general text classification,

chief complaint text classification, general dialogue generation, medical di-

alogue generation, general named entity recognition and medical named

entity recognition. For each area, various approaches and frameworks are

introduced, laying the groundwork for a deeper understanding of the sub-

sequent analyses and methodologies presented in the thesis.

2.1 General Text Classification

For the general text classification problem, pre-trained word embedding

models and deep learning-based neural networks are widely used. Chalkidis

et al. (2019) apply several novel classification models in the legal domain

for a multi-label text classification task. Four main models are tried in their

experiments, Bidirectional Gated Recurrent Unit (Bi-GRU) with an atten-

tion layer, Hierarchical Attention Network (Yang et al., 2016), Label-wise

Attention Network with Bi-GRU encoder (Mullenbach et al., 2018), and

10



2.1. GENERAL TEXT CLASSIFICATION

Bidirectional Encoder Representations from Transformers (BERT) model

(Devlin et al., 2018). The best result is produced by the Label-wise At-

tention Network with Bi-GRU encoder. Li et al. (2019c) improves the

Hierarchical Recurrent Neural Network by adding a dual attention layer.

The outputs of attention layer are then sent to a Bi-GRU layer and finally

go through a Conditional Random Fields (CRF) layer (Chen et al., 2018) to

calculate the final tag. Choi et al. (2019) use a Bi-GRU-based neural net-

work to create a filter-generating network which can automatically generate

filters for Convolutional Neural Network (CNN) layer used for classification.

Huang et al. (2019) use Graph Neural Network (GNN) to classify a corpus.

A text-level GNN is created to replace traditional corpus-level GNN, which

performs with 2% improvement. Ohashi et al. (2020) propose a negative

supervision method to solve the problem that pre-trained text represen-

tation models often incorrectly classifying sentences with different labels

but having similar semantics. There are several works making use of label

information to help classification. Kim et al. (2019) present a new study on

text classification, where the authors not only use input text sequence but

also metadata about labels to predict documents. Pappas and Henderson

(2019) use two different encoders to separately encode input text and la-

bel, whose embeddings are concatenated as final features for classification.

In terms of hierarchical labels, Banerjee et al. (2019) and Shimura et al.

(2018) use transfer learning-based methods to tackle the task. The authors

firstly train a neural network to classify input text into main categories

and then transfer the model to classify text into sub categories. Zhang

et al. (2022) propose a label-based attention neural network to capture at-

tentional information among labels and text. Ma et al. (2022) propose a

hybrid embedding method which use different ways to embed the original

text, label name and the structure of hierarchical label. Wang et al. (2022)

utilize contrastive learning to integrate hierarchical label information into

11



2.2. CHIEF COMPLAINT CLASSIFICATION

BERT encoding. Miyazaki et al. (2019) apply a hierarchical label embed-

ding method to classify Twitter entries. In their work, Twitter text and

label information are encoded before applying label-wise attention. While

showing promising results, these methods do not fully exploit information

embedded in hierarchical labels and relationships among different level of

labels and text. For example, most works only embed those few words in

label itself instead of longer descriptions about labels.

2.2 Chief Complaint Classification

Chief complaint classification methods can be briefly divided into two cate-

gories, rule-based and machine learning-based methods. Among rule-based

methods, Lu et al. (2008) propose an ontology-based technique utilizing

semantic relations in medical document to classify chief complaint into

corresponding classes. Mikosz et al. (2004) create a set of keywords that

is used to match a given chief complaint with its corresponding symptom.

Similarly, Chapman et al. (2005c) also create a standard reference set to

classify various chief complaints. Hsu et al. (2020) make use of Bag-of-

Words approach to represent chief compliant with hand-crafted features

created by professional physicians. Travers and Haas (2004) match chief

complaint with Unified Medical Language System (UMLS) term to obtain

its label after going through a series of preprocessing. Cui et al. (2019)

propose a constructive heuristic method to generate regular expressions

to classify chief complaint text. Similarly, Liu et al. (2020a) use genetic

programming to automatically construct and evolve regular expressions for

text classification.

Over the past decades, machine learning-based methods have become the

12



2.3. GENERAL DIALOGUE GENERATION

mainstream technique to tackle the chief complaint classification problem.

Popular techniques include n-gram models (Brown et al., 2010), Support

Vector Machine (SVM), Naive Bayes classifiers (Li et al., 2019a; Jernite

et al., 2013; Chapman et al., 2005b), etc. Recently, deep learning-based

models including Convolutional Neural Network (CNN) and Recurrent

Neural Network (RNN) have played a major role in encoding chief com-

plaint text before feeding to classifiers for better performance (Sulieman

et al., 2017; Lee et al., 2019; Blanco et al., 2019; Li et al., 2021c). Among

those deep learning-based techniques, the state-of-the-art deep learning-

based language representation model, BERT (Devlin et al., 2018), is the

most popular one used in NLP tasks including chief complaint classification

(Chang et al., 2020; Valmianski et al., 2019; Schäfer et al., 2020). Although

there are many methods tackling the chief complaint classification problem,

most of those methods do not utilize the hierarchical structure of labels.

In Chapter 3, the proposed method attempts to make best of use the hier-

archical label descriptions from expert knowledge and shows performance

improvement when the hierarchical label information is used.

2.3 General Dialogue Generation

The encoder-decoder framework is a commonly employed approach in di-

alogue generation. In their work, Shang et al. (2015) present a Neural

Responding Machine, utilizing a Recurrent Neural Network as both en-

coder and decoder for short-text conversations. Gu et al. (2016) introduce

CopyNet, incorporating a copying mechanism into the RNN-based encoder-

decoder framework. To enhance response diversity, Li et al. (2016) apply

diversity promotion objectives. Serban et al. (2016) propose a hierarchical

recurrent encoder-decoder framework, named HRED, using an utterance
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encoder to encode the input utterances and then using a context encoder to

capture the sequential relationship between context turns. In order to fur-

ther capture the intricate relationship between the input context sequences,

Serban et al. (2017) propose a VHRED model that incorporates the Con-

ditional Variational Autoencoder (CVAE) to the HRED model. Building

on the HRED model, VHRED adds a latent variable into the decoder and

transforms the decoding process into a two-stage generation process. The

first stage involves sampling a latent variable, and the second stage involves

generating the response based on this variable. The VHRED model in-

creases the quality and diversity of the generated responses compared with

the HRED model. One of the primary obstacles faced by CVAE-based

models is the “posterior collapse” problem. Zhao et al. (2017) introduce

a supplementary “bag-of-words” loss to the decoder to alleviate this issue.

Shen et al. (2018) also propose a collaborative CVAE model. The latent

variable in this model is sampled by transforming random Gaussian noise

using multi-layer perceptrons. Park et al. (2018) add a hierarchical latent

variable structure to the VHRED model. Gu et al. (2019) propose the

DialogWAE model which takes a different approach from VAEs in model-

ing the distribution of data. It trains a Wasserstein-GAN to minimize the

Wasserstein distance between the prior and posterior distributions. Their

model performs well on the DailyDialog dataset and Switchboard dataset

compared with the above VAE-based dialogue models. Zhang et al. (2019)

combine the self-attention mechanism with the encoder-decoder framework,

which can better capture the utterances’ distant dependencies in the con-

text. Zhang et al. (2020a) propose a co-attention mechanism to capture the

relationships between context and response and utilize it when generating

the latent variable. Liu et al. (2021b) design a CVAE-based model with

affective information to generate affective responses. Li et al. (2022b) com-

bine the VAE model with a hierarchical contrastive learning mechanism
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that can capture different levels of semantic meaning in the input context.

For the pre-trained language models, Zhang et al. (2020b) propose Dialog-

GPT, employing GPT2 (Radford et al., 2019) as the foundational structure

for generating dialogues. DialogBERT, introduced by Gu et al. (2021),

adopts a hierarchical transformer architecture based on BERT (Devlin

et al., 2018). Although these pre-trained language model show impressive

results in dialogue generation task (Yang et al., 2019; Chen et al., 2022;

Thoppilan et al., 2022), their generated responses in the medical field can

often be ambiguous and contextually unclear, potentially leading to incor-

rect diagnoses. Furthermore, due to their extensive training on massive

datasets, these large language models exhibit high sensitivity to the spe-

cific requests submitted (Caruccio et al., 2024). In chapter 4, a dialogue

generation model is introduced to emphasize traditional machine learning

methods, avoiding reliance on large language model-based architectures.

Similar to the work of Gu et al. (2019), the model incorporates Wasser-

stein autoencoders. However, the existing approach does not fully utilize

role information, as it only appends a binary role ID to the end of the

context embedding, which proves insufficient. To better model the patient

and doctor roles in medical dialogue generation, two separate Wasserstein

autoencoder-based dialogue models are employed to represent each role in

this thesis. These models are interconnected by a memory mechanism and

trained recurrently until a complete dialogue is generated. Additionally, a

medical guidance book is used as supplementary information to enhance

the generation of medically relevant sentences.
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2.4 Medical Dialogue Generation

Machine learning-based methods are widely adopted in medical dialogue

generation. Liu et al. (2016a) propose a Long Short-Term Memory (LSTM)-

based framework to identify the patients’ input symptoms. Then the model

generates the symptom-related questions. Wei et al. (2018) use a reinforce-

ment learning method to create an automatic diagnosis system. Xu et al.

(2019b) propose an end-to-end dialogue system that uses medical knowl-

edge graphs to enhance the topic transition when generating the response.

Zeng et al. (2020) prepare a large medical dialogue dataset which contains

millions of dialogues. The authsos use the large medical corpus to pre-

train a large language model and then tested the model on a COVID-19

dialogue dataset (Zhou et al., 2021). Li et al. (2021a) develop a system

that firstly predicts the entities in a dialogue history and then utilizes the

entities to help solve dialogue generation tasks. Li et al. (2021b) devel-

ope a system that predicts entities present in a conversation’s history, and

then uses these entities to aid in generating medical dialogues. Yan et al.

(2022) apply a contrastive learning method on several pre-trained language

models to evaluate their proposed new ReMeDi dataset. Most Medical dia-

logue generation models generally relied on additional labeled information,

such as the patient’s condition, the type of entity involved, and the actions

taken by the doctor. This information necessitates a large number of an-

notations by humans. The model introduced in chapter 4 addresses this

by utilizing Wasserstein autoencoders (Wasserstein Autoencoder (WAE))

to capture additional information within narrative dialogue text without

the need for extensive human annotations. Two language models with the

same architecture are used to represent the distinct roles of patients and

doctors, enabling the model to better capture role-specific information in

the conversation.
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2.5 General Named Entity Recognition

Early Named Entity Recognition (NER methods primarily relied on rule-

based systems, which depended heavily on manually crafted linguistic rules

and domain-specific expertise. Although effective in controlled environ-

ments, these systems struggled with scalability and adaptability across dif-

ferent languages and domains (Farmakiotou et al., 2000; Abdallah et al.,

2012; Petasis et al., 2001). The field then transitioned to machine learning

approaches, where models like Hidden Markov Models (HMM) and Con-

ditional Random Fields (CRF) improve performance by better managing

sequential data and integrating contextual information. However, these

approaches still require significant feature engineering (Zhou and Su, 2002;

Fu and Luke, 2005; Lafferty et al., 2001; Liu et al., 2011).

The advent of deep learning revolutionized NER. RNN, particularly Long

Short-Term Memory (LSTM) networks, significantly enhance the ability to

capture long-range dependencies in text, leading to more accurate entity

recognition. For instance, Graves et al. (2013) first propose a Bi-directional

LSTM for NER tasks, which was later improved upon by Huang et al.

(2015) through the integration of a CRF module. Furthermore, Dyer et al.

(2015) introduce the Stack-LSTM, modifying the traditional LSTM archi-

tecture to derive hidden states from a stack, thus capturing information

from various positions within the stack.

Recent advancements have seen the introduction of hybrid frameworks such

as AMFF, proposed by Yang et al. (2020), which captures multi-level fea-

tures using a combination of Bi-LSTM, CNN, and attention mechanisms,

processing both local and global features before final sequence labeling

with a BiLSTM-CRF network. Transformer-based models, exemplified by

Vaswani et al. (2017), have further advanced NER by leveraging atten-

17



2.6. MEDICAL NAMED ENTITY RECOGNITION

tion mechanisms to capture global dependencies, setting new benchmarks

across multiple languages and domains. For example, Schweter and Baiter

(2019) utilize BERT as a character representation model, while Wang et al.

(2021) introduce a hierarchical tagging approach with BERT embeddings

to enhance sub-optimal path identification. Shen et al. (2022) propose

the Parallel Instance Query Network (PIQN), framing NER as a machine

reading comprehension task using BERT to create learnable global queries.

Additionally, Li et al. (2022a) introduce the W2NER framework, which

employs word-word relation classification to address multiple NER tasks

simultaneously. Finally, Yan et al. (2023) present a model incorporating

CNNs with BERT to capture spatial relations for nested NER, demonstrat-

ing superior performance on various datasets. Shen et al. (2023) explore

prompt learning in NER, using a dual-slot prompt template with BERT

to achieve strong performance, highlighting an emerging approach in the

field.

2.6 Medical Named Entity Recognition

Medical Named Entity Recognition has evolved from its early reliance on

rule-based methods, which used domain-specific resources and structured

vocabularies to identify and classify medical entities such as diseases, symp-

toms, treatments, and medications. Early systems, often based on the Uni-

fied Medical Language System (UMLS) and other ontologies, provided high

precision but struggled with scalability and variability in medical language

Wang et al. (2008); Kang et al. (2013); Quimbaya et al. (2016); Eftimov

et al. (2017). These limitations restricted their applicability in diverse and

unstructured clinical texts Kundeti et al. (2016).
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The transition to deep learning has significantly advanced medical NER.

For instance, Luo et al. (2018) introduce an attention mechanism to im-

prove token consistency and capture global document-level information

in biomedical texts. Similarly, Pomares-Quimbaya et al. (2018) utilize a

BiLSTM-CRF model for extracting key concepts from medical records.

Wang et al. (2019) develope a Bi-LSTM-based neural network that inte-

grates dictionary information to address medical NER tasks effectively. Jin

et al. (2019) combine a knowledge graph with a BiLSTM-CRF model to

perform NER in traditional Chinese medicine contexts. Furthermore, Li

et al. (2020) leverage BERT with a BiLSTM-CRF layer for the Chinese

Clinical Named Entity Recognition (CNER) task, enhancing performance

by pre-training on Chinese clinical records. An et al. (2022) introduce

a deep neural network model combining Bi-LSTM with a multi-head self-

attention mechanism for CNER tasks. Most recently, Zhu et al. (2023) pro-

pose the Dictionary-guided Attention Network (DGAN), which enhances

semantic understanding by aligning text with a biomedical dictionary and

using optimized attention to focus on key medical concepts, while employ-

ing semi-supervised learning to manage unseen entities.
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Chapter 3

Medical Chief Complaint

Classification with

Hierarchical Structure of Label

Descriptions

After laying the theoretical groundwork in chapter 2 with a comprehensive

review of the essential background and state-of-the-art techniques in NLP

and healthcare automation, chapter 3 delves into the first practical task of

this thesis: chief complaint text classification. As an integral component

of online healthcare platforms, accurately categorizing patients’ free-text

symptom descriptions is crucial for streamlining patient care. This task

poses unique challenges due to the variability and ambiguity of patient

language, often lacking formal medical terms. A novel deep learning-based

approach is presented that leverages a hierarchical chief complaint label

structure and sequence information encoding to effectively address these

challenges, marking the initial step in automating key processes within
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modern healthcare systems.

3.1 Introduction

Text classification is an important task in the field of NLP. It has been

widely used in healthcare domain such as helping doctors diagnose whether

a patient has certain condition based on their Electronic Healthcare Records

(EMR) (Garla et al., 2013; Avci and Turkoglu, 2009), providing medical

assistant to online users through question and answering (Gupta et al.,

2021), structuring narrative clinical notes by identifying relationships be-

tween two medical terms (Luo, 2017), classifying medical documents to

pre-defined topic sets (Hughes et al., 2017; Saibene et al., 2021), extract-

ing relevant words with specific biomedical information from unstructured

clinical records (Zhu et al., 2023; Y. Mahajan and Rana, 2023; AlMahmoud

and Hammo, 2024), etc.

Applying general text classification techniques to healthcare is particularly

challenging due to various reasons. For example, medical text is often

unstructured or semi-structured, and contains information that requires

vast domain knowledge for proper understanding (Friedman and Johnson,

2006). There are also very diversified types of medical text, including

narrative text from physicians that often contains acronyms and abbrevi-

ations for both common words and professional medical terms, narrative

text from patients that is often informal and ambiguous, semi-structured

text records that are generated by computer systems with large amount of

numerical values and symbols. This chapter focuses on tackling the classifi-

cation problem of Chief Complaint, a specific type of medical text provided

by patients that contains narrative sentences describing symptoms, condi-
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tions, previous diagnoses, questions, and more. Benefit from development

of Internet Technology, many online healthcare systems are available to

both physicians and patients including Internet hospitals, EMR systems,

online healthcare community software, etc. Automatic chief complaint clas-

sification plays an important role in such systems as it could provide smart

features such as triage or recommending doctors that are specialized in the

medical category in which patients have potential conditions.

The task of chief complaint text classification has been widely studied in ar-

eas such as early disease detection and public health surveillance (Chapman

et al., 2005a; Clifford et al., 2021). Unlike general medical text provided

by physicians or generated by computer systems, chief complaint is usually

written by patients in spoken language. This poses additional challenges

to the classification task. On one hand, such text is less precise due to rea-

sons including using informal or ambiguous words instead of medical terms,

or giving out information without context. On the other hand, the text

is less concise containing redundant information or using various forms of

expressions. For instance, chief complaints under medical category “Gas-

troenterology” include, “I vomited and got a diarrhea last night and today

I have a serious stomachache.”, “I have a poor appetite and my stomach

feels bloated.”, “Feel pain around my belly button and there is flatulence

in my upper abdomen.”, etc. It can be observed that different words and

various ways of expressions are used to describe the same symptom.

Many existing works use rule-based methods to classify chief complaint

such as creating keyword sets or more complicated rules that heavily rely

on domain knowledge from human experts. In order to alleviate this prob-

lem, machine learning techniques are introduced including n-gram model,

Support Vector Machine (SVM), deep neural networks (Brown et al., 2010;

Lee et al., 2019; Chang et al., 2020), etc. While producing promising re-
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sults, most of these methods ignore a simple but very important fact, unlike

other classification tasks such as object recognition in computer vision, la-

bels for medical categories corresponding to important domain information

that are strongly related to the words in the input text. Moreover, the la-

bels of chief complaints have inherently hierarchical structure since their

categories usually correspond to departments or specialized medical areas

in healthcare systems. For instance, an upper level category (main cate-

gory) “Internal medicine” contains several lower level categories (sub cat-

egory) such as “Neurology”, “Gastroenterology”, “Respiratory medicine”,

“Endocrine”, “Cardiovascular medicine”, etc. Effectively utilizing this hi-

erarchical structure of labels could further improve the performance of chief

complaint classification.

This chapter proposes a novel text classification framework for chief com-

plaint by embedding both the input chief complaint text and the hierarchi-

cal structure of label descriptions based on deep neural networks. There

are three branches in the proposed framework, chief complaint branch,

sub-category branch, and main-category branch. In the chief complaint

branch, chief complaint text is firstly embedded by a Sequence Information

Encoder (SIE) consists of pre-trained word embedding model, Bidirectional

Encoder Representations from Transformers (BERT), to capture input se-

mantics with contextual information and Bi-directional Long Short-Term

Memory (Bi-LSTM) to further encode sequential information. Then a Hi-

erarchical Relational Network with Attention (HRNA) module is devised to

reason the complex relationships among chief complaint and hierarchical la-

bel descriptions focusing on informative words. The representations of such

relationships are then fed to a Multi-layer Perceptron (MLP) for final clas-

sification. The proposed framework takes full advantage of the hierarchical

structure of labels by capturing relationships among label descriptions ex-
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tracted from expert knowledge and input chief complaint with attentional

scores. Compared with conventional single-branch neural networks and

the State-of-the-Art (SoTA) hierarchical structure label methods, the pro-

posed method demonstrates significant performance improvement on two

real-world public datasets.

The main contributions presented in this chapter can be summarized as

follows:

1. The medical chief complaint classification problem is formulated as a

multi-class classification problem with a hierarchical structure of chief

complaint label descriptions, accompanied by a novel deep learning-

based medical text classification framework with three branches.

2. A Sequence Information Encoder is introduced to effectively encode

sequential information from input text by incorporating a pre-trained

model, BERT, to embed input text with contextual information,

along with a Bi-LSTM to further encode the sequential information.

3. A novel Hierarchical Relational Network with an Attention module

is proposed, capable of capturing complex relationships among input

chief complaint text and hierarchical chief complaint label descrip-

tions, focusing on informative words.

4. The proposed model demonstrates superior performance compared

to state-of-the-art (SoTA) models on two real-world public medical

datasets, utilizing hierarchical chief complaint label descriptions ex-

tracted from medical books and websites to illustrate its capability

and effectiveness in leveraging such information.
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3.2 Methodology

3.2.1 Problem Definition

Formally the problem concerned by this chapter can be defined as fol-

lows: firstly, Firstly, a set of chief complaint text is defined as C, a main-

category set as M = {m1,m2, ...,mn}, and a sub-category set as S =

{s11, s21, ..., s
l1
1 , ..., s

1
n, ..., s

ln
n }, where n equals to the number of pre-defined

main categories and ln equals to the number of sub-categories belong to

main-category mn. The sub-category set belonging to main-category mi

is defined as Si, where i ∈ [1, n]. Given each chief complaint text c ∈ C,

main-category descriptions dm for all m ∈M , sub-category descriptions ds

for all s ∈ S, the task is to classify c to one of the sub categories s ∈ S. Note

that in this problem each sub category has a corresponding main category

and each main category has more than one sub categories. Inherently, the

classification of chief complaint text falls in this hierarchical structure of la-

bels. The proposed framework utilizes this structure to perform multi-class

classification task.

3.2.2 Overview

Figure 3.1 illustrates the overall architecture of the proposed framework.

There are three branches in the model, i.e. chief complaint branch, main-

category branch, and sub-category branch. The input of the chief com-

plaint branch is chief complaint text c to be classified and the outputs are

the feature vectors containing the hidden representations of each word in c.

The input of the main-category branch is one of the main-category descrip-

tions dm. The input of the sub-category branch is one of the sub-category
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Figure 3.1: Overall architecture of the proposed framework.

descriptions ds. Each branch contains a SIE module that is used to ob-

tain the hidden representations of input. In a SIE module, the pre-trained

BERT model is firstly incorporated to embed input text with contextual

information and then a Bi-LSTM is used to further encode sequential in-

formation in the input. The HRNA module after these branches is used to

capture the complex relationships among input chief complaint text and

hierarchical category descriptions before the MLP for final classification.

The attention mechanism in the HRNA module enables the module to pay

more attention to those informative words in input sequences. The details

of the SIE and HRNA modules are elaborated in Section 3.2.3 and Section

3.2.4.

The classification procedure for a given chief complaint text c works as
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follows. Firstly, c is fed to the chief complaint branch to obtain its hidden

representation h̃c. Then for each possible sub category s ∈ S with its cor-

responding main category m ∈ M , the corresponding descriptions (ds and

dm respectively) are fed to the sub-category and main-category branches to

obtain their hidden representations, denoted as h̃ds and ˜hdm . In this way,

x pairs of category hidden representations (x = |S|) are obtained. After

that, the hidden representation vector of chief complaint h̃c and each h̃ds ,

˜hdm are fed into the HRNA to encode the relationships among the chief

complaint, main-category, and sub-category information by utilizing their

hierarchical structure. Finally the encoded relationships are forwarded to

an MLP to predict the final category label.

3.2.3 Sequence Information Encoder

The objective of SIE is to encode input text to a feature vector represent-

ing its semantics. The popular BERT (Devlin et al., 2018) model is chosen

as the main embedding mechanism. BERT is one of the state-of-the-art

pre-trained language representation models that is able to capture contex-

tual information and utilize them to represent words from input. BERT

has been widely used in many downstream NLP tasks (Radford et al.,

2018) while requiring minimal modification of its architecture, which can

be briefly considered as a stack of transformer encoders (Vaswani et al.,

2017) containing self-attention layer, normalization layer and feed-forward

neural networks.

The transformer encoder firstly tokenizes input text into a sequence of

tokens based on a large pre-defined dictionary, before being sent to an

embedding layer which creates a large lookup matrix through learning.

Each row of the lookup matrix represents the embedding vector of each
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token. Similarly, BERT also embeds positional information of input tokens

and segments. The final input sequence representation, the summation

of word embedding, position embedding, and segment embedding, is then

forwarded to a self-attention layer to emphasize on more informative words

by looking at other words in the input sentence. The output of the attention

layer is then normalized and fed to a feed forward neural network.

In this framework, the input sequence for the BERT model is constructed

by adding a classifier token [CLS] at the beginning of each input text and

a sentence separator token [SEP] at the end. For example, the hidden

representation Ec for a given chief complaint text c is obtained as follows:

Ec = BERT ([CLS], c1, c2, ..., ct, ..., [SEP ]), (3.1)

where ct denotes different tokens in the chief complaint text. The input

sequence is truncated if longer than a given length, or padded using the

padding token [PAD] otherwise. The BERT output Eds from the sub-

category branch for sub category s and the BERT output Edm from the

main-category branch for main category m are obtained in the same way

as in Equation (3.1). Note that the same BERT model is used in all the

three branches.

Although BERT model is designed to capture the sequential information of

input text, Wang et al. (2020) and Liu et al. (2020c) argue that transformer-

based models perform poorly on capturing relative distant information

among tokens. In order to alleviate this problem, a specific RNN model,

Bi-LSTM, is used to better capture the sequential relationship of the in-

put. While capable of encoding sequential relationship, conventional RNN

however usually suffers from the vanishing gradient problem and hence can

hardly capture the information from long input sequences. LSTM model
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(Hochreiter and Schmidhuber, 1997) is introduced to solve this problem by

proposing a memory cell and three gates to keep history information selec-

tively when processing the sequence. For example, in the chief complaint

branch, LSTM model is defined as follows:

f tc = σ
(
WfE

t
c + Ufh

t−1
c + bf

)
(3.2)

qtc = σ
(
WiE

t
c + Uih

t−1
c + bi

)
(3.3)

mt
c = f tc ◦mt−1

c + qtc ◦ tanh
(
WaE

t
c + Uah

t−1
c + ba

)
(3.4)

otc = σ
(
WoE

t
c + Uoh

t−1
c + bo

)
(3.5)

htc = otc ◦ tanh
(
mt
c

)
, (3.6)

where mt
c denotes the memory cell state, W and U for each gate denote the

learnable weight matrix, b for each gate denotes the learnable bias vector,

σ denotes the sigmoid function, ◦ denotes the element-wise multiplication,

and htc denotes the hidden state output at current timestep. At each time

step t, after receiving Et
c from BERT, forget gate f tc from LSTM block

firstly selects whether to keep or forget the history. Then input gate qtc

determines whether there is some useful information in the input token at

current timestep Et
c needed to update the memory cell state. Finally output

gate otc decides what information to output. Note that instead of encoding

the input from the beginning to the end, Bi-LSTM encodes the same input

from both directions and concatenates into the final representation h̃tc for

each timestep t. It is also noted that the same Bi-LSTM model is used for

both the sub-category branch and the main-category branch, which differs

from the Bi-LSTM model used for the chief complaint branch.
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3.2.4 Hierarchical Relational Network with Attention

The idea of simple relational network is proposed by Raposo et al. (2017) for

relational reasoning. Santoro et al. (2017) applies the network to solve the

Visual Question Answering (VQA) task by finding the relationship among

objects in the picture and the question text. It is shown that relational net-

work is able to effectively learn the relationships among objects at the same

time while ignoring their orders. Given an object set o = (o1, o2, ..., on),

the simplest relational network is defined as follows:

r = fθ(
∑
i,j

gϕ(oi, oj)), (3.7)

where fθ is an MLP capturing the relationships between each object pair

and gϕ is also an MLP capturing the overall relational information.

In this problem, strong semantic relationships exist among the chief com-

plaint text and the descriptions of its hierarchical labels. Furthermore,

relationships also exist between the two types of descriptions themselves:

sub-category and main-category descriptions. Capturing these relation-

ships is critical for effectively tackling the problem. Inspired by the work

of Santoro et al. (2017), the HRNA module is devised to capture these

complex relationships using several relational network-like structures with

a hierarchical structure and an attention mechanism.

After getting the hidden representations for each branch, attention mech-

anism is firstly applied to the Bi-LSTM outputs which aids in capturing

the pivotal words that contribute more to the complete semantics of a sen-

tence. For example, attention mechanism is applied to the output of the
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chief complaint branch as follows:

utc = tanh(Whh̃
t
c + bh) (3.8)

αhtc =
exp

(
utc

⊤
vc

)
∑

t exp
(
utc

⊤vc
) (3.9)

pc =
∑
t

αhtch̃
t
c. (3.10)

Each hidden state h̃tc at timestep t is firstly fed into a single fully connected

layer with tanh as the activation function to obtain hidden representation

utc. Then, a learnable vector vc is used to obtain the similarity score by

multiplying with each hidden representation utc. Function softmax is then

applied to calculate the weight for each hidden state. The final representa-

tion of the input text, pc, is the weighted sum to all the hidden states based

on their weights (see the following equations for details). The weights cal-

culated this way represent the importance level of each word in the input

text. The attention mechanism is applied similarly to the sub-category

branch and the main-category branch to calculate pds and pdm . Note that

separate fully connected layers and learnable vectors are utilized for each

branch.

A hierarchy of several relational network-like structures is used to capture

the complex relationships among the encoded chief complaint text and its

hierarchical label descriptions after the attention mechanism. Specifically,

this is achieved by capturing the following four types of relationships: 1)

the relationship between chief complaint and main-category descriptions;

2) the relationship between chief complaint and sub-category descriptions;

3) the hierarchical relationship between the first and second relationships;

and 4) the direct relationship among chief complaint, main-category de-

scriptions, and sub-category descriptions. The design aims to decompose
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the complex hierarchical relationship into multiple straightforward and di-

rect relationships that are easily comprehensible and captured by these

structures. This arrangement enables the module to naturally grasp the

intrinsic attributes of hierarchical relational reasoning.

To capture the relationship between the chief complaint text c and each

main category mi, the hidden representation of the chief complaint text

pc is concatenated with the hidden representation of each main-category

description pdmi
, and then fed into a two-layer MLP gϕ1 , as follows:

rcmi
= gϕ1(pc, pdmi

). (3.11)

Note that for each sub category SIE encodes its main category separately

leading to multiple hidden representations for the same main category. In

the HRNA, the average of these hidden representations is used, denoted

as pdmi
. The relationship between chief complaint text c and each sub-

category description is captured similarly as follows:

rcsji
= gϕ2(pc, pd

s
j
i

). (3.12)

For each sub category sji , the resultant rcsji
and rcmi

are concatenated

and fed to another two-layer MLP gϕ3 to capture the hierarchical rela-

tionships between the first two relationships, which are then aggregated

using element-wise sum as follows:

rms =
∑
i∈|M |

∑
j∈|Si|

gϕ3(rcmi
, rcsji

), (3.13)

where the aggregated vector rms represents the relationship between chief

complaint and the hierarchical labels. Similarly, the direct relationship

among the chief complaint, main-category descriptions, and sub-category
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descriptions is captured as follows:

rcms =
∑
i∈|M |

∑
j∈|Si|

gϕ4(pc, pd
s
j
i

, pdmi
), (3.14)

where gϕ4 is a two-layer MLP. Finally, the resultant rms and rcms are con-

catenated and fed into the another two-layer MLP fθ whose output nodes

correspond to each class label (sub category) as follows:

ŝ = fθ(rms, rcms). (3.15)

The label corresponding to the highest score is the final prediction result.

3.2.5 Training Details

In last few years, research works leverage pre-trained models to alleviate the

problem of limited data for downstream tasks. This is done by initializing

network modules with parameters that are trained with more general and

vast amount of data and then fine-tuning the whole model with downstream

data. While fine-tuning improves performance compared with using pre-

trained model only, the training process usually takes much longer time to

properly update the pre-trained model for downstream tasks. Furthermore

it is hard to decide how many epochs that should be used to fine-tune

different models.

Ideally, fine-tuning the pre-trained BERT models of the proposed frame-

work together should provide the best performance. However, this ap-

proach requires excessive GPU memory and time during the training pro-

cess due to the complexity of the framework. Instead, three fine-tuning

methods are proposed in this chapter: 1) randomly fine-tuning one of
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the three branches while freezing the other two branches at each itera-

tion (denoted as Random); 2) fine-tuning only the chief complaint branch

while freezing the other two (denoted as CC); and 3) fine-tuning a separate

BERT model (denoted as Separate) instead of the more complicated pro-

posed model, then using the fine-tuned model in the proposed framework

without further fine-tuning. This separate model simply uses BERT with

a MLP classifier, making it much less resource-demanding for fine-tuning.

Additionally, the popular Cross-Entropy loss function is used to train the

model. Cross-Entropy loss has proven to be very effective when dealing

with multi-class classification problems in both computer vision and NLP.

See Equation 3.16 for the details of the loss function:

loss =
1

K

K∑
k=1

−
∑
s∈S

log
exp (zk,s)

exp
(∑|S|

i=1 zk,i

)yk,s, (3.16)

where K denotes the batch size, z denotes the predicted probability score

for each sub category, and y denotes the one-hot representation for the

ground truth sub-category label.

3.3 Chief Complaint Data and Label Descrip-

tion Extraction

3.3.1 Dataset and Pre-processing

The proposed model is evaluated on two public medical datasets. The first

one is the cMedQA v1.0 dataset provided by Zhang et al. (2017). The

cMedQA dataset, collected from an online Chinese medical Question and

Answering forum, contains questions posed by online patients and their
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answers from certified physicians. Each question is assigned with its main

category, e.g., “Internal Medicine”, and sub category, e.g., “Neurology”

by patients or physicians, which are considered as ground truth labels.

There are around 55, 000 questions in the dataset and 16 main categories

and totally 217 sub categories. Table 3.1 shows some of the representative

examples from the dataset. Note that the original text is translated from

Chinese to English in the table.

Chief Complaint Main Category Sub Category
I have stomach ache and acid reflux. I also have
nausea and diarrhea.

Internal
Medicine

Gastroenterology

My knees are swollen and cannot be bent. They
will tremble when I straighten my legs.

Surgery Orthopedics

My right breast is swollen and painful. There is
a capsule-sized lump under my right armpit and
sometimes I feel pain around it.

Surgery Breast Surgery

I am 41 years old. I have a severe dysmenorrhea
with blood clots. There are discolored spots on
my face. Are these spots caused by dysmenor-
rhea? How to treat it?

Obstetrics Dysmenorrhea

My right ankle is broken. It has been in a plaster
cast for seven days. I felt pain when I stood up
these days.

Surgery Orthopedics

My face is often allergic with red bumps and
swelling.

Dermatology Allergy

I feel pain in my temples when I catch a cold. Internal
Medicine

Respiratory

Table 3.1: Examples of chief complaints and their hierarchical labels from
the cMedQA dataset.

Although the dataset serves multiple purposes, such as question answering,

dialogue generation, and text classification, this chapter focuses solely on

using questions as chief complaints without incorporating answers. Note

that all the questions in the dataset are medical related and usually con-

tain problems, symptoms, conditions, previous diagnosis, etc., which are

essentially the chief complaints of those online patients. In addition, only

samples from the top five main categories and 38 sub categories are used

in the experiments. This is because other categories have significantly less

number of samples. Subcategories containing fewer than 200 samples are

excluded from consideration. Other pre-processing includes removals of all

35



3.3. CHIEF COMPLAINT DATA AND LABEL DESCRIPTION
EXTRACTION

punctuation, emojis, and system generated text, and replacement of all

Chinese characters for numbers with Arabic numbers. Note that stemming

is not required as Chinese language does not have any inflection of words

as English does, e.g. “take vs taken”, or “inject vs injection”. In total,

there are 19, 686 questions in the training set and 10, 858 questions in the

testing set.

The second dataset is the kaMed dataset collected by Li et al. (2021b). The

data are also from Chinese QA forums that have similar architecture of the

cMedQA dataset, containing 63, 754 dialogues. For every dialog, the first

utterance from the patient is taken as the chief complaint text, and the

main-category and sub-category information are stored in the “disease -

grad” tag. There are 13 main categories and 40 sub categories. The non-

applicable sub category “All Department” is not used, leaving 54, 333 chief

complaints. The data is randomly divided into 70% for training and 30%

for testing. In total, there 38, 033 dialogues in the training set and 16, 300

dialogues in the testing set.

Although the two datasets share similarities in format and source—both

derived from Chinese online medical QAs—they differ in the number of cat-

egories and the granularity of annotation. Specifically, the kaMed dataset

contains more main categories (13 v.s. 5 used in cMedQA) and offers a

slightly broader distribution across departments. By evaluating the model

on both datasets, this thesis aims to demonstrate its robustness and gener-

alization capability under different category configurations. Experimental

results show that the “Orthopedics” department achieves the best classifi-

cation performance in both datasets, most likely due to its clearer symptom

descriptions and relatively consistent terminology used by patients.
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3.3.2 Label Descriptions

The cMedQA dataset and kaMed dataset only contain category names or

labels, and there are no detailed descriptions for those categories. While

category names carry some information, such information is insufficient for

the classification task. More information for each category is collected from

existing data, such as medical textbooks and online sources like Wikipedia,

to form comprehensive label descriptions. This section outlines the process

of preparing descriptions for each main category and sub-category.

Main Category Chinese medical book series, namely “Medical Guidance

Books for Clinical Doctor Qualification Examination”, are used to extract

main-category descriptions. The book series are selected because they are

the official guide books for the National Examination for Physicians License

in China, which cover almost every aspect of medical knowledge. The

books are firstly converted to electronic text using OCR technique and

then divided into paragraphs. Manual verification of the OCR output is

conducted for any necessary error corrections. Each paragraph is annotated

with metadata that contains names of chapter, section, and subsections it

belongs to. The sections in the book series have a structure of four level

subsections. Table 3.2 illustrates example paragraphs extracted from the

book series with their chapter and section names at different levels.

Ideally, all the paragraphs in the chapter corresponding to each main cate-

gory in the experiments could serve as category descriptions. However, each

chapter contains thousands of words, which are too lengthy to be input into

the BERT model. Furthermore, not all of these words convey significant

information about the topic in the chapter. Instead, the TF-IDF technique

is utilized to extract the most informative words for the main-category

descriptions. Specifically, for each chapter, the “Jieba” (Sun, 2020) Chi-
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Chapter Level-1
section

Level-2
section

Level-3
section

Level-4
section

Content

Anatomy Locomotor
system

Osteology Classification
of bones

Flat bone Flat bones are plate-
shaped and participate
in the formation of cra-
nial, thoracic, and pelvic
walls. It can also protect
organs, such as skull and
ribs.

Anatomy Digestive
system

Pancreas Distribution
of pancreas

Cauda pan-
creatis

Cauda pancreatis is thin-
ner, running from the
upper left to the left
quarter rib area, and is in
contact with the visceral
surface of the spleen be-
low the splenic hilum.

Internal
Medicine

Heart valve
disease

Aortic valve
stenosis

Complication Body cir-
culation
embolism

Rare, more common in
calcified aortic stenosis.

Surgery Intestinal
obstruc-
tion and
appendicitis

Acute ap-
pendicitis

Anatomy
and phys-
iology of
appendix

Appendix
vein

Inflammation of the ap-
pendix can be through
the appendix vein-colon
vein-superior mesenteric
vein-portal vein-liver.
Therefore, inflammation
of the appendix can
cause portal phlebitis
and liver abscess.

Pathology Local blood
circulation
disorder

Thrombosis Thrombus
outcome

(No Name) The newly formed
thrombus can be soft-
ened, dissolved and
absorbed.

Table 3.2: Example paragraphs from the reference books with chapter and
section names at different levels.

nese text segmentation module is used to tokenize text into Chinese words.

Note that unlike English language there is no space or other symbols that

are used in Chinese to delimit different words and a single Chinese word

may contain one or multiple characters. The Term Frequency (TF) for

each word is calculated according to Equation 3.17 and Inverse Document

Frequency (IDF) according to Equation 3.18 as follows:

tf(wi, d) =
fd(wi)∑
k fd(wk)

(3.17)

idf(wi, D) = log
N

1 + |{d ∈ D : wi ∈ d}|
(3.18)

tf -idf(wi, d,D) = tf(wi, d)× idf(wi, D). (3.19)
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Finally, the top 50 words with highest TF-IDF scores are selected according

to Equation 3.19, and these words are concatenated in order to form the

description of the corresponding main category. Table 3.3 illustrates the

top 10 words for two example main categories.

Ranking
Obstetric Surgery

word TF-IDF word TF-IDF
1 contractions 0.0505 fracture 0.0346
2 reveal 0.0496 choledochus 0.0338
3 fetal head 0.0485 reduction 0.0334
4 stage 0.0476 injury 0.0330
5 uterine orifice 0.0446 spermatic cord 0.0330
6 fetal membrane 0.0442 femur 0.0325
7 fibroids 0.0432 maneuver 0.0323
8 contraception 0.0429 calculus 0.0321
9 hydatidiform mole 0.0424 shank 0.0313
10 parturition 0.0413 closed 0.0313

Table 3.3: Top 10 words with highest TF-IDF scores for main category
“Obstetric” and “Surgery”. Note that some entries in this table consist of
multiple English words because some of the original single Chinese words
are translated into multiple English words.

Sub Category Unlike main-category descriptions, there is no easy way to

extract sub-category descriptions from the guide book series because there

is no one-to-one mapping between sub categories and book sections. In-

stead, entries corresponding to sub-categories from Wikipedia and Baidu

Baike (a Chinese online encyclopedia similar to Wikipedia) serve as sources

for sub-category descriptions. Although not as dedicated as the guide book

series, Wikipedia and Baidu Baike are widely accepted as quasi-professional

references in many domain works. For each sub-category, the summary

paragraphs (usually the first paragraph) of the corresponding entries are

used as the description. The summary paragraph is preferred over the

whole document because summaries for sub-categories typically cover suf-

ficient information, while summaries for main categories are generally more

abstract. Furthermore, it is not necessary to select top words based on TF-

IDF scores for sub-category descriptions as the summaries are much shorter.
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Table 3.4 shows example descriptions for main category “Surgery” and sub

category “Neurosurgery”. Note that if there is no corresponding chapter

for a main category, the same approach is used to enrich the main-category

description.

Surgery Neurosurgery
fracture, choledochus, reduction, in-
jury, spermatic cord, femur, maneu-
ver, calculus ,shank closed, shoul-
der joint, periosteum, fire burn, ca-
put femoris, fibula, luxation, gall-
bladder, lung cancer, conservative
therapy, abduction, gypsum, urinary,
cramp, bonetumor, kidney cancer,
humerus, wound, dehydration, pan-
creatitis, colorectal cancer, cut, post-
operative, diseased limb, traction,
the wounded, germ, injury, pancre-
atic duct, articulation of knee, in-
testinal obstruction, radial bone, ab-
ducent nerve, tourniquet, boundege,
tendon, appendicitis, nephrophthisis,
gastric cancer, hydronephrosis, exten-
sor muscle

Neurosurgery or neurological surgery,
known in common parlance as brain
surgery, whose main treatment
method is based on operation. It
applies unique neurosurgery research
methods to study nervous system
including brain, spinal cord, central
and peripheral nervous system, and
cerebrovascular system. The related
diseases or injuries will also be
concerned by neurosurgery such as
skull traumas, meningitis, brain tu-
mors, malformation, certain genetic
metabolic disorders or dysfunction
diseases, e.g. epilepsy, Parkinson’s
disease, neuralgia.

Table 3.4: Example descriptions of main category “Surgery” and sub cat-
egory “Neurosurgery”.

3.4 Experimental Results

3.4.1 Experimental Settings

The PyTorch library (Paszke et al., 2019) is used to implement the frame-

work, utilizing BERT-Base-Chinese as the pre-trained model, which con-

sists of 12 transformer encoders with 12 heads for multi-head attention.

The hidden dimension of the transformers is 768 and the maximum in-

put sequence length allowed is 512. Single layer is used for Bi-LSTM with

hidden size set to 256. The hidden size for MLP is set to 2048. Adam op-
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timizer (Kingma and Ba, 2014) is used to train the model with automatic

mixed precision method to accelerate the training process. The batch size

for training is set to 10. Learning rate warm-up proportion is set to 0.1

and weight decay coefficient is set to 0.01. Drop out rate is set to 0.1. The

number of epochs for training is set to 10 for time efficiency.

The popular F-measure for NLP tasks is employed to compare the frame-

work with other models. Since the task is a multi-class classification prob-

lem, both macro F1 and micro F1 are utilized. Additionally, macro pre-

cision and macro recall are provided for further insights. To evaluate the

effectiveness of the proposed framework, the performance is compared with

the following baselines.

BERT This baseline model only contains a basic vanilla BERT model

followed by a single-layer feed-forward neural network serving as the classi-

fier. This is the most straight forward way of using Large Language Model

(LLM). The model only takes chief complaint text as input without using

hierarchical label information. The hyperparameters used in this model are

the same as ours.

P-tuning Introduced by (Liu et al., 2023b), the method exploits prompt

engineering by integrating learnable variables into the embedded input to

create continuous prompts. The model is proven to be effective to im-

prove the performance of pre-trained language models in downstream tasks.

Eight trainable prompts are integrated into BERT, positioned before the

original input. All the other settings are the same as the BERT baseline.

BERT+LSTM This baseline model consists of BERT and Bi-LSTM. This

is the simplest model combining BERT with Bi-LSTM, which is often used

in many NLP tasks. The hidden states at different time step from Bi-LSTM

are concatenated before being fed to a single layer feed forward network for
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final classification. The hyperparameters used in this model are the same

as ours.

BERT+GRU GRU is another widely used RNN module that has similar

gate structure as in LSTM and often produces comparable results (Cho

et al., 2014). This baseline consists of base BERT module and Bi-GRU,

similar to the baseline BERT+LSTM. The hidden states at different time

step from Bi-GRU are concatenated before being fed to a single layer feed

forward network for final classification.

BERT+GRU+Attention This baseline adds attention mechanism to

model BERT+GRU. Attention (Vaswani et al., 2017) mechanism becomes

much more popular since introduced and proven to be very effective when

using with base encoding methods such as BERT.

ChatGPT ChatGPT serves as the cutting-edge conversational AI devel-

oped by OpenAI. As LLM, ChatGPT generates responses that closely re-

semble human conversation on a wide array of subjects. The default gpt-

3.5-turbo model (Brown et al., 2020) with manually designed prompt is

used as another baseline model. The prompt is structured as follows: “Here

is the category list: [Respiratory Medicine, Gynecology, ...]. Please select

the category that best matches the following chief complaint: chief com-

plaint text. Kindly respond with only the category name.” This prompt

enables ChatGPT to identify the most suitable class label based on the

given chief complaint text.

LEHS The technique proposed by Miyazaki et al. (2019) shares a similar

idea, utilizing the hierarchical structure of labels as additional information

to enhance classification performance. The same hyperparameters provided

by the authors are employed, except for class weights. The authors suggest

that using class weights for the training can improve the performance.
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However, experiments indicate that omitting class weights yields better

results, likely due to the more balanced nature of the data compared to

that used in their study. Therefore, only results without class weights are

presented in this chapter.

HE-HMTC This technique proposed by Ma et al. (2022) uses a com-

bined text representation incorporating a Bi-GRU-based text representa-

tion, along with a graph embedding based on the hierarchical category

structure, and a word embedding based on category names. In this chapter,

the category names are enriched by their corresponding label descriptions.

Jieba (Sun, 2020) tokenization tool and Chinese word2vec (Qiu et al., 2018)

are also used to represent category names and input text.

LA-HCN The technique proposed by Zhang et al. (2022) incorporates a

unique label-based attention module that hierarchically extracts significant

information from the input text, leveraging the hierarchical label structure

across different levels. In contrast, the focus of this chapter is on the

second-level label classification results (sub-category in this application),

as it is argued that this level is the most useful in real-world scenarios.

3.4.2 Ablation Studies

Ablation studies are conducted to evaluate the effectiveness of the two

components in the proposed framework: SIE and HRNA. The model is

assessed using two configurations, SIE-single and SIE-multiple. SIE-single

consists only of the chief complaint branch, with the sub-category and

main-category branches removed from the SIE module. The last hidden

state output from each direction of the Bi-LSTM is concatenated and then

fed into the final MLP for classification. In contrast, SIE-multiple retains all
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three branches but omits the HRNA module. The last hidden state outputs

of the Bi-LSTM for each branch are concatenated and sent to the final

MLP for classification, allowing an evaluation of the utility of hierarchical

label information. The SIE-single model serves as a base model, similar

to conventional text classification models that lack additional information,

such as expert knowledge. The final MLP structure remains consistent

across the other models.

Model Micro F1 Macro F1 Macro Precision Macro Recall
SIE–single 0.563 0.448 0.508 0.456

SIE–multiple 0.585 0.506 0.519 0.523
SIE+HRNA 0.644 0.618 0.608 0.641

Table 3.5: Ablation studies evaluating different components of the proposed
framework on the cMedQA dataset.

Model Micro F1 Macro F1 Macro Precision Macro Recall
SIE–single 0.741 0.678 0.700 0.681

SIE–multiple 0.759 0.717 0.731 0.714
SIE+HRNA 0.796 0.768 0.768 0.769

Table 3.6: Ablation studies evaluating different components of the proposed
framework on the kaMed dataset.

The ablation study results are shown in Table 3.5 and 3.6. On the cMedQA

dataset, the proposed framework achieves 0.644 for micro F1 and 0.618 for

macro F1 which is the highest among all the models compared. On the

kaMed dataset, this framework also achieves the highest micro F1 score

and macro F1 score, which are 0.796 and 0.768. Both micro F1 and macro

F1 scores drop significantly when the HRNA module is removed. The same

performance improvement can be seen for macro precision and macro re-

call as well. The ablation results clearly show that using HRNA to capture

the relationships from hierarchical structure of label descriptions can sig-

nificantly improve the overall performance of chief complaint classification.

From the tables, it is evident that the additional label information is ben-

eficial for classifying chief complaint text, even when simply concatenated.
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3.4.3 Comparisons to Baselines

The comparison of this framework with the state-of-the-art models on the

two datasets is summarized in Table 3.7 and Table 3.8. As shown in these

tables, the model outperforms all other baselines on both datasets for al-

most every evaluation metric. This is due to the effective combination of

the SIE and HRNA module, resulting in significant performance improve-

ment over LEHS and LA-HCN. Specifically, compared to the LEHS model,

the model improves the micro F1 score by more than 7% on the cMedQA

dataset and 5% on the kaMed dataset. In addition, this model improves the

macro F1 score by over 12% on the cMedQA dataset and 5% on the kaMed

dataset compared to the LEHS model. Compared to the LA-HCN model,

the model still performs the best on all four metrics in both datasets. This

model improves the micro F1 score by 7% on the cMedQA dataset and

2% on the kaMed dataset. Furthermore, the model improves the macro F1

score by nearly 5% on the cMedQA dataset and 2% on the kaMed dataset

compared to the LA-HCN model. Compared to the HE-HMTC model,

the model still performs competitively. This model improves the macro F1

score for more than 4% on both dataset. As for the micro F1 score, the

model performs better on the kaMed dataset, while the HE-HMTC model

performs better on the cMedQA dataset. One potential explanation to

this is that the HE-HMTC model splits the classification task into multi-

ple tasks, using separate models for each level of label classification. The

results of the current level are then used in the classification task of the

next level. And there are only five main categories in the cMedQA dataset,

which are much less than seven main categories in the kaMed dataset. It is

observed that the baselines relying solely on LLMs such as BERT and Chat-

GPT perform poorly in this classification task. One potential explanation

is that these LLMs are not trained to effectively utilize hierarchical label
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information, which hinders their ability to accurately comprehend and clas-

sify chief complaint text. The P-tuning approach does improve the BERT

model in the experiments but still has a significant difference compared to

ours. Compared to the other BERT based models such as BERT+LSTM,

BERT+GRU, and BERT+GRU+Attention, this model still provides sig-

nificant improvement. The performance gap between the models without

a hierarchical structure (BERT, P-tuning, BERT+LSTM, BERT+GRU,

BERT+GRU+Attention, ChatGPT) and those with a hierarchical struc-

ture (LEHS, LA-HCN, HE-HMTC, and the proposed model) is evident.

This emphasizes the critical role of incorporating the hierarchical structure

of label information into the model for improved performance.

Model Micro F1 Macro F1 Macro Precision Macro Recall
BERT 0.472 0.416 0.412 0.433

P-tuning 0.552 0.505 0.515 0.519
BERT+LSTM 0.548 0.488 0.492 0.501
BERT+GRU 0.526 0.458 0.452 0.475

BERT+GRU+Attention 0.575 0.405 0.493 0.414
ChatGPT 0.466 0.393 0.444 0.443

LEHS 0.566 0.495 0.502 0.510
LA-HCN 0.574 0.569 0.541 0.613

HE-HMTC 0.668 0.575 0.591 0.596
Ours 0.644 0.618 0.608 0.641

Table 3.7: Evaluation results for different baselines on the cMedQA dataset.

Model Micro F1 Macro F1 Macro Precision Macro Recall
BERT 0.704 0.671 0.676 0.669

P-tuning 0.743 0.708 0.714 0.709
BERT+LSTM 0.745 0.711 0.718 0.709
BERT+GRU 0.738 0.701 0.706 0.700

BERT+GRU+Attention 0.764 0.701 0.725 0.705
ChatGPT 0.583 0.506 0.559 0.511

LEHS 0.755 0.711 0.723 0.709
LA-HCN 0.774 0.747 0.735 0.761

HE-HMTC 0.778 0.727 0.759 0.738
Ours 0.796 0.768 0.768 0.769

Table 3.8: Evaluation results for different baselines on the kaMed dataset.
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3.4.4 Evaluation of Fine-tuning Methods

To ensure fair comparison, previous experiments are carried out in a way

that the base BERT model is not updated during training (denoted as

Frozen) while the rest of the models are updated with the training data.

In this section, proposed different ways (see Section 4.2.6) are evaluated on

the cMedQA dataset to fine-tune the proposed model aiming to improve

the overall performance with limit computational resources such as GPU

memory and time.

Fine-tuning Micro F1 Macro F1 Macro Precision Macro Recall
Frozen 0.644 0.618 0.608 0.641

Random 0.656 0.646 0.643 0.667
CC 0.679 0.670 0.667 0.695

Separate 0.678 0.672 0.650 0.705

Table 3.9: Results on different fine-tuning methods on the cMedQA
dataset.

Table 3.9 shows that fine-tuned models always outperform the pre-trained

model. Furthermore, only fine-tuning the chief complaint branch (CC) per-

forms much better than randomly updating different branches (Random).

The result of fine-tuning a separate model before loading to the proposed

framework (Separate) is similar to fine-tuning the chief complaint branch.

Possible explanation for this could be the fact that chief complaints cover

a large variety of words while words for category descriptions are limited.

Hence focusing fine-tuning with chief complaint text converges to better

results. Note that both CC and Separate methods use chief complaint text

only for fine-tuning.
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Figure 3.2: Words from chief complaints with attention values. Note that
words with higher attention values are highlighted with darker red.

3.4.5 Effectiveness of Attention Mechanism

As introduced in Section 3.2.4, attention mechanism is able to assign higher

weights to the informative words from the input. This section visualizes

the learned attentional scores for multiple examples of chief complaints

to verify the effectiveness of the attention mechanism used in the HRNA

module.

Figure 3.3: Words from sub-category descriptions with attentional scores.
Note that words with higher attentional scores are highlighted with darker
red.

Figure 3.2 highlights the important words according to their attentional

scores from the chief complaint branch of the proposed framework. It is
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Ranking TF-IDF words Attention words
1 contractions cervical
2 reveal ovary
3 fetal head amenorrhea
4 stage uterus
5 uterine orifice fetal heart
6 fetal membrane villus
7 fibroids contraception
8 contraception early pregnancy
9 hydatidiform mole gravida
10 parturition bleeding

Table 3.10: Top 10 words with highest TF-IDF scores and attentional scores
for main category “Obstetric”. Note that some entries in this table consists
of multiple English words because some of the original single Chinese words
are translated into multiple English words.

clear that the attention mechanism effectively captures significant words

from the chief complaint that are closely related to the corresponding main

category and subcategory. For instance, given the chief complaint under

sub category “Gastroenterology”, “I have stomachache and acid reflux. I

also have nausea and diarrhea.”, words that are common symptoms for

digestive diseases, such as “stomachache”, “acid reflux”, “nausea”, and

“diarrhea”, have higher attentional scores (highlighted in different shades

of red). Similarly, Figure 3.3 highlights the important words according

to their attentional scores from the sub-category branch of the proposed

framework.

Table 3.10 shows the comparison of the top 10 words with highest TF-IDF

scores and with highest attentional scores respectively from an example

main-category description, “Obstetric”. The attention mechanism re-ranks

the description words based on their relevance to chief complaints, placing

terms that are more commonly used by patients at the top. For example,

words such as “ovary”, “gravida”, “bleeding” are more commonly used by

patients than those with higher TF-IDF scores.
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3.5 Conclusion

In this chapter, a novel deep-learning-based framework is proposed that

utilizes the hierarchical structure of labels with external expert knowledge

to classify a specific type of medical text, chief complaint, into different

categories that usually correspond to departments or specialized areas in

the context of online healthcare systems. The proposed framework con-

sists of three branches: chief complaint branch, main-category branch, and

sub-category branch, along with two modules: Sequence Information En-

coder and Hierarchical Relational Network with Attention module. This

framework effectively embeds text from both chief complaint and hierar-

chical structure of label descriptions extracted from professional medical

resources, leveraging the hierarchical structure of labels by capturing com-

plex relationships among label descriptions and input text with attentional

scores. Experimental results on the cMedQA and kaMed datasets demon-

strate the capability of the proposed framework, outperforming the baseline

models by a significant margin on almost all metrics used. Future work will

focus on enhancing the model within the medical domain by extending it

to other types of medical narratives such as diagnostic notes and discharge

summaries. In addition, I plan to investigate more sophisticated meth-

ods for incorporating expert knowledge, such as using knowledge graphs or

ontology-based representations, for further improvement.
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Chapter 4

Multi-turn Medical Dialogue

Generation Using Alternating

Recurrent Wasserstein

Autoencoders

Having established a robust framework for classifying chief complaint texts,

chapter 4 transitions to the next critical aspect of patient-provider inter-

actions: medical dialogue generation. While accurate classification of chief

complaints lays the groundwork for effective triage and referral processes,

the ability to generate contextually appropriate medical dialogues is essen-

tial for facilitating meaningful communication between patients and health-

care providers. In this chapter, a novel framework is introduced to simulate

patient-doctor conversations, consisting of two identical models with differ-

ent parameters to effectively represent the distinct roles of doctors and pa-

tients. By integrating narrative medical knowledge from clinical guidelines

and employing advanced techniques such as a Wasserstein auto-encoder,
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the framework generates coherent and contextually relevant dialogues that

reflect both medical terminology and patients’ informal expressions.

4.1 Introduction

Dialogue generation is one of the popular research topics in the area of Nat-

ural Language Processing (NLP). Multi-turn dialogue frameworks, unlike

single-turn interactions, require explicit modeling of dialogue context—

the sequential dependency between utterances—to maintain coherence and

relevance across turns. This is especially critical in medical dialogues,

where context (e.g., symptom progression, patient history) directly influ-

ences diagnostic and communicative outcomes. In healthcare, adopting

automatic dialogue generation techniques has significant benefits, such as

aiding doctors in gathering patient information, potentially reducing labor

costs (Tang et al., 2016), assisting doctors in making clinical decisions (Liu

et al., 2017; Xia et al., 2020), providing patients with access to health-

care services when face-to-face appointments with doctors are restricted

(Varshney et al., 2023), etc.

The application of general dialogue generation techniques to the healthcare

domain has significant challenges due to the inherent nature of medical

text. Often unstructured or semi-structured medical text contain infor-

mation that demands extensive domain-specific knowledge for proper com-

prehension. Moreover, conversations between physicians and patients vary

greatly: 1) physician narratives often employ acronyms and abbreviations

for both common and professional medical terminology; 2) patient narra-

tives usually are less accurate because of the usage of informal and vague

words instead of medical jargon, or providing information without proper

52



4.1. INTRODUCTION

context. Dialogue generation approaches need to be able to accommodate

these differences to generate proper and meaningful responses according to

the current speaking role.

In previous works, in order to understand the medical-related knowledge

in the dialogue utterances, most medical dialogue generation methods re-

quire large human annotations which describe the corresponding utter-

ances’ state, action and related entities, etc. (Liu et al., 2022; Varsh-

ney et al., 2023). These human-annotated data are normally in a well-

structured form such as a knowledge graph. Creating these well-structured

annotated data requires vast human efforts. Furthermore, traditional sequence-

to-sequence dialogue generation models are more likely to produce unin-

formative and repetitive responses (Sato et al., 2017) which is not suitable

for medical scenarios. To mitigate this issue, some researchers have pro-

posed Conditional Variational Autoencoder (CVAE) to generate diverse

responses by utilizing a latent variable to capture the underlying informa-

tion in the given context (Sohn et al., 2015; Zhao et al., 2017; Shen et al.,

2018). However, CVAE-based dialogue generation models often face the

challenge of “posterior collapse”. To address this challenge, the dialogue

models based on the Wasserstein Auto-Encoder are proposed, modeling

the prior and posterior distributions by training a Wasserstein GAN (Gu

et al., 2019; Zhang et al., 2020a). Despite producing promising output,

dialogue models presented by previous works usually ignore the different

behaviors between the two roles, physician and patient, by simply directly

concatenating the utterances from both speaking roles as dialogue history

(Gu et al., 2019; Zhang et al., 2019).

This chapter aims to devise a multi-turn dialogue generation framework

that incorporates medical knowledge in a flexible way based on WAE. Nar-

rative medical data is utilized to supplement the generation of medical-
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related dialogues. Unlike well-structured human-annotated data, narrative

data is much easier to use, as it does not require complicated or costly pro-

cessing. To properly distinguish between the roles of patients and physi-

cians in medical conversations, two separate network models with the same

architecture are employed to independently capture these different speak-

ing behaviors. A memory mechanism is used to enable interaction between

the two models. Specifically, a novel dialogue generation framework for

patient-doctor dialogue generation is proposed by introducing two WAE-

based language models to model the roles of patients and doctors separately.

Each language model consists of three branches: the context branch, re-

sponse branch, and knowledge branch. These branches take input from

dialogue history, response utterance, and searched knowledge, respectively,

which are firstly encoded by using an utterance encoder and context en-

coder and then a conditional Wasserstein Auto-Encoder to model the prior

and posterior distributions based on the three inputs. Two discriminators

are used to minimize prior distribution and posterior distributions.

The proposed framework effectively distinguishes between the different

roles in patient-doctor conversations. Compared with other sequence-to-

sequence models also based on VAE structures, the framework captures the

latent information of input utterances more effectively and generates more

diverse responses. Crucially, by integrating external medical knowledge into

the knowledge branch of each WAE model, the framework grounds gener-

ated responses in evidence-based medicine. This reduces hallucinations and

ensures alignment with domain-specific standards, a critical requirement

for clinical applicability. The experimental analysis confirms that remov-

ing this knowledge integration significantly degrades performance across all

key metrics, demonstrating its essential role in maintaining both medical

accuracy and conversational quality. Evaluation of the model on two real
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medical dialogue datasets demonstrates that it outperforms other baseline

methods.

The main contributions presented in this chapter can be summarized as

follows:

1. A multi-turn dialogue generation model is proposed, consisting of two

separate models to represent patient-doctor roles in conversations,

connected through a memory mechanism.

2. A Knowledge-based Conditional Wasserstein Auto-Encoder is em-

ployed in each model to effectively integrate dialogue history and

external medical knowledge. This approach ensures that the frame-

work generates responses that are both contextually accurate and

medically relevant, while also enhancing the diversity of generated

responses.

3. The proposed framework is evaluated using two real-world medical

dialogue datasets, demonstrating superior performance compared to

other baseline models.

4.2 Methodology

4.2.1 Problem Definition

Given a multi-turn dialogue c between a patient and a doctor, the dialogue

can be represented as follows: c = {p1, d1, p2, d2, ..., pn, dn, ..., pN , dN} where

N denotes the maximum turn number, pn = {wpn
1 , wpn

2 , ..., wpn
m , ..., wpn

|pn|} de-

notes the utterance in nth turn from the patient, dn = {wdn
1 , wdn

2 , ..., wdn
m , ..., wdn

|dn|}

denotes the utterance in nth turn from the doctor, and wm represents the
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mth word in the utterance. The proposed framework aims to model these

two different roles by using two different language models whose archi-

tectures are identical. The language model for patients is defined as Lp

and the language model for doctors is defined as Ld. These two language

models are connected to each other by using a memory mechanism. The

probability distribution of generating utterances pn and dn from these two

language models can be defined as follows:

N∏
n=1

PLp (pn | p<n, d<n, K,memory state)

=
N∏
n=1

M∏
m=1

PLp

(
wpn
m | p<n, d<n, w

pn
≤m, K,memory state

)
,

(4.1)

N∏
n=1

PLd
(dn | d<n, p≤n, K,memory state)

=
N∏
n=1

M∏
m=1

PLd

(
wdn
m | d<n, p≤n, wdn

≤m, K,memory state
)
,

(4.2)

where K denotes the knowledge based on the input utterances. The goal

is to maximize these two probability distributions.

4.2.2 Overview

Figure 4.1 illustrates the overall structure of the proposed framework. The

Lp language model represents the patient’s role and the Ld language model

represents the doctor’s role. The proposed framework combines these two

language models in an alternating order to capture and learn the speaking

behavior of both patient and doctor through memory recurrence.

Each language model consists of three branches: the context branch, the
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Figure 4.1: Overall architecture of the proposed framework.

response branch, and the knowledge branch. The input of the context

branch is the dialogue history denoted as x, which includes multiple utter-

ances exchanged between the patient and the doctor. The response branch

takes the response utterance r as its input, representing the ground truth

for the current turn. The knowledge branch receives context-dependent

documents K, sourced from a structured medical guidance book through

a detailed document selection process outlined in Section 4.3.2. Both the

context branch and knowledge branch utilize an utterance encoder and a

context encoder for input encoding. The utterance encoder processes each

utterance, while the context encoder further encodes the cumulative in-

formation from all utterances after the initial processing by the utterance

encoder. In the response branch, where only one utterance is present, en-

coding relies solely on the utterance encoder. Following the encoding of all

inputs, a knowledge-based conditional Wasserstein Auto-Encoder is em-

ployed to model the response distributions, taking into consideration both

contextual information and external knowledge. To be more specific, the

knowledge represented by the searched documents and dialogue history are
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used to separately model the prior distributions of the response. Further-

more, the dialogue history, searched documents, and response are combined

to model the posterior distribution of the response. The knowledge-based

conditional Wasserstein Auto-Encoder is employed to reconstruct the re-

sponse utterance from a latent variable sampled from the posterior distri-

bution, aligning the two prior distributions to be closer. This alignment

ensures similar prior distributions with the posterior distribution during

the inference stage. Further details regarding the utterance encoder, con-

text encoder, and knowledge-based conditional Wasserstein Auto-Encoder

are provided in Section 4.2.3 and Section 4.2.4. The detailed structure of

each language model is illustrated in Figure 4.2.

Figure 4.2: Detailed architecture of each language model.

Regarding memory recurrence, during the generation of each response in

a complete dialogue, a linear transformation is applied to the final hidden

state of the decoder, and the result is stored in a memory list. Subse-

quently, when generating the next utterance in the dialogue, this memory

state serves as the input for the context encoder. This memory state of-

fers an alternative representation of the corresponding response utterance.

Consequently, in the generation of the next turn, both the memory state

and the current context are utilized as inputs. The detail of this memory

mechanism is introduced in Section 4.2.5
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4.2.3 Input Representation

Bidirectional Gated Recurrent Unit (Bi-GRU) is selected as the encoder to

the input due to its ability to model the sequential dependencies in both

forward and backward directions, thus providing a richer contextual repre-

sentation of each utterance. BiGRU has been widely adopted in dialogue

systems, as it can effectively handle complex dependencies across words

within an utterance by considering both past and future tokens.

In the proposed framework, the BiGRU-based utterance encoder processes

each utterance xi within the dialogue history, capturing both forward and

backward context as shown in Equations 4.3 and 4.4. The input utterance

is first tokenized into a sequence of words, with each word wm being repre-

sented as a word embedding ew
xi
m . The hidden states from the forward and

backward GRUs are concatenated to form hutti , the final representation of

the ith utterance. This ensures that the model can leverage the informa-

tion from the entire utterance, enhancing its ability to capture long-term

dependencies, which is essential for understanding medical dialogues.

The utterance representations generated by the BiGRU are further pro-

cessed by a unidirectional GRU, referred to as the context encoder. This

context encoder captures the sequential relationships between utterances

within the dialogue. The hidden state of the context encoder at each

timestep, hx, represents the cumulative information of the dialogue up to

the current turn. Similarly, the same BiGRU is used to encode searched

documents into their respective representations hk, following the same en-

coding process used for dialogue utterances.

For the response branch, where only a single utterance is present, the con-

text encoder is not necessary. Instead, the concatenation of the forward
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and backward hidden states of the BiGRU is used directly as the response

representation hr, as described in Equation 4.5. This approach ensures that

both the dialogue history and external knowledge are efficiently represented

for subsequent stages in the framework.

−−→
hutti,m =

−−−−→
GRUutt

(−−−→
hutti,m−1, e

w
xi
m

)
, (4.3)

←−−
hutti,m =

←−−−−
GRUutt

(←−−−
hutti,m−1, e

w
xi
m

)
, (4.4)

hutti = [
−−→
hutti,|xi|;

←−
hutti,1 ], (4.5)

hi = GRUcxt
(
hi−1, h

utt
i

)
. (4.6)

The bidirectional nature of the BiGRU allows the model to capture both

preceding and succeeding contextual information for each word, which is

crucial in medical dialogue systems, where accurate interpretation often de-

pends on both prior and subsequent tokens in an utterance. By processing

the input utterances bidirectionally, the BiGRU encodes richer, more infor-

mative representations that facilitate improved downstream performance in

generating contextually appropriate responses.

4.2.4 Knowledge-based Conditional Wasserstein Auto-

Encoder

The Knowledge-based Conditional Wasserstein Auto-Encoder (CWAE) is

utilized to generate responses by modeling both the contextual and external

knowledge influences. This encoder excels in capturing the variability and

complexity of human language, particularly in medical dialogues, where

responses are heavily influenced by both the dialogue history and external

medical knowledge, such as searched documents or patient-specific infor-
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mation. The CWAE consists of several interconnected networks, including

the Recognition Network, Prior Network, Knowledge Network, and Dis-

criminators, which is introduced below.

Recognition Network

The Recognition Network is responsible for modeling the posterior distri-

bution qθ(z|x, r,K). It receives as input the concatenation of hidden states

hx, hr, and hk, which represent the context, the response, and the knowl-

edge, respectively. The network outputs the mean µ and the logarithm of

the variance log σ2 of a Gaussian distribution.

The random noise ϵ is sampled from this Gaussian distribution using the

re-parameterization trick, allowing for efficient gradient propagation dur-

ing training. The output of the Recognition Network is then fed into the

generator Q to produce the latent variable z. The procedure for obtaining

ϵ is defined in Equation 4.7.

z = Qθ(ϵ), ϵ ∼ N (ϵ;µ, σ2I),

 µ

log σ2

 = Wgθ




hx

hr

hk.


 + b. (4.7)

Prior Network

The Prior Network models the context-dependent prior distribution pϕ(z|c).

It takes as input the context representation hc and produces the latent vari-

able z̃. Similar to the Recognition Network, it also outputs the mean and

variance parameters from which random noise ϵ̃ is sampled. The process is
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detailed in Equation 4.8.

z̃ = Gϕ(ϵ̃), ϵ̃ ∼ N
(
ϵ̃; µ̃, σ̃2I

)
,

 µ̃

log σ̃2

 = W̃fϕ (hc) + b̃. (4.8)

Knowledge Network

The Knowledge Network generates the document-dependent prior distribu-

tion pω(z|K). It processes the knowledge representation hk to produce the

latent variable ẑ. Similar to the previous networks, it outputs the mean

and variance parameters for sampling the noise ϵ̂, as shown in Equation

4.9.

ẑ = Mω(ϵ̂), ϵ̂ ∼ N
(
ϵ̂; µ̂, σ̂2I

)
,

 µ̂

log σ̂2

 = Ŵfω (hk) + b̂. (4.9)

Discriminators

Two adversarial discriminators, denoted as Dx and Dk, are introduced to

align the approximate posterior distribution with the prior distributions

from the Prior Network and Knowledge Network. These discriminators are

implemented as feed-forward neural networks and are trained to distinguish

between posterior samples and prior samples.

The discriminator loss for the context discriminator Dx is defined as follows:

Ldisc ctx = Eϵ∼RecNet(hx,hr,hk)[Dx(Q(ϵ), hx)]− Eϵ̃∼PriNet(hx)[Dx(G(ϵ̃), hx)].

(4.10)

Similarly, the discriminator loss for the knowledge discriminator Dk is given
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by:

Ldisc dc = Eϵ∼RecNet(hx,hr,hk)[Dk(Q(ϵ), hx)]− Eϵ̂∼KgNet(hk)[Dk(M(ϵ̂), hx)].

(4.11)

The overall objective function of the CWAE incorporates these discrim-

inators and aims to minimize the divergence between the posterior and

prior distributions while maximizing the log-probability of reconstructing

the response r from the latent variable z. This objective is illustrated in

Equation 4.12.

min
θ,ϕ,ψ,ω

−Eqθ(z|x,r,K) log pψ(r|z, x)+W (qθ(z|x, r,K)∥pϕ(z|x))+W (qθ(z|x, r,K)∥pω(z|K)).

(4.12)

During training, the GRU decoder reconstructs the response r using the

concatenation of z and hx as the initial hidden state. The reconstruction

loss is defined as:

Lrec = −Ez=Q(ϵ),ϵ∼RecNet(hx,hr,hk) log pψ(r|z, x). (4.13)

At inference time, the model generates latent variables z̃ and ẑ based on

the context utterances and searched documents. An average sum is then

applied to these latent variables, which is combined with hx to form the

initial hidden state of the GRU decoder for response generation.

4.2.5 Memory Recurrence

In medical dialogue, the speaking behaviors between patients and doctors

are different. The doctor’s utterance often contains abbreviations, profes-
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sional medical terms, whereas the patient’s utterance often contains am-

biguous, informal text, and patient usually plays a questioner role in the

medical dialogue. Traditional dialogue generation models normally ignore

this or use simple binary role id to model this. The goal of the proposed

framework is to design an architecture that effectively simulates the distinct

speaking behaviors of patients and doctors. As mentioned in section 4.2.2,

two different language models, Lp and Ld, are utilized with identical archi-

tectures to separately model the patient and doctor. These two models are

connected to each other by a memory mechanism and are trained recur-

rently when generating the whole sequence of dialogue. Specifically, during

the training phase, given a dialogue c = {p1, d1, p2, d2, ..., pn, dn, ..., pN , dN},

the Lp language model firstly predicts the p1 utterance based on start ut-

terance tokens s0. When generating the p1 utterance, the final decoder’s

hidden state ˜hdecp1 is taken by a linear transformation and the output hdecp1

is stored as a memory state. hdecp1 not only contains the p1 utterance’s

information but also contains the searched document information and pre-

vious context’s information. All this information is incorporated into the

representation of the p1 utterance during the next turn generation.

After predicting p1 utterance, the language model Ld starts to predict d1

utterance and the context x now is {p1}. When generating the context rep-

resentation, the average sum is applied to the p1 utterance’s last utterance

encoder’s hidden state and the memory state hdecp1 . Then this representation

is fed into the context encoder to obtain hx for the context branch.

Suppose the objective is to generate the nth turn’s doctor utterance; the

context at this point includes {p1, d1, p2, d2, ..., dn−1, pn}. Memory states

generated from previous turns are stored in a memory list M :

M = [hdecp1 , h
dec
d1

, hdecp2 , h
dec
d2

, ..., hdecdn−1
, hdecpn ]. (4.14)
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Each context utterance is initially encoded using the utterance encoder.

Then, an average sum is performed involving each memory state and the

utterance encoder’s output. This summation serves as the final input for

the context encoder. Consequently, the input for the context encoder men-

tioned in Section 4.2.3 undergoes a modification, as expressed in Equation

4.16 where j represents the jth utterance in the context.

hutt = [huttp1 , h
utt
d1
, huttp2 , h

utt
d2
, ..., huttdn−1

, huttpn ], (4.15)

hj = GRUcxt

(
hj−1,

(huttj + mj)

2

)
. (4.16)

4.2.6 Training Details

The proposed language models Lp and Ld are trained iteratively until the

whole sequence of dialogue is fully generated. Each language model is

trained by alternating three phases: training auto-encoder by using recon-

struction loss, training generators by gradient ascent on the two discrim-

inator losses, and training discriminators by gradient descent on the two

discriminator losses. When training discriminators, the training steps are

repeated ndis times. The detailed training procedure of the proposed model

is shown in algorithm 1.

4.3 Experiments

4.3.1 Dataset

The proposed model is evaluated on two different medical dialogue datasets.

The first one is collected from an online Chinese medical consultation web-
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Input: Dialogue Corpus C = {c1, c2, ..., ci, ..., c|C|},discriminator training

iterations ndis. Initialize Lp language model’s parameters:{θLp

uttEnc, θ
Lp

cxtEnc,

θ
Lp

Dec, θ
Lp

PriNet, θ
Lp

RecNet, θ
Lp

KgNet, θ
Lp

M , θ
Lp

Q , θ
Lp

G , θ
Lp

Dk
, θ
Lp

Dx
}, θLp

MLP}. Initialize Ld

language model’s parameters:{θLd
uttEnc, θ

Ld
cxtEnc, θ

Ld
Dec, θ

Ld
PriNet, θ

Ld
RecNet, θ

Ld
KgNet, θ

Ld
M , θLd

Q ,

θLd
G , θLd

Dk
, θLd
Dx

, θLd
MLP}, document corpus B, number of discriminator itera-

tions ndis.

1: while model not convergence do
2: Initialize C
3: Sort C based on each dialogue’s turn number
4: while C has unsampled batches do
5: Sample a batch {cj}Nj=1 from C with N dialogues
6: Initialize context {xj}Nj=1 with start token s0
7: Initialize memory state mj

8: for each i ∈ [1, 2, ..., |cN |] do
9: search top five documents kj based on xj from B

10: set response rj equal to {cj[i]}
11: if rj is patient utterance then
12: L = Lp
13: else
14: L = Ld
15: end if
16: Encode xj,rj and Kj. hxj = cxtEncL(uttEncL(xj),mj),

hrj = uttEncL(rj), hkj = cxtEncL(uttEncL(Kj))
17: Generate z,z̃ and ẑ by using equation 5 to 7
18: Update θLuttEnc, θ

L
cxtEnc, θ

L
Dec, θ

L
RecNet, θ

L
Q, θ

L
MLP by gradient de-

scent on reconstruction loss (equation 9)
19: Update θLPriNet, θ

L
RecNet, θ

L
G, θ

L
Q by gradient ascent on Ldisc ctx

loss (equation 10)
20: Update θLKgNet, θ

L
RecNet, θ

L
M , θLQ by gradient ascent on Ldisc dc

loss (equation 11)
21: Add rj to context xj
22: Add hdecrj to memory state mj

23: end for
24: for n ∈ [1, ..., ndis] do
25: Repeat 5-22 by replacing the 18-20 with Update θLDk

and θLDc

by using gradient descent on Ldisc ctx loss and Ldisc dc loss.
26: end for
27: end while
28: end while

Algorithm 1: Training Procedure of the proposed model
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site called Haodaifu. Each dialogue in the dataset contains the questions

from the patients and the answers from the online physicians. The other

dataset is a public medical dialogue dataset named MedDialog which is

built by Zeng et al. (2020). Their original Chinese medical dataset con-

tains millions of dialogues which are also collected from the Chinese medical

question-answering forum. For each dataset, 20, 000 dialogues are randomly

selected for training and 5, 000 dialogues for testing. Here is a dialogue ex-

ample of the dataset.

A dialogue example of the proposed dataset.
Patient: Hello, doctor, I have high aminotransferases. can I take
anlotinib?
Doctor: I recommend you to do a liver protection treatment before
taking it.
Patient: Okay, can I do the liver protection treatment in a local
hospital for infusion? What kind of medicine should I use.
Doctor: It depends on the local hospital.

4.3.2 Document Selection

The above datasets only contain the patients’ and doctors’ utterances with-

out any additional medical information. However, when the doctors reply

to the patients’ questions, their professional clinical knowledge is used. In

other words, clinical knowledge is helpful for generating the doctors’ replies.

Therefore, a Chinese medical book series named “Medical Guidance Books

for Clinical Doctor Qualification Examination” is used as additional knowl-

edge. The book series is the official guidebook for the National Examination

for Physicians License in China. The books contain comprehensive medical

knowledge and almost cover all aspects of the clinical domain. OCR tech-

niques are first employed to convert the original textbook into electronic

text. Then the book is divided into multiple paragraphs; each paragraph

is annotated with its chapter name, and section/sub-section names. Table
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4.1 illustrates the examples of the extracted paragraphs with their chap-

ter name and section names. A database is built using Apache Lucene

(Bia lecki et al., 2012) to store these paragraphs. During the training of the

proposed model, the input context utterances are flattened into a query se-

quence to retrieve the top five related paragraphs from the textbook. Each

of these retrieved paragraphs is considered a document in the proposed

framework. These documents are then fed into the searched knowledge

branch of the model to enhance response generation with domain-specific

clinical context.

Chapter Level-1
section

Level-2
section

Level-3
section

Level-4
section

Content

Anatomy Locomotor sys-
tem

Osteology Classification
of bones

Short bone The short bones are
cuboidal in shape and are
mostly found in clusters
in areas that require both
stability and flexibility of
movement, such as the
carpal bones and tarsal
bones.

Physiology Digestion and
Absorption

Gastric Diges-
tion

Nature, main
components,
and functions
of gastric
juice

Cauda Com-
position of
gastric juice

The main components of
gastric juice include water,
hydrochloric acid, pepsino-
gen, mucus, bicarbonate,
and intrinsic factor.

Medical Mi-
crobiology

Diagnostic
methods for
viral infections
and respiratory
viruses

Respiratory
viruses

Rubella virus Principles
of preven-
tion and
treatment

Vaccination with attenu-
ated rubella vaccine is the
primary measure for pre-
venting rubella. Typi-
cally, the measles, mumps,
and rubella (MMR) triva-
lent vaccine is used. The
target population for vac-
cination is primarily young
women of childbearing age,
especially those who have
not yet married. Rubella
vaccination is contraindi-
cated for pregnant women.

Internal
Medicine

Pulmonary
arterial hyper-
tension and
pulmonary
heart disease

chronic car
pulmonale

Pathogenesis Cardiac
changes

Due to pulmonary arterial
hypertension, right ventric-
ular hypertrophy and right
heart failure can occur. In
some patients, late stage left
ventricular hypertrophy and
left heart failure may also
develop.

Table 4.1: Example of the structuralized medical guidance book.
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4.3.3 Experimental Settings

The Pytorch library (Paszke et al., 2019) is utilized to implement the pro-

posed model. The number of hidden unit for all GRU encoders is set to 300.

Whereas the decoders’ hidden units are set to 500. The prior, knowledge

and recognition networks are two-layer feed-forward neural networks with

tanh activation function which contains 200 hidden units. All the genera-

tors and discriminators are three-layer feed-forward neural networks with

ReLU activation function. The number of hidden units in generators is 200

and the number of hidden units in generators is 400. The hidden size of

latent variable z, ẑ and z̃ is 200. All fully connected layers’ parameters are

initialized from the uniform distribution [−0.02, 0.02]. Gradient penalty

is used when training the discriminators and the lambda hyper-parameter

is set to 10. The maximum utterance length is set to 40. The Chinese

word2vec embedding (Li et al., 2018) is used to initialize the embedding

layer and the embedding size is 300. The Chinese vocabulary size is 40, 000.

The ”Jieba” tokenizer (Sun, 2020) is utilized to tokenize the input Chinese

utterances. The batch size is set to 32 and the number of training epoch

is set to 150. SGD is used to train the auto-encoder and decoder with 1.0

initial learning rate. For the Haodaifu dataset, the learning rate is decayed

by 20% every 10 epochs. For the MedDialog dataset, the learning rate is

decayed by 40% every 30 epochs. For the prior network, a GMM mecha-

nism is used, as proposed by (Gu et al., 2019), with the number of prior

modes set to 5. The number of discriminator iterations ndis is set to 5.

The RMSprop is used in training the generators and discriminators, whose

learning rates are set to 5e−5 and 1e−5 respectively. During the decoding

phase, greedy decoding method is used to generate the response.

During the testing phase, 10 responses are sampled for each context. The
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evaluation metrics employed include BLEU score, Bag-of-Words (BOW)

embedding, inter-distinct, and intra-distinct scores. The BLEU score (Pa-

pineni et al., 2002) calculates the n-gram overlap score between the gen-

erated response and the reference utterance. In this chapter, the BLEU-n

(n < 4) score is calculated with the smoothing technique 7 (Chen and

Cherry, 2014). Following the work of Gu et al. (2019), for the sampled

10 responses, the average BLEU-n score is defined as precision, and the

maximum BLEU-n score is defined as recall. The harmonic mean of the

precision and recall is defined as the F1 score. The BOW embedding (Liu

et al., 2016b) measures the cosine similarity between the words in the gen-

erated responses and the reference utterance. There are three metrics to

calculate the BOW embedding score: average method, which calculates

the similarity score between the averaged word embeddings of the two ut-

terances; extrema method, which calculates the similarity score between

the largest extrema value among the two utterances’ word embeddings;

greedy method, which greedily match the words in two utterances based

on the cosine similarity scores of their word embeddings and the scores

are finally averaged across all words. The distinct-n reflects the degree of

diversity of the generated responses. It calculates the ratio of distinct uni-

grams (distinct-1) and bi-grams (distinct-2) over all unigrams/bi-grams in

the generated response utterance. Following Gu et al. (2019), the distinct

value for each sampled response is defined as intra-dist and the distinct

value for all sampled responses is defined as inter-dist. Note that this

chapter is interested in creating a smart medical dialogue framework that

can better reply patient’s medical related questions. Consequently, the fol-

lowing tables present only the model performance for the doctor’s language

model.

To evaluate the effectiveness of the language model, performance compar-
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isons are made against the following baseline models:

HRED This method (Serban et al., 2016) is a general seq2seq model. It

contains a hierarchical RNN encoder to encode the utterance-level infor-

mation and cotext-level information of the input sentences.

VHRED This method (Serban et al., 2017) adds an additional element

to the HRED model. It adds a stochastic latent variable upon the context

encoder as an additional input of the decoder, which increases the models’

variability.

VHCR This method (Park et al., 2018) uses a hierarchical latent variable

structure based on the VHRED model.

CVAE Zhao et al. (2017) utilizes a conditional VAE model with KL-

annealing and bag-of-word loss.

CVAE CO A collaborative variational encoder-decoder model with two

learning phases proposed by (Shen et al., 2018).

DialogWAE This method is a conditional Wasserstein autoencoder which

is proposed by Gu et al. (2019).

Dior-CVAE This method (Yang et al., 2023) is an innovative variational

dialog model that incorporates a diffusion model to enrich the prior dis-

tribution. It employs the pre-trained language model BART (Lewis et al.,

2020) to infer the posterior and likelihood distributions within the CVAE

framework.
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4.3.4 Ablation Studies

Three variants of the proposed technique are designed to evaluate the effec-

tiveness of the two language models and the knowledge branch. The first

model is the proposed technique without memory state. The second model

is the proposed technique with one language model. The knowledge branch

is added in this variant. The third model uses the two language models

without the knowledge branch. The final one is the proposed technique.

Table 4.2 shows the experimental results of these models. The proposed

technique attains the highest BLEU scores. In addition, the proposed tech-

nique attains the highest intra-dist scores, signifying its ability to generate

more diverse words in the sampled responses. However, this may reduce

the BOW embedding score since the BOW embedding score represents the

semantics relationship between the generated response and the reference.

Generating more diverse words in the sampled responses may cause a re-

duction of the BOW embedding score. In terms of the inter-dist score.

The model shows suboptimal performance when compared to the model

without knowledge. This could be due to the incorporation of a searched

document branch into both language models, resulting in forcing the model

to generate the responses that are related to the searched documents, which

may potentially limit the model’s capacity to generate diverse responses.

BLEU BOW Embedding Intra-dist Inter-dist
Model Recall Precision F1 Average Extrema Greedy dist-1 dist-2 dist-1 dist-2 avg len

Ours (w/o memory state) 0.176 0.121 0.144 0.851 0.583 0.790 0.762 0.910 0.407 0.709 22.651
Ours (w/o two models) 0.176 0.118 0.141 0.846 0.589 0.799 0.730 0.891 0.362 0.678 20.066
Ours (w/o knowledge) 0.185 0.106 0.135 0.849 0.584 0.813 0.784 0.937 0.450 0.769 16.524

Ours 0.180 0.127 0.149 0.853 0.586 0.796 0.807 0.960 0.372 0.640 19.985

Table 4.2: Ablation studies evaluating the effectiveness of searched doc-
ument branch and two models in the proposed framework on Haodaifu
dataset.
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BLEU BOW Embedding Intra-dist Inter-dist
Model Recall Precision F1 Average Extrema Greedy dist-1 dist-2 dist-1 dist-2 avg len

Ours (w/o memory state) 0.186 0.128 0.152 0.870 0.597 0.814 0.793 0.957 0.348 0.660 19.200
Ours (w/o two models) 0.183 0.118 0.144 0.873 0.603 0.818 0.699 0.875 0.379 0.712 23.746
Ours (w/o knowledge) 0.194 0.123 0.151 0.863 0.588 0.818 0.723 0.892 0.398 0.727 19.988

Ours 0.189 0.135 0.157 0.866 0.592 0.804 0.753 0.900 0.408 0.703 22.882

Table 4.3: Ablation studies evaluating the effectiveness of searched docu-
ment branch and two models in the proposed framework on MedDialog.

4.3.5 Comparisons to Baselines

Tables 4.4 and 4.5 show a comparison of the proposed framework with base-

line models on two datasets. These results indicate that the proposed model

significantly outperforms the baseline models on both datasets concerning

the BLEU score, even when the knowledge branch is omitted. A similar

trend is observed with the BOW embedding metric across both datasets,

reinforcing the model’s effectiveness in generating coherent and contex-

tually relevant responses. In terms of the intra-dist scores, the VHRED

and Dior-CVAE perform well on the Haodaifu dataset, while VHCR and

VHRED perform well on the MedDialog dataset. However, the BLEU score

and BOW embedding for these models are much lower than the proposed

method. This suggests that they may generate irrelevant and meaningless

words that increase their intra-dist scores. In terms of the inter-dist scores,

the proposed method also outperforms the baseline models. The model

without the knowledge branch achieves the highest score, as explained in

Section 4.3.4. The DialogWAE model is the second-best model, achieving

high scores in terms of the BOW embedding and inter-dist score. This

suggests that using Wasserstein autoencoders can generate more diverse

responses that are related to the reference utterances. Notably, despite

utilizing a large pre-trained language model as both encoder and decoder,

the Dior-CVAE model falls short in BLEU F1 score and BOW embedding

compared to both the proposed model and the DialogWAE model. This

disparity may stem from the large pre-trained language model generating
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irrelevant words unrelated to specific medical domain, thereby diminishing

its BLEU score and BOW embedding performance.

BLEU BOW Embedding Intra-dist Inter-dist
Model Recall Precision F1 Average Extrema Greedy dist-1 dist-2 dist-1 dist-2 avg len
HRED 0.120 0.120 0.120 0.788 0.501 0.750 0.819 0.988 0.082 0.099 15.757

VHRED 0.151 0.121 0.134 0.818 0.545 0.785 0.826 0.991 0.171 0.259 15.307
VHCR 0.142 0.114 0.127 0.809 0.528 0.767 0.820 0.990 0.160 0.233 15.923
CVAE 0.149 0.075 0.100 0.831 0.530 0.804 0.603 0.752 0.256 0.426 22.664

CVAE CO 0.145 0.121 0.132 0.808 0.541 0.795 0.671 0.834 0.120 0.186 19.058
DialogWAE 0.178 0.105 0.132 0.847 0.585 0.809 0.804 0.906 0.416 0.736 16.634
Dior-CVAE 0.144 0.144 0.144 0.899 0.526 0.649 0.834 0.967 0.010 0.063 134.85

Ours (w/o knowledge) 0.185 0.106 0.135 0.849 0.584 0.813 0.784 0.937 0.450 0.769 16.524
Ours 0.180 0.127 0.149 0.853 0.586 0.796 0.807 0.960 0.372 0.640 19.985

Table 4.4: Evaluation results on Haodaifu dataset.

BLEU BOW Embedding Intra-dist Inter-dist
Model Recall Precision F1 Average Extrema Greedy dist-1 dist-2 dist-1 dist-2 avg len
HRED 0.134 0.134 0.134 0.795 0.497 0.755 0.775 0.942 0.077 0.094 19.213

VHRED 0.166 0.130 0.146 0.848 0.564 0.788 0.837 0.991 0.182 0.274 14.565
VHCR 0.152 0.123 0.136 0.833 0.538 0.791 0.832 0.991 0.154 0.217 14.490
CVAE 0.194 0.087 0.120 0.862 0.581 0.806 0.720 0.908 0.348 0.598 15.215

CVAE CO 0.163 0.105 0.128 0.826 0.486 0.766 0.853 0.970 0.085 0.097 16.978
DialogWAE 0.189 0.125 0.150 0.873 0.603 0.816 0.713 0.870 0.352 0.661 21.862
Dior-CVAE 0.140 0.140 0.140 0.876 0.498 0.639 0.802 0.958 0.011 0.056 145.819

Ours (w/o knowledge) 0.194 0.123 0.151 0.863 0.588 0.818 0.723 0.892 0.398 0.727 19.988
Ours 0.189 0.135 0.157 0.866 0.592 0.804 0.753 0.901 0.408 0.703 22.882

Table 4.5: Evaluation results on MedDialog dataset.

4.3.6 Case Study

Table 4.6 presents examples of responses generated by the DialogWAE

model and the proposed model on the Haodaifu dataset. The proposed

model demonstrates stronger performance in terms of relevance, diversity,

and fluency. In the first example, the patient inquires about the surgi-

cal procedure being minimally invasive and its cost. The proposed model

directly addresses these questions in its first response. Additionally, the

second and third responses provide the patient with a predicted price for

the procedure. In contrast, the DialogWAE model simply suggests that

the patient undergo examinations, and it sometimes generates responses

that are inappropriate for a doctor, such as asking about the cost of the

surgery. By utilizing two separate language models to simulate the roles of

the patient and doctor, the model can avoid such situations to some extent.
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In the second example, the response from the DialogWAE model still re-

volves around requesting the patient to undergo examinations or offering a

brief suggestion to undergo surgery. In contrast, the proposed model incor-

porates more medical knowledge, such as suggesting the patient undergo an

MRI test and providing guidance on routine blood indexes. These exam-

ples illustrate the improved ability of the proposed framework to produce

contextually relevant, linguistically diverse, and fluent responses.

Context DialogWAE Ours
Patient: Facial nerve spasms.
Doctor: Hello, the cause of
facial spasms is due to vascular
compression of the facial nerve.
If you want to cure it,
microvascular decompression
surgery is required. I suggest
you come to our hospital for
treatment.
Patient: How much does the
surgery cost? Is it a minimally
invasive procedure?

1. I recommend under-
going a comprehensive
examination at a local
hospital.

1. The surgery is
a minimally invasive
procedure. You can
undergo interventional
treatment at a local
hospital.

2. What examinations
did you do after the
surgery?

2. Generally, several
surgeries are required,
and the cost is about
30,000-50,000 yuan.

3. What is the cost of
the surgery?

3. If the surgery is
performed in Shang-
hai, the cost is esti-
mated to be around
4,000 yuan.

Patient: The patient is a
6-year-old female with
previously good overall health.
She is currently experiencing
headache and fever.
Doctor: Has the patient visited
a hematologist?
Patient: The patient underwent
two lumbar punctures and was
told that there was no issue.
However, the laboratory test
results show a white blood cell
count of 240,000, abnormal
C-reactive protein levels, and an
erythrocyte sedimentation rate
(ESR) of 59. The doctor only
mentioned that there is an
infection.

1. Recommend
surgery.

1. Is it possible to have
a cranial magnetic res-
onance imaging (MRI)
done locally? Are
blood pressure, blood
sugar, and blood lipid
levels normal?

2. Then it is best
for you to undergo a
comprehensive exami-
nation at a local hos-
pital.

2. What medication is
the child currently tak-
ing? Are the blood
pressure, blood sugar,
and blood lipid levels
normal?

3. What examinations
did you do at the local
hospital?

3. I haven’t seen the
child’s imaging results.
If it is cerebral white
matter dysplasia, sur-
gical treatment can be
considered.

Table 4.6: Examples of the generated responses from DialogWAE model
and the proposed model on Haodaifu dataset.
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4.3.7 Human Evaluation

Human evaluation was conducted by randomly selecting 50 dialogues from

the MedDialog dataset. For each dialogue context, 10 responses are gen-

erated. These generated responses are then evaluated by three human

annotators who were given specific instructions to assess the models’ per-

formance in relevance, diversity, and fluency. The annotators assigned a

score between 1 and 5 for each criterion, where 5 indicates the best per-

formance and 1 indicates the poorest performance. To maintain impartial

judgment, the annotators are intentionally kept unaware of the names of

each model. The evaluation results, depicted in Table 4.7, demonstrate

that the proposed method surpasses the performance of the baseline mod-

els across these three evaluation criteria.

Model Relevance Diversity Fluency
VHRED 2.48 1.93 2.88
VHCR 2.13 1.65 2.95
CVAE 1.93 2.53 2.46

DialogWAE 2.52 3.11 2.53
Dior-CVAE 2.62 1.51 2.49

Ours 3.15 3.45 3.03

Table 4.7: Human evaluation results on 50 samples in MedDialog dataset.

4.4 Conclusion

In this chapter, a novel framework is proposed that leverages two language

models, employing the same architecture, to separately represent the roles

of doctors and patients. This framework incorporates Wasserstein auto-

encoders to model context-dependent priors, knowledge-dependent priors,

and posterior distributions, while utilizing a memory state to establish a

connection between the two language models. By doing so, the proposed
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framework effectively captures the speaking patterns of both roles within

patient-doctor conversations. Moreover, it utilizes external knowledge from

narratives to generate responses that are both diverse and coherent.

Experimental results obtained on the Haodaifu dataset and the MedDialog

dataset demonstrate the superior performance of this framework compared

to baseline models across various evaluation metrics. The margin of im-

provement is substantial, showcasing the capability of the proposed frame-

work. Future research will explore the application of this method on large

pre-trained models. Additionally, more complex techniques for incorporat-

ing expert knowledge, such as Knowledge Graphs, will be investigated to

further enhance the framework’s performance.
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Chapter 5

Classifying Social Support in

Physician Text Using a

Rule-Enriched

Attention-Based Deep Neural

Network

The dialogue generation model introduced in chapter 4 aims to facilitate

meaningful interactions between patients and healthcare providers by gen-

erating contextually relevant medical dialogues. This capability sets the

stage for the subsequent exploration of social support classification in tele-

consultation settings. In this chapter, the focus shifts to classifying prede-

fined types of social support offered by physicians during these interactions.

Understanding these types of support is crucial for analyzing how various

physician communication strategies influence patient engagement and sat-

isfaction. By accurately categorizing social support, deeper insights can be
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gained into the dynamics of team-based teleconsultations and their impact

on patient outcomes.

5.1 Introduction

Text classification is a pivotal task in the field of Natural Language Pro-

cessing (NLP), with substantial applications in the healthcare domain. An

emerging trend is team-based teleconsultation, an online medical service

that enables multiple physicians to communicate with patients through

various digital platforms, including text messages, phone calls, and video

conferences. Team-based teleconsultation brings substantial advantages to

both physicians and patients. By allowing physicians of varying levels of

experience to work together, this approach can help distribute the work-

load more evenly and lessen the pressure on individual doctors (Liu et al.,

2020b). This setup enables patients to benefit from the collective expertise

of several healthcare professionals. Furthermore, team-based teleconsul-

tation can offer quicker responses than consultations handled by a single

physician (Li et al., 2019b), as an individual doctor might struggle to man-

age the high volume of tasks and frequent interruptions that can delay

timely responses to patient inquiries. While team-based teleconsultation

has many benefits, it also faces significant challenges. Participation levels

among leaders and team members can vary, and these groups are often

viewed differently because of their different expertise and reputation. Re-

search has shown that patient satisfaction may decrease when team mem-

bers primarily handle consultations, threatening the sustainability of this

approach. Understanding the impact of feedback from both leaders and

team members is crucial for maintaining patient engagement.
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This chapter focuses on classifying pre-defined types of social support pro-

vided in these teleconsultation interactions to understand and enhance pa-

tient engagement. Social support theory (Cobb, 1976) can be used to pro-

pose various effects of social support provided by leaders and team mem-

bers. This support is categorized into three types: direct informational sup-

port, indirect informational support, and emotional support. The doctors’

responses during the teleconsultation interactions are classified into these

three categories. This approach is expected to aid in analyzing and cate-

gorizing communication between patients and healthcare providers. Accu-

rate classification of the social support types can reveal information that

contributes to a better understanding of how the doctors’ responses influ-

ence patient satisfaction and engagement in team-based teleconsultations.

Therefore, accurately classifying these support types is essential.

Traditional machine learning approaches, such as Support Vector Machines

(SVM) and Latent Dirichlet Allocation (LDA) (Chen et al., 2020; Tan and

Yan, 2020; Zhao et al., 2022), have been widely used for medical text classi-

fication. However, these methods rely heavily on manually engineered fea-

tures, which require extensive and laborious feature engineering to achieve

strong results (Minaee et al., 2021). They also struggle with large datasets

because these manually crafted features are not well-suited to fully lever-

age the vast amounts of data (Minaee et al., 2021). While deep learning

classifiers typically outperform traditional machine learning models when

handling large datasets (Zhou et al., 2023), they often fall short in terms of

interpretability and the incorporation of expert knowledge, making it diffi-

cult for human experts to fine tune to meet the high precision requirement

of medical decision-making.

In this chapter, a novel Rules-enriched Attention-based Deep Neural Net-

work (R-ADNN) approach is proposed for classifying social support types
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in teleconsultation text. This innovative method integrates rule-based tech-

niques, contextual information, and deep learning to enhance both the ac-

curacy and interpretability of text classification. Specifically, 37 rules are

established to categorize physician responses into 19 predefined domain

labels. Subsequently, a deep-learning-based classification framework deter-

mines the social support type of each response. There are three branches

in the proposed framework, the physician response branch, the contextual

information branch, and the label branch. In the physician response branch

and the contextual information branch, the text of physician responses and

the subsequent neighboring patient responses are first embedded using a

BERT model to capture contextual semantics. This is followed by further

encoding of the sequential data with a Bi-LSTM model. In the contex-

tual information branch, a word attention mechanism is applied to refine

the Bi-LSTM outputs. Meanwhile, in the label branch, the domain la-

bels assigned to the physician responses are encoded as one-hot vectors

and passed through an embedding layer. A label attention module then

aligns these label embeddings with the encoded vectors of the physician

responses. The outputs from both the label attention and word attention

modules are combined and fed into a Multi-layer Perceptron (MLP) for the

final classification. This integrated approach, combining rule-based tech-

niques with deep learning, enhances the interpretability and accuracy of

the model. The proposed R-ADNN framework, evaluated on a real-world

dataset, achieves superior performance compared to current state-of-the-art

text classification models.

The main contributions presented in this chapter can be summarized as

follows:

1. A novel text classification approach specifically designed for under-

81



5.2. METHODOLOGY

standing teleconsultation interactions. This framework combines rule-

based techniques with a deep learning approach to effectively classify

medical text to social support types, utilizing a hybrid model that

integrates domain-specific rules and advanced neural networks.

2. A dedicated lexicon for social support in team-based teleconsultation

is developed based on multiple authoritative sources. This lexicon

supports the rule-based component and fills a critical gap in resources

for this domain.

3. A set of 37 domain-specific rules is created to assign physician re-

sponses to 19 predefined domain labels, enhancing the accuracy and

interpretability of the initial classification. These rules incorporate

expert knowledge and are essential for improving the precision of the

subsequent deep learning-based classification.

4. The proposed framework is evaluated using a real-world online med-

ical teleconsultation datasets, demonstrating superior performance

compared to other baseline models.

5.2 Methodology

5.2.1 Problem Definition

The problem addressed in this chapter can be formally defined as follows:

given the text-based interactions from a teleconsultation record, let R rep-

resent the physician’s response, and P denote the contextual information

derived from the consecutive neighboring patient response. The objective

is to develop a framework that, given P and R, classifies the physician’s

response R into specific social support categories, including direct informa-
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tional support, indirect informational support, and emotional support. It

is important to note that a single physician response may correspond to

multiple labels.

5.2.2 Overview

The overall architecture of the proposed framework is illustrated in Figure

5.1. This framework integrates both rule-based and deep learning meth-

ods to classify physician response text. The rule-based method takes the

physician response R as input and generates a set of labels, which serve as

the input for the deep neural network model. The model consists of three

branches: the physician response branch (labeled as 1 ), the contextual

information branch (labeled as 2 ), and the label branch (labeled as 3 ).

The input to the physician response branch is the physician response text

R, while the contextual information branch takes the contextual informa-

tion P , which comprises the content of the consecutive neighboring patient

responses related to the physician response R. The label branch receives the

comprehensive set of labels produced by the preceding rule-based method.

These labels, closely aligned with social support concepts, leverage domain

expertise to prioritize crucial information, addressing the interpretability

challenges often associated with deep neural networks (Chau et al., 2020).

For the physician response branch, the input R goes through a BERT-

BiLSTM module with label attention where the label (one-hot representa-

tion) is the output of Label Branch. For the contextual information branch,

the input P goes through another BERT-BiLSTM module with word at-

tention. The outputs of the both branches are concatenated and fed to

feed-forward network for the final classification. It is important to note

that the framework is designed for binary classification; thus, a separate
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identical model is employed for each social support type. Subsequent sec-

tions provide a detailed explanation of the BERT-BiLSTM module with

attention mechanism or the two branches and the label generation process.

Figure 5.1: The structure of the R-ADNN approach.

5.2.3 BERT-BiLSTM Module with Attention Mech-

anism

BERT, developed by Devlin et al. (2018), stands as a prominent pre-

trained model for natural language processing tasks. BiLSTM builds on the

conventional LSTM model by incorporating contextual information from

both past and future inputs, demonstrating excellent results in recent text-

mining applications (Samtani et al., 2022; Zhou et al., 2016). The structure

of the BERT-BiLSTM module is depicted in Figure 5.2. BERT comprises

multiple Transformer encoder layers that transform the input text into

token, segment, and positional embeddings. According to the method out-

lined in Devlin et al. (2018), the input sequence is prepared by placing

a [CLS] token at the start and a [SEP] token at the end. The text is

tokenized using a predefined dictionary, and the tokenized sequence is rep-

resented through a learnable embedding matrix. Positional and segment
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details are embedded in the same way. These combined embeddings are

passed through the self-attention layer, after which the outputs are nor-

malized and sent to the final feed-forward neural network for classification

tasks.

Figure 5.2: Architecture for the BERT-BiLSTM module.

Like many BERT-based methods, the outputs from BERT are passed into

a BiLSTM model to capture the hidden representations of the original text.

The BiLSTM processes the input bidirectionally, generating two sequences

of hidden state vectors for each time step, one for the forward direction

and one for the backward direction. These sequences are then combined

to form the final hidden representations of the input. Both the Physi-

cian Response Branch and the Contextual Information Branch include the

BERT-BiLSTM module; however, the BERT model is shared between the

two branches, while the BiLSTM models are trained separately for each.

While BERT-BiLSTM treats all words in the input text with equal im-

portance, it is essential to recognize that some words carry more weight

depending on the context. To address this, an attention mechanism is in-

troduced to dynamically adjust the weights of the hidden representations
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based on their contextual relevance. In the physician response branch, a

label-based attention module is implemented, combining the embeddings

of domain-specific labels related to social support, denoted as EL, with the

hidden representations ER. This combination serves as the input to the

attention mechanism, as described below.

αi = softmax

(
ELi

E⊤
R√

d

)
(5.1)

hRi
= αiER (5.2)

hR =

∑
i hRi

|L|
, (5.3)

where ELi
denotes the embedding vector for the ith label within the label

set L, while ER represents the hidden states derived from the BiLSTM

output of the physician response branch. The attention weights assigned

to the ith label are indicated by αi. The overall hidden representation that

integrates all attentions for the physician response R is referred to as hR,

with hRi
signifying the attention vector associated with the ith label related

to the physician response R. Once the social support-related label set L for

the physician response is established, a one-hot vector is initially employed

to encode these labels, which are then embedded using a learnable lookup

matrix to calculate the corresponding embeddings EL.

In the contextual information branch, a word-based attention module is

developed to modulate the significance of each word from the patient re-

sponses that precede the physician’s response in question. The context

embeddings, EP , are first processed through a single-layer fully connected

neural network. A learnable vector vp is subsequently utilized to compute

similarity scores for the transformed embeddings, followed by the applica-

tion of a softmax function to derive the attention weights αp. The final

hidden representation for the contextual information branch, hp, is ob-
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tained by summing the original embeddings EP , weighted according to

their respective attention values.

UP = tanh
(
WpE

⊤
p + bp

)
(5.4)

αp = softmax (vpUP ) (5.5)

hp = αpEP . (5.6)

As illustrated in Figure 5.1, once the vectors hR and hP are obtained,

they are concatenated and passed through a two-layer feed-forward neural

network (FFNN) for final classification. The FFNN outputs a binary result

(0 or 1), indicating whether the physician response includes a particular

type of support. The network is trained using cross-entropy loss.

5.2.4 Label Generation

A rule-based approach is employed to create labels related to social sup-

port. Each physician response R is assessed against a predefined set of rules

to determine its qualification for specific social support labels. The label

set includes categories for direct, indirect, and emotional support, in line

with established research (Bambina, 2007; Chen et al., 2019; Cutrona and

Suhr, 1992). Additionally, several context-specific labels have been intro-

duced to cater to the unique aspects of team-based teleconsultation. For

instance, extending Bambina’s concept of referral (Bambina, 2007), a label

for indirect informational support, termed intra-team referral, has been in-

corporated to signify when a patient is referred to a specific team member.

This label set was validated by six online healthcare experts, resulting in a

total of 19 distinct labels. Examples of representative labels for the three

87



5.2. METHODOLOGY

categories of social support are provided in Table 5.1.

Table 5.1: Representative labels for social support.

Two categories of rules have been developed for label assignment. The first

category, based on the methodology proposed by Chau et al. (Chau et al.,

2020), involves verifying whether the input R contains specific terms from

the social support lexicon to assign labels. The second category encom-

passes more complex rules that analyze various word patterns using regular

expressions. For instance, in the context of indirect informational support,

a physician might suggest that the patient “visit xxx hospital for a more

thorough examination.” Identifying such cases necessitates recognizing a

combination of a verb (e.g., “visit”) and a noun (such as “hospital”), rather

than relying solely on lexicon-based word mapping. In collaboration with

two domain experts, a total of 37 rules were formulated. Representative

rules are displayed in Table 5.2.

To the best of current knowledge, no existing lexicon has been specifically

designed for team-based teleconsultation. As a result, a social support
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Table 5.2: Representative rules for social support.

lexicon was developed for this chapter, drawing from several authoritative

sources. These include the Chinese version of the International Classifi-

cation of Diseases, 11th revision (ICD-11), the Chinese Classification and

Codes of Operations and Procedures (ICD-9-CM3), the Chinese LIWC sen-

timent lexicon, and a disease-centered entity database created by the Chi-

nese Academy of Sciences1. Additionally, 14 medical research assistants

were recruited to extract keywords from disease descriptions available on

the target teleconsultation platform. This platform provides patients with

comprehensive, accessible explanations of common diseases to promote pa-

tient education. Each disease entry contains informal language, symptoms,

relevant medical tests, treatments, and non-medical advice, such as dietary

or exercise recommendations. By manually extracting keywords, the lex-

icon was expanded to include informal terms frequently used by patients,

which often differ from academic or medical terminology. For instance,

patients might use the colloquial term “Alcoholic Nose (酒糟鼻)” instead

of the formal term “Rosacea (玫瑰痤疮).” Finally, with guidance from

1https://github.com/liuhuanyong/QASystemOnMedicalKG
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domain experts, the social support lexicon was organized into 18 distinct

categories. Table 5.3 provides examples of these representative groups.

Table 5.3: Representative groups and words of social support lexicon.

5.2.5 Binary Task Specialization

In the proposed approach, BERT is fine-tuned throughout the training

process. Each support type is addressed by training a distinct model to

predict whether the physician’s response corresponds to that specific type.

This approach transforms the multi-label classification problem into multi-

ple binary classification problems. The binary Cross-Entropy loss function

is applied in this context.

5.3 Dataset Collection

This chapter draws on data from a prominent teleconsultation platform in

China, which connects over 887,000 physicians from approximately 9,900
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hospitals across the country. In June 2017, the platform launched a team-

based teleconsultation service. As depicted in Figure 5.3, each medical

team has a dedicated page that showcases the team’s name, leader, ser-

vice volume, pricing, and profiles of the team leader and members. These

profiles include names, clinical titles, and their affiliated hospitals or de-

partments. The page also provides a record of previous teleconsultations.

Figure 5.4 offers examples of patient teleconsultation records with a specific

team. If a patient consults the same team multiple times, the platform ar-

ranges the records chronologically, based on the start of each consultation.

Consultations are labeled either as “online check-in after offline visits” if

the patient had previously seen a doctor in person, or simply as “text-based

teleconsultation” for regular online interactions. By selecting the “detaila”

button, users can access a full record containing the patient’s gender, age,

primary complaint, and timestamped text exchanges between the patient

and physicians. To ensure privacy, personal identifiers and sensitive infor-

mation such as names or medical test results are omitted from the records.

The raw dataset consists of 112,111 team-based teleconsultations involving

2,397 teams and 103,867 patients, collected between June 2017 and October

2020. To compile this dataset, links to all teams listed on the platform were

first gathered, followed by the extraction of detailed information about each

team and their previous consultations with patients. For each patient’s

interaction with a team, all available data, including physician-patient text

exchanges, were retrieved as shown in Figure 5.4.

Consultations where the team did not respond, accounting for about 3% of

the dataset, were removed. Additionally, consultations from the last three

months of the data collection period, representing around 9% of the total,

were excluded due to possible incomplete engagement data. In instances

where multiple consultations were mistakenly merged into one record, cor-
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Figure 5.3: An example of an online medical team.

rections were made. After these adjustments, the final dataset contains

115,845 team-based teleconsultations involving 2,307 teams and 93,629 pa-

tients.

To assess the effectiveness of the R-ADNN approach, an evaluation was

carried out using a random sample of 1,000 team-based teleconsultation

records, which included 5,847 physician responses. Three medical students

annotated these responses. Since a single response may provide multiple

types of social support (Chen et al., 2019), the annotators were instructed

to evaluate all the three types of support rather than focusing on just one.

In total, 2,734 responses were labeled as providing direct informational sup-

port, 1,038 as offering indirect informational support, and 310 as delivering
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Figure 5.4: Screenshots of a patient’s teleconsultation record with a team.

emotional support.

The annotated dataset was then divided into training and test sets, using

a 70:30 split. All models were trained on the same training set and evalu-

ated on the corresponding test set. Due to the relatively small number of

responses identified as containing emotional support, which could poten-

tially affect model performance, the training set was augmented with an

additional 315 responses coded for emotional support.2.

2An additional 1,000 teleconsultations were randomly selected to identify emotional
support responses. Initially, a rule-based classification flagged these responses, which
were then verified for accuracy by three coders.
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5.4 Experimental Results

5.4.1 Experimental Settings

The framework was implemented using the PyTorch library, leveraging

BERT-Base-Chinese as the pre-trained model, which consists of 12 trans-

former encoders, each with 12 multi-head attention heads. The transform-

ers have a hidden dimension of 768, and the maximum input sequence

length is capped at 512. For the Bi-LSTM, a single layer was employed

with a hidden size of 256, while the MLP’s hidden size was set to 2048.

Training utilized the Adam optimizer with automatic mixed precision en-

abled to accelerate the process. A batch size of 10 was used, with a learning

rate warm-up proportion of 0.1 and a weight decay coefficient of 0.01. The

dropout rate was maintained at 0.1, and the model was trained for 10

epochs for efficiency.

The framework was compared against other models using the F1 score

as the primary metric, supplemented by accuracy, precision, and recall

for additional insights. The effectiveness of the proposed framework was

assessed by evaluating its performance against various baseline models.

Rule Based In this baseline model, classification of the physician’s re-

sponse is done solely based on pre-defined rules, with no use of machine

learning techniques.

Random Forest In this baseline model, the physician’s input text is bro-

ken down into individual words and represented using the bag-of-words

approach. A random forest algorithm is then applied for classification.

SVM In this baseline model, the physician’s response text is represented

using the same bag-of-words approach as previously described. A support
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vector machine is then employed for classification, utilizing both linear and

radial kernels.

BERT This baseline model consists of a basic vanilla BERT model followed

by a single-layer feed-forward neural network as the classifier. The model

only uses the physician’s response text as input, and the hyperparameters

used are identical to ours.

BERT+LSTM This baseline model combines BERT with Bi-LSTM, form-

ing a simple yet commonly used architecture in many NLP tasks. The hid-

den states from different time steps in the Bi-LSTM are concatenated and

then passed to a single-layer feed-forward network for final classification.

The hyperparameters used in this model are identical to ours.

5.4.2 Comparisons to Baselines

Table 5.4 presents the performance evaluation results using metrics such

as accuracy, precision, recall, and F-measure. From the table, it is evi-

dent that the R-ADNN approach outperforms the other baseline models.

Specifically, R-ADNN achieves the highest accuracy rates: 94.3% for di-

rect informational support identification, 98.1% for indirect informational

support identification, and 96.4% for emotional support identification. It

also records the highest F-measure scores: 93.9% for direct informational

support, 94.2% for indirect informational support, and 82.1% for emotional

support. Additionally, R-ADNN attains the highest precision and recall for

both direct and indirect informational support. While R-ADNN does not

achieve the top precision and recall for emotional support, its F-measure

still surpasses that of the other models, indicating superior overall per-

formance when both precision and recall are considered (Ebrahimi et al.,
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2020). In summary, the R-ADNN approach demonstrates better perfor-

mance compared to the other baseline models.

Table 5.4: Social support classification performance.

5.5 Conclusions

In this chapter, the Rule-Enriched Attention-Based Deep Neural Network

(R-ADNN) is introduced to classify social support types in team-based

teleconsultation text. The proposed approach combines a rule-based mod-

ule with advanced deep learning techniques, specifically leveraging BERT

and BiLSTM models, along with attention mechanisms. The rule-based

component contributes to the models’s interpretability, as each prediction

is transparently linked to domain-specific rules grounded in expert knowl-

edge. While BERT and BiLSTM are inherently less interpretable, the

attention mechanism offers partial insight into model decisions by high-
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lighting important tokens of the input text. Together, this hybrid architec-

ture enhances both the classification accuracy and the explainability of the

model. By incorporating contextual patient responses and domain-specific

knowledge, the R-ADNN framework is capable of detecting nuanced social

support types often overlooked by traditional methods. Evaluation results

show that the model consistently outperforms baseline methods, demon-

strating its effectiveness in capturing the complexities of physician-patient

communication in teleconsultation scenarios.

For future work, expanding the social support lexicon and refining the rule-

based component could further improve the model’s performance. Addi-

tionally, applying the R-ADNN framework to other domains or different

languages could test its generalizability and robustness. Exploring alterna-

tive deep learning architectures might also enhance the model’s ability to

understand and classify social support in more varied and complex scenar-

ios.
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Chapter 6

Enhancing Medical Named

Entity Recognition Through

Prompt Learning and

Relational Networks

Following the exploration of physician response classification in chapter 5,

which identified different forms of social support in teleconsultations, the

focus shifts in chapter 6 to a more granular task—Medical NER. While clas-

sifying physician interactions enhances the understanding of communica-

tion in telemedicine, accurately identifying medical entities in clinical text

is equally critical for processing patient records and supporting decision-

making. The proposed NER model, built on prompt learning and a rela-

tional network, excels at identifying and classifying complex medical terms

by capturing the relationships between words and predefined prompts. This

advancement further contributes to the automation of healthcare text pro-

cessing, ensuring precise extraction of essential medical information for
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better clinical outcomes.

6.1 Introduction

The rapid growth of digital health records and the proliferation of unstruc-

tured clinical data have led to an increasing demand for efficient techniques

to extract valuable information from these vast repositories (Savova et al.,

2010). NER is a crucial NLP technique that has shown great potential

in identifying and classifying entities such as diseases, medications, proce-

dures, and patient demographics from textual data (Kundeti et al., 2016;

Bose et al., 2021). In healthcare, NER can significantly enhance the abil-

ity to mine actionable data, streamline clinical workflows, and support

decision-making processes (Janowski, 2023; Borchert et al., 2022).

The healthcare domain presents unique challenges for NER techniques due

to the complexity and variability of medical terminology, abbreviations,

and the need for high accuracy for obvious reasons–medical errors can have

critical consequences (Kundeti et al., 2016). Recent development in NER,

such as deep learning-based models, has shown promising performance in

addressing these challenges (Wu et al., 2017; Zhu et al., 2018; Liu et al.,

2021a). These models are usually trained on extensive corpora of medi-

cal text and are capable of recognizing intricate patterns and relationships

within clinical narratives and facilitating the extraction and categoriza-

tion of medical entities (de Lima Santos et al., 2021; Chawla et al., 2021;

Polignano et al., 2021).

Prompt learning in NLP leverages pre-trained deep learning models by

crafting specific prompts to guide these general models to perform special-

ized tasks such as NER (Liu et al., 2023a). While prompt learning has
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become popular in areas like text generation and question-answering (Hou

et al., 2024; Cui and Li, 2024), adapting to NER, particularly in health-

care, remains relatively rare. The strength of prompt learning lies in its

ability to adapt pre-trained models to new tasks with minimal task-specific

data. This is extremely valuable in healthcare where annotated data is of-

ten very limited and expensive to obtain. Integrating prompt learning into

deep learning models to solve the NER task can significantly enhance the

performance of recognizing medical entities. This is done by providing

structured input that aligns with the models’ existing knowledge(He et al.,

2023; Zhu et al., 2022).

This chapter introduces a novel framework that combines prompt learning

with relational network technique to enhance medical NER. The relational

network in this scenario is crucial in capturing and utilizing the relation-

ships between prompts and medical terms. This is vital to disambiguate

medical entities and their context. The approach enables the model to

effectively handle synonyms, abbreviations, and context-dependent mean-

ings, leading to more accurate and reliable entity recognition in medical

text. The main contributions are as follows:

1. A medical NER framework is introduced that integrates prompt learn-

ing into pre-trained deep learning models, aiming to address the com-

plexities of medical entities and the challenges imposed by limited

annotated data.

2. A prompt position predictor and prompt type predictor with rela-

tional network is proposed to more effectively predict the start and

end indices and type for recognized entities by capturing relationships

between prompts and medical text.

3. The proposed framework is evaluated using a real-world medical dataset,
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showing significant performance improvement compared to other base-

line models.

6.2 Methodology

6.2.1 Problem Definition

The primary objective of the proposed technique is to address the challenge

of NER from medical text. Formally, let Z represent a given input sentence,

which comprises of several entities. Each entity is characterized by its

position within the text, defined by its start and end indices, as well as by

its type that categorizes the entity according to a predefined set of medical

entity categories (e.g., diseases, symptoms, medications, etc.). The task is

to develop a model capable of automatically identifying and extracting all

the medical entities present in the sentence Z, including determining both

their exact positions and corresponding types.

6.2.2 Overview

Figure 6.1 illustrates the proposed framework, which consists of several key

modules: BERT, Bi-LSTM module, Prompt-Text Fusion module, position

predictor, and type predictor. The input sequence S of the framework con-

sists of k prompts (position token and type token) followed by the input

medical text Z. Firstly, the BERT model processes the input sequence to

produce hidden representations. The hidden representation of medical text

is fed to the Bi-LSTM module to further capture the intricate sequential

dependencies within the medical text. The output of the Bi-LSTM module

and the prompt representation previously generated by BERT are then fed
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into the prompt-text fusion module to generate the final representation of

prompts. Then the position predictor takes the prompt position token rep-

resentations and the medical text representations encoded by the Bi-LSTM

module to generate the start and end indices of the recognized entities. The

type predictor takes the type token representations and the medical text

representations to classify each prompt into specific entity type.

Figure 6.1: Overall architecture of the proposed framework.

6.2.3 Prompt Construction

Following the approach proposed by Shen et al. (2023), given an input

medical text Z of length l, the input sequence S for the framework is

constructed by concatenating k prompts with the input medical text Z.

The input medical text Z is tokenized into a sequence of text tokens z =

[z1, z2, . . . , zl]. There are k prompts P = [p1, p2, . . . , pk] with each prompt pi

consists of a pair of tokens: a position token ai and a type token bi, where

i ranges from 1 to k. The position tokens ai are used to represent the

positions of the potential entities in the text, while the type tokens bi are
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used to represent the entity types. In the implementation, the position and

type tokens are represented by sparse BERT tokens, specifically the unused

tokens from the BERT vocabulary, denoted as [unused1] to [unused100],

as described in Shen et al. (2023). In addition, a special [CLS] token is

used to separate the prompt tokens from the input text. The final input

sequence fed into the model is structured as follows:

S = {a1, b1, a2, b2, . . . , ak, bk} [CLS] z1, z2, . . . , zl. (6.1)

6.2.4 Sequence Encoding

The sequence encoding process plays a fundamental role in the architec-

ture by transforming the input into a feature vector that encapsulates its

semantics. BERT Devlin et al. (2018), a widely adopted pre-trained lan-

guage model, is employed as the initial embedding mechanism due to its

strong ability to capture contextual information. BERT uses transformer

encoders comprising self-attention layers, normalization layers, and feed-

forward neural networks, and has demonstrated exceptional performance

across various NLP tasks (Radford et al., 2018).

In the proposed framework, the input sequence S is initially encoded using

BERT. This process is represented as:

H = BERT(S) = [h1, h2, . . . , hk+l+1], (6.2)

where S consists of k prompt tokens and l input text tokens, with an

additional [CLS] token at the start. Each token’s hidden state hi has a

dimension of d. To prevent the prompts from influencing the encoding of

the medical text, an attention mask is applied during the encoding process.
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Although BERT is highly effective at capturing token-level contextual rela-

tionships, transformer-based models often struggle with capturing distant

token dependencies (Wang et al., 2020). To address this limitation, a Bi-

LSTM module is incorporated to enhance the model’s ability to capture

sequential dependencies. While conventional RNNs are prone to vanishing

gradient issues, particularly with long sequences, LSTMs (Hochreiter and

Schmidhuber, 1997) mitigate this problem by employing memory cells and

gates that selectively retain historical information.

Given the sequential nature of the medical text, the proposed framework

utilize a Bi-LSTM module to further encode the hidden representations of

the text portion of S, leaving the prompts unaffected. The hidden represen-

tation encoded by BERT for the input medical text tokens {z1, z2, . . . , zl}

are defined as:

Hinput = [hk+1, hk+2, . . . , hk+l], (6.3)

where Hinput has a dimension of d× l. The Bi-LSTM module, consisting of

three layers of Bi-LSTM, processes these hidden representations to capture

both forward and backward sequential dependencies. For simplicity, the

following shows the process for a single Bi-LSTM layer:

−→
H = LSTMforward([hk+1, . . . , hk+l]),

←−
H = LSTMbackward([hk+1, . . . , hk+l]).

(6.4)

The final representation of the input text is obtained by concatenating the

forward and backward hidden states:

Htext = [
−−→
hk+1 ⊕

←−−
hk+1,

−−→
hk+2 ⊕

←−−
hk+2, . . . ,

−−→
hk+l ⊕

←−−
hk+l], (6.5)

where Htext ∈ Rl×2d′ represents the final encoded sequence for the input

text, d′ is the hidden size of the Bi-LSTM layers, and ⊕ denotes concate-
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nation.

The BERT hidden representations of the position tokens {a1, a2, . . . , ak}

are defined as:

HA = [h1, h3, h5, . . . , h2k−1], (6.6)

where HA has a dimension of d × k representing the k position tokens.

Likewise, the hidden representations of the type tokens {b1, b2, . . . , bk} are

defined as:

HB = [h2, h4, h6, . . . , h2k], (6.7)

where HB has a dimension of d×k. The sequence encoding process ensures

that both the medical text and prompt tokens are effectively encoded,

preparing them for further processing.

6.2.5 Prompt-Text Fusion Module

The Prompt-Text Fusion Module is designed to enhance the interaction

between prompt tokens and medical text by employing multi-head attention

mechanisms. While BERT generates contextualized embeddings for both

prompts and text, this module captures the deeper relationships necessary

to accurate entity recognition.

The Prompt-text fusion module consists of three layers, each containing

two multi-head attention. The first multi-head attention focuses on the

relationships within the prompt tokens themselves, while the second focuses

on the prompt tokens with the medical text. Multi-head attention enables

the model to capture a wide range of dependencies across different parts

of the sequence, making it highly effective for handling the complexity of

entity relations in medical text.
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The first multi-head attention of each layer applied to the position tokens

is defined as follow:

HA,self-attn = MultiHeadAttention(HA + Ebind,HA + Ebind,HA), (6.8)

where Ebind is a learnable embedding matrix to bind the position and type

tokens for each prompt. The second multi-head attention of each layer

applied to the position tokens is defined as follow:

HA,cross-attn = MultiHeadAttention(HA,self-attn + Ebind,Htext,Htext). (6.9)

Then the output of the second multi-head attention is fed to a feed-forward

network to produce the final representation for the position tokens as follow:

H̃A = FeedForward(HA,cross-attn). (6.10)

Similarly, the process is the same for the type tokens HB, resulting in the

final type token representations H̃B. Importantly, the weights of these

networks are not shared for the position and type tokens.

6.2.6 Position Predictor

The position predictor is responsible for predicting the exact location of

the recognized entities. Specifically for each prompt the position predictor

outputs the start and end position in the text. The position predictor

consists of two linear transformation layers, which transform the position

token representations H̃
(i)
A and the text representations Htext. There is

another linear layer with a Sigmoid activation function is used to generate
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the probability distribution for the position as follows:

H
(i)
Fusion = Linear(H̃

(i)
A ) + Linear(Htext) (6.11)

P
(i,j)
left = σ

(
Linear(H

(i,j)
Fusion)

)
, (6.12)

where P
(i,j)
left represents the probability that the j-th word is the start of the

entity predicted by the i-th prompt. The probability distribution for the

end is calculated similarly.

6.2.7 Type Predictor

Similar to the position predictor, the type predictor is responsible for pre-

dicting the category of the recognized entities. A relational network as

described in 3.2.4 is adopted to capture the interactions between the type

tokens and the medical text, to improve the framework’s ability to classify

entity types for each prompt.

In the context of this chapter, strong semantic relationships exist between

the prompts and the medical text. The relational network can effectively

model these relationships, which is critical for accurate entity classification.

Specifically, the relationships are captured as follows:

Ri =
1

l

l∑
j=1

gϕ(H̃Bi
,Htextj). (6.13)

There is another linear layer with a Sigmoid activation function is used to

generate the probability distribution for each type as follows:

Pi = σfθ(Ri), (6.14)
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where Pi represents the type probability distribution of the i-th prompt.

During training, dynamic template filling as outlined in Shen et al. (2023)

is used to optimize the model. In the inference phase, the start and end

indices, and the type of the entity corresponding to the i-th prompt are

determined by using argmax to select the highest probabilities. In cases

where multiple prompts identify overlapping entities, only one is retained.

If entities share the same start and end index but have conflicting types,

the entity with the highest probability is selected.

6.3 Experiments

6.3.1 Dataset

HealthNER, a dataset Lee and Lu (2021) designed for NER in healthcare,

is used for experiments. This dataset is assembled by collecting data from

multiple sources, including healthcare information sites, online health news,

and medical Q&A forums. There are ten distinct entity types relevant to

healthcare, including body parts, symptoms, diseases, and medications.

For instance, in the sentence “I do not know why every year there is a

sudden and severe pain in my heart. Is this a problem with my body?”,

the annotated named entities are: “heart” (BODY), representing a body

part; “pain” (SYMP), representing a symptom occurs twice; and “body”

(BODY), another body part. The dataset also provides the start and end

indices for these entities, along with their types. In total, the dataset

consists of 28, 161 medical text samples for training and 2, 531 samples for

testing.
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6.3.2 Experimental Settings

The implementation used for experiments uses the PyTorch library (Paszke

et al., 2019) and adopts the BERT-Base-Chinese as the pre-trained model.

This model consists of 12 transformer encoders, each with 12 heads for

multi-head attention. It has a hidden size of 768, with a maximum input

sequence length of 512 tokens. Spare tokens are used to as the prompts,

with the number of prompt set to 50. The Adam optimizer (Kingma and

Ba, 2014) is used with automatic mixed precision to enhance the training

speed. The learning rate warm-up proportion is set to 0.1, with a weight

decay coefficient of 0.01 and a dropout rate of 0.5. The model is trained

over 200 epochs.

The F1 score, precision, and recall (three standard metrics in NLP tasks)

are used to compare the framework against other models. Precision mea-

sures the proportion of correctly identified entities out of all the entities

predicted by the framework. Recall measures the proportion of correctly

identified entities out of all the actual entities presented in the data. The

F1 score is the harmonic mean of precision and recall, providing a balanced

metric that accounts for both false positives and false negatives. A higher

F1 score indicates better overall performance, balancing the trade-off be-

tween precision and recall.

6.3.3 Comparision to Baselines

The effectiveness of the framework is compared with several baseline models

as follows:

BiLSTM-CRF This method is widely-used for sequence labeling, which

combines BiLSTM networks with Conditional Random Fields (CRF) to
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capture dependencies between labels in a sequence.

BERT BERT is a pre-trained transformer model that has achieved state-

of-the-art performance in various NLP tasks. In the comparison, all the

hyperparameters used in BERT are the same as the proposed approach.

ME-CNER This baseline, proposed by Xu et al. (2019a), is designed for

Chinese NER tasks. The method creates character-level embeddings by

integrating information at radical, character, and word levels, aiming to

improve the performance of Chinese NER tasks.

Gazetteers This baseline, proposed by Ding et al. (2019), utilizes GNN

with a multidigraph structure to integrate information from multiple gazetteers

to for NER tasks.

Lattice The Lattice model, proposed by Zhang and Yang (2018), utilizes

a lattice-structured LSTM model for Chinese NER, integrating both se-

quences of input characters and potential words from a given lexicon.

ME-MGNN This baseline, proposed by Lee and Lu (2021), is also specif-

ically designed for Chinese NER in healthcare. The model incorporates

embeddings at various granularities, including radical, character, and word

levels, and utilizes multiple GNN to improve the recognition performance.

The performance comparison among the proposed method and several base-

line models is summarized in Table 6.1. The proposed method achieves

an F1 score of 76.37%, outperforming the best-performing baseline, ME-

MGNN, by 0.9%. This result demonstrating the effectiveness of the pro-

posed method in improving medical entity recognition, with the help of

relational network. Even without the relational network, the proposed

method still performs strongly, achieving an F1 score of 76.11%, higher

than all the other baselines. Compared to traditional models like BiLSTM-
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CRF and the basic BERT model, the proposed method shows a significant

improvement in F1 score, by 6.7% and 3.4%, respectively. The incremental

gains over more advanced baselines such as Gazetteers and Lattice further

show improvement of the proposed approach, as a result of the use of the

prompt-text fusion and relational network in capturing complex dependen-

cies within the data.

Model F1 Precision Recall
BiLSTM-CRF 71.56 70.38 72.77

BERT 73.82 71.45 76.36
ME-CNER 74.15 73.68 74.62
Gazetteers 74.26 73.00 75.56

Lattice 75.22 74.69 75.76
ME-MGNN 75.69 75.46 75.76

Proposed method w/o relational network 76.11 76.73 75.50
Proposed method 76.37 76.24 76.51

Table 6.1: Evaluation results on HealthNER dataset.

6.4 Conclusion

This chapter presents a novel approach that combines prompt learning with

relational networks to tackle the challenges of NER in healthcare. The

approach leverages the strengths of prompt learning, which offers flexible

and context-sensitive input transformations, alongside relational network

that effectively captures intricate dependencies among entities and input

text. The proposed approach significantly enhances the performance of

the NER model, as demonstrated by experimental results. The method

shows substantial improvement in accuracy and robustness across diverse

and complex medical text, surpassing traditional NER techniques. Future

work can focus on delving deeper into the integration of domain-specific

knowledge, particularly through the incorporation of more comprehensive

medical ontologies and structured data sources. Additionally, exploring
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the scalability of this approach by applying it to larger and more diverse

medical datasets will refine the model’s ability to generalize across various

subdomains within healthcare.
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Chapter 7

Conclusions

In conclusion, this thesis harnesses the power of advanced deep learning

techniques to address pressing challenges in hearthcare. This thesis ef-

fectively demonstrates the transformative potential of deep learning-based

NLP techniques in automating critical processes for smart healthcare. By

leveraging cutting-edge deep learning techniques, I have contributed to the

development of multiple techniques to streamline healthcare operations.

This thesis introduces a novel framework to classify patient’s chief com-

plaints, a multi-turn dialogue generation framework for simulating realistic

patient-doctor interactions, a rule-enhanced deep learning model to cat-

egorize physician communication styles, and a prompt-learning approach

for NER to extract critical medical information. These developments un-

derscore a commitment to practical, scalable solutions that can signifi-

cantly improve healthcare efficiency and patient outcomes. This thesis

offers a comprehensive exploration of the motivations, challenges, and re-

search contributions while providing a roadmap for future research that

aims to further push the boundaries of smart healthcare.
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7.1 Thesis Summary

The aim of the research presented in this thesis is to leverage advanced

deep learning-based NLP techniques to address critical challenges towards

smart healthcare. As outlined in Chapter 1, the research focuses on four

key tasks: chief complaint text classification, medical dialogue generation,

physician text classification, and medical named entity recognition. This

chapter also provides an overview of the challenges faced by the current

healthcare landscape and summarizes the key contributions of the thesis.

Chapter 2 offers a comprehensive literature review, examining the cur-

rent state of NLP techiniques. It contextualizes the advancements in the

field that inform this research, including an analysis of existing methods in

general text classification, chief complaint classification, genearl dialogue

generation, medical dialogue generation, and general named entity recog-

nition, and medical named entity recognition. The chapter highlights the

significance of understanding patient language and clinical terminology,

emphasizing the need for effective models that can interpret the nuances

of medical dialogue. This foundational knowledge sets the stage for the

contributions presented in subsequent chapters.

Chapter 3 details the development of a novel framework to classify chief

complaint text from patients. By leveraging a hierarchical relational net-

work, the framework effectively captures the complexity of medical termi-

nology, facilitating improved patient triage processes. The evaluation re-

sults indicate that this approach effectively enhances the accuracy of chief

complaint classification.

Chapter 4 advances the field of medical dialogue generation by introducing

a framework designed to simulate patient-doctor conversations. This chap-
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ter elaborates on the architecture of the proposed framework which utilizes

context-aware techniques to produce relevant and coherent responses. The

framework demonstrates its ability to understand the nuances of patient

language, addressing challenges such as ambiguous inputs and varying di-

alects. The effectiveness of the framework is validated through user studies,

showing that it significantly improves the quality of patient interactions in

telehealth environments, ultimately enhancing the overall patient experi-

ence.

In Chapter 5, the focus shifts to the classification of physician text during

teleconsultations into the types of social support provided. This chapter

categorizes physician responses into direct informational support, indirect

informational support, and emotional support, employing a Rule-enriched

Attention-based Deep Neural Network for classification. The findings re-

veal insights into communication strategies that can enhance patient en-

gagement and satisfaction.

Finally, Chapter 6 explores the essential task of medical named entity recog-

nition. This chapter presents a novel approach that combines prompt learn-

ing with pre-trained deep learning models to effectively position and cat-

egorize medical entities from clinical narratives. The research emphasizes

the importance of comprehensive medical ontologies in enhancing contex-

tual understanding and accuracy. The results demonstrate significant per-

formance gains, contributing to improved data management and informed

decision-making processes in clinical settings.

Overall, this thesis demonstrates the significant potential of deep learning-

based NLP techniques to transform healthcare delivery by automating and

refining various processes associated with patient care. Each chapter con-

tributes to the overarching goal of enhancing patient-provider interactions
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and optimizing clinical data management, thereby addressing critical chal-

lenges towards smart healthcare.

7.2 Limitations

This thesis explores advanced NLP techniques in the medical field, intro-

ducing novel frameworks and methods for chief complaint classification,

medical dialogue generation, physician text classification, and NER. De-

spite the promising results, several limitations are evident across these

studies. The chief complaint classification framework is constrained by the

quality and diversity of the hierarchical label data, relying on well-defined

medical categories that may not capture the nuances of clinical language

or emerging medical terminology. Additionally, its computational complex-

ity may challenge scalability and efficiency in larger datasets or real-time

applications. The medical dialogue generation framework, while showing

substantial improvement, lacks multilingual capabilities, which may hin-

der performance across diverse languages and dialects, and it can strug-

gle with highly diverse or ambiguous patient input. Similarly, the Rule-

enriched Attention-based Deep Neural Network for physician text classifi-

cation demonstrates enhanced accuracy but is limited by the narrow scope

of its social support lexicon and the specificity of domain rules, raising con-

cerns about its generalizability across different healthcare settings. In the

realm of NER, while combining prompt learning with pre-trained model

has yielded significant performance gains, it presents challenges such as

the labor-intensive process of crafting effective prompts and the substan-

tial computational resources required by the relational network used in its

preditors. Furthermore, the model’s reliance on comprehensive medical

ontologies and structured data poses limitations in scenarios where such
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resources are unavailable or insufficiently detailed. Future research should

focus on enhancing these methodologies to improve their applicability and

efficiency within diverse healthcare context.

7.3 Future Work

The future direction of this thesis focuses on addressing the identified

limitations and advancing the field of medical NLP. For chief complaint

classification, efforts will be directed towards enhancing the framework’s

scalability and efficiency by optimizing the hierarchical relational network

and expanding the label dataset to encompass a broader range of medi-

cal conditions and emerging terminology. In medical dialogue generation,

a key area of interest will be developing multilingual models and incor-

porating diverse linguistic datasets to ensure effective performance across

various language contexts, along with exploring techniques to handle highly

diverse or ambiguous patient inputs. For physician text classification, fu-

ture work will include expanding the social support lexicon, refining rule-

based components, and testing the R-ADNN framework across different

healthcare settings and languages to assess its generalizability and robust-

ness. For medical NER, research will delve into integrating comprehensive

medical ontologies and structured data sources to enhance contextual un-

derstanding and accuracy, while also investigating the scalability of the

prompt learning and relational network approach with larger and more di-

verse medical datasets. Efforts will focus on simplifying prompt creation

and improving computational efficiency to balance model complexity with

practical usability in real-world healthcare applications.
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