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Abstract

The development of autonomous driving systems (ADSs) represents a significant

evolution in transportation, with simulation being a crucial factor in their devel-

opment. However, one of the challenges for these ADS-related systems, due to

their complexity and critical nature, is the oracle problem. In software testing, an

oracle is a mechanism used to systematically verify the correctness of the outputs

for any given input. The oracle problem arises when it is difficult or impossible

to find or use such an oracle. Metamorphic testing (MT) has proven to be an

effective approach to alleviate the oracle problem. It uses metamorphic relations

(MRs)—relations among multiple inputs and their corresponding outputs—to

verify test results. The process of generating MRs remains a significant challenge

in the application of MT, especially in complex systems like ADSs. Traditionally,

MRs are produced by domain experts, while approaches like metamorphic rela-

tion patterns (MRPs) and metamorphic relation input patterns (MRIPs) provide

a structured approach to the generation of MRs. Additionally, the rise of large

language models (LLMs), such as ChatGPT, provides opportunities to reduce

the manual effort involved in the MT process. Metamorphic exploration (ME),

as an extension of MT, employs hypothesized MRs (HMRs) to assess the system

under test (SUT). A violation of these relations may not indicate a defect but can

reveal the user’s misunderstanding of the SUT, prompting further exploration of

the system.

This thesis aims to enhance MT in ADS testing by alleviating the oracle problem
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in these systems, improving testing efficiency, and promoting educational prac-

tices. Through a series of experiments, it demonstrates how MT can be effectively

applied to tackle challenges in ADS testing. Key contributions include applying

ME and MT to the Baidu Apollo ADS, which leads to enhanced system com-

prehension and the identification of conflicting obstacle-detection results in the

perception-camera module. An ADS-based test harness is designed to improve

testing efficiency and is validated through an industry case study.

While MT is proven effective in testing ADSs, it still heavily depends on human

knowledge, particularly in the MR generation process. This thesis introduces the

use of ChatGPT for generating and evaluating MRs, along with a set of evaluation

criteria for objective assessments of MR quality. A GPT evaluator was also devel-

oped, demonstrating AI’s potential to assist beginners and enhance MT practices.

Comparative studies with human-generated MRs further underscore the potential

of LLMs and highlight areas for educational improvement. Additionally, an Open

Educational Resource (OER) is introduced to provide guidelines and templates

for teaching beginners about scenario and MR generation.

To address the challenges of identifying whether anomalies originate from the

ADS or the simulator, this thesis applies MT to Autonomous Driving (AD) simu-

lators to enhance ADS testing, revealing critical bugs in NIO and CARLA simu-

lators, and demonstrating MT’s effectiveness in ensuring simulator reliability. A

scenario-driven MT framework integrating ME and MT is proposed to enhance

defect discovery and reporting, and is validated through an industry case study.

Additionally, MRPs and MRIPs tailored for AD systems are introduced, enabling

effective defect detection. These are further incorporated into a human-AI hybrid

MT framework with a test harness to streamline MR generation and automate

test case execution, enhancing testing efficiency.

In summary, through practical experiments and methodological improvements,

the thesis fills significant gaps in MT and ADS testing. It demonstrates the
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practical utility of MT in ADS testing, introduces templates, integrates AI into

the MT process, and develops educational resources along with advanced frame-

works and tools. These contributions enhance testing efficiency, reliability, and

educational practices in the field of MT and ADSs.
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Chapter 1

Introduction

1.1 Background and Motivation

The development of autonomous driving systems (ADSs) represents one of the

most transformative technological advancements of the 21st century. By integrat-

ing complex software and hardware, these systems improve the safety, efficiency,

and convenience of transportation [61]. The Society of Automotive Engineers

(SAE) classifies ADSs into six levels [19], from Level 0 (no automation) to Level

5 (full automation), each representing a different degree of driving task automa-

tion. Level 0 relies entirely on human control, while Level 5 refers to vehicles

capable of managing all driving tasks independently in any situation.

Various industry leaders and car manufacturers, including Waymo [193],

Tesla [14], and NIO [146], are developing ADS technologies. These systems are

built on key components such as sensors, perception systems, decision-making al-

gorithms, and control mechanisms [19]. Sensors like LiDAR, radar, cameras, and

GPS gather data about the vehicle’s environment [131]. The perception system

processes this data to identify objects, understand the surroundings, and deter-

mine the vehicle’s position [147]. Decision-making algorithms use this informa-
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tion to make real-time driving decisions, while control mechanisms execute these

decisions through acceleration, braking, and steering [131]. Additionally, Vehicle-

to-Everything (V2X) communication enhances safety and efficiency by enabling

vehicles to interact with each other and the surrounding infrastructure [147].

ADSs offer various advanced driving functions that enhance safety, convenience,

and efficiency [19]. Features like adaptive cruise control (ACC) [225], lane-keeping

assistance (LKA) [207], and automated parking (AP) [210] are becoming stan-

dard. More sophisticated systems, such as traffic jam assist [252] and highway

pilot [120], allow for autonomous driving (AD) under specific conditions.

Among the open-source ADS platforms, Autoware is popular for its modular ar-

chitecture and adherence to safety standards. However, it requires significant

calibration and expertise to achieve optimal performance [105]. OpenPilot by

Comma.ai equips the existing vehicles with self-driving capabilities by using AI-

based vision and sensors, although it has limitations like the lack of pedestrian

detection and complex installation requirements [43]. Baidu’s Apollo platform,

targeting Level 4 automation, offers robust tools and resources and is widely used

in ADS development due to its open-source nature and comprehensive documen-

tation [71].

Ensuring the reliability and correctness of ADSs is a significant challenge due

to their complexity and the critical nature of their application [19], which often

faces the oracle problem [254]. In software testing, an oracle is a mechanism

used to verify the correctness of the system’s outputs for any given input (test

case) [21]. The oracle problem occurs when finding or using such an oracle is

challenging or impossible [21]. Most conventional software testing techniques

are based on the assumption that an applicable oracle exists, which does not

always hold true when testing complex applications [254]. Metamorphic testing

(MT) has emerged as an effective solution to alleviate the oracle problem [47].

It has been widely adopted in various complex software systems, such as web

2
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services [192], embedded systems [39], compilers [113], databases [125], machine-

learning classifiers [103], and search engines [84]. MT offers several advantages,

including simplicity, cost-effectiveness, and the ability to be automated [47, 127].

MT uses metamorphic relations (MRs), relations among multiple inputs and their

corresponding outputs, to verify software correctness [47]. MRs usually include

source inputs, follow-up inputs, source outputs, and follow-up outputs [175]. In

MT, the source input is passed to the system under tests (SUTs) to produce a

source output. Then by applying a specific transformation (specified by MRs) to

this input, a set of follow-up inputs is generated, and their outputs are compared

with the source output with the expected relations defined by MRs [45]. If the

MR is violated, it indicates the potential existence of system defects that requires

further investigation [255]. A metamorphic group (MG) is a sequence of source

inputs and follow-up inputs related to MR [47]. Different MGs can be constructed

under the same MR [133]. The effectiveness of MT relies on the quality of MRs

and MGs [47]. Metamorphic Exploration (ME), as an extension of MT, is a

testing approach to improve system understanding and use [255]. In this context,

MRs are not necessarily required to be accurate; instead, they are hypothesized

by users (referred to as hypothesized MRs (HMRs)); these users then use the

HMRs to explore the software system, thereby enhancing their understanding of

the system and their ability to use it effectively [255].

The effectiveness of MT is significantly dependent on the quality of MRs, while

generating high-quality MRs continues to be a challenge and an area of active re-

search [123]. Various methods have been developed to facilitate the generation of

MRs [123]. Traditional approaches often rely on human expertise and are applica-

ble to specific types of SUTs, which can limit the scalability and generalizability of

MRs [107, 242]. One approach to overcoming these limitations is to compose new

MRs from existing ones, with empirical studies showing that composite MRs can

be more effective at fault detection than their individual component MRs [123,

3
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159]. Additionally, structured methods such as the category-choice framework

offer a systematic way to generate and organize test scenarios based on system

specifications, improving the relevance of MRs produced [51, 152].

MRs were primarily generated from scratch in early studies, while metamorphic

relation patterns (MRPs) provide a way to the systematic generation of MRs [123].

MRPs are abstractions that describe collections of MRs, often applicable across

various domains [255]. By using MRPs, the process of generating MRs can be-

come more structured and streamlined [249]. The concept of MRPs can be fur-

ther extended to two subclasses of patterns: Metamorphic relation input patterns

(MRIPs) [255] and metamorphic relation output patterns (MROPs) [176]. MRIPs

are abstractions that define the relations between the source and follow-up inputs

within a set of MRs [174]. On the other hand, MROPs describe relations between

the source and follow-up outputs [176]. This approach has proven effective in gen-

erating MRs for testing various systems, such as search engine [255], ADSs [249],

and deep learning libraries [129].

More advanced methods for MR generation include the use of AI techniques [103].

For instance, Machine learning (ML) approaches such as decision trees and sup-

port vector machines [103] have been employed to predict MRs. Furthermore,

neural-network-based approaches and natural language processing (NLP) tech-

niques have also proven effective in automating the MR generation process [25,

245]. As a significant advancement in NLP [253], Large Language Models (LLMs)

are designed to understand and generate human language, making them a useful

tool for a wide range of applications, including MR generation [247, 253]. Some of

the most recognized LLMs include OpenAI’s GPT (Generative Pre-trained Trans-

former) series [213], Google’s BERT (Bidirectional Encoder Representations from

Transformers) [63], and Meta’s LLaMA (Large Language Model Meta AI) [93].

Through training on vast amounts of text from various sources, LLMs could

learn basic language concepts such as grammar, facts, and the contextual use of

4



1.1. BACKGROUND AND MOTIVATION

words [253]. After the pre-training phase, these models are fine-tuned on targeted

datasets for specific tasks, which enhances their performance in applications such

as question answering, text summarization, and language translation [213].

In addition to its general applications, LLMs have shown potential in simplify-

ing the MR generation process. Shin et al. [181] proposed an approach using

few-shot prompting, where the model was provided with only a few examples,

to instruct LLMs to derive executable MRs (EMRs) from requirements and API

specifications. This method has demonstrated the capability to produce under-

standable and relevant MRs and EMRs, highlighting the potential for LLMs to

enhance the MR generation process. This PhD project adopted ChatGPT [151],

an LLM developed by OpenAI, which has demonstrated significant capabilities

across various tasks, including generating source code, formulating test cases,

and aiding in debugging programs [153]. ChatGPT includes two commercial ver-

sions, GPT-3.5 and GPT-4, both making significant advancements in AI language

processing [92]. In Chapter 4, experiments were conducted involving using Chat-

GPT (GPT-3.5 [247] and GPT-41) to automatically generate MRs for the parking

module of an ADS, finding that the quality of generated MRs varied based on

system complexity, test scenario specificity, and the number of MRs requested,

necessitating human intervention for validation and quality improvement.

MT has been widely applied in identifying and resolving critical issues within

ADSs [17, 59, 83, 94, 126, 133, 197, 205, 233]. For example, researchers have used

MT to test the control software of unmanned aerial vehicles (UAVs), identifying

scenarios where the system would fail under certain rotations [126]. Similarly,

a framework called DeepTest was developed to generate synthetic images and

test self-driving car decisions, uncovering dangerous behaviour in corner cases

(i.e., rare and unusual situations) [197]. Further applications of MT in ADSs

include the development of a declarative Rule-based MT (RMT) framework [59],
1This work was in the review process for the Information and Software Technology (IST)

Journal.
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which uses natural language to specify traffic scenarios and identify safety issues,

and a sequential MT framework [133] that uses sequences of MGs to understand

ADS behaviours without needing ground-truth datasets, revealing undesirable

behaviours in top-ranked ADS models.

Due to the open-source nature of the Baidu Apollo ADS, several studies have

applied MT to this platform. For instance, Zhou and Sun [254] used MT to find

bugs in the perception module, revealing a high likelihood of obstacle detection

failures under certain conditions. Han and Zhou [83] introduced a novel approach

combining MT with fuzz testing to identify fatal errors in the Apollo ADS, en-

hancing its robustness and safety. In Chapter 3, ME was applied [246] to the

perception and localization modules, enhancing the system understanding of the

testers by detecting anomalies violating HMRs. In the subsequent MT experi-

ments [250], the brightness of camera-captured input images was adjusted, and in-

consistent obstacle detection results were identified across sequential frames in the

perception-camera module, highlighting the shortcomings of the algorithm [250].

In ADS development, simulators provide a safe and controlled environment for

testing complex algorithms and dangerous driving scenarios (Figure 1.1) [240].

Notable simulators include CARLA [66] and SVL [168]. CARLA offers a flexible

platform that can simulate various real-world scenarios, enabling comprehensive

testing of algorithms and sensor integrations [66]. While SVL is no longer officially

supported by its company [194], it provides realistic 3D animations and detailed

data for ADS testing [168].

Simulators facilitate rapid and cost-effective testing, allowing for the early de-

tection and resolution of potential issues [240]. They can recreate dangerous or

complex scenarios that would be risky to test on real roads, significantly simpli-

fying and accelerating the development process [124]. The data generated from

simulators also aids in training ML models, enhancing the adaptability and effec-

tiveness of ADSs [33].
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Figure 1.1: Simulation plays an important role in ensuring the safety and relia-
bility of the ADSs

However, the use of any simulator, including CARLA, necessitates a critical eval-

uation and validation process. For a simulator to be useful in testing and devel-

opment, it must accurately represent real-world conditions [240]. The validity of

a simulator is a crucial factor in assessing its capability to accurately represent

real-life driving situations [186]. This is typically assessed by conducting a direct

comparison between simulated and real-world driving, and employing statistical

tests such as t-tests [108] to determine whether or not there is any significant

difference between the data values. However, testers continue encountering the

oracle problem, such as validating large amounts of data and replicating real-

world scenarios [223].

MT has been applied to simulation models to ensure their reliability and accu-

racy. For instance, Ahlgren et al. [4] discussed the deployment of the Metamorphic

Interaction Automaton (MIA) to test Facebook’s large-scale, web-based simula-

tion infrastructure, which resolved inconsistent test results and improved overall

simulation reliability. Olsen and Raunak [149] proposed using MRs to establish

pseudo-oracles for simulation validation, improving the trustworthiness of simu-

lation results by ensuring accurate system representation. Adigun, Eisele, and

Felderer [3] applied MT to simulate ADS scenarios, which reveals flaws in vehicle

perception and control algorithms under realistic traffic conditions and corner

cases. Iqbal et al. [95] focused on lane-keeping assistance systems, using MT to

7
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create test cases that simulate a range of driving conditions, effectively identifying

faults related to lane detection, steering control, and system responsiveness. In

Chapter 5, MT was applied to multiple AD simulators (NIO [249] and CARLA2),

uncovering various issues on the simulator’s built-in functions such as the compi-

lation of scenario elements and underlying logic of the simulation system.

As MT continues to gain popularity, finding effective methods to educate students,

professional software engineers, testers, and end-users about it has emerged as a

critical issue [47]. One of the challenges in educating testers to generate MRs,

especially for complex systems such as ADSs, arises from the constraints of lim-

ited time and resources [127]. This difficulty is particularly acute in scenarios

such as guest lectures or workshops where participants, often novice testers, are

introduced to the complexities of MR generation in a condensed timeframe [76].

For example, in a university setting, a guest introduction lecture might offer only

a single session to cover the principles of MRs, leaving little room for in-depth

exploration or hands-on practice. Similarly, project teams facing urgent dead-

lines may need to quickly upskill members in MR generation to meet testing

requirements, operating under the dual pressures of time scarcity and resource

limitations [218]. These situations highlight the need for efficient and effective

training methods that can rapidly equip participants with the necessary skills to

generate meaningful MRs, despite the challenge of navigating these constraints.

Although MT shows effectiveness in alleviating the oracle problem, its widespread

implementation encounters significant first-order barriers. Ertmer et al. [69] refer

to these as external factors, which include resource availability and institutional

support, particularly noting the limited availability of educational resources and

training in this specialized area. In the context of ADS testing, the concept of

MT poses a substantial hurdle due to a lack of comprehensive and accessible

educational materials. This creates a knowledge gap, especially for beginners and
2This work was in the review process for the Information and Software Technology (IST)

Journal.
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professionals seeking to advance their understanding of MT and its application

in ADSs.

To address these first-order barriers, in Chapter 6, an Open Educational Resource

(OER) for MT was presented specifically in the context of testing ADSs. OERs

are freely accessible, openly-licensed text, media, and other digital assets useful

for teaching, learning, and assessing, as well as for research purposes [206]. Orig-

inating in the early 2000s [206], OERs reflect the principles of the open-source

movement [116], with the goal of removing barriers to education. They advocate

for the free and open sharing of information and resources, primarily through the

Internet [37]. OERs include diverse materials like textbooks and curricula, all

of which can be adapted under open licenses like Creative Commons [117]. This

flexibility aids educators in customizing content, and can foster innovative teach-

ing. OERs enhance educational access, particularly for underprivileged learners,

aligning with global educational equity goals [184].

In summary, this research examined the use of MT in ADS testing, and proposed

various frameworks and guidelines aimed at improving MT efficiency and stream-

lining the generation of MRs. Furthermore, the research explored the integration

of current methodologies (MRPs) with AI technologies (LLMs) to address existing

challenges in MT. It also introduced an OER to further promote the application

of MT in the area of ADS testing.

1.2 Research Objectives and Questions

This thesis aims to enhance ADS testing by advancing the field of MT. The re-

search involves proposing a comprehensive suite of methodologies, frameworks,

and experiments designed to address critical challenges, including the efficiency

of MT processes, the difficulty of MR generation, and the overall applicability of

MT in ADS testing. The three main objectives of this thesis—examining the ef-

9
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fectiveness of MT in ADS testing, enhancing MT efficiency, and tackling the MR

generation challenge—are closely interrelated. The challenges encountered dur-

ing MT applications, such as difficulties in MR generation and test automation,

which in turn motivates the creation of methodologies and frameworks designed

to boost its efficiency. By addressing the MR generation challenge, this thesis

aims to lower the barriers for beginners and testers in new systems when using

MT. Furthermore, through automating and regulating the process of MT in ADS

testing, it seeks to make MT more accessible and applicable. Together, these

efforts form a cohesive approach to advancing MT in the ADS testing domain.

Specifically, the research objectives (ROs) were:

RO1. Examine the effectiveness of MT for ADS testing, involving ADS

and AD simulators.

• This objective aimed to explore how MT could be applied to test

ADSs like Baidu Apollo, which is popular and open-source. The

goal was to improve MT efficiency and automate the testing process

to make it more effective and manageable. Furthermore, given the

significance of simulations in ADS testing [124], the validity of AD

simulators was also important to ensure the effectiveness of ADS test-

ing. This involved applying MT to these simulators to validate their

performance and reliability, ensuring that they accurately simulate

real-world scenarios.

RO2. Tackle the challenge of MR generation, especially for beginners

and testers in new systems.

• Generating MRs is a complex task that typically requires domain

expertise and testing experience. This can be especially challenging

for those new to MT or testing new systems [47]. This objective

aimed to simplify the MR generation process by proposing methods

10
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that enhance existing knowledge (e.g., MRPs) and integrate advanced

technologies (e.g., LLMs) to facilitate and streamline the generation

of MRs.

RO3. Enhance MT efficiency by automating and regulating the pro-

cess of ADS testing, while also lowering the entry barriers for

beginners using MT.

• This objective focused on improving the efficiency of MT for ADS

testing. It involves developing tools and frameworks that can han-

dle repetitive and complex testing tasks without extensive manual

intervention. By automating these processes, the goal was to make

MT more accessible and lower the barriers for beginners who are new

to using MT in ADS testing. Meanwhile, as MT continues to gain

popularity, finding effective methods to educate testers about it has

emerged as a critical challenge [47]. Developing platforms that can

educate users about MT would promote its use in ADS testing and

encourage further research in this area.

Based on these ROs, the following research questions (RQs) were proposed:

RQ1. How can MT be effectively applied in ADS testing to uncover

anomalies and enhance system understanding?

RQ2. How can the difficulty of generating MRs be reduced to assist

beginners and testers in understanding and testing new systems?

RQ3. How can MT usage in ADS testing be simplified to increase

efficiency and lower adoption barriers?

11
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1.3 Contributions

This thesis presents several significant contributions to the field of MT and ADS

testing by alleviating the oracle problem in these systems, enhancing testing ef-

ficiency, and promoting educational practices. Through a series of experiments,

it demonstrates how MT can be effectively applied to tackle challenges in ADS

testing. The main contributions can be separated into four parts, where each part

corresponds to the contents from Chapter 3 to Chapter 6, respectively, and are

closely interconnected with ROs:

Contribution 1 Improving ADS through MT

Contribution 2 Enhancing MR Generation with ChatGPT

Contribution 3 Advancing AD Simulator Testing with MT

Contribution 4 Promoting MT through Education

All the works in the project began with an ME on the Baidu Apollo ADS

(Contribution 1), as shown in Figure 1.2, identifying an apparent problem

that was later confirmed to be a misunderstanding, which enhanced the author’s

system understanding and laid a solid foundation for subsequent experiments

(Section 3.2). The later MT experiments on the object-detection algorithm of

the perception-camera module revealed conflicting obstacle-detection results due

to brightness adjustments in both individual and sequential driving scenarios,

addressing the oracle problem in the module (Section 3.3). During this pro-

cess, the author designed and implemented an ADS-based test harness, focusing

on automating MT in ADS testing. The development of this harness increased

testing efficiency and helped testers organize the testing procedure, which was

validated through an industry case study (Section 3.3.2). In summary, the suc-

cessful applications of ME and MT help examine the MT effectiveness in ADS

12
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Figure 1.2: Details of Contribution 1

testing, achieving RO1 of the thesis, while the proposed ADS-based MT harness

enhanced testing efficiency that achieves RO3 (Figure 1.2).

However, as Figure 1.3 shows, although MT was effective for testing ADSs, it

still heavily depended on human knowledge, particularly in the MR-generation

process (red texts in the image). This motivated the work presented in Chap-

ter 4, which involves a new approach by introducing AI into MR generation,

specifically LLMs, and assesses the quality of the MRs to demonstrate its fea-

sibility (Contribution 2). As one of the most popular LLMs, the capabilities

of ChatGPT (GPT-3.5 and GPT-4) were assessed in generating MRs for SUTs

across diverse domains (Sections 4.2 and 4.3). This was supported by proposing

a series of MR-evaluation criteria, including an initial version and a refined ver-

sion, to offer a more comprehensive, effective, and objective assessment of MRs

(Sections 4.2.1 and 4.3.2). A customized GPT-MR evaluator was also created,

and performed comparably to human evaluators, indicating that AI can enhance

MT practices and assist beginners in generating MRs (Section 4.3.3.2), as part of

the efforts to fulfill RO3 of the project. The evaluation results demonstrated the

advanced capabilities of ChatGPT, especially GPT-4, in software testing and MR
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Figure 1.3: Details of Contribution 2

generation across a wide array of applications, successfully achieving RO2. The

quality of the GPT-generated MRs was further compared with human-generated

ones in Chapter 6. The two studies demonstrate the potential of beginners with

appropriate guidance to quickly generate useful MRs that possess similar qualities

to those generated by powerful LLMs: The first was a pilot study with a small

number of participants, comparing the MRs with GPT-3.5 (Section 6.3.1); the

second was a subsequent study that involved recruiting more participants and

comparing the MRs with GPT-4 (Section 6.3). These studies also underscore

areas for improvement in the teaching and training of both humans and LLMs.

Additionally, as shown in Figure 1.4, the challenge of determining whether anoma-

lies arise from the ADS, the simulator, or the simulated data in the testing of

Baidu Apollo ADS underscores the essential role that simulation plays in this

process (red texts in the image). Consequently, this thesis involves the applica-

tion of MT to AD simulators as a means of enhancing the overall effectiveness

of ADS testing (Contribution 3). In Chapter 5, MT was conducted on two

AD simulators, the NIO AD simulator and the CARLA simulator. In the case

of the NIO AD simulator, MT was implemented alongside the NIO ADS, which

14
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Figure 1.4: Details of Contribution 3

had not been previously tested using MT (Section 5.2). Instead of conventional

unit testing, scenario-based testing was implemented to detect defects in various

components. The author developed a scenario-driven MT framework integrating

ME and MT to enhance defect discovery and reporting (and as a work to achieve

RO3): An industry case study illustrated the framework’s strengths and limita-

tions (Section 5.2.2). Furthermore, during the testing, a set of MRPs and MRIPs

were proposed to facilitate the generation of MRs due to the lack of MRPs that

specifically target AD-related systems in the literature (Section 5.2.1). The MRs

generated from these MRPs and MRIPs have been empirically demonstrated to

effectively reveal defects within the AD simulator, achieving RO2 of the thesis.

However, one challenge of testing the simulator in conjunction with the ADS

was to identify the source of the anomalies. Therefore, to further explore the

performance of MT in AD simulators, the author applied MT on the CARLA

simulator (Section 5.3), discovering four significant bugs related to simulator be-

haviours that conventional testing methods might have missed. Meanwhile, given

the effectiveness of ChatGPT in facilitating MR generation and test automation

(Chapter 4), the author designed a human-AI hybrid MT framework that com-
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Figure 1.5: Details of Contribution 4

bines human inputs with AI-driven automation to generate and refine MRs for

evaluating various aspects of the CARLA simulator (Section 5.3.1). This frame-

work also includes a test harness to automate the generation and execution of test

cases, thereby improving the efficiency and effectiveness of the testing process in

support of achieving RO3. Both MT experiments on AD simulators complement

the previous work on Baidu Apollo ADS (Chapter 3), successfully achieving RO1

of the thesis.

While the experiments on ADSs and AD simulators showcase the effectiveness

of MT in facilitating ADS testing, these methods still require that users have a

basic understanding of MT, as Figure 1.5 shows. Additionally, finding effective

methods to educate students, professional software engineers, testers, and end-

users about MT has become a critical challenge [47]. To promote MT in ADS

testing (Contribution 4), the author developed an OER, including instructions

for scenario and MR generation, aimed at improving educational approaches and

supporting beginners in the field, which also achieves RO3. The MR-generation

guideline and test-case generation template simplify the initial steps in scenario

creation, making MR generation more efficient and understandable for beginners
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(Section 6.2), and achieving RO2 of the thesis. These materials were later used to

guide students in generating MRs targeting specific ADS functions (Sections 6.3.1

and 6.3), highlighting how beginners, with proper guidance, can rapidly produce

valuable MRs.

In conclusion, this research makes significant contributions to MT and ADS test-

ing through experiments and methodological advancements. It demonstrates the

practical utility of MT in ADS testing by addressing the oracle problem, reveal-

ing critical defects, and improving system understanding. The introduction of

the templates and guidelines for test case and MR generation alleviates the chal-

lenges of MT and lowers the barriers to ADS testing. Moreover, integrating AI

into MR generation and evaluation reduces reliance on human expertise and im-

proves MT practices. The development of educational resources like the OER

addresses critical challenges in teaching MT, supporting beginners and promot-

ing wider adoption. The proposed frameworks and tools, including test harnesses

and hybrid MT frameworks, significantly enhance testing efficiency, reliability,

and educational practices in the field of ADSs.

1.4 Thesis Outline

The rest of the thesis is structured into the following chapters:

Chapter 2 (Background) provides the background to the research, beginning with

a discussion of traditional testing methods and the oracle problem. It then intro-

duces MT and ME, including key research in MR generation. The chapter also

covers ADSs, reviewing existing open-source ADSs and the application of MT in

these systems. Further, it explores AD simulators and existing MT in simulation

environments. Lastly, the chapter examines LLMs, specifically ChatGPT, and

existing research on the integration of MT with LLMs.
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Chapter 3 (Improving Autonomous Driving System Reliability with Metamor-

phic Testing) focuses on the application of ME and MT for testing ADSs, with a

specific focus on the Baidu Apollo ADS. It presents the experiments conducted

on this platform, specifically targeting the perception and localization modules.

An ADS-based test harness is also introduced to enhance testing efficiency, val-

idated through an industry case study. The chapter highlights the effectiveness

of ME and MT in the identification of defects and the enhancement of system

understanding.

In Chapter 4 (Enhancing Metamorphic Relation Generation with ChatGPT), the

thesis examines how AI technologies can enhance MR generation and automate

testing processes. It focuses on the application of LLMs, particularly ChatGPT

(GPT-3.5 and GPT-4), in generating MRs. Additionally, the chapter presents a

set of criteria for evaluating MRs, along with the customization of a GPT-MR

evaluator, and assesses its effectiveness in improving the evaluation process for

MRs.

Chapter 5 (Advancing Autonomous Driving Simulator Testing through Metamor-

phic Testing) extends the application of MT to AD simulators in the ADS testing

domain, presenting experiments conducted on the NIO AD simulator and CARLA

simulator. It then introduces MR generation techniques, involving three MRPs

and MRIPs, along with guidelines for generating MRs for common ADS modules.

The chapter also discusses frameworks designed to enhance MT efficiency and ef-

fectiveness, including a scenario-driven MT framework and a human-AI hybrid

MT framework. A significant number of defects were revealed through the MT

approach, demonstrating the effectiveness of MT in enhancing the validity of AD

simulators.

In Chapter 6 (Promoting Metamorphic Testing through Education), the thesis

presents an OER designed to promote MT among students and beginners in MT

and ADSs. This OER includes a scenario template for improving ADS testing,

18



1.4. THESIS OUTLINE

along with guidelines for MR generation. The chapter also compares the perfor-

mance and quality of MRs created by ChatGPT and novice students, highlighting

how AI-driven methods can enhance MT practices and support beginners in pro-

ducing high-quality MRs.

Chapter 7 (Discussion and Conclusion) provides a comprehensive summary of the

thesis. It reflects on the RQs and discusses the overall impact of the work on the

field of ADS testing. Additionally, the chapter highlights the importance of this

research in furthering the use of MT in ADSs and suggests possible directions for

future investigation.
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Chapter 2

Background

2.1 Challenges in Traditional Testing: The Or-

acle Problem

Ensuring the correctness and reliability of complex systems is significant in soft-

ware testing [47]. A fundamental aspect of software testing is the use of an

oracle, which is a mechanism used to determine the correctness of the system

behaviour or output for given inputs [21]. The majority of conventional software

testing methodologies rely upon the existence of an oracle. However, in complex

systems, it may be infeasible or impractical to find an oracle (i.e., the oracle prob-

lem) [47]. There are four types of test oracles [21]: specified test oracles, derived

test oracles, implicit test oracles, and no test oracle. Specified test oracles work

by judging whether or not the behaviour of the program satisfies the formal spec-

ifications, such as model-based specification languages [112] and assertions [85].

Derived test oracles assess the correctness of the system depending on the infor-

mation derived from certain conditions or models (e.g., MRs from MT), instead

of depending on explicitly defined outputs [21]. Implicit test oracles highlight

the issues that can be easily noticed, such as program crashes, and no test oracle
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applies to situations where a test oracle is absent [21].

This thesis focuses on MT, which falls under the category of derived test oracles.

Other testing strategies in this category include pseudo-oracles and regression

testing [21]. A pseudo-oracle is one of the earliest versions of the derived test ora-

cle [21, 57]. It involves producing a different version of the same program from a

separate development team. If the original program is considered to be validated,

the outputs of these two programs with the same set of inputs should be similar

or identical. Otherwise, defects may exist in one or both versions, prompting the

need for further debugging to identify the source of the inconsistency [57]. The

main weakness of this method is that it could only prove the existence of the

defect without being able to find it. In addition, this method is not suitable for

large and complex programs due to the expense of developing another version.

Furthermore, a complete and precise specification must be available to both pro-

gramming teams [21]. This can be challenging if the other team is from a different

department or company, due to trade secrets and intellectual property concerns.

Regression testing is another testing strategy that falls under the category of de-

rived test oracles [21]. It is designed to assess whether or not the modifications

are made to the new version of a SUT have disrupted existing functionality [239].

In particular, regression testing can be categorized into several testing techniques:

Retest All, Regression Test Selection, Test Case Prioritization, and the Hybrid

Approach [68]. Retest All is a conventional strategy that reruns all the test cases

for the modified program, which can be very expensive and less cost-effective [118].

Regression Test Selection aims to reduce costs by selecting a subset of test cases

to run, based on the changes made to the program [68]. Test Case Prioritization

arranges test cases to increase the likelihood of early fault detection, based on

factors such as recent changes, fault history, or code coverage, to improve the

efficiency of the testing process [170]. The Hybrid Approach combines Regres-

sion Test Selection and Test Case Prioritization to leverage the benefits of both
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techniques, optimizing both the selection and execution order of test cases.

2.2 Metamorphic Testing

MT has emerged as a powerful technique to alleviate the oracle problem, using

MRs to test software through the relations among multiple sets of inputs and their

corresponding outputs [250]. MT has effectively identified faults in a wide variety

of complex software systems, such as web services [192], embedded systems [39,

100], compilers [113], databases [125], machine-learning classifiers [103], online

search functions and search engines [84], cybersecurity [48], and ADSs [83, 250,

254].

MT can be used both as a test case generation strategy and a test result verifica-

tion method [47]. It offers several significant advantages. Firstly, it is conceptually

simple and straightforward to implement, enabling testers with limited experience

to learn and apply it effectively within a few hours [127]. The major steps in MT,

including test case generation, execution, and result verification, are relatively

easy to automate, while the MR generation process often requires manual effort

and domain expertise [47]. Additionally, MT is cost-effective compared to tradi-

tional testing techniques, as it avoids the scalability issues [47], which refers to the

number of test cases needed or the testing efforts required will grow exponentially

when the size of the SUT increases [87]. MT can be applied with a test suite of

any size, making it flexible and efficient even for large and complex programs [47].

2.2.1 Metamorphic Relations

MRs are the core part of the MT [45]. An MR is a property that specifies how the

output of the program should change if the input changes correspondingly [242].

For instance, in an algorithm that computes the shortest path between two ver-
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tices in an undirected graph, an example MR would involve swapping the source

and destination vertices, with the relation that the length of the shortest path

remains the same [254].

The majority of MRs consist of two components: the input relation, which de-

scribes how inputs change among test cases; and the output relation, which de-

scribes how outputs change among test cases [148]. Additionally, there is another

category of MRs where the construction of follow-up test cases requires the out-

puts of the source test case [123]. For instance, in MRs designed to test a search

engine [256], the source test case must first be executed to obtain a list of search

results based on certain keywords. The follow-up test case, using the same set of

keywords but restricted to a specific domain, should return a sub-list of results

from that domain.

A metamorphic group (MG) is a sequence of source inputs and follow-up in-

puts related to MRs [47]. Different MGs can be constructed under the same

MR [133]. The effectiveness of MT relies on the quality of MRs and MGs [47].

Tian et al. [197] developed individual MGs that include an initial driving image

and a follow-up image altered by weather and lighting changes. This method

revealed thousands of erroneous behaviours in three deep-learning models used

for outputting AD steering values based on static images. Luu et al. [133] intro-

duced the Sequential MetAmoRphic Testing (SMART) framework, which used

sequences of MGs of test cases to test the correctness of AV decisions. The study

identified numerous undesirable behaviours in the AD models and highlighted key

factors influencing their decisions. The results showed the effectiveness of using

sequential MGs in revealing undesirable behaviours of SUTs [133].
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2.2.1.1 MR Generation

The generation of MRs is one of the main challenges in MT and has thus become

a significant research focus [123], which was also what RQ2 of this thesis tried to

address (How can the difficulty of generating MRs be reduced to assist beginners

and testers in understanding and testing new systems?). Traditional approaches

to MR generation are typically constrained to specific application domains and

heavily reliant on human expertise [107, 242], and producing a sufficient number

of high-quality MRs remains a challenging task [80]. Research has shown that the

MRs can be produced either by deriving from existing ones or generating from

scratch [123].

Composing new MRs from existing ones was one of the earliest research direc-

tions for MR generation [123]. Dong et al. [65] showed that the effectiveness of

composite MRs in fault detection depends on the individual component MRs and

the composition sequence. Liu et al. [128] developed a method to define the com-

posability of MRs and showed that composite MRs could be more cost-effective

than each component MR since they need fewer test cases. More recently, Qiu et

al. [159] conducted a comprehensive theoretical and empirical exploration of the

fault-detection effectiveness of composite MRs. They identified sufficient condi-

tions under which composite MRs are more effective than component MRs. They

also provided explanations and guidelines to help testers determine when to use

composite MRs over individual component MRs.

When generating MRs from scratch, the category-choice framework [152] provides

a structured method to create and organize test scenarios by grouping inputs into

categories and selecting different options within each category, based on system

specifications [157]. The category-choice framework, based on Category-Partition

Method (CPM) [152] and CHOiCe-reLATion framework (CHOC’LATE) [157], or-

ganizes categories and choices derived from software specifications. A category

represents a property of an input or environment condition, while choices are dis-
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tinct subsets of the category’s values. Test cases are generated by selecting values

from complete test frames (CTFs), which are formed by combining choices from

different categories [123]. Chen et al. [51] used the category-choice framework [50]

to propose a METRIC technique to identify MRs based on the program specifi-

cations. METRIC involves selecting two distinct test scenarios, and evaluating if

there is a definite relationship between their outputs. If so, the tester can generate

MRs based on this relationship. This process is repeated until a set number of

MRs have been created, or all relevant scenarios have been exhausted [51]. One

advantage of this approach is that it does not require testers to access the inter-

nal code of the SUT, as it focuses on testing based on the program’s functional

specifications [144]. Sun et al. [189] developed METRIC+, an extension of the

original METRIC technique, by incorporating both input and output domains of

the SUT. METRIC+ presents new definitions for input categories and choices as

I-categories and I-choices, and for output categories and choices as O-categories

and O-choices, along with combined input-output test frames (IO-CTFs). This

approach facilitates the analysis of output relationships, and reduces the need

for manual evaluation [189]. Since the category-choice framework can be applied

to any type of software where categories and choices can be defined, METRIC

and METRIC+ have broad applicability, and are not limited to specific types

of software. However, this flexibility also presents a potential limitation: some

companies may not release detailed specifications of products for external use,

thereby restricting the practical application of these methods [88].

Typically, MRs are specified at a high level of abstraction, to the point where they

may not even represent a single relation but rather a collection of them [176]. An

MRP is an abstraction describing such a collection of MRs (which could be un-

limited in size [255]). The concept of MRPs can be further extended to two

subclasses of patterns: MRIPs [255] and MROPs [176]. MRIPs are abstractions

that define the relationships between the source and follow-up inputs within a

set of MRs [174]. On the other hand, MROPs describe relations between the
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source and follow-up outputs. Segura et al. [176] first introduced the concept

of MROP for RESTful Web APIs, defining them as abstract output relations

typically identified in Web APIs. They identified six MROPs based on set opera-

tions: equivalence, equality, subset, disjoint, complete, and difference. They also

worked on the inference of likely MRs for model transformations by identifying

domain-independent trace patterns and defining MRs that could be adapted to

specific contexts [202].

Formal definitions of MRP and MRIP were produced by Zhou et al. [255]. They

first showed symmetry as a universal property with examples from multiple areas,

and then defined the symmetry MRP and “change direction” MRIP, with a series

of case studies for popular applications in multiple areas. The results showed that

the MRPs and MRIPs proposed in the study were simple and straightforward to

use [255]. MRPs play a crucial role in facilitating the systematic generation of

MRs, and by utilizing MRPs, the process of generating MRs can become more

structured and streamlined [123]. Due to the diverse applications and complexi-

ties of SUTs, finding universally applicable MRPs is challenging. Recent studies

have focused on domain-specific MRPs, such as Liu et al. [129] defining a sym-

metry MRP for fuzz testing deep learning libraries, and Sun et al. [187] proposed

14 interleaving patterns for concurrent programs. Recently, Zhang et al. [249]

proposed three MRPs and MRIPs for testing AD simulators, which were proven

effective in generating MRs and finding issues (Section 5.2.1).

In 2014, Zhang et al. [242] proposed a search-based approach that can automat-

ically infer “polynomial MRs” for SUTs, where the input relations follow simple

linear expressions between the source and follow-up inputs, and the output re-

lations are either linear or quadratic based on the source and follow-up outputs.

In the study, the inference of MRs was viewed as a search problem so a set of

parameters was used to represent a particular class of MRs, and Particle Swarm

Optimization (PSO) [106] was adopted to optimize these parameters [242]. They
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evaluated the inferred MRs on four scientific libraries, and showed the effective-

ness of the MRs in detecting faults [242]. One of the strengths of this method is

that it does not require the tester to understand the code, i.e., it is a black-box

testing approach [145]. Although the original study used the C programming lan-

guage, it can also be extended to multiple languages. However, one limitation of

its usage is that it currently only supports numerical systems. Zhang et al. [241]

further introduced AutoMR, an extension of their PSO-based approach [242],

which generates diverse MRs involving more than two inputs and includes both

equality and inequality relations. AutoMR also supports eliminating redundant

MRs and employs a more fine-grained fitness function to improve the accuracy

and simplicity of MRs [241].

MRs can also be generated using AI approaches. Kanewala and Bieman [103] first

used ML techniques for MR generation with an approach involving the construc-

tion of control flow graphs (CFGs), extraction of features for creating predictive

models, and use of these models to predict likely MRs. They applied decision

trees (DTs) and support vector machines (SVMs) to predict MRs for 48 scien-

tific numeric functions, finding SVM-predicted MRs superior in killing mutants of

functions (modified versions of the SUTs with artificial defects [99]). Additionally,

Kanewala [101] proposed using program dependency graphs (PDGs) and graph

kernels (random walk and graphlet kernels) to improve MR prediction. Further

studies by Kanewala et al. [102] demonstrated that graph kernels enhanced the

accuracy of MR prediction, with control flow information proving more effective

than data dependency information. The research by Rahman and Kanewala [102],

and Nair et al. [143] also supported the applicability and effectiveness of these

methods. Zhang et al. [245] introduced a neural network-based approach using

CFGs to create a multi-label dataset and employed radial basis function (RBF)

neural networks [244] for MR prediction. Other AI-based approaches include

program-documentation-based methods [160] and semi-supervised SVM-bagging

KNN algorithms [235]. A recent study [247] used ChatGPT (GPT-3.5) to au-
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tomatically generate MRs for the parking module of an ADS, finding that the

quality of generated MRs varied based on system complexity, test scenario speci-

ficity, and the number of MRs requested, necessitating human intervention for

validation and quality improvement (Section [247]).

Other techniques for generating MRs systematically include using genetic pro-

gramming [86, 224], tabular expression [122], behaviour driven [58], guideline-

based [163], data mutation [190, 191], and template-based [177].

2.2.1.2 MR Selection

Selecting effective MRs could help reduce the number of test cases and enhance

defect detection [47]. Research has been conducted to develop guidelines for

the selection of MRs [12, 35, 46, 127, 137]. Cao et al. [35] established a strong

correlation between the fault-detection effectiveness of MRs and the dissimilarity

in the execution profiles generated by source and follow-up test cases. They

showed that MRs that lead to greater differences in execution paths tend to

be more effective at uncovering faults. In another research, Asrafi et al. [12]

conducted an empirical study showing that MRs with low code coverage are

less effective at detecting software faults, while high code coverage, indicating

diverse execution behaviour, correlates well with fault detection effectiveness, even

though it is not a perfect indicator of this effectiveness. Mayer and Guderlei [137]

proposed four general rules for quickly assessing MRs based on their suitability for

fault detection. The study involved identifying various MRs applied to several

common Java programs of determinant computation. The study suggests that

systematic criteria can help identify and select effective MRs, thereby improving

the efficiency of MT [137].

Although multiple guidelines have been proposed for selecting effective MRs, they

are not quantitative and the implementation is rather subjective, according to
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Chen et al. [47]. More research is needed to establish formal, objective criteria [47,

175]. To alleviate this challenge, this PhD project involves developing a formal

and objective evaluation framework to assist testers in selecting and evaluating

MRs (Section 4.3.2).

2.2.2 Test Case Generation for MT

Effective test case generation is essential in MT [127]. Notably, MT was proposed

both as a test case generation and test result verification approach [47]. Lv et

al. [134] proposed a novel approach for multiple-path test case generation by

combining the PSO algorithm with MRs. In this approach, the first test case is

generated by the PSO algorithm and then MRs are used iteratively to generate

other test cases. This method improves efficiency in generating multiple path-

wise test cases and reduces computational costs [134]. Chen et al. [42] proposed

the Equivalence-Class Coverage for Every MR (ECCEM) criterion, which can be

applied to generate fewer test cases while achieving a high fault-detection rate.

ECCEM uses equivalence classes to generate efficient test cases with a strong

coverage of MRs.

Traditionally, the source test cases (STCs) in MRs are usually generated with the

Random Testing (RT) method (a methodology that systematically generates ran-

dom inputs for a program [82]) [90, 221]. However, one limitation of this approach

is that it does not use any existing information to guide testing [49]. Adaptive

Random Testing (ART) [38] was proposed to enhance the testing efficiency of RT

by maximizing the distribution of test cases across the input domain [90]. Exper-

iments showed that ART has better performance than RT on test case selection,

further improving the performance of MT [22]. Hui and Huang [89] introduced

the metamorphic-distance ART (MD-ART) algorithm to guide the selection of the

STCs, which is based on both the input diversity (as in ART) and their relation-

ship to previous test cases (using MRs). This approach improves the performance
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of MT and ART in terms of test effectiveness, efficiency, and test coverage [89].

However, in this study, only the distance between the STCs and the selected test

cases was considered, while the effect of the follow-up test cases (FTCs) on the

next test case selection was not used [90]. To take advantage of the FTCs, Hui

et al. [90] proposed MT-based ART (MT-ART) to optimize test case selection

by considering three types of distances during test case selection: the distance

between FTCs and executed test cases, between STCs and executed test cases,

and between FTCs and STCs. The experiments showed that MT-ART generated

more effective test cases compared to MD-ART and RT [90]. Recently, Ying et

al. [237] introduced the MT-based ART through Partitioning (MT-PART) algo-

rithms to improve both the effectiveness and the efficiency of MT by dynamically

partitioning the input domain and generating new STCs and FTCs in a way

to ensure an even distribution across their corresponding input domains. This

approach has significantly enhanced the efficiency of testing compared to other

MG generation algorithms (e.g., MT-ART [90]) while maintaining good effec-

tiveness [237]. In another research, Ying et al. [236] introduced MT-based ART

applied to Source and Follow-up Input Domains (SFIDMT-ART) algorithms for

the generation of high-quality MGs that improve the diversity of MGs.

Other approaches for test case generation include using genetic algorithms [24],

feedback-directed approach [188], iterative MT (IMT) [220], and equivalance-

class coverage method [74]. This PhD project introduces a novel test scenario

generation template for MT in ADS testing [251], which improves the accessibility

and user-friendliness of the test case generation process for a broader audience

(Section 6.2.1), also as a solution to address RQ3 of the thesis (How can MT usage

in ADS testing be simplified to increase efficiency and lower adoption barriers?).
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2.2.3 Metamorphic Exploration

ME [255] is an extension of MT. While MT focuses on testing the correctness of

software with MRs, ME uses the concept of HMRs. These HMRs are believed to

hold true based on the tester’s understanding of the system [257]. Unlike MRs in

traditional MT, where a violation typically indicates a defect in the software, a

violation of an HMR does not necessarily point to a software problem. Instead, it

may reveal gaps or inaccuracies in the user’s understanding of the system [255].

When an HMR is violated, it prompts further investigation. This process of-

ten leads users to a deeper exploration of the system, allowing them to enhance

their understanding of the system [231]. ME not only helps identify potential

software defects, but also enhances the user’s comprehension of the system, po-

tentially leading to more effective and accurate use of the software [232, 255].

This exploratory approach is particularly valuable in complex systems where the

behaviour may not be entirely predictable or understood, or the specifications

are missing or unavailable to users [255]. By hypothesizing and testing various

HMRs, users can incrementally build a more comprehensive understanding of the

system’s functionality and limitations.

ME has been applied in multiple areas, including ML [231, 232], education [200],

and object-detection [257]. Yang, Towey, and Zhou [231] used ME for a clustering

program, where they identified seven HMRs and detected two HMR violations.

These findings provided insights into the system that were not documented in

the software’s user manual, but were revealed through ME. Zhou et al. [257] con-

ducted an empirical study on the Camera Obstacle Detector (COD) of the Baidu

Apollo ADS, proposing an in-place approach with three HMRs for programs that

process data streams. The empirical results demonstrated that this approach is

practical and effective in detecting a large number of real-time obstacle-perception

failures, with a relatively low false-alarm rate. Zhang et al. [246] applied ME to

the perception and localization modules of the Apollo ADS, which uncovered an
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apparent anomaly that was later identified as a misunderstanding rather than a

fault in the system (Section 3.2). The experience enhanced the researcher’s un-

derstanding and testing capability of the ADS, which laid a foundation for their

future testing work [250]. Additionally, the approach used in the study can also

benefit others testing ADSs and have broader implications through integrating

ME into SQA training to help learners better understand complex systems [246].

2.3 Autonomous Driving Systems

ADSs, or self-driving, have gone through fast development over the past decade.

The levels of self-driving, defined by the Society of Automotive Engineers (SAE),

range from Level 0 to Level 5 [19]. Level 0 means no automation, with the driver

responsible for all tasks. Level 1 offers basic driver assistance. Level 2, or partial

automation, allows the car to control both steering and speed, but the driver

must stay attentive. Level 3, or conditional automation, enables the vehicle to

handle most of the driving tasks, but the driver must still be present and ready to

take over. Level 4, or high automation, performs all driving tasks without driver

input, in most environments. Level 5 represents full automation, with the vehicle

capable of driving entirely on its own in any situation.

Numerous companies are working on ADSs, such as Waymo [193], NIO [146],

Tesla [14], and XPENG [227]. Their interests range from hardware manufacturing

and computing to software development for driving assistance, entertainment, and

in-car advertisement [19]. The primary components of an ADS include sensors,

perception systems, decision-making algorithms, and control mechanisms [240].

Sensors, including LiDAR, radar, cameras, ultrasonic sensors, and GPS, collect

large amounts of data about the vehicle’s surroundings [131]. These sensors pro-

vide essential information on the distance, speed, and characteristics of nearby

objects and the vehicle’s precise location.
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The perception system processes the raw data from the sensors to create a com-

prehensive understanding of the environment [147]. This involves object detection

and classification, which identifies other vehicles, pedestrians, and road signs, as

well as localization, which determines the vehicle’s position. Additionally, envi-

ronmental mapping constructs a dynamic map of the surroundings to facilitate

safe navigation and obstacle avoidance. Decision-making algorithms then inter-

pret this processed data to make real-time driving decisions [147]. Path planning

algorithms generate a safe and efficient route, while behaviour planning decides

on specific manoeuvres, such as lane changes and stops, based on current traffic

conditions [61]. Predictive algorithms anticipate the actions of other road users

to avoid potential collisions [147].

Control mechanisms execute the decisions made by the planning algorithms [131].

These include motion control systems that manage acceleration, braking, and

steering to follow the planned route precisely. Feedback control systems con-

tinuously monitor the vehicle’s performance and make necessary adjustments to

maintain stability and accuracy. To ensure seamless operation, ADSs often incor-

porate Vehicle-to-Everything (V2X) communication technologies, allowing vehi-

cles to exchange information with each other and other infrastructures, enhancing

safety and efficiency [147].

The current ADSs offer a variety of functions designed to enhance safety, conve-

nience, and efficiency for drivers and passengers. These functions typically include

adaptive cruise control (ACC) [225], which maintains a set speed and safe dis-

tance from the vehicle ahead; lane-keeping assistance (LKA) [207], which helps

the vehicle stay centred in its lane; and automated parking systems that assist in

navigating into parking spaces [210]. More advanced features, such as traffic jam

assist [252] and highway pilot [120], enable semi-autonomous driving in certain

environments by combining multiple sensors and algorithms to navigate through

traffic and along highways.
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The complex nature of ADSs often makes it difficult to create fully automated

test oracles for testing driverless vehicles, while manual monitoring can be both

expensive and imprecise [254]. Furthermore, generating comprehensive system

specifications to evaluate system behaviours faces challenges in addressing the

oracle problem, which involves replicating the decision-making processes of human

drivers [197]. For instance, a human tester may struggle to assess whether the

route selected by an ADS in a complex road network is optimal or not [30]. This

kind of oracle problem also extends to ensuring the validity of simulation data,

which is crucial for the accuracy of ADS development [167]. MT has proven to

be an effective approach for addressing the oracle problem by using MRs [47].

Consequently, to address RQ1 of this thesis (How can MT be effectively applied

in ADS testing to uncover anomalies and enhance system understanding?), this

PhD research has implemented MT across various ADSs and AD simulators,

demonstrating its effectiveness with multiple defects revealed (Chapters 3 and 5).

2.3.1 Existing Open-Source ADS Platforms

2.3.1.1 Autoware

Autoware is an open-source software stack designed specifically for AD by Au-

toware Foundation [105]. Autoware is based on the Robot Operating System

(ROS) [169] and designed for vehicles operating in various environments [105].

It includes modules for sensing, localization, perception, planning, and con-

trol. Autoware supports multiple applications such as autonomous valet parking,

cargo delivery, and robo-taxis [36]. It focuses on modular architecture, allow-

ing for easy integration with different hardware and sensor configurations. It

also follows strict safety standards, targeting dependable real-world implemen-

tation and widespread usage in academic research and industrial projects [16].

Autoware’s development has led to a two-part structure: Autoware Core and
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Autoware Universe [15]. Autoware Core is a stable version of the system, of-

fering essential functionalities for real-world AD applications with high safety

standards. It includes thoroughly tested and well-maintained modules [15]. In

contrast, Autoware Universe promotes innovation and experimentation, integrat-

ing advanced, community-contributed features for rapid development and diverse

applications [15].

Autoware has several limitations [53], including the need for extensive calibration

and tuning to achieve optimal performance across different hardware setups. Inte-

grating multiple sensors and ensuring seamless communication between modules

can also pose significant technical challenges. Additionally, Autoware’s complex-

ity requires expertise to deploy and maintain, which can be a barrier for some

users [53].

2.3.1.2 OpenPilot by Comma.ai

OpenPilot, developed by Comma.ai, is an open-source advanced driver-assistance

system (ADAS) designed to enhance the self-driving capabilities of existing ve-

hicles [43]. OpenPilot integrates with supported car models through a certain

device, using AI-based vision models and car sensors to provide functionalities

such as ACC, LKA, and automatic lane changing (ALC) [20]. It has provided

support for more than 150 types of vehicles. Despite its capabilities, it has some

limitations, such as the absence of features like pedestrian detection and auto-

matic parking [6]. Additionally, installation and maintenance can be challenging

for regular users [6]. The system performance can also be affected in severe

weather conditions due to reliance on image recognition [6].
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2.3.1.3 The Baidu Apollo ADS

Baidu is developing a series of AD programs for its open-source self-driving car

project Apollo [71]. These programs involve manufactured vehicles that aimed to

reach the L4 Autopilot level, for instance, Robotaxi [104] and Minibus [11]; and

an in-car operating system that enhances the human interaction with cars called

DuerOS [67]. The commercial version of Apollo has been successfully deployed in

China, providing an open platform that collaborates with many automotive and

technology partners. Baidu has launched autonomous taxi services in cities like

Beijing and Wuhan, allowing residents to book rides through a mobile app [104].

The Apollo ADS has evolved into the 9th generation since 2017 with powerful

modules and functions [71]. The platform offers a range of tools and resources

essential for building ADSs, including HD maps, simulation environments, and

an array of software development kits (SDKs) [8]. Apollo’s modular architec-

ture enables developers to integrate its components into their own systems or use

them as standalone solutions. An important aspect of Apollo’s impact is its com-

mitment to open-source principles [8]. By promoting an open and collaborative

development environment on GitHub, Apollo facilitates the sharing of insights

and technological advancements among developers and researchers [8].

This PhD project chose Apollo as the testing target because Apollo is a complex

and powerful open-source ADS with comprehensive documentation support. Fur-

thermore, Apollo offers a variety of programs and tools that enable developers

and testers to experiment with the system on their own devices, eliminating the

need to deploy on an actual vehicle. Nonetheless, a potential drawback is the

slow feedback loop between developers and users on the Internet (GitHub [8]).
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2.3.2 Applications of MT in the Domain of ADSs

MT has been applied to test multiple kinds of automated systems and obtained

valuable results [7, 17, 58–60, 81, 83, 94, 95, 126, 133, 197, 205, 226, 233, 250,

254]. For instance, researchers from the Fraunhofer Center created a simulation

environment to test the control software of UAVs (unmanned aerial vehicles) using

MT [126]. Their project began by developing a model based on flying scenarios

and studying the routes selected by the drone. Their MRs required the drone

to behave consistently regardless of the angle at which the scene was rotated.

The testing identified corner cases where the drone would fly directly towards

obstacles, resulting in crashes [126].

Researchers from the University of Virginia and Columbia University tested the

decisions of ADSs with the tool developed by deep neural networks (DNNs) [197].

The tool, DeepTest, can automatically generate synthetic images by applying

transformations such as scaling, shearing, rotation, and various filters to create

test cases. They used MT to test the steering angle outputs of the ADS models.

The MRs require that under different conditions of the same input, the steering

angle values should be similar [197]. A large number of MR violation cases were

found when the SUT performed dangerous erroneous behaviours, exposing the

design defects.

However, as was pointed out by Zhang et al. [243], the test cases generated by

DeepTest might not accurately represent real-world scenarios. For instance, the

sidelines of roads were missing in the synthetic images, and the blurring effects

were unrealistic, reducing the reliability of the result. To solve the issues, the

team developed an unsupervised learning framework, DeepRoad, that contains an

MT module DeepRoadMT [243]. This module can generate driving scenes with

different kinds of weather conditions, and perform MT for DNN-based ADSs.

The MRs require the behaviours of cars to be consistent under the synthesized

driving scenes with different weather conditions. Three popular ADS models in

37



2.3. AUTONOMOUS DRIVING SYSTEMS

Udacity self-driving car challenge [204] were tested and thousands of inconsistent

behaviours were detected [243].

Deng et al. [60] developed the declarative Rule-based MT (RMT) framework,

using natural language syntax to specify real-world traffic scenarios, effectively

identifying previously undetected safety issues in ADS models. They further

enhanced RMT to include higher-order and compositional MRs, detecting a sig-

nificant number of abnormal ADS model decisions [60]. In another study, Deng

et al. [58] created the Behaviour Driven Development-based MT (BMT) frame-

work, using human-written behaviour definitions to generate test inputs, which

detected numerous erroneous predictions in three driving models (related to speed

predictions) that were confirmed as traffic violations. Ao and Pan [7] introduced

Scenario-based MT (SMET), demonstrating that complex scenarios are more ef-

fective at detecting defects. Xiong et al. [226] proposed Inequality-Based MT

(IEMT), efficiently detecting inconsistent behaviours in AD neural network mod-

els.

Underwood et al. [205] developed an MT framework for modular ADSs, incorpo-

rating hypothesis testing to handle non-deterministic behaviours. This framework

identified numerous consistencies and reliability issues in Autoware ADS. Ayerdi

et al. [17] proposed MarMot, which uses domain-specific MRs to monitor ADS

behaviours at runtime, outperforming other monitoring approaches by identify-

ing a large number of external anomalies (e.g., environmental changes like fog)

and internal anomalies (e.g., issues in deep neural networks caused by mislabeled

training data). Luu et al. [133] developed a sequential MT framework that uses

sequences of MGs to understand ADS behaviours without needing ground-truth

datasets, revealing undesirable behaviours in top-ranked ADS models. Yang et

al. [233] introduced MetaLiDAR, an automated testing methodology for LiDAR-

based systems, which detected inconsistent behaviours in object-detection models,

enhancing their robustness. Iqbal [94] applied a simulation-based MT approach
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using Euro NCAP standards to test the emergency brake function of the ADAS

system. The method identified 5.8% of the test cases in which the system did not

respond correctly and led to a collision. The findings highlight the effectiveness of

MT in revealing hidden errors in ADAS systems and combining simulation-based

testing with MRs to design more reliable systems.

Due to the open-source nature of the Baidu Apollo ADS, several studies have

applied MT on this platform. For instance, Zhou and Sun [254] used MT to

find defects in the LiDAR obstacle-perception (LOP) module. Specifically, they

tested the ability of the LOP to detect the obstacles by using the MRs that the

number of obstacles identified by the LOP should be a subset of the obstacles

identified when random LiDAR data points were scattered outside the area of

detection (i.e., Region of Interest (ROI)). The results showed that there was a

2.7% probability for the car to fail to detect the obstacles on the roadway if the

number of random points scattered outside the ROI was 10, and 33.5% probability

when the number increased to 1000. Eight days after the team reported the issue

to the Baidu Apollo self-driving car team, a real-life traffic accident occurred in

which a vehicle, using the same type of sensor unit in its perception module as

the SUT in the study, collided with a pedestrian [119].

In more recent studies, Han and Zhou [83] introduced a novel approach combining

MT with fuzz testing to identify fatal errors in the Apollo ADS. Their research

focused on creating varied test cases through MRs and integrating these with fuzz

testing to simulate unpredictable real-world scenarios. This combined methodol-

ogy detected critical failures, particularly in the software’s decision-making pro-

cesses, that might not be revealed by the traditional testing techniques. This

approach demonstrated that by generating diverse and unexpected inputs for

testing, the robustness and safety of ADSs could be significantly improved. Zhou

et al. [257] proposed an in-place MT method for testing video streams in the

Baidu Apollo’s camera perception module. This method identified previously
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unknown perception failures, including both undetected and incorrectly detected

objects.

Complementing these works, Guo, Feng, and Chen [81] focused on the LiDAR ob-

stacle perception system in Baidu Apollo. They employed MT alongside fuzzing

techniques to enhance the testing of LiDAR point clouds, which are critical for the

vehicle’s environment perception. Their study introduced LiRTest, a framework

designed to automatically generate and modify LiDAR point clouds to simulate

various real-world conditions. This allowed for the identification of unknown fa-

tal errors in the LiDAR-based perception algorithms. The innovative approach of

integrating fuzzing with MT provided a more comprehensive evaluation of the sys-

tem’s robustness, particularly in detecting and handling corner cases that might

not be covered by traditional testing methods. More recently, Zhang et al. [250]

performed MT on the obstacle identification algorithms of Apollo’s perception-

camera module (Section 3.3), an area previously untested by MT, contributing

to the field of MT in ADS testing. The experiments revealed conflicting obstacle-

detection results both in individual and sequential frames when raising the bright-

ness of a specific part of the input images. This study also developed an MT har-

ness with an industry case study to facilitate the testing of ADSs, which would

increase efficiency and help testers better organize the testing procedure [250].

2.3.3 The Role of Autonomous Driving Simulators in ADS

Testing

The development of ADSs involves many challenges, including the integration of

complex sensors and advanced decision-making algorithms [41]. In this environ-

ment, simulators such as CARLA [66] and SVL [168] have become important for

the designing and testing of these advanced technologies.

CARLA is a popular tool among AD simulators [66]. Its flexible and customiz-
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able platform allows researchers, engineers, and developers to experiment with

and refine various aspects of autonomous vehicle technology in a virtual set-

ting. The simulator can simulate a wide range of real-world situations, including

different weather conditions, detailed urban environments, and complex traffic

patterns [66]. This broad range of features provides a controlled but dynamic

setting for testing the effectiveness of algorithms, the integration of sensors, and

the robustness of decision-making processes. Importantly, this testing can take

place without the risks associated with real-world trials [240].

The SVL simulator is a Unity-based multi-robot simulator [168]. It provides

the ability to work with Apollo [71] and Autoware [105] platforms by having

a communication bridge to transfer messages between the simulator and these

ADSs [168]. In addition, the software supports simulation of the environment,

sensor, control and vehicle dynamics with realistic 3D animations and detailed

data. Users can switch maps and vehicle models to test the outputs of the ADSs

under multiple scenarios. However, the SVL simulator was officially unsupported

by LG in 2021, resulting in a lack of compatibility with newer ADS updates and

increased usability challenges [194].

AD simulators are significant and necessary in the ADS development [124]. They

enable testers to perform comprehensive testing more quickly and economically

than physical road tests [33]. For example, simulators can safely rebuild danger-

ous scenarios including severe weather or complex interactions between multiple

vehicles, allowing these scenarios to be tested repeatedly. This capability greatly

accelerates the development process by facilitating early identification and reso-

lution of potential issues, thus reducing the likelihood of these problems arising

in actual road situations [124]. Moreover, the data generated from these simula-

tors is a valuable resource for training ML models [124]. By integrating synthetic

data from simulators with real-world data, the adaptability and effectiveness of

autonomous systems can be significantly improved.
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Ensuring the validity of the simulation data is critical in the accuracy of ADS

developments [223]. To be effective in testing and development, a simulator must

be accurate in replicating real-world conditions, making validity a critical crite-

rion for assessment [223]. This refers to the capability of a driving simulator to

accurately depict real-world driving conditions. Two forms of validity that most

studies assess are absolute validity and relative validity [141]. The concept of

absolute validity refers to how closely values obtained from a simulator, such as

speed or lateral position, match those from an actual vehicle, without the need

for any relative or proportional adjustments [141]. Relative validity serves as an

alternative criterion when the outcomes or impacts observed in simulated driv-

ing closely mirror those experienced in real-world driving. Although achieving

absolute validity is the ultimate goal, it is often unattainable due to challenges

like the oracle problem [141]. Consequently, in specific contexts, pursuing relative

validity can be considered an acceptable approach [223].

2.3.4 MT for Validating Simulation Software

MT has emerged as an effective approach for ensuring the reliability and accu-

racy of simulation models. Ahlgren et al. [4] discussed the deployment of the

Metamorphic Interaction Automaton (MIA), an MT system for Facebook, to test

Facebook’s large-scale, web-based simulation infrastructure. MIA addresses issues

of test flakiness (inconsistent test results) and the oracle problem by automating

continuous integration and regression testing, enhancing the reliability of simula-

tions in large-scale web systems.

Olsen and Raunak [149] extended the application of MT to simulation validation.

They proposed a framework for validating simulation models using MRs between

parameters and behaviours, which enhanced the validity of simulation models

by detecting errors and inconsistencies in behaviours that might be missed with

traditional testing methods. This approach addresses the challenges of the or-
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acle problem in simulation validation, thereby improving the trustworthiness of

simulation results.

Adigun, Eisele, and Felderer [3] explored specific methodologies for applying MT

to simulate AD scenarios. Their research outlined detailed procedures for cre-

ating MRs tailored to the unique behaviours and decision-making processes of

autonomous drones. By focusing on realistic traffic conditions and edge cases,

they demonstrated how MT could uncover flaws in the vehicle’s perception and

control algorithms. Additionally, Iqbal et al. [95] applied MT to AD simulation

platforms, specifically targeting the LKA system. Their study involved creating

a set of MRs that accurately reflect the expected behaviours of the LKA system

under various driving conditions. By systematically varying parameters such as

road curvature, vehicle speed, and environmental factors, they were able to gen-

erate test cases that simulate a wide range of scenarios. Their results showed that

MT could effectively identify faults related to lane detection, steering control, and

system responsiveness.

In a recent study, Zhang et al. [249] applied MT to the NIO AD simulator, reveal-

ing various issues with its algorithms and performance (Section 5.2). MT revealed

a significant portion of issues, most of which were not detected by conventional

methods. The majority of these issues were related to the compilation of scenario

elements and the underlying logic of the simulation system, and were classified

as high priority, highlighting the effectiveness of MT in uncovering critical AD

simulator defects. The team later applied MT to test the CARLA simulator1

(Section 5.3), revealing critical defects related to its built-in functions and perfor-

mance. Both studies enhance the application of MT in ADS testing, addressing

RQ1 of the thesis.
1This work was in the review process for the Information and Software Technology (IST)

Journal.
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2.4 Integrating MT with Artificial Intelligence

Integrating AI into software testing has become a trend with the rapid technology

developments [208]. Manual testing is often time-consuming, expensive, prone to

human error, and may not cover all test cases and scenarios [96]. Integrating AI

technologies, such as ML, in software testing can enhance efficiency, accuracy,

and effectiveness, addressing existing drawbacks of manual testing. Among the

approaches, LLMs have demonstrated strong potential in advancing MT due to

their reasoning abilities and capability to generate human-like contexts, as MT

requires reasoning about the essential properties of a SUT [203].

2.4.1 Overview of Large Language Models

LLMs are a major advancement in the field of natural language processing (NLP).

These models are designed to understand and generate human language, mak-

ing them useful for a wide range of applications [253]. Examples of well-known

LLMs include OpenAI’s GPT (Generative Pre-trained Transformer) series [213],

Google’s BERT (Bidirectional Encoder Representations from Transformers) [63],

and Meta’s LLaMA (Large Language Model Meta AI) [93].

To create an LLM, researchers start by training the model on a massive amount

of text from books, articles, websites, and other sources [253]. This process, called

pre-training, helps the model to learn the basics of the language, such as grammar,

factual information, and contextual word usage [253]. During pre-training, the

model learns to predict missing words in sentences, which helps it to understand

how words fit together.

After pre-training, LLMs are fine-tuned for specific tasks using smaller, focused

datasets [253]. This fine-tuning process allows the models to perform well on

particular applications like answering questions, summarizing text, or translat-
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ing languages [213]. Because of their versatility, LLMs are used in many fields,

including healthcare, finance, education, and customer service [253].

2.4.2 ChatGPT

This PhD project focused on ChatGPT [91]. ChatGPT, an LLM developed by

OpenAI, has gathered significant attention for its wide-ranging capabilities [247].

Empirical studies have documented its proficiency in a variety of tasks, such as

mathematical and logical problems [73] and bioinformatics research [183]. In

software engineering, evidence suggests that ChatGPT can generate source code,

formulate test cases, and aid in the debugging of programs [121]. However, crit-

ical assessments in recent literature have highlighted limitations and failures in

ChatGPT’s performance [213]. The model’s effectiveness in executing complex

software engineering tasks, which often require advanced cognitive capabilities,

remains a subject of ongoing evaluation and debate.

GPT-3.5 [153] and GPT-4 [150, 151] belong to the current commercial versions of

OpenAI’s GPT series, each marking significant advancements in AI language pro-

cessing [92]. GPT-3.5, as the free version of ChatGPT [153], has equipped with

powerful language understanding and generation capabilities. GPT-4, a more so-

phisticated and larger model, further refined these capabilities, leading to a more

detailed and contextually aware conversational experience in the latest iterations

of ChatGPT [151]. The evolution from GPT-3.5 to GPT-4 represents a leap in

the ability to create AI that can interact in human-like ways, with ChatGPT

showcasing the practical application of these advancements in fields ranging from

customer service to education, offering refined, accurate, and context-sensitive

interactions [151].

This project investigated ChatGPT’s capability to generate MRs for typical ADS

functions, and compared them with MRs created by students using various eval-
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uation criteria. The detailed findings are outlined in Chapter 4.

2.4.3 Applications of MT in LLMs

While LLMs are good at handling natural language tasks, there is limited research

on their application in MR generation. Shin et al. [181] proposed an approach

that uses a few-shot prompting strategy, where the model was provided with

only a few examples, to instruct LLMs to derive executable MRs (EMRs) from

provided requirements and API specifications. The approach involves setting

the context, identifying relevant sentences in the requirements, rewriting them as

MRs, and then converting these MRs into EMRs using a domain-specific language

(DSL) called SMRL [181]. The feasibility of the approach was evaluated through

a questionnaire-based survey in collaboration with an industry partner, focusing

on four of their software applications, and the accuracy of EMRs generated for

a web application was also assessed. The findings indicate that this method can

produce understandable and relevant MRs and EMRs, highlighting its potential

to automate the MT process. Tsigkanos et al [203] explored the use of autore-

gressive transformer-based LLMs to automate the extraction of variables from

software documentation, a critical step in MT that is usually labour-intensive.

They proposed a workflow incorporating LLMs that achieved 0.87 accuracy in

variable identification, with many derived as exact or partial matches[203]. This

suggests that LLMs can effectively streamline and scale the variable extraction

process, thus improving the efficiency of MT.

In Chapter 4, experiments were conducted involving using ChatGPT (GPT-

3.5 [247]) to automatically generate MRs for the parking module of an ADS,

which were then evaluated by domain experts. The results showed that Chat-

GPT was effective in generating MRs, but the quality of the MRs varied based on

system complexity, test scenario specificity, and the number of MRs requested,

necessitating human intervention for validation and quality improvement [247].
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In the subsequent experiments2, the performance of GPT-3.5 and GPT-4 were

compared, and the evaluations were extended to a broader scope of SUTs, rang-

ing from basic computational programs to large and complex systems with and

without AI integrations. Additionally, another GPT was configured to perform

the evaluations along with the human evaluators. The findings revealed GPT-4

generated improved MRs, although weaknesses such as novelty remained. The

configured GPT evaluator also showed promise in improving efficiency in MR

selection and refinements. These findings further led to the development of a

GPT-MR generator in Section 5.3.1, which the MRs derived were directly used

in testing, and revaling several critical defects of an AD simulator. Additionally,

Section 6.3 compared MRs produced by GPT and students, illustrating that be-

ginners, with appropriate guidance, could generate MRs of quality comparable to

those created by LLMs. The findings also underscored areas for improvement in

the teaching and training of both humans and LLMs. In summary, these explo-

rations of LLM applications have demonstrated their potential to advance MT

practices and lower barriers for beginners, addressing RQ2 and RQ3 of the thesis.

2The works below were in the review process for the Information and Software Technology
(IST) Journal.
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3.1 Introduction

To address RQ1 (How can MT be effectively applied in ADS testing to uncover

anomalies and enhance system understanding?) outlined in Section 1.2, this

chapter presents a detailed analysis of the application of MT for the testing

of ADSs, with a specific focus on experiments conducted on the Baidu Apollo

ADS. The experiments demonstrated the efficacy of MT in uncovering anomalies,

enhancing system understanding, and addressing specific testing challenges.

While conducting MT/ME on Apollo [71], an anomaly was detected through the

violation of the identified HMR [246]. This anomaly was further investigated,

with a project stakeholder eventually identifying it to be a misunderstanding of

the system, and the related testing implementation. The insights gained from

ME not only contribute to a deeper understanding of the ADS but also suggest

the potential use of ME experiences in teaching and training Software Quality

Assurance (SQA) professionals. More importantly, the findings from ME serve

as a foundation for the later MT experiments.

To further explore the impact of MT on testing ADSs [250], the author con-

ducted experiments on the object-detection algorithm of Apollo’s perception-

camera module [161]. The perception-camera module [10] is one of the core com-

ponents of the Apollo ADS. As one of the most important sensors in the ADS, the

camera has played an essential role in obstacle and traffic light detection [147]. It

is an important supplement to the LiDAR perception results [10]. However, the

camera has shortcomings, such as being easily affected by the environment and

lacking depth information, which brings great challenges to the visual perception

algorithm in the unmanned driving system [10]. Therefore, how to establish a set

of high-precision and high-stability visual perception algorithms is the core issue

of the unmanned vehicle perception module. The visual perception algorithm

has three main application scenarios on the Apollo platform, namely: traffic light
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detection; lane line detection; and camera-based obstacle detection [71].

The MT experiments were performed on Apollo’s perception-camera module that

used the YOLO (You Only Look Once) model1 [164]. Compared to other object-

detection models, the YOLO model has the advantages of high speed and an easy-

to-implement feature. The experiments revealed conflicting obstacle-detection re-

sults while raising the brightness of a specific part of the driving scenarios, both

in individual and sequential frames, demonstrating the ability of MT to address

the oracle problem when validating the perception module of ADSs [250]. Fur-

thermore, the MT practice involved developing an MT harness to facilitate the

testing of ADSs, which would increase efficiency and help testers to better orga-

nize the testing procedure, with an industry case study showcasing the harness’s

application during production phases.

Through these experiments, the chapter underscores the critical role of MT/ME

in improving the reliability and robustness of ADSs, demonstrating how MT

can be effectively applied to uncover hidden issues and enhance overall system

performance and addressing RQ3 of the thesis: How can MT usage in ADS testing

be simplified to increase efficiency and lower adoption barriers?

3.2 Exploring Baidu Apollo ADS through ME

3.2.1 Experiments

The experiments in this section [246] report the ME experience that used

data from the Apollo ADS perception-obstacle and localization modules: The

perception-obstacle module provides NPC vehicle (the one not controlled by the

ADS) information (including speed and position); while the localization module

provides position data for the ego vehicle (the vehicle controlled by the ADS) [147].
1This model was used before Apollo version 7.0
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Figure 3.1: Dreamview data: Texts include the obstacle tracking ID; distance
from ego vehicle; and obstacle’s speed

The experiments were conducted on the Dreamview Platform of the Apollo

ADS [228]. The Dreamview Platform, an integral part of Baidu’s Apollo system,

offers real-time visualization, simulation, and data management for autonomous

vehicles [228]. It includes an intuitive interface for monitoring vehicle processes,

robust simulation capabilities for safe testing, and seamless integration with the

Apollo ecosystem. This makes Dreamview essential for the development and de-

ployment of the Apollo system.

3.2.1.1 Scenario Description

In the initialization phase, the NPC vehicle was created in the rightmost lane. It

proceeded at a constant speed of 10 km/h in the source test case but increased

to 15 km/h in the follow-up test case. The ego vehicle (the one controlled by

the ADS) was created stationary behind it in the same lane. The initial distance

between the ego and NPC vehicles ensured that the ego vehicle could accelerate

to a velocity greater than that of the NPC vehicle. To avoid a collision, therefore,

the ego vehicle had to reduce its speed to maintain its distance from the NPC

vehicle. The changing distance between the two vehicles during this entire process

was the focus of the experiments.

51



3.2. EXPLORING BAIDU APOLLO ADS THROUGH ME

3.2.1.2 The HMR in the Experiments

In the experiments, an HMR, HMRDistanceConsistency, was constructed around the

distance between the ego and NPC vehicles during the simulations. It was re-

lated to the distance values obtained from manually calculating data recorded

during the Apollo simulations, which could also be directly obtained from Apollo

Dreamview (shown in Figure 3.1) calculated in real-time during the simulation.

The HMR stated that the distance values should be the same since both ways of

calculation focused on the same property of the system.

The HMR could be formally presented as:

HMRDistanceConsistency: In the initial stage, the ego vehicle ap-

proaches the NPC vehicle, which is moving at a slower but constant

speed. Let dD denote the distance, according to Dreamview, between

the ego and NPC vehicles when both are travelling at the same speed.

Similarly, let ds be the distance calculated from simulation recordings.

Since dD and ds refer to the same concept, the values should be equal.

Rationale: dD and ds should be equal because they share the same

data source (through the perception-obstacle and localization mod-

ules), and they both use Euclidean Distance [64] in the calculation.

3.2.1.3 Calculating the Distance between the Vehicles

The perception-obstacle and localization modules record information about the

NPC and ego vehicles, which is crucial for calculating the distance value between

two vehicles, as shown in Figure 3.22. The Euclidean Distance [64] between the

two vehicles were then calculated using their position data from the outputs of

these modules.
2The values displayed were monitored using the Cyber monitor, a tool provided by Apollo

to track inter-module data [9]
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(a) NPC vehicle information (perception-obstacle module)

(b) Ego vehicle information (localization module)

Figure 3.2: The NPC and ego vehicle information from two modules

53



3.2. EXPLORING BAIDU APOLLO ADS THROUGH ME

(a) Localization module data (b) Perception-obstacle module data

Figure 3.3: Apollo ADS start timestamps in (a) localization and (b) perception-
obstacle modules

During this process, a challenge arose when computing values from both sensors

due to the misalignment of their recorded timestamps. The localization mod-

ule began recording at the start of the simulation, while the perception-obstacle

module only captured obstacle data when the NPC vehicle was within the ego

vehicle’s Region of Interest (ROI). As a result, there could be significant discrep-

ancies in the timestamps from these sensors, complicating the alignment needed

to calculate the distance between the NPC and ego vehicles.

The ME approach involved extracting sensor values from the data bag3 after the

simulation had ended. Since the starting timestamps of the position data for both

the NPC and ego vehicles were usually different (Figure 3.3), it was necessary to

find the timestamp in the localization data that was closest to the start time of

the perception-obstacle module.

In the original algorithm (presented below), after extracting the position infor-

mation from the data bag, the alignment of the timestamps was performed. Once

the timestamps were aligned, the distance could be calculated using position in-

formation from both the perception-obstacle and localization modules.

Algorithm Original algorithm for calculating the distance value
Require: The data bag generated after the simulation has ended.

1: Extract the position data of both the NPC and ego vehicles into two arrays.
2: Align the timestamps between the two arrays.
3: Calculate the Euclidean Distance between the corresponding positions in the

two arrays.
4: return An array containing the distance information.

3A data file containing all the messages sent by sensors that can be replayed or extracted
later for analysis.
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Figure 3.4: Distance values when the ego vehicle reaches the same speed as the
NPC vehicle

3.2.2 Insights Gained from ME

3.2.2.1 ME-Identified Anomaly

Figure 3.4 shows the calculated distance values after implementing the original

algorithm.

By comparing the blue (dash) and red (dash-dot) values in Figure 3.4, it can be

seen that the calculated distance values showed a different trend from those cal-

culated by the Dreamview, indicating a violation of HMRDistanceConsistency: After

the ego vehicle slowed down to the same speed as the NPC vehicle, the calculated

distance first decreased, then continued to increase (Figure 3.4), which was dif-

ferent to the Dreamview data: Regardless of the NPC vehicle speeds in different

test cases, the Dreamview distances for when the two vehicles were travelling at

the same speed were almost the same.

To better understand the apparent anomaly, and explore whether the increasing
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Figure 3.5: Calculated distances when the NPC vehicle is stationary

distance was caused by the movements of the NPC vehicle, a similar scenario was

constructed, while this time the NPC vehicle remained stationary. The calculated

distance values are shown in Figure 3.5. As can be seen in the figure, when the

NPC vehicle did not move, the calculated distance showed a clear decreasing trend

until the ego vehicle stopped behind the NPC vehicle. This was also aligned with

the distance values obtained from the DreamView. This situation suggested that

the anomaly described before would only occur when the NPC vehicle was moving.

3.2.2.2 Analysis of the Original Algorithm and Improvements

As described before, one challenge of the distance calculations was the align-

ment of timestamps for the position data of the NPC and the ego vehicles. This

step could be erroneous, as the sampling frequency of the two modules was dif-

ferent [147]: Even when the recording start times were the same, the amount

of data in the two modules was different. Since calculating the Euclidean Dis-

tance required data from the two modules aligned at one time, as more data was
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processed, differences between the timestamps of the position information would

increase as well. A detailed example of this potential erroneous step is shown

below:

Assuming that the data from the two modules has been stored in two arrays,

with the sampling frequency for the localization module being fL, and for the

perception-obstacle module being fpo: If the counter of the data compared has

been set to t, and the initial timestamps have been aligned, then the corresponding

indexes of the module position data for two modules at the same time are IL =

fL ∗ t and Ipo = fpo ∗ t.

In order to get accurate results, the distance should be calculated under the same

timestamp, which means that the difference between the indexes should be zero.

However, since the lengths of the two arrays are not the same (because of the

sampling frequency), the difference between the indexes is:

IDiff = |fL − fpo| ∗ t (3.1)

As t increases (when more comparisons are performed), the difference IDiff also

increases, resulting in the increasing trend of the distance values (the abnormal

data) in Figure 3.4. For example, at the start of the comparison, t = 0, so IDiff is

also 0, and the position information of the NPC and ego vehicles is recorded at

the same time (because the start timestamps of two arrays have been aligned).

However, when calculating the distance after 10 units of time, IDiff becomes |fL −

fpo| ∗ 10, and the corresponding position information of the two vehicles may no

longer be recorded at the same time. Figure 3.6 illustrates this kind of index

differences situation.

After discussing the anomaly with experienced Apollo developers, an updated

algorithm was developed as follows, where the sensor data was no longer processed

after the simulation ended: Instead, two listener programs [70] that can capture
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Figure 3.6: Index differences

the sensor data while the simulation was running were created—one for each

module. The algorithm called on the two listeners simultaneously, thus gathering

the data at the same time (e.g., every 0.002s). This revised approach enabled

the distance to be calculated directly and removed the influence of the potential

misalignment of the timestamps.

Algorithm Updated algorithm for dynamic data processing
Require: Real-time sensor data from sensors.

1: Create listeners for the perception-obstacle module and the localization mod-
ule.

2: while Simulation is running do
3: Get the position data of the NPC vehicle from the listener node of the

perception-obstacle module.
4: Simultaneously, get the position data of the ego vehicle from the listener

node of the localization module.
5: Calculate the Euclidean Distance between the NPC and ego vehicles.
6: Store the distance values in an array.
7: end while
8: return An array containing the distance information.

Figure 3.7 shows a comparison of the distance values calculated by the original

(dashed line) and the updated algorithm (unbroken line). It can be found from

the figure that after the ego vehicle approached the NPC vehicle, it maintained

the distance when travelling at the same speed as the NPC vehicle (the updated

algorithm), which was also almost the same as the distance values shown on

Dreamview (where the distance values were obtained from DreamView).
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Figure 3.7: Comparison of distance values calculated by the original (dashed line)
and the updated algorithm (unbroken line)

3.2.3 Discussion

This experience highlights the potential for ME to scaffold the testing process

of such complex systems as Baidu Apollo ADS. Although the identified anomaly

was not an Apollo ADS flaw, its discovery led to a deeper exploration and un-

derstanding of the SUT. This in itself can be a valuable learning experience and

pathway for testers, especially those embarking on their earliest testing experi-

ences, such as students or trainees [62]. For instance, this experience provided the

author with a solid foundation in generating MRs and performing MT on ADSs.

The author subsequently conducted MT experiments on the perception-camera

module of the Apollo ADS, successfully detecting real defects.

In keeping with the SE tradition of retrospectives and reflective practice [27], this

experience has prompted the following insights for ADS designers, testers, and

educators:
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1. Potential solution for similar problems: Other ADS developers and

testers might also encounter similar problems described in this experience

since analyzing the information in the data bag is a common approach in

testing. They might find the solution presented here applicable to their own

situation.

2. ME supporting system understanding: The identified problem in this

experience was mainly due to the lack of sufficient documentation detailing

the ADS system, including the explanations of different sampling rates for

the different modules. In the absence of such documentation, this ME expe-

rience not only effectively led to the discovery of this information, but also

resulted in a better awareness of the possibility of such system discrepancies.

3. Potential use of ME to teach/train SQA: The potential use of MT to

teach and train SQA workers is promising. This experience enhanced the

tester’s understanding of ADSs and highlighted potential misunderstand-

ings that can arise without comprehensive documentation. Integrating MT

into a broader SQA training program has proven effective and engaging [198,

199]. In practice, learners generate assumptions based on their current un-

derstanding of ADSs while producing HMRs in ME. If HMRs are satisfied,

the initial assumptions are validated; If they are violated, as shown with

this practice, learners would gain valuable insights into ADS mechanisms

and behaviours. This approach, although based on the Apollo ADS, has

practical applicability to other complex or traditionally “untestable” sys-

tems [217].

The ME practice in this section established a strong base for creating MRs and

conducting MT on the ADSs. This led to the MT experiments on the perception-

camera module of the Apollo ADS in the following section, which revealed a

critical defect in the obstacle identification model through adjusting the brightness

of the input images.
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3.3 Implementing MT for Baidu Apollo ADS

3.3.1 Defining MRs for the Study

As verifying the outputs of the perception module can be very difficult—under

specific scenarios, it is unrealistic for testers to continue tracking whether the

perception model correctly identifies all the obstacles in the scene—it is an in-

stance of the oracle problem [21]. In this section, a series of MT experiments were

conducted to test the obstacles identified by Apollo’s perception module against

predefined MRs [250]. The generation of MRs was based on the mechanisms of

the YOLO model [164] (the detailed SUT in this study), and previously-generated

driving scenarios. The YOLO model works by dividing an input image into a grid

and simultaneously predicting bounding boxes and probabilities for each grid cell

to locate different objects [164]. Similar to a study that separated the images

into the background region and target-object region [196], this study separated

the input images4 into two regions, a Modification Zone and an Identification

Zone. However, the MRs in this study modified the entire region, while the other

study [196] targeted certain objects from the region. The Identification Zone con-

tained the obstacles the YOLO model had identified. It was generated based on

the assumption that changing pixel values outside the bounding boxes of obsta-

cles on the image should not affect the identification result. Due to the nature

of the YOLO model [164], the probability results of whether the obstacles within

the grids of the image should not change if the pixel values outside the grids were

changed (the altered pixels were not close to the obstacles).

Figure 3.8 validates the assumption by altering the horizontal and vertical layouts

of the Modification Zone: If changing the pixel brightness around the obstacle’s

bounding box affected the YOLO model’s ability to detect the obstacle, as seen in
4The images were parsed with the official APIs from the data-recording bags provided by

Apollo [40]
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Figure 3.8: Validation of the assumption motivating the MRs. If changing the
pixel brightness around the obstacle’s bounding box would affect the possibility
of the YOLO model detecting the obstacle (e.g., decreases it), then increasing the
boundary of the modification zone to make it closer to the original bounding box
should result in the obstacle remaining unidentified.

the middle images where the obstacle was missed, then expanding the boundary

of the Modification Zone to make it closer to the original bounding box should

still leave the obstacle unidentified. However, the bottom images show that the

obstacle was identified again with the same bounding box as the original im-

age. The two examples of different layouts between the two regions prove the

correctness of the assumption.

Based on this assumption, two MRs were generated:

MRChangeBrightness: The source test case is the raw input image with

the identified obstacles (in the Identification Zone). Then, in the

follow-up cases, changing the brightness of the pixels in the Modifi-

cation Zone, the obstacles identified should not change (Figure 3.9
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Figure 3.9: Example layouts of two zones

shows an example layouts of two zones, which are stitched in both

horizontal and vertical approaches, with area ratios ranging from 10%

to 90%).

MRChangeArea: Changing the area of the Modification Zone (the

boundary does not overlap with the bounding box of obstacles identi-

fied in the source test case in the Identification Zone) while maintain-

ing the same pixel brightness value, the obstacles identified should not

change.

3.3.2 Developing an ADS-Based Test Harness Framework

The author proposed a test harness framework that aimed to automate the pro-

cess of test case generation and execution [250]. The framework is structured

into several key components: the Test Case Generator, the ADS Test Harness

Coordinator, and the Result Processor. The Test Harness Coordinator is the

core component that manages all other scripts and ensures that they are exe-

cuted in the correct order. The framework takes source test cases (i.e., source

raw images) as inputs and sends them to the MT Test Case Generator, which
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generates follow-up test cases according to the MRs. The Coordinator shifts test

cases from a cases pool produced in the preparation phase after all cases have

been processed and testing has been completed. Prior to the conclusion of testing,

the Result Processor is triggered to analyze the data and provide a report that

includes information on test time, test cases, and MR-violation details.

Figure 3.10 illustrates the key phases of the proposed framework. The opera-

tion starts with the intake of source test cases—represented as images since the

framework was designed for testing the perception module that uses images as

input—which are then sent to the MT Test Case Generator. This generator then

produces follow-up test cases based on MRs. After all test cases are processed

and testing is complete, the Test Harness Coordinator passes the results to the

Results Processor, which is responsible for analyzing the data and generating a

report that includes information on test duration, case contents, and instances of

MR violations.

The implementation methodologies, including inter-docker communication [23],

are adaptable across various ADS configurations. This framework serves as a pro-

cedural guide for conducting MT on common ADS modules to organize the testing

process and enhance efficiency. The detailed implementation of the framework is

described as follows:

1. The Test Harness Coordinator: The Test Harness Coordinator is the

framework’s central component. It first calls the Test Case Generator ( 1 in

Figure 3.10), which produces multiple input images during each run. After

generating the images, the coordinator starts the Apollo perception-camera

module ( 2 ) to take raw images as inputs. It then outputs images containing

the identified obstacles with bounding boxes (as shown in Figure 3.11).

Once all the images within the same MG have been processed, the Result

Processor program is started ( 3 ), which judges whether or not the obstacles

identified in the source and follow-up images are different. It will output a
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Figure 3.10: Key phases of the ADS-based test harness framework, including
input and output flows (as labelled in the legend)

final report that summarizes whether or not any MRs have been violated.

2. Test Case Generator: The Test Case Generator is a program that takes a

source image and generates follow-up images based on specified parameters

such as separation direction, enumeration, quantity, and brightness levels.

When changing the pixel brightness, the input images are transformed from

an RGB (Red, Green, Blue) to HSV (Hue, Saturation, Value) colour space

so that the pixel brightness can be increased by code. The images are

then transformed back to RGB for the Apollo perception-camera module

to process.

The images are placed following the hierarchical structure of the folder

layout presented in Figure 3.10. The raw input images folder stores unpro-

cessed images within the same MG, while the processed images (complete)
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folder contains both source and follow-up test case images. Identified obsta-

cles are highlighted with green bounding boxes, as illustrated in Figure 3.11.

The Result Processor extracts these obstacles and saves them as separate

images in the processed images (extracted) folder for later comparison. The

numbers beneath each image in Figure 3.11 denote the identified object

types (e.g., “3” means identified as vehicle5).

3. The Result Processor: The Result Processor uses the Structural Simi-

larity Index Measure (SSIM) matrix [215] to measure the similarity among

obstacles identified in the source and follow-up images. The python package

image similarity measures [142] was used to output the SSIM value of two

images: The higher the value, the more similar the two images are. If the

highest SSIM value between the obstacle identified in the source image and

the obstacles identified in the follow-up image is lower than a predefined

threshold (e.g., 0.8 based on the observations obtained from manual inspec-

tions of experiments results), the program gives the result that the source

and follow-up test cases identified different obstacles, and the MRs are vi-

olated. In order to boost the testing efficiency, the SSIM matrix is only

calculated if the number of obstacles identified in both folders is the same.

According to MRChangeBrightness, if the model identified a different number

of obstacles in the Identification Zone of the same input image, the MR is

violated.

The Result Processor generates a report detailing the time, test cases, and

information about obstacles. It records the follow-up image names where

the number of obstacles differs from the source image and those that may

have potential MR violations. These images are then compared to the

source image using the SSIM matrix to assess their similarity. The report

concludes with a summary of images that have MR violations. As indicated
5https://github.com/ApolloAuto/apollo/blob/266afbf68d83fa6fac7a812ff8a95022

3f5ab2c0/modules/perception/base/object_types.h
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Figure 3.11: Image processed results

by the eye symbol in Figure 3.10, if no MR violations are found, a manual

inspection is generally required to quickly validate the results across the

images in the Processed Images (Complete) folder.

The MT experiment results can be found in Section 3.3.3.

3.3.2.1 Industrial Extension

In addition to being used in this MT study, the author has adapted the proposed

framework and implemented it as an industrial extension when conducting MT

on another SUT. Notably, the author observed a situation in which testers could

only manually execute one scenario at a time. This was inefficient, as a significant

amount of time was spent preparing to test. If the tests could be performed and

the outputs could be organized automatically, testers could concentrate more on

the testing itself.

In order to resolve the issue, the author customized the proposed test harness

framework, and a tool tailored to the needs of testing was constructed. Similar

to the Test Harness Coordinator in the proposed framework, the customized tool
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contained a coordinator that directs all the work. The same file management

method as the proposed framework was used to organize the test cases. In addi-

tion, the customized tool could locate specific pieces of code in the input scenarios

and change them to generate follow-up scenarios. The tool could execute multiple

scenarios simultaneously by employing multiprocessing to coordinate the scripts

within and outside of the docker container, which is a lightweight, standalone,

executable package that includes everything needed to run the SUT [23]. The

outputs of the system were automatically saved when a test case was finished,

and organized into files and folders to enhance the testing efficiency.

By adapting the harness framework and implementing a clear architecture, this

tool ensured easy maintenance and offered a complete chain of automated testing,

allowing users to focus on the final results.

3.3.3 Analyzing Experimental Results

3.3.3.1 Layouts and Brightness Degrees that Cause MR Violations

This study tested over 2,000 images, involving both source (raw) images and

follow-up images generated from MRs, across 20 layouts (both vertical and hori-

zontal) and 10 brightness levels. The testing of MRChangeBrightness and MRChangeArea

revealed that MR violations primarily occurred when the boundary of the Modi-

fication Zone was near obstacles in the Identification Zone. Increasing the bright-

ness in the Modification Zone would cause the model to not identify objects, such

as vehicles or pedestrians. For instance, the model missed detecting a pedestrian

in the follow-up image after brightness increased, as illustrated in Figure 3.12.

Further analysis identified ten specific layouts more prone to MR violations, val-

idated with various source images from random video frames in the same data

bag, which included a total of 1,000 follow-up images, as shown in Figure 3.13.

It was discovered that when the Modification Zone was above the Identification
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First Tier { Brightness 3, Vertical 63% }
{ Brightness 5, Vertical 63% }

Second Tier

{ Brightness 3, Vertical 61% }
{ Brightness 6, Vertical 63% }
{ Brightness 7, Vertical 61% }
{ Brightness 3, Vertical 64% }
{ Brightness 2, Vertical 65% }
{ Brightness 8, Vertical 65% }
{ Brightness 9, Vertical 65% }

Table 3.1: Combination of brightness and layouts that cause the majority number
of MR violations

Zone (as shown in Layout Example 3 in Figure 3.9), and took from 61% to 65%

of the overall image, the MR violation rates were higher than other layouts, with

most above 40%, indicating a higher likelihood of the model making inconsistent

judgments.

The pie chart in Figure 3.14 shows the proportion of the ten brightness levels

with the same Modification Zone among the MR-violated images when testing

MRChangeBrightness. The proportions of each brightness level were similar, suggest-

ing an equal potential for causing MR violations. Figure 3.15 shows the number of

MR-violated images across various layout and brightness combinations, summa-

rized in Table 3.1. This table highlights the layout and brightness combinations

that resulted in the highest MR violations among all input images, which are also

represented in Figure 3.15 by the bar heights, indicating a greater likelihood for

those combinations to cause MR violations.

3.3.3.2 MR Violations on Sequences of Consecutive Frames

The MR violation situation also occurred in sequences of consecutive frames. If

the object was not detected in several sequences of consecutive frames, then it

would not be tracked, and would be marked as lost [72]. The Apollo perception-

camera model used Kalman filtering [72] to track objects across multiple frames.

Kalman filtering is a mathematical algorithm that predicts an object’s future
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Figure 3.12: Example of MR violation cases

Figure 3.13: MR violation rates for the ten alignments among all the images
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Figure 3.14: Percentage of brightness degrees among all the MR violated images

Figure 3.15: Number of MR violated images for all the combinations
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position based on its previous states, helping the model maintain accurate track-

ing [72]. If an object has not been identified in three consecutive frames, then it

is lost by the model6.

Another study has found that the same Apollo model might lose track of obsta-

cles in sequences of consecutive frames [257]. Figuring out whether the model

had found all of the obstacles in each frame is an example of the oracle prob-

lem, especially considering that a video lasting several minutes would contain

thousands of frames. The following experiments tested MRChangeBrightness and

MRChangeArea by comparing the number of obstacles found in each frame between

the source and follow-up images. The precondition was that the sequential raw

images should have the same obstacles identified in consecutive frames. Then

by adjusting the brightness and layouts on the frames, if a different number of

obstacles was detected in the follow-up images compared to the source images,

and this discrepancy was observed across consecutive frames, it indicated MR

violations in those frames.

Table 3.2 shows an example of such a violation across a sequence of consecutive

frames, which were extracted from a random scenario (duration one second) from

the official recorded data bag (the MR violation scenarios were similar to the

example shown in Figure 3.12). The MR violation occurred mainly in Frames

1 to 4, where the number of obstacles detected in the follow-up images (with

increased brightness) was different from in the source driving scene. The reason

Frames 5 to 7 were not regarded as an MR violation was that the number of

obstacles in Frames 1 to 4 of the source test case had not changed. Since the

perception module itself had a problem where it could lose track of obstacles in

consecutive frames [257], the frames in which the model functions normally were

chosen to highlight the MR violation.
6This is defined in https://github.com/ApolloAuto/apollo/blob/93f69712269da572

206e021cc7419b21c6feb595/modules/perception/fusion/lib/data_fusion/motion_fusi
on/kalman_motion_fusion/kalman_motion_fusion.cc.
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Table 3.2: Number of obstacles detected on a sequence of consecutive frames

1st
Frame

2nd
Frame

3rd
Frame

4th
Frame

5th
Frame

6th
Frame

7th
Frame

Number of Obstacles De-
tected (Source)

4 4 4 4 2 3 5

Number of Obstacles De-
tected (Follow-up)

3 3 5 3 2 2 5

3.3.4 Conclusion

The ME/MT experiments presented in this chapter demonstrate its effectiveness

in addressing the oracle problem during ADS testing. The approach can serve

as a reference for others testing ADSs, while the proposed ADS-based test har-

ness framework offers a procedural guide for organizing and streamlining MT on

common ADS modules. Future extensions of this research may include apply-

ing additional image-transformation effects to raw images and updated models,

as well as refining the harness to accommodate a broader range of input cases,

thereby improving its usability and efficiency.

While MT has proven effective in testing ADSs, it still heavily depends on human

knowledge, particularly in the MR generation process. This motivates the work

presented in the next chapter, which involves a new approach by introducing AI

into MR generation, specifically LLMs, and assesses the quality of the MRs to

demonstrate its feasibility. Meanwhile, due to the indispensable role of simulation

in facilitating ADS testing, verifying the validity of AD simulators is equally

important, as it can be challenging to determine whether anomalies arise from the

ADS, the simulator, or the simulated data. Chapter 5 explores the applications

of MT in AD simulators, highlighting methods that improve MR generation and

testing efficiency.
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4.1. INTRODUCTION

4.1 Introduction

In the previous chapter, the author discussed the applications of MT for ADSs and

proposed methods to enhance MT efficiency. Although the experimental results

demonstrated the effectiveness of these techniques, they still heavily depend on

domain knowledge and manual inputs. In other words, users still face barriers to

quickly and effectively adopting these methods in testing, especially for beginners

in MT.

Integrating AI into software testing is becoming increasingly widespread [208].

Traditional manual testing methods often face challenges related to time and ac-

curacy, while employing AI technologies can help overcome these limitations [96].

Among the AI approaches, LLMs offer significant potential in advancing MT due

to their reasoning abilities and capacity to generate human-like contents [203].

Recent advancements in LLMs have largely enhanced their capabilities, gaining

global popularity [253]. Compared to humans, LLMs have the advantage of vast

training data, providing them with extensive knowledge and access to numerous

existing test cases [253]. Given the challenges of MR generation, particularly

for beginners, and the fact that many MRs can be expressed in natural language,

this chapter delves into the advancement of MT through the integration of LLMs,

with a specific focus on using ChatGPT. This helps address both RQ1 and RQ2

of the thesis in reducing the MR generation difficulties and lowering MT barriers

for beginners. ChatGPT has two versions: GPT-3.5 and GPT-4 [151]. GPT-3.5

improved language understanding and generation as the free version [153], while

GPT-4, a more sophisticated model, further refined these abilities, enabling more

nuanced, context-aware conversations [151].

The chapter begins with a preliminary study that evaluated the MR generation

capability of GPT-3.5 [247]. It assessed its performance in generating MRs tai-

lored to ADS functions, comparing different quantities of MRs produced. Given
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the complexity and unpredictability of ADS functions, evaluating the effectiveness

of MR generation by GPT models is critical in determining their potential to en-

hance MT practices. Evaluation of MRs traditionally relies on criteria developed

from empirical research and expert insights [47]. However, such criteria often lack

the depth and breadth needed to effectively assess MRs in the context of increas-

ingly complex software environments [102]. This gap in comprehensive evaluation

methodologies highlights the need for ongoing research and development in this

area.

This chapter introduces two sets of evaluation metrics, CriteriaV 0 and

CriteriaV 1. CriteriaV 0 was used to evaluate the quality of MRs generated by

GPT-3.5, as a preliminary study [247]. The MRs were evaluated by several MT

researchers, who have several years of experience in MT and software testing. The

results showed that ChatGPT can be a cost-effective and time-saving approach

for generating diverse and relevant MRs, though the quality and relevance of the

generated relations may vary, and additional customization and refinement by

the testing team may be necessary [247].

However, CriteriaV 0 has several limitations, including a lack of objectivity and

clarity. In addition, with the launch of GPT-4, the capability of ChatGPT has a

large advancement [151]. Therefore, a follow-up study to GPT-4 was conducted,

with an updated set of criteria, CriteriaV 1, to provide a more comprehensive,

effective, and objective assessment of MRs. The study first involves a comparison

of the capabilities between GPT-3.5 and GPT-4. The MRs generated by GPT-

4 and the ones gathered in the previous study were compared, both targeting

the parking function of an ADS [247]. To directly benchmark the results, the

comparison was based on CriteriaV 0. The results showed that GPT-4 has had

improvements in areas like correctness, novelty, and clarity while maintaining high

standards in other aspects such as applicability and computational feasibility.

To provide a more comprehensive evaluation of GPT-4’s ability to generate MRs,
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the author extended the assessments from one SUT to a larger group of nine

SUTs, encompassing both simple and complex AI/ML systems. The revised eval-

uation employs CriteriaV 1, which includes seven criteria: completeness, correct-

ness, generalizability, novelty, clarity, computational feasibility, and applicability.

Each criterion has been redefined to reduce ambiguity and enhance objectivity,

aiming for a standardized evaluation process. Additionally, to eliminate the bias

from humans and provide more objective evaluations, a custom GPT-MR evalua-

tor was created, which, in conjunction with human evaluators, offered a detailed

comparison of AI and human capabilities in MR evaluation. The findings demon-

strate the advanced capabilities of ChatGPT, especially GPT-4, in software test-

ing and MR generation across a wide array of applications. Evaluations of GPTs’

performance underscore the increasing proficiency of AI in generating and eval-

uating MRs, while still recognizing the indispensable role of human expertise in

conducting critical and detail-oriented evaluation processes. This collaboration

between AI and human skills is significant in simplifying the generation of MRs

and advancing the methodologies of MT.

This chapter presents the formal evaluation results of the GPT-generated MRs,

which serve as the basis for the subsequent applications of ChatGPT in MR

generation throughout the thesis. Section 5.3.6.3 assesses the performance of a

customized GPT-MR generator, while Section 6.3 compares the MRs produced

by ChatGPT with those created by students who received a short training. To-

gether, these contents highlight both the strengths and weaknesses of ChatGPT

in advancing and simplifying complex tasks in MT, effectively addressing RO2

and RO3 of the thesis.
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4.2 Evaluating MR Generation with ChatGPT

(GPT-3.5)

4.2.1 Experimental Design

4.2.1.1 Generating MRs Using ChatGPT

In this experiment, ChatGPT was asked to generate MRs for the parking module

of an ADS [135]. The author varied the number of MRs generated by ChatGPT,

and asked several evaluators to evaluate the quality of the generated MRs based on

their experiences using and understanding the parking module. Specifically, the

usefulness and relevance of the MRs were assessed in testing the ADSs’ parking

module and their potential to reveal faults or weaknesses in the system [247].

4.2.1.2 Evaluating ChatGPT

To evaluate the effectiveness of the MRs produced by ChatGPT, the author

designed the following marking scheme (CriteriaV 0) shown in Table 4.1. This

scheme includes a set of evaluation criteria, including correctness, applicability,

novelty, clarity, relevance to safety, overall usefulness, and computational feasi-

bility. Specifically, correctness refers to the degree to which an MR is free of

errors and accurately captures the intended bahaviour of the system. Applicabil-

ity evaluates how widely an MR can be applied to different inputs and situations.

Novelty assesses the originality and creativity of the MR. Clarity measures the

ease of understanding and interpretation of the MR. Relevance to safety assesses

how well the MR addresses safety-critical aspects of the system. Overall useful-

ness evaluates the practical utility of the MR for testing and verifying the system.

Computational feasibility measures the ease and efficiency of applying the MR in

practice.
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Table 4.1: Contents of CriteriaV 0

Criteria Description Score
Correctness Does the MR accurately capture the intended be-

haviour?
0-5

Applicability Is the MR applicable to a wide range of inputs? 0-5
Novelty Is the MR a new and original idea? 0-5
Clarity Is the MR easy to understand and unambiguous? 0-5
Relevance
to safety

Does the MR address a safety-critical aspect of the
module?

0-5

Overall
usefulness

How useful is the MR for testing the module? 0-5

Computational
feasibility

Is it computationally feasible to apply the MR? 0-5

Using these criteria, testers and researchers could gain insights into the strengths

and weaknesses of the MRs generated by ChatGPT, and make informed decisions

about how to optimize their testing strategies.

4.2.2 Results and Key Observations

4.2.2.1 Impact of Request Size on the Quality of MRs

To assess the effectiveness of ChatGPT in generating MRs, the author conducted

an experiment wherein the model was requested to produce a diverse set of MRs,

ranging from a small to a large number (e.g., 5 vs 20), for the SUT. This was

inspired by the difficulties MT practitioners face in creating an adequate number

of MRs [47]. The aim was to compare the quality of MRs generated by the model

under different request sizes.

To ensure direct comparisons and minimize the influence of other responses in the

same session, multiple requests were made to ChatGPT in separate conversational

sessions, since it can use the contexts from previous conversations to generate

more personalized and contextually-relevant outputs [172]. The original outcomes

produced by ChatGPT are presented in Tables 4.2 and 4.3.
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It was observed that asking ChatGPT to generate a smaller number of MRs

produced better and more accurate results than asking it to generate a larger

number for the same function. For example, the MRs in Table 4.2 contain the

name, scenario description, and the relations among the inputs and outputs;

while the results by requesting ChatGPT to generate a large number of MRs

(Table 4.3) are not always correct, and lack such relations—they are more like

function specifications.

The hypothesis of the reason behind this was that ChatGPT used a probabilistic

approach to generate responses [91], and when asked to generate a large number

of MRs, there was a higher chance of some MRs being irrelevant or less useful for

testing. However, when generating a smaller number of MRs, ChatGPT might

have more resources to focus on each individual MR, leading to a higher likelihood

of generating effective and relevant MRs. Therefore, when using ChatGPT to

generate MRs for software testing, it is recommended to ask for a smaller number

of MRs to improve the quality and accuracy of the generated MRs.

While automated techniques for generating MRs offer various benefits, validating

their correctness and relevance with domain experts before using them for software

testing is necessary [18]. The lack of such validation increases the likelihood

of generating irrelevant or erroneous MRs, which may result in the failure to

identify defects, or the production of false positives: Testers may spend significant

time and effort resolving MR violations that are actually caused by incorrect

MR definitions, leading to inefficiencies in the testing process [159]. Hence, it

is essential to integrate expert feedback and judgment into the MT process to

ensure the efficacy and dependability of the generated MRs [47].

The quality of MRs generated by ChatGPT can vary depending on various factors,

such as the complexity of the SUT and the specificity of the testing scenario.

Generally, the efficacy of MRs generated by ChatGPT is lower when compared

to existing MR-generation tools and strategies, such as MRPs or even human-
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Table 4.2: The result of using ChatGPT for generating a small number of MRs

MRs Description
MRReverse into parking space Given a scenario where the autonomous vehicle is in

a parking lot and is required to park in a spot, the
system should be able to reverse into the parking spot
without hitting any other vehicle or obstacle in its
path. The metamorphic relation is to test if the system
is able to park in the same spot but with a different
orientation, such as turning the vehicle 90 degrees or
reversing into the spot from a different angle.

MRParallel parking Given a scenario where the autonomous vehicle is re-
quired to parallel park between two other parked cars,
the system should be able to navigate into the parking
spot and position itself correctly without hitting any
other vehicle. The metamorphic relation is to test if
the system is able to parallel park in a different spot,
with different-sized vehicles on either side.

MRObstacle detection Given a scenario where the autonomous vehicle is re-
quired to park in a parking lot, the system should be
able to detect obstacles such as pedestrians, other ve-
hicles, or shopping carts, and avoid hitting them. The
metamorphic relation is to test if the system is able to
detect and avoid different types of obstacles, such as
bicycles or large delivery trucks.

MRParking spot occupancy Given a scenario where the autonomous vehicle is re-
quired to park in a parking lot, the system should
be able to identify empty parking spots and park in
them. The metamorphic relation is to test if the sys-
tem is able to identify a parking spot as occupied and
adjust its path accordingly to find another spot.

MRChanging parking conditions Given a scenario where the autonomous vehicle is re-
quired to park in a parking lot, the system should be
able to adapt to changing parking conditions, such as
an obstruction in the path, a spot becoming unavail-
able, or a vehicle leaving its spot. The metamorphic
relation is to test if the system is able to adjust its
path and behaviour in real-time based on changes in
the parking environment.
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Table 4.3: The result of using ChatGPT for generating a large number of MRs

MR Description
MR1 If the initial parking spot is occupied, the system should identify an

alternative parking spot.
MR2 If the car is facing in the opposite direction of the initial parking spot,

the system should perform a U-turn and approach the spot from the
correct direction.

MR3 If there are obstacles in the parking spot, the system should not attempt
to park and display a warning message.

MR4 If the car is moving too fast, the system should not attempt to park and
display a warning message.

MR5 If the car is too close to the car in front or behind, the system should
not attempt to park and display a warning message.

MR6 If the car is too close to the curb or another obstacle, the system should
adjust the parking position accordingly.

MR7 If the car is not centred in the parking spot, the system should adjust
the position accordingly.

MR8 If the parking spot is too small for the car, the system should not attempt
to park and display a warning message.

MR9 If the car is parked too far away from the curb, the system should adjust
the position accordingly.

MR10 If the car is parked too close to the curb, the system should adjust the
position accordingly.

MR11 If the car is parked on a hill, the system should engage the parking
brake.

MR12 If the car is parked on a slope, the system should adjust the position to
prevent the car from rolling.

MR13 If the car is parked on a rough surface, the system should adjust the
position to prevent damage to the car.

MR14 If the car is parked in a tight space, the system should adjust the steering
wheel accordingly.

MR15 If the car is parked on a narrow street, the system should adjust the
position accordingly.

MR16 If the car is parked on a busy street, the system should display a warning
message to the driver.

MR17 If the car is parked in a parallel parking spot, the system should adjust
the position accordingly.

MR18 If the car is parked in a diagonal parking spot, the system should adjust
the position accordingly.

MR19 If the car is parked in a handicapped parking spot, the system should
display a message to the driver.

MR20 If the car is parked in a spot reserved for electric vehicles, the system
should display a message to the driver.
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based approaches, which allow for customization based on different scenarios.

This may be due to a lack of diversity and creativity in the generated MRs. One

illustrative instance of human-generated MRs is the process of amalgamating

two distinct scenarios wherein the SUT produces identical outputs [249]. The

resultant composite scenario ought to preserve the property of invariant behaviour

such that the SUT yields the same output.

While the MRs generated by ChatGPT are useful for initial testing phases, due

to their closeness to the functional requirements, their efficacy may be limited.

Therefore, for complex systems requiring comprehensive testing and the genera-

tion of diverse and creative MRs, incorporating manual intervention can facilitate

a more in-depth exploration of the input-output relationships, thereby improving

the overall testing effectiveness [47].

4.2.2.2 Evaluating the Quality of MRs

The evaluation results are presented in Tables 4.4 to 4.8, based on the assess-

ment of the MRs from Table 4.2. The analysis showed that all MRs exhib-

ited high computational feasibility scores, indicating their potential for practi-

cal implementation. However, the novelty scores for these MRs were relatively

low, suggesting that they did not significantly differ from existing MRs. No-

tably, MRObstacle detection received the highest total score (25) due to its high

scores in correctness, applicability, relevance to safety, and computational fea-

sibility, but scored low in novelty. MRChanging parking conditions received the second-

highest total score (24) with high scores across all criteria except for novelty.

MRReverse into parking space and MRParallel parking received the lowest total scores (19

and 20, respectively) due to lower scores in several criteria. These results provided

insights into the strengths and weaknesses of the evaluated MRs, highlighting po-

tential areas for further improvement.
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Table 4.4: Evaluation of MRReverse into parking space

Correctness Applicability Novelty Clarity Relevance to
Safety

Overall
Usefulness

Computational
Feasibility

2 4 1 2 2 3 5

Table 4.5: Evaluation of MRParallel parking

Correctness Applicability Novelty Clarity Relevance to
Safety

Overall
Usefulness

Computational
Feasibility

3 4 1 2 2 3 5

Table 4.6: Evaluation of MRObstacle detection

Correctness Applicability Novelty Clarity Relevance to
Safety

Overall
Usefulness

Computational
Feasibility

4 4 1 4 4 3 5

Table 4.7: Evaluation of MRParking spot occupancy

Correctness Applicability Novelty Clarity Relevance to
Safety

Overall
Usefulness

Computational
Feasibility

3 4 1 3 4 3 5

Table 4.8: Evaluation of MRChanging parking conditions

Correctness Applicability Novelty Clarity Relevance to
Safety

Overall
Usefulness

Computational
Feasibility

4 4 1 3 4 3 5

4.2.2.3 Enhancing Result Accuracy Through Prompt-Engineering

Prompt engineering in LLMs is the process of designing effective inputs or in-

structions to guide the model’s output and optimize its performance for specific

tasks or applications [77]. The experiments in this section have found that re-

peated conversations with ChatGPT have the potential to improve the accuracy

of MRs generated. These interactions allow ChatGPT to learn from the past,

and to refine its ability to generate effective and correct MRs [91]. As ChatGPT

receives feedback about its answers, it can recognize patterns and relationships

between inputs and outputs more accurately [153], leading to the generation of

more comprehensive and diverse MRs. The quality of feedback provided by the

user can largely determine how many user prompts are needed, and the quality of
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Table 4.9: Improved MRs from Table 4.2 after interacting with ChatGPT

MRs Input Relation Output Relation
MRReverse into parking space The autonomous vehicle

is in a parking lot and re-
quired to park in a spot
by reversing into it.

The output should be the
same as the source in-
put, but with the vehicle
parked in a different ori-
entation.

MRParallel parking The autonomous vehicle
is in a scenario where it’s
required to parallel park
between two other parked
cars, with different-sized
vehicles on either side of
the parking space.

The output should be the
same as the source in-
put, but with the vehicle
parked between different-
sized vehicles.

MRObstacle detection The autonomous vehicle
is in a parking lot and
required to park in a
spot, with obstacles such
as pedestrians, other ve-
hicles, or shopping carts,
and different types of ob-
stacles, such as bicycles or
large delivery trucks.

The output should be the
same as the source in-
put, but with the vehicle
avoiding different types of
obstacles.

MRParking spot occupancy The autonomous vehicle
is in a parking lot and
required to park in an
empty spot, but with the
parking spot occupied by
another vehicle.

The output should be the
same as the source input,
but with the vehicle find-
ing another empty spot to
park in.

MRChanging parking conditions The autonomous vehicle
is in a parking lot and
required to park in a
spot, with changing park-
ing conditions such as an
obstruction in the path,
a spot becoming unavail-
able, or a vehicle leav-
ing its spot, and differ-
ent changing parking con-
ditions, such as a different
obstruction in the path,
a different spot becoming
unavailable, or a different
vehicle leaving its spot.

The output should be the
same as the source in-
put, but with the vehi-
cle adapting to different
changing parking condi-
tions.
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the generated MRs. According to the empirical findings with ChatGPT, typical

MR-enhancing prompts include: Requesting more detailed explanations of rela-

tionships; necessitating the inclusion of input-output associations; and demanding

the creation of precise and properly structured MR formats.

A detailed example of the interactions with ChatGPT regarding the evaluation

of responses can be found in Appendix A, while Table 4.9 shows the refined MRs,

evolved from the originals in Table 4.2. It can be found that the updated MRs

demonstrate enhanced clarity and accuracy regarding the relationships between

inputs and outputs. For instance, for MRParallel parking, the original version merely

described the source scenario, while the follow-up scenarios and the output re-

lation were vague (“The metamorphic relation is to test if the system is able to

parallel park in a different spot, with different-sized vehicles on either side.”). This

description was more like a testing objective rather than a relation. In contrast,

the revised version of the MR clearly specified the follow-up scenarios and output

relations as: “The output should be the same as the source input, but with the

vehicle parked between different-sized vehicles.”

In order to provide effective feedback, users should be familiar with the concepts

of MT and MRs, although they do not need to be experts in the SUT domain.

High-quality feedback enables ChatGPT to quickly learn and produce quality

MRs with fewer prompts [31]. Conversely, if the feedback is of low quality or

lacks specificity, ChatGPT may require more prompts to generate effective MRs.

Engaging ChatGPT in diverse conversational contexts can expose it to a broader

range of scenarios and inputs, thereby enhancing the generation of more effective

MRs [153]. Through repeated interactions, ChatGPT can refine its understanding

of the domain-specific concepts of the SUTs, which can lead to the generation of

more accurate MRs. This is particularly beneficial when testing complex software

systems.
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It is noteworthy, however, that the number of feedback inputs required by the

model is contingent on the preceding responses, and may vary depending on the

SUT and user requirements [153]. Additionally, it is important to consider the

impact of incorporating user feedback into the MR-generation process, particu-

larly in situations where the user’s level of expertise or the complexity of the SUT

may affect the quality of the MRs generated.

Overall, the ability of ChatGPT to learn from past interactions and refine its

answers to generate effective and correct MRs makes it a valuable tool in the

field of software testing [153]. By providing clear communication and guidance to

users on providing effective feedback, the quality and accuracy of MRs generated

through repeated interactions with ChatGPT can be further improved, leading

to more effective and thorough software testing.

4.2.3 Threats to Validity

The use of ChatGPT for generating MRs is a promising approach, but its limi-

tations and potential threats to validity must be considered. Customization and

refinement may be necessary to ensure that the generated MRs are relevant and

appropriate for the specific SUT under consideration. In addition, the diversity

of the MRs generated may be limited, which could reduce the effectiveness of the

testing approach, particularly when generating a large number of MRs.

User feedback used to refine MRs may be subjective, and individual biases or

errors may negatively impact the quality of the generated MRs. The effectiveness

of the testing approach may also vary depending on the complexity and variabil-

ity of the SUTs, which reduces the generalizability of findings to other domains

and SUTs. Moreover, the reproducibility of the approach is a potential limita-

tion as it assumes a high level of expertise on the part of the person interacting

with ChatGPT, which may reduce the replicability of the results. Additionally,
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the refinement process through ongoing interaction may limit the creativity that

ChatGPT could offer as it adjusts its responses to the inquirer. Furthermore,

the reliability of the feedback mechanism may be affected by cognitive biases, as

different people may focus on different aspects of the phenomenon under study.

Therefore, there is a need to provide additional training of the AI models to

enhance the quality of the generated MRs. Additionally, providing training to

users on how to effectively interact with and leverage these LLMs is also necessary,

as discussed in Section 4.2.2.3, where prompt engineering was shown to enhance

MR accuracy.

4.3 Enhancing MR Generation with ChatGPT

(GPT-4)

4.3.1 Comparative Analysis: GPT-3.5 vs GPT-4

This section compares the MRs generated by GPT-3.5 and GPT-4. Previous

analyses have highlighted the quality of MRs from GPT-3.5, particularly for AD

functions (Section 4.2). The results demonstrated that ChatGPT can be a cost-

effective and time-saving approach for generating diverse and relevant MRs. Fur-

thermore, asking ChatGPT to generate a small number of MRs could give better

results than generating a large number of MRs [247]. To compare the quality

of MRs generated by the GPT-3.5 and GPT-4 models, the same prompts were

given to GPT-4, with the results evaluated using the same evaluation criteria

(CriteriaV 0) proposed in the previous section (Table 4.1).
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4.3.1.1 Generation of MRs for New Target Systems

To gain fair and useful answers from ChatGPT, the author adopted zero-shot

prompting, which was the same method used in the pilot study. Zero-shot prompt-

ing involves interacting with the model without providing explicit examples or

prior context [109]. The operation was performed in two steps: first clarifying

with ChatGPT about the target system, and then asking it to generate a set of

unique MR candidates for each target system in each independent session. The

previous experiment involved using GPT-3.5 to generate five MRs [247]. In inter-

action with GPT-4, by limiting the number of MRs to five for the same function,

a controlled environment was established, allowing for a direct and fair compari-

son. It ensured that the changes observed can be attributed more confidently to

the GPT versions rather than external variables. The results were evaluated by

experienced experts in both MT and the relevant domain, the same individuals

who previously assessed the MRs generated by GPT-3.5 [247].

4.3.1.2 Evaluation Results

Table 4.10 presents the MRs formulated by GPT-4 for the ADS Parking func-

tion. These MRs explore different aspects such as changes in parking spot order,

weather conditions, obstacle proximity, vehicle dimensions, and time of day.

The evaluation results are presented in Table 4.11. In terms of correctness, the

MRs generally displayed a high level of accuracy and alignment with expected

results. “Applicability” was a strong area for all MRs, indicating their versa-

tile use in different testing scenarios. However, in terms of “novelty”, all the

MRs generated showed markedly low scores. This suggests that the MRs show

many similarities with the ones already established in the literature, indicating

a lack of innovative content or original approaches. “Clarity” was consistently

high across all MRs, meaning that their applications and processes were easily
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Table 4.10: MRs for ADS’s parking function generated by GPT-4

MRs Description
MR1:
Permutation of
Parking Spot Order

In the original input, the vehicle is instructed to park in a
designated spot among a sequence of available spots. The
modified input involves permuting the sequence of avail-
able parking spots. The expected output is that the vehicle
should still successfully park in a designated spot, with the
choice of the spot consistent with the vehicle’s parking algo-
rithm, irrespective of the permutation of spots.

MR2:
Varying Weather
Conditions

The original input involves parking under clear weather con-
ditions. The modified input replicates the parking maneu-
ver under different weather conditions (e.g., rain, snow).
The expected output is that the vehicle should successfully
complete the parking maneuver, adjusting its approach for
safety, and ultimately achieving the same parked position.

MR3:
Change in Obstacle
Proximity

Originally, parking occurs at a certain distance from obsta-
cles. The modified input adjusts the distance from these
obstacles. The expected output is that the vehicle adjusts
its parking maneuver but still parks successfully and safely
in the designated spot.

MR4:
Varying Vehicle Di-
mensions

The original input executes a parking maneuver with a vehi-
cle of specific dimensions. The modified input uses a vehicle
of different dimensions. The expected output is that the
autonomous system adapts its parking strategy to accom-
modate the different vehicle size, resulting in a successful
and safe park.

MR5:
Time of Day Varia-
tion

The original input involves performing a parking maneuver
during daytime. The modified input performs the same ma-
neuver at night or during twilight. The expected output is
that the vehicle uses its sensors and algorithms to success-
fully and safely complete the parking maneuver, as it did
during the daytime.

understandable. The MRs’ “relevance to safety” showed moderate scores, indi-

cating their significance in safety considerations, yet suggesting room for more

focused development in this area. Similarly, in terms of “overall usefulness”, the

MRs achieved moderate scores. This indicated their positive impact on testing

processes, but implied potential for further enhancement. Lastly, “computational

feasibility” was a standout feature for all MRs, reflecting their ease of integration

and practicality in current testing environments.

Table 4.12 presents an evaluation comparison of MRs between GPT-4 and GPT-

3.5 generated for the same target system using CriteriaV 0. Compared to MRs

90



4.3. ENHANCING MR GENERATION WITH CHATGPT (GPT-4)

Table 4.11: Evaluation results of the MRs generated by GPT-4

Evaluation Criteria MR1 MR2 MR3 MR4 MR5

Correctness 3 3 3 4 4

Applicability 4 4 4 4 4

Novelty 3 1 2 1 1

Clarity 4 4 4 4 4

Relevance to safety 2 2 4 3 3

Overall usefulness 3 3 3 3 3

Computational feasibility 5 5 5 5 5

Total score 24 22 25 24 24

Table 4.12: Evaluation comparison of MRs for the same target function between
GPT-4 and GPT-3.5 using CriteriaV 0

Evaluation Criteria GPT-3.5 GPT-4

Correctness 3.2 3.4

Applicability 4.0 4.0

Novelty 1.0 1.6

Clarity 2.8 4.0

Relevance to Safety 3.2 3.0

Overall Usefulness 3.0 3.0

Computational Feasibility 5.0 5.0

Total Score 22.2 24.0

from GPT-3.5 [247], GPT-4 showed a slight improvement in “correctness”. Both

versions scored equally in “applicability”, showing their similar capability to be

applied across different scenarios. GPT-4 scored a higher “novelty” mark than

GPT-3.5, suggesting slightly more innovative approaches compared to GPT-3.5,

though the “novelty” score itself was not high.

However, “clarity” was significantly better in GPT-4, since the MRs generated

by GPT-4 have a clear structure and less vague expressions that made the MRs

clearer and more comprehensible. This was a significant improvement in GPT-

91



4.3. ENHANCING MR GENERATION WITH CHATGPT (GPT-4)

4, as one of the main limitations found in the previous study of GPT-3.5 was

that the MRs generated were closer to the system specifications instead of the

relations among multiple test cases [247]. GPT-4 clearly specified the source test

case, with both input and output relations, which eased the process of generating

test cases and analyzing results against MRs.

In “relation to safety”, GPT-3.5 scored slightly higher, since its MRs were more

aligned with safety considerations. Both versions were equal in terms of “overall

usefulness”, suggesting a balanced contribution to the testing process. In “compu-

tational feasibility”, both GPT-4 and GPT-3.5 achieved the full score, reflecting

ease of implementation and practicality in testing environments.

The total score revealed that GPT-4, with a score of 24.0, outperforms GPT-3.5,

which had a score of 22.2. This comparison indicates that the advancements

in GPT-4 have led to improvements in areas like correctness, novelty, and clar-

ity while maintaining high standards in other aspects such as applicability and

computational feasibility.

4.3.2 Establishing New Evaluation Criteria

The pilot study (Section 4.2.3) identified the refinement of evaluation criteria as

a potential area for future research. As indicated in Section 4.2.3, the original

descriptions for each criterion exhibit a degree of subjectivity and ambiguity. This

potentially leads to varying interpretations and assessments by evaluators, each

bringing their own unique experiences and knowledge to the evaluation process.

Moreover, the criterion “relevance to safety” was found to be somewhat restrictive,

primarily applicable to SUTs that are related to safety areas, thereby limiting its

broader applicability.

In response to these limitations, the author has worked on enhancing both the

objectivity and the general applicability of these evaluation criteria by proposing
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an updated evaluation framework, CriteriaV 1. It now includes seven criteria:

completeness, correctness, generalizability, novelty, clarity, computational feasi-

bility, and applicability of the SUT. Each criterion has been carefully redefined

to minimize ambiguity and enhance objectivity, aiming for a more standardized

and uniform evaluation process.

In CriteriaV 1, each main criterion is divided into several specific sub-criteria, with

each contributing to a holistic assessment. This approach not only simplifies the

evaluation process, but also allows for a more precise and targeted analysis of each

component’s contribution to the overall functionality and reliability of the MR.

The criteria are designed with a scoring system: If an MR completely satisfies

all aspects of a criterion, it is awarded full marks, otherwise, it gains marks for

the matching sub-criteria. This approach ensures a clear-cut and straightforward

evaluation.

Table 4.13 presents the details of CriteriaV 1. The “completeness” criterion is

focused on verifying the inclusion of all essential components within an MR:

the source test case, input relation, and output relation. The input relation

is necessary for the generation of follow-up test cases, serving as the blueprint

for how these cases are derived from the original source test case. The output

relation contributes to the validation phase. It provides a benchmark against

which the outputs of both the source and the follow-up test cases are evaluated.

The “correctness” criterion is concerned with how well the input and output

relations of the MR adhere to the intended behavioural patterns and the overall

correctness of the MR. The updated version enhances evaluation accuracy by

breaking down the assessment into distinct evaluations of essential components,

resulting in a more detailed and transparent process compared to the general

“correctness” criterion in CriteriaV 0 (Table 4.1).

The new “generalizability” criterion now explicitly defines the range of SUTs for

which an MR is suitable (originally the “applicability” in CriteriaV 0). Unlike
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Table 4.13: Contents of CriteriaV 1

Criterion Description Levels

Completeness Evaluates if the MR
includes all key
components.

1 mark: All components are present (source test case, input
relation, output relation).
0 marks: Missing one or more components.

Correctness Assesses if the MR
reflects the SUT’s
expected bahaviour.

3 marks: Both input and output relations align with the SUT
specifications.
0 marks: Any violation of SUT specifications.

Generalizability Evaluates the MR’s
adaptability to
different SUTs.

3 marks: Applicable to all systems in the same category.
2 marks: Applicable to a specific group of systems.
1 mark: Only applicable to the current SUT.

Novelty Measures the
originality of the MR.

3 marks: Entire MR is innovative.
2 marks: Output relation is novel.
1 mark: Input relation introduces some novelty.

Clarity Assesses the ease of
understanding the
MR.

3 marks: Clear to a general audience.
2 marks: Understandable to those with basic field knowledge.
1 mark: Requires expert-level understanding.

Computational
Feasibility

Evaluates ease of
automating the MR.

3 marks: Fully automatable, both generation and validation.
2 marks: Test generation automatable, validation requires
manual steps.
1 mark: Test generation is simple, but automation is limited.

Applicability Assesses relevance to
the SUT’s unique
features.

3 marks: Both input and output relations directly reflect the
SUT’s unique features.
2 marks: Either input or output relates to the SUT.
1 mark: The MR is generic and unrelated to specific features of
the SUT.

the earlier version, which was vague about the “wide range of inputs”, the new

definition categorizes generalizability into three distinct levels: only the current

SUT; specific groups of SUTs; and all types of SUTs. This structured approach

provides a clearer framework for assessing the MR’s adaptability, enhancing the

precision of the evaluations.

The updated “novelty” criterion focuses on assessing the uniqueness of MRs,

particularly in their approach and formulation of input/output relations. While

it targets the same fundamental aspect as the older version, the refined criterion

simplifies the scoring process and enhances objectivity by distinctly evaluating

the innovation in input and output relations.

The new “clarity” criterion categorizes the audience into domain experts, individ-

uals with basic understanding, and the general public. This stratification allows

evaluators to more objectively determine the MR’s comprehensibility across dif-

ferent knowledge levels.

The “computational feasibility” criterion introduces three specific dimensions:
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ease of generating source test cases; feasibility of automating test case genera-

tion; and feasibility of automating MR validation. This comprehensive approach,

encompassing the entire MT process, provides a more detailed and objective

framework compared to the original criterion, which lacked clear definitions for

evaluating computational feasibility.

Finally, the “relevance to safety” criterion was replaced with the new “applica-

bility” criterion, expanding its applicability beyond safety-focused SUTs. This

criterion now evaluates the MR’s relevance in three categories: no relevance; par-

tial relevance; and strong relevance to the SUT’s key features. Additionally, the

“Overall Usefulness” criterion was removed due to its lack of specificity, which

made it challenging to apply effectively in assessing the MRs. This revision en-

sures that each criterion directly contributes to a more targeted and meaningful

evaluation of MRs.

4.3.3 Applying Enhanced Criteria to GPT-4-Generated

MRs

To further evaluate the quality of MRs generated by GPT-4, the author extended

the range of SUTs to nine target systems, as summarized in Table 4.14. The

table presents the primary function of each system, the main inputs they receive,

and the outputs that they generate. The systems range from basic computational

functions, like the ‘sine program’ and ‘sum program’, to more complex AI/ML-

driven systems such as ‘av-perception’ and ‘AD systems parking function’. This

classification is grounded in the need to systematically differentiate the SUTs

based on the levels of computational complexity they exhibit and the extent to

which they incorporate AI methodologies. Further, the author established a GPT

Evaluator by integrating CriteriaV 1 into GPT-4’s configuration. This integration

used a new feature introduced by OpenAI [92], enabling the creation of tailored

95



4.3. ENHANCING MR GENERATION WITH CHATGPT (GPT-4)

Table 4.14: Target systems for testing with ChatGPT

ID System Description Main Inputs Main Outputs Category

1 SIN Computing sin One number One number Basic
computational
functions

2 SUM Computing sum A list of numbers One number Basic
computational
functions

3 SHORTEST-PATH Finding the shortest
path

A graph with
vertices, edges

A path Basic
computational
functions

4 REGRESSION Multiple linear
regression

Data rows Coefficients,
predicted data

Complex systems
without AI

5 FFT Fast Fourier
Transform-based
analysis

Time-series data Frequencies,
amplitudes

Complex systems
without AI

6 WFS Weather forecasting
system

Multiple sources Multiple outputs Complex systems
without AI

7 AV-PERCEPTION Autonomous vehicle
perception

Images, point
clouds

Object-detection Complex systems
with AI

8 TRAFFICSYS AI-based traffic light
control

Sensor data Traffic decisions Complex systems
with AI

9 AUTOPARKING Autonomous vehicle
parking

Location, obstacles Parking trajectory,
decisions

Complex systems
with AI

ChatGPT versions for specific applications. Such customization in ChatGPT

ensures enhanced accuracy and efficiency, requiring fewer prompts to generate

desired results [92].

1. Basic Computational Functions (Systems 1-3):

These SUTs represent fundamental and deterministic algorithms. They are

used for assessing the GPT models’ ability to generate accurate and logical

MRs in straightforward computational contexts.

2. Complex Systems without AI Integration (Systems 4-6):

This category includes systems that perform complex data processing and

analysis, yet do not incorporate AI algorithms. They are used for evaluating

the GPT models in scenarios involving advanced numerical methods and

data interpretation, which require a deeper understanding of mathematical

and statistical concepts.

3. Complex Systems with AI Integration (Systems 7-9):

The selection of SUTs with AI integration is intended to assess the GPT

models’ effectiveness in generating MRs for systems that are inherently
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non-deterministic and driven by data. Generating MRs for such systems is

usually challenging for human testers.

4.3.3.1 Prompt Methods

Since the previous experiments showed that the GPT model would give better

results when asked to generate a small number of MRs (Section 4.3.1.2), the

author asked GPT-4 to generate eight MRs for each SUT in this follow-up study.

The prompting method included specifying the main inputs and outputs of the

programs (as presented in Table 4.14) to the GPT model. This made it possible to

tailor its responses based on the provided information, enabling it to understand

the functional scope and the data types it was dealing with [151]. For instance,

knowing that the inputs were images and point clouds and the outputs were

object-detection results, the model could generate MRs that are more relevant to

image-processing and object-detection tasks. This focused approach minimized

the possibility of generating irrelevant or generic MRs, thereby improving the

overall quality and applicability of the MRs for the given SUT. It is important to

note that all prompts used in the experiments followed the same structure: they

first specify the number of MRs to be generated, followed by details of the inputs

and outputs of the SUT. An example of such a prompt is as follows:

“Generate eight MRs for an ADS perception program. The main

inputs are images and point clouds, and the main outputs are object-

detection results.”

4.3.3.2 Configuring a GPT-MR Evaluator

To eliminate the bias from humans and provide more objective evaluations, a

custom GPT evaluator was created, which, in conjunction with human evaluators,

offered a detailed comparison of AI and human capabilities in MR evaluation. The
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configuration of a GPT Evaluator is a straightforward and structured process.

The detailed configurations are outlined as follows:

1. Define the GPT Evaluator’s role:

The GPT’s role is defined as an MR Evaluator in the context of software

testing. This role primarily involves evaluating MRs using CriteriaV 1 pro-

posed in Section 4.3.2. The evaluation process is characterized by a binary

scoring system for each criterion, where meeting the criterion results get

its corresponding points and failure to meet it results in zero points. An

example of how the GPT Evaluator was configured in this study is provided

below:

In your role as GPT-MR Evaluator, you focus on evaluating

metamorphic relations (MRs) in software testing, using a set of

criteria. Each MR is assessed based on input relation and output

relation aspects. The scoring for each criterion is binary: if the

criterion is met, the MR earns the full points for that criterion;

if not, it scores zero.

2. Incorporate the updated evaluation criteria:

The revised evaluation criteria are to be inputted directly beneath the role

definition. This ensures that the criteria are clear, accessible, and directly

linked to the evaluator’s role.

3. Set answer formats and components:

The format for presenting evaluations needs to be specified. The evaluator

is expected to begin with a summary table displaying scores for each cri-

terion, followed by a comprehensive justification for these scores. Clarity

and precision in the explanations are emphasized. An example used in this

study is provided below:

Your evaluations should start with a summary table of scores for
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each criterion, followed by detailed justifications. Maintain clarity

and precision in your explanations, aligned with the latest software

testing standards.

Following this configuration approach ensures that the GPT Evaluator is effec-

tively prepared to assess MRs. Figure 4.1 shows an example of the evaluator’s

outcomes and explanations. The evaluators provided scores for each MR under

each criterion, along with detailed justifications for their results. This allows the

human to understand the results and make their judgements.

4.3.3.3 Results Analysis Methods

In this second evaluation, six human experts were selected for the evaluation

work, based on their software testing expertise, contributions to the MT field,

and familiarity with the SUTs (total h-index: 139; 163 publications related to

MT). After collecting data from human experts, the average scores for SUTs

were calculated in each category, rounding to the nearest whole number when

necessary. This method effectively balances the inputs of all evaluators, which

would accommodate minor discrepancies. Rounding preserves the integrity of

the original evaluation scale, ensuring that final scores are both interpretable and

meaningful.

The entire process enabled a comparative analysis between the evaluations con-

ducted by human experts and the GPT Evaluator, highlighting similarities and

differences in the assessment of MRs. It would provide a comprehensive and ob-

jective perspective on the quality of the MRs. Furthermore, by analyzing the

scoring tendencies of both human evaluators and the GPT, the unique prefer-

ences and characteristics in each evaluator’s approach to assessment could be

summarized.
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(a) Asking the GPT Evaluator to evaluate MRs

(b) The GPT Evaluator gave evaluation results and justifications for the MRs

Figure 4.1: Sample evaluation of new MRs using the GPT Evaluator
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Table 4.15: MRs for SIN systems under the basic computational functions cate-
gory generated by GPT-4

MR Type Description
Additive Angle If the input is x, the output is sin(x). For a new input x + π, the output should be

− sin(x). This tests the periodicity and symmetry of the sine function.
Subtractive Angle For an input x, the output is sin(x). For a new input x − π, the output should be

− sin(x). This tests the sine function’s bahaviour under angle subtraction.
Multiplicative Angle If the input is x, the output is sin(x). For a new input 2x, the output should follow the

identity 2 sin(x) cos(x), allowing testing of the sine function over angle doubling.
Half-Angle For an input x, the output is sin(x). For a new input x/2, the output should be the

square root of (1 − cos(x))/2, testing the sine function’s bahaviour under half-angle
conditions.

Negative Angle If the input is x, the output is sin(x). For a new input −x, the output should be
− sin(x), testing the odd function property of sine.

Complementary Angle For an input x, the output is sin(x). For a new input π/2 − x, the output should be
cos(x), testing the complementary angle identity.

Angle Invariance If the input is x, the output is sin(x). For a new input x + 2π, the output should be
the same as sin(x), testing the periodic nature of the sine function over a full period.

Reflection For an input x, the output is sin(x). For a new input π − x, the output should be
sin(x), testing the reflection symmetry of the sine function about π/2.

4.3.3.4 Evaluating MRs for Basic Computational Functions

Tables 4.15, 4.16, and 4.17 present the MRs created by GPT-4 for the SUTs

within the basic computational function category. Each table is organized into

two primary columns: “MR Type” and “Description”, which were both generated

by GPT. The “MR Type” column classified each MR into specific categories,

whereas the “Description” column provided a comprehensive description for each

MR.

Table 4.16: MRs for SUM systems under the basic computational functions cat-
egory generated by GPT-4

MR Type Description
Additive Constant If the input is a list of numbers [a, b, c, ...], the output is their sum S. For a

new input where each number in the list is increased by a constant k, the output
should be S + n · k, where n is the number of elements in the list. This tests the
program’s ability to handle uniform increments.

Subtractive Constant For an input [a, b, c, ...] with sum S, for a new input where each number is
decreased by a constant k, the output should be S −n ·k. This tests the program’s
handling of uniform decrements.

Element Duplication If the input list is [a, b, c, ...] with sum S, duplicating any element (e.g., [a, b,
c, ..., a]) should result in a new sum of S + a. This tests handling of repeated
elements.

List Concatenation Given two lists with sums S1 and S2, concatenating them should result in a sum
of S1 + S2. This tests the program’s handling of concatenation.

Reverse Order If the input list [a, b, c, ...] results in sum S, reversing the order should still result
in the same sum S. This tests order-agnostic sum calculation.

Element Removal For a list [a, b, c, ...] with sum S, removing any element (e.g., removing b) should
result in S − b. This tests response to element removal.

Zero Element Addition Adding zero to the list ([a, b, c, ..., 0]) should not change the sum. This tests
handling of neutral elements.

Negative Element Addition If the input list is [a, b, c, ...] with sum S, adding a negative number −d should
result in S − d. This tests handling of negative numbers.

101



4.3. ENHANCING MR GENERATION WITH CHATGPT (GPT-4)

Table 4.17: MRs for SHORTEST-PATH systems under the basic computational
functions category generated by GPT-4

MR Type Description
Edge Weight Increase For a given graph, if the shortest path is found between two vertices,

increasing the weight of one or more edges not in the shortest path
should not change the shortest path. This tests handling of irrelevant
edge weight changes.

Edge Weight Decrease If the shortest path is identified, decreasing the weight of edges not
part of this path should not affect the path. This tests handling of
non-critical edge weights.

Adding Vertex and Edges Adding a new vertex and edges should not change the shortest path
between two vertices unless the new edges create a shorter path. This
tests adaptability to graph expansion.

Removing Non-Critical Edge Removing an edge not part of the shortest path should not change
the shortest path. This tests handling of edge removal in non-critical
areas.

Path Invariance with Vertex Duplication Duplicating a vertex with the same connections and weights should
not change the shortest path between two original vertices. This
tests robustness against graph restructuring.

Reversing Path Direction The shortest path from vertex A to vertex B should be the same
as from B to A in terms of distance, though the actual path may
reverse. This tests handling of undirected graphs.

Edge Subdivision Subdividing an edge (replacing it with two edges whose weights sum
to the original edge’s weight) should not change the shortest path.
This tests handling of graph granularity changes.

Combining Edges Combining two consecutive edges in the shortest path into a single
edge should not change the shortest path. This tests handling of
edge aggregation.

Table 4.18 shows the average values for the evaluation results for the MRs from

both human experts and the GPT model. The evaluation of MRs for the SIN,

SUM, and SHORTEST-PATH programs by human experts and GPT reveals both

agreements and discrepancies across various criteria.

Table 4.18: MR evaluation results of basic computational functions from human
evaluators and the GPT model

Evaluation Criteria SIN
Human/GPT

SUM
Human/GPT

SHORTESTPATH
Human/GPT

Completeness 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0

Correctness 2.4 / 3.0 2.0 / 3.0 2.7 / 3.0

Generalizability 3.0 / 3.0 2.9 / 3.0 2.5 / 2.0

Novelty 1.0 / 3.0 1.0 / 1.0 1.8 / 1.5

Clarity 2.9 / 3.0 3.0 / 3.0 1.9 / 3.0

Computational Feasibility 2.9 / 3.0 3.0 / 3.0 2.0 / 2.0

Applicability 3.0 / 3.0 3.0 / 3.0 2.5 / 3.0

Total 16.3 / 19.0 15.9 / 17.0 14.3 / 15.5

In the category of “completeness”, both human experts and GPT uniformly scored

‘1’ for all programs, indicating that all essential components—source test case, in-

put relation, and output relation—are included in the MRs. This suggests that all
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evaluators (including GPT) agreed that the MRs contain the elements required

to be considered complete. However, the “correctness” scores show a notable

difference: The GPT consistently awarded a score of ‘3’, implying that the MRs

captured the intended behaviours of the SUT without violating specifications and

maintained a clear focus on the relations among multiple test cases. In contrast,

human experts gave relatively low results for the correctness of MRs. From the

perspective of human experts, the majority of MRs closely aligned with the ba-

sic arithmetic operations of the functions, which was considered as a drawback

because it simply replicates the specifications of the SUTs. Consequently, these

MRs did not achieve full marks for the “overall correctness” criterion within the

broader “correctness” category.

The “generalizability” criterion scores were similar for both human experts and

GPT across all programs. For the SIN and SUM programs, all evaluators gave

(almost) full marks, while for the SHORTESTPATH program, both human eval-

uators and GPT considered some MRs were not universally generalizable. The

results indicate a shared perception that most MRs were universally fit for all

types of SUTs within the same category, while some could only be applied within

certain groups of SUTs.

The evaluation of the “novelty” criterion presented a clear contrast for the SIN

program, where GPT’s rating was significantly higher. Both humans and GPT

provided the same score for the SUM program, indicating agreement on a low

level of novelty. A minor difference in the marks is found in the SHORTEST-

PATH program, with human experts assigning a slightly higher score than GPT.

The main reason for the “novelty” criterion getting overall low marks from both

human experts and GPT is that the MRs were based on fundamental arithmetic

operations, which are not novel in the context of mathematical computations.

The “clarity” of the MRs assessed by GPT indicates that they were accessible to

a general audience, as reflected by the consistent score of ‘3’ across all programs.
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Human experts aligned with this assessment for the SIN and SUM programs,

believing that the MRs were easily understood without specialized knowledge.

However, for the SHORTEST-PATH program, human experts offered a lower

score, which means that they found the MRs require basic knowledge of the

domain to understand and apply.

The “computational feasibility” criterion was rated highly by both human ex-

perts and GPT for the SIN and SUM programs, reflecting an ease of generating

and automating test cases. However, for the SHORTEST-PATH program, both

results indicated a reduced feasibility, pointing to a more complex generation or

validation process that might require more computational resources, or that could

not be fully automated.

Finally, GPT gave all programs full marks on the “applicability” criterion, align-

ing with the assessments of human experts for the SIN and SUM programs, which

also received top marks. However, the SHORTESTPATH program was rated

slightly lower. This indicates a consensus that the MRs focused on and high-

lighted key features of the corresponding SUTs, with input and output relations

specifically tailored to showcase the distinctive features and behaviours of the

systems.

In summary, the evaluation results revealed that both humans and GPT con-

sistently recognized the MRs’ completeness, generalizability, and applicability of

the SUTs. Differences arise in the evaluation of the correctness, novelty, and clar-

ity of the MRs, with GPT generally assigning higher scores for correctness and

novelty. Conversely, human evaluators exhibited a more critical attitude, partic-

ularly regarding the novelty of the MRs. These differences highlight the areas

where human evaluators and GPT may prioritize different aspects of the MRs.
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Table 4.19: MRs for REGRESSION systems under complex systems without AI
integration generated by GPT-4

MR Type Description
Data Scaling MR If the input data rows are scaled by a constant factor, the coefficients

should adjust accordingly to produce the same predicted data. Tests
uniform data scaling.

Data Shifting MR Shifting data rows by adding a constant value should result in an
adjustment of the intercept coefficient, while other coefficients remain
unchanged. Tests response to data shifts.

Feature Addition with Zero Weight MR Adding a zero-valued feature should not change the coefficients or
predicted data. Tests robustness to irrelevant feature addition.

Duplicate Data Row MR Duplicating data rows should not fundamentally change the coeffi-
cients. Tests handling of data redundancy.

Removing Irrelevant Feature MR Removing a negligible coefficient feature should minimally impact
other coefficients and predicted data. Tests adaptability to feature
reduction.

Permuting Data Rows MR Changing the order of data rows should not affect coefficients or pre-
dictions. Tests order irrelevance in regression analysis.

Combining Dependent Features MR Combining linearly dependent features should result in predictable
coefficient changes and consistent predicted data. Tests handling of
multicollinearity.

Inverse Data Transformation MR Applying inverse transformation to predicted data should align with
original scale predictions. Tests consistency across data transforma-
tions.

4.3.3.5 Evaluating MRs for Complex Systems Without AI

Tables 4.19, 4.20, and 4.21 display the MRs generated by GPT-4 for the SUTs

categorized under complex systems without AI integration.

Table 4.22 shows the average values for the evaluation results for the MRs from

both human experts and the GPT model. The evaluations of MRs for REGRES-

SION, FFT, and WFS systems by human experts and the GPT model showed

a clear consensus on the structural integrity of the MRs to the system’s key fea-

tures, as reflected in the agreement on the MRs’ completeness found in both sets

of results.

However, when it comes to the “correctness” criterion, human experts assigned

lower marks compared to GPT, reflecting a nuanced understanding of the MRs’

accuracy. For instance, the ‘Data Shifting MR’ in the REGRESSION program

was noted as partially correct by human experts: While the MR correctly states

that shifting predictor values impact the intercept—the constant term in the

regression equation representing the expected value of the dependent variable

when all predictors are zero—it oversimplifies the influence on other coefficients.
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Table 4.20: MRs for FFT systems under complex systems without AI integration
generated by GPT-4

MR Type Description
Time Scaling MR Expanding or contracting the time scale should inversely scale frequencies

while maintaining amplitudes. Tests time scaling in data.
Amplitude Scaling MR Scaling input amplitude should proportionally scale output amplitudes with-

out affecting frequencies. Tests amplitude sensitivity in FFT analysis.
Data Shifting MR Shifting time-series data should not affect frequencies and should impact only

the zero frequency amplitude. Tests handling of DC shifts.
Time Reversal MR Reversing time-series data should yield the same frequencies and amplitudes.

Tests response to time-reversed data.
Data Concatenation MR Concatenating time-shifted data should result in the same frequencies with

amplitude changes. Tests data concatenation handling.
Zero Padding MR Zero padding should not change fundamental frequencies but may increase

resolution. Tests FFT consistency with zero padding.
Frequency Domain Filtering MR Applying a filter and inverse FFT should result in predictable time-domain

changes, reflecting the filter’s characteristics.
Harmonic Addition MR Adding a harmonic should result in detection of the additional frequency

with corresponding amplitude. Tests harmonic detection capability.

Table 4.21: MRs for WFS systems under complex systems without AI integration
generated by GPT-4

MR Type Description
Data Source Consistency MR Same weather data from different sources should result in consistent fore-

casts. Tests data source consistency.
Temporal Shift MR Shifting input data in time should result in a corresponding forecast shift.

Tests handling of time-shifted data.
Data Scaling MR Scaling input data should result in predictable output changes. Tests re-

sponse to uniformly scaled data.
Data Omission MR Omitting a data subset should degrade forecast quality predictably but not

lead to different patterns. Tests resilience to incomplete data.
Cross-Parameter Consistency MR Changes in one parameter should result in predictable changes in related

forecasts. Tests internal consistency in handling related parameters.
Data Addition MR Adding new data sources should enhance accuracy without contradicting

previous forecasts. Tests integration of additional data.
Historical Data Validation MR Inputting historical data should align forecasts closely with actual outcomes.

Tests accuracy against known events.
Location Shift MR Shifting input data’s geographical location should result in an appropriate

forecast for the new location. Tests geographical adaptability.

Table 4.22: MR evaluation results of complex programs without AI integration
from human evaluators and the GPT model

Evaluation Criteria REGRESSION
Human/GPT

FFT
Human/GPT

WFS
Human/GPT

Completeness 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0

Correctness 1.9 / 3.0 2.6 / 3.0 1.6 / 3.0

Generalizability 3.0 / 3.0 2.6 / 2.0 2.9 / 2.9

Novelty 1.9 / 2.0 2.0 / 2.0 2.0 / 2.0

Clarity 2.6 / 3.0 2.1 / 3.0 2.0 / 3.0

Computational Feasibility 1.7 / 3.0 2.0 / 2.0 2.0 / 2.0

Applicability 3.0 / 3.0 2.4 / 3.0 2.9 / 2.9

Total 15.1 / 18.0 14.7 / 16.0 14.3 / 16.8
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This is particularly true for complex models where interactions or non-linear

transformations are present, which might result in changes to coefficients beyond

the intercept. GPT, with a broader but potentially less detailed analysis, awarded

full marks.

The “generalizability” scores assigned by both human experts and GPT were

comparable across all evaluated programs. In the cases of the REGRESSION

and WFS programs, evaluators awarded nearly perfect scores. However, for the

FFT program, both humans and GPT noted that some MRs can not be applied

universally. This indicates that, although the majority of MRs were adaptable

to a wide range of SUTs within the same category, some were suitable only for

particular groups of SUTs.

In the “novelty” criterion, both human experts and the GPT model recognized

the MRs as having elements of innovation but not as wholly new concepts. GPT

rated the novelty slightly higher, suggesting it found more uniqueness in the MRs’

approach to input and output relations, yet not to the extent of reaching the full

scores for this criterion. Human experts’ ratings reflected an acknowledgement of

some new methods within the MRs, but within the bounds of known MROPs.

In the “clarity” evaluation, the GPT model rated the MRs as being accessible to

a general audience, indicating that the MRs were written clearly enough to be

understood without specialized knowledge. Human experts assigned lower scores,

indicating that while the MRs were clear, they still contained technical terms and

complex methodologies that may require a basic understanding of the field. This

points to a nuanced difference in interpretation: GPT assumed the MRs were

sufficiently self-explanatory for anyone, whereas human experts considered the

potential need for a basic level of domain familiarity.

For the “computational feasibility” criterion, both human experts and GPT rated

the MRs with medium scores, suggesting that they found the automation of test
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case generation to be practical, while the validation of the MRs failed to be

automated. Neither GPT nor human experts assigned full marks, indicating

that they both recognised the MRs’ automation potential yet were aware of the

limitations that prevent achieving the most efficient level of automation.

Finally, GPT gave all programs (almost) full marks on the “applicability” crite-

rion, aligning with the assessments of human experts for the REGRESSION and

FFT programs, which also received full marks. However, human experts rated

the FFT program slightly lower, considering some MRs of the FFT program did

not highlight the unique features of the SUT. For instance, the transformation of

inputs (i.e., reversing time-series data) in the “Time Reversal MR” is a common

feature that appears in other MRs as well.

In conclusion, the evaluation of MRs for REGRESSION, FFT, and WFS systems

reflected a consensus on their completeness, with both human experts and GPT

recognizing the MRs as fully structured and significant to the SUTs’ key features.

Correctness assessments differ, with human experts raising more concerns about

the MRs’ details, while GPT was consistently positive. Generalizability was rated

highly by both, indicating the MRs’ general utility. Novelty was acknowledged by

both evaluators, with GPT noting slightly more originality in the MRs’ method-

ologies. For clarity, GPT perceived the MRs as universally understandable, while

human experts believed they might require some domain knowledge. Computa-

tional feasibility was considered practical for test case generation by both, but

not to the highest degree of automation to involve the MR validation. Applica-

bility was overall high for all programs, with human experts being more strict on

certain MRs.
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Table 4.23: MRs for AV-PERCEPTION systems under complex systems with AI
integration generated by GPT-4

MR Type Description
Image Brightness Adjustment MR Altering brightness should not significantly change detected objects, test-

ing robustness to lighting variations.
Point Cloud Density Variation MR Varying point cloud density should not fundamentally change object iden-

tification, testing handling of different densities.
Image Scaling MR Scaling images should result in consistent object detection, testing robust-

ness to image scale changes.
Camera Angle Rotation MR Rotating camera angle should adjust object orientation in detection with-

out missing or falsely detecting objects, testing camera angle variations.
Partial Occlusion MR Partially occluded objects should still be detected, testing the ability to

handle occlusions.
Synthetic Object Addition MR Adding synthetic objects should result in their detection, testing the ability

to detect new entities.
Background Variation MR Changing background settings should not affect object detection, testing

consistency across environments.
Sensor Noise Introduction MR Introducing sensor noise should predictably degrade performance without

drastic errors, testing resilience to noise.

Table 4.24: MRs for TRAFFICSYS systems under complex systems with AI
integration generated by GPT-4

MR Type Description
Sensor Data Scaling MR Scaling sensor data should lead to proportional traffic decisions, test-

ing response to traffic density variations.
Time Shift MR Shifting sensor data time frame should predictably change traffic

decisions, reflecting different traffic patterns.
Sensor Data Omission MR Omitting sensor data should lead to a conservative traffic response,

prioritizing safety, testing resilience to incomplete data.
Synthetic Sensor Data Addition MR Adding synthetic sensor data should appropriately change traffic de-

cisions, reflecting the added data.
Cross-Intersection Data Consistency MR Consistent traffic patterns at multiple intersections should lead to

harmonized traffic decisions, promoting fluidity.
Variable Traffic Pattern MR Varying traffic patterns should appropriately adjust light durations

and sequences, maintaining flow.
Pedestrian Flow Introduction MR Introducing pedestrian data should influence traffic decisions for

pedestrian safety.
Emergency Vehicle Prioritization MR Detecting emergency vehicles should override regular traffic patterns

for prioritization.

4.3.3.6 Evaluating MRs for Complex Systems With AI

Tables 4.23, 4.24, and 4.25 show the MRs generated by GPT-4 for the SUTs

categorized under the complex programs with AI integration.

Table 4.26 shows the average values for the evaluation results for the MRs from

both human experts and the GPT model.

In terms of the “completeness” criterion, both human experts and the GPT

model awarded a score of ‘1’ across all MRs, signifying agreement that the MRs

included all necessary components: a well-defined source test scenario, a clear
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Table 4.25: MRs for AUTOPARKING systems under complex systems with AI
integration generated by GPT-4

MR Type Description
Vehicle Size Variation MR Changing vehicle size should appropriately adjust parking strategy,

e.g., for larger vehicles.
Parking Space Orientation Change MR Rotating parking space orientation should lead to a corresponding

change in parking maneuver.
Surrounding Vehicle Adjustment MR Shifting surrounding vehicles should result in minor parking maneuver

adjustments.
Sensor Noise Introduction MR Introducing noise to parking sensors should predictably degrade park-

ing performance without significant errors.
Parking Area Scaling MR Changing parking area size should adjust the parking strategy to fit

the space.
Obstacle Introduction MR Introducing obstacles should lead to adjusted parking strategies or

spot selection.
Lighting Condition Variation MR Varying lighting conditions should not significantly impair parking

ability, assuming visibility.
Surface Texture Variation MR Changing surface texture should not prevent successful parking, but

may adjust approach.

Table 4.26: MR evaluation results of complex programs with AI integration from
human evaluators and the GPT model

Evaluation Criteria AV-PERCEPTION
Human/GPT

TRAFFICSYS
Human/GPT

AUTOPARKING
Human/GPT

Completeness 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0

Correctness 2.1 / 3.0 1.6 / 3.0 2.1 / 3.0

Generalizability 2.6 / 2.9 2.5 / 2.9 2.7 / 2.9

Novelty 1.9 / 2.1 2.0 / 2.1 1.8 / 2.0

Clarity 2.2 / 3.0 1.8 / 3.0 2.3 / 3.0

Computational Feasibility 1.9 / 2.0 1.9 / 2.0 2.0 / 2.0

Applicability 2.6 / 2.9 2.5 / 2.9 2.9 / 2.9

Total 14.4 / 16.9 13.3 / 16.9 14.6 / 16.8

input-relation, and a detailed output-relation.

The “correctness” criterion evaluations showed a contrast: the GPT model as-

signed a full score of ‘3’ to all MRs, suggesting it found them to accurately

reflect the intended behaviours of the systems. On the other hand, human ex-

perts were more conservative in ratings, particularly for the TRAFFICSYS and

AUTOPARKING MRs, which received significantly lower scores. The primary

reason behind this was due to the experts’ observations of vague expressions

within the output relations and the identification of inaccuracies in some in-

stances. For instance, in the ‘Vehicle Size Variation MR’ of the AUTOPARKING

system, whether the system is changing the parking strategy or not depends on

the system specifications. The correctness of the MR depends heavily on the
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specific features and capabilities of the ADS parking system. If the system is

not designed to alter its strategy based on vehicle size, then the MR does not

apply. In addition, an effective MR should have clear and specific output rela-

tions [178]. The original MR’s output, which suggests an adjustment in parking

strategy based on vehicle size, lacks specificity. It does not define what constitutes

an “appropriate adjustment” or how the strategy changes with different vehicle

sizes. Finally, the MR does not provide guidelines on how the parking strategy

should change or what degree of change is necessary. For instance, it does not

specify what qualifies as a larger parking spot for an SUV or how the system

should identify and choose these spots differently compared to spots for compact

cars.

In the assessment of the “generalizability” criterion, both humans and the GPT

model rated the MRs highly but not perfectly, indicating that the MRs were

largely but not universally generalizable. The slightly lower scores from humans

suggested a cautious recognition of practical limitations in applying these MRs

across all systems. The GPT model gave higher marks, showing a more optimistic

view of their broad generalizability, yet also acknowledged some limitations since

it did not give full marks. This reflects an understanding from both sides that

while MRs were versatile, their application was not without certain restrictions.

For the “novelty” criterion, both human experts and the GPT model provided

scores that reflected a recognition of some innovative elements within the MRs,

but not to the extent of groundbreaking originality. GPT’s marginally higher

scores indicated a slightly more favourable view of the MRs’ uniqueness.

In assessing the “clarity” criterion, the GPT model rated the MRs with the high-

est score, implying it found them to be universally understandable. Human ex-

perts gave lower scores, suggesting that they found the MRs generally clear but

required some specialized knowledge for full comprehension, especially for such

SUTs that have AI embedded. The discrepancy may indicate that GPT evaluated
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the MRs’ clarity from a more theoretical standpoint, while human experts might

be considering practical nuances that could affect understanding for a broader

audience.

For the “computational feasibility” criterion, both human experts and the GPT

model gave moderate scores, which implied an agreement on the practicality of

applying the MRs, yet with some reservations. GPT’s slightly higher scores com-

pared to those of human experts might reflect its extensive training on diverse

datasets [151], potentially providing it with a broader knowledge base to evaluate

the automation potential of the MRs. GPT could be recognizing more opportu-

nities for efficient automation based on its understanding of existing tools and

techniques, which would explain its optimism compared to the more reserved

human scores. Human experts, while knowledgeable, might be more aware of

practical challenges and constraints that are not as apparent in theoretical data,

leading to their more cautious scoring.

Lastly, for the “applicability” criterion, the marks were generally rated highly by

both human experts and GPT, although GPT’s scores were slightly higher. This

indicated a shared view that the MRs were pertinent and focused on key features

of the systems, with GPT seeing them as slightly more aligned with the SUT’s

core functionalities.

In conclusion, the evaluation of MRs for complex systems with AI integration, car-

ried out by both human experts and the GPT model, revealed a shared recognition

of their completeness and relevance. However, there were notable divergences in

correctness, generalizability, novelty, clarity, and computational feasibility. The

GPT model generally showed a more favourable view of the MRs across these

criteria, while human experts exhibited a more cautious and critical stance, re-

flecting a deeper consideration of practical and system-specific aspects. These

differences highlighted the varied perspectives and interpretations brought by hu-

man expertise and AI analysis [5] in evaluating the effectiveness of MRs.
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Figure 4.2: Cohen’s Kappa agreements between evaluators

4.3.4 Qualities of the MRs Produced by GPT-4

Analyzing the evaluation results of MRs from human experts and GPT across

three categories of systems—basic computational functions, complex systems

without AI integration, and complex systems with AI integration—reveals some

key similarities and differences in their assessment approaches and perspectives

on the MRs.

4.3.4.1 Evaluator Agreement Analysis Using Cohen’s Kappa

In this section, the levels of human evaluators’ agreement on the results of MRs

are presented, using a famous statics method, Cohen’s Kappa [216]. It is widely

adopted in the marking and evaluation works [162, 209, 212]. The calculation

adjusts for the possibility that some agreement may occur by chance. The Kappa

value ranges from -1 (complete disagreement) to 1 (perfect agreement), with 0

meaning the agreement is purely by chance [216]. For each system, the compar-

isons were made on how often the evaluators gave the same or different scores

across the criteria. Then, the formula adjusts for the expected agreement by

chance, resulting in a value that reflects how much the evaluators truly agree.
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Table 4.27: Cohen’s Kappa evaluation results across the nine SUTs

System Cohen’s Kappa Interpretation

SINE 0.72 Substantial agreement

SUM 1.00 Perfect agreement

SHORTEST-PATH 0.50 Moderate agreement

REGRESSION 0.77 Substantial agreement

FFT 0.19 Slight agreement

WFS 0.77 Substantial agreement

AV-PERCEPTION 0.73 Substantial agreement

TRAFFICSYS 0.52 Moderate agreement

AUTOPARKING 0.50 Moderate agreement

Cohen’s Kappa Interpretation Scale:

• Kappa >0.80: Almost perfect agreement

• Kappa between 0.61 and 0.80: Substantial agreement

• Kappa between 0.41 and 0.60: Moderate agreement

• Kappa between 0.21 and 0.40: Fair agreement

• Kappa between 0.01 and 0.20: Slight agreement

• Kappa = 0: No agreement beyond chance

• Kappa <0: Agreement worse than chance

The higher the Kappa value, the stronger the agreement between the two evalu-

ators.

Figure 4.2 shows the results of the Cohen’s Kappa agreements across the nine

SUTs, where Table 4.27 shows the interpretation of the values. It can be found

that the human evaluators were largely in agreement with most systems, except

the FFT system. After examination of the cause, the evaluators believed the rea-

sons were due to different familiarity with the systems: One evaluator had greater

familiarity with the FFT system, resulting in stricter assessments. The low kappa

value of the FFT results highlights real-world variability among evaluators, which

supports objectivity in the evaluation. To synthesize these evaluations, the av-

erage scores across SUTs were calculated within each category, rounding when
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necessary. This averaging approach balances differences across evaluators while

preserving the integrity of the original scale, making the final scores interpretable

and reflective of a comprehensive assessment.

4.3.4.2 Summary of the MR Qualities

Among the MRs generated by GPT-4 for the nine systems across three categories,

there are some common aspects based on the evaluation results:

1. Completeness and applicability of the MRs:

The MRs across all system types were structured to include all necessary

components, such as source test cases, input relations, and output relations.

They effectively focused on and highlighted key features and behaviours of

the SUTs.

2. Broad generalizability of the MRs:

The MRs demonstrated wide generalizability across various systems. This

trait was shown in both basic and complex systems, including those with

AI components.

3. Correctness of the MRs:

The MRs generally provided accurate representations of intended system

bahaviours, a critical aspect recognized across various types of systems.

However, there was a noted variation in the perceived level of correctness,

particularly in complex and AI-embedded systems. To achieve higher levels

of correctness, it was recognized that the MRs needed more clearly defined

constraints to make the scenarios more accurate. These constraints were

essential for ensuring that the MRs were not only correct but also precise

and directly applicable to the bahaviours and specifications of the SUTs.

This need for enhanced specificity and constraint was especially important

for complex systems, where missing details could cause the MRs to violate
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the specifications of the SUTs.

4. Novelty and clarity in the MRs:

The novelty of MRs across different system categories was generally per-

ceived as moderate rather than high. In basic math programs, the MRs were

often based on fundamental arithmetic operations, which did not present

a high level of novelty due to their foundational nature in mathematics.

In complex systems, while some elements of innovation were acknowledged,

the MRs were primarily viewed as extensions or adaptations of pre-existing

concepts in the literature or human knowledge, rather than entirely novel

ideas. This trend suggested that while the MRs incorporated new methods

or perspectives in their approach to input and output relations, they primar-

ily built upon established testing paradigms and techniques. The clarity of

the MRs was generally high, but understanding them often required specific

domain knowledge, especially in more complex applications.

5. Computational feasibility of the MRs:

The computational feasibility of implementing the MRs varied across sys-

tem categories. In basic computational functions, the MRs were generally

straightforward to implement and automate due to the simplicity of the

systems and the clarity of the operations. This allowed for efficient genera-

tion and validation of test cases, making the MRs highly practical in these

contexts. However, as the complexity of systems increased, the computa-

tional feasibility of the MRs decreased. In these scenarios, the generation

and automation of test cases became more challenging. The complexity

inherent in these systems often requires more sophisticated algorithms and

computational resources [28]. This was particularly true for systems with

AI, where the unpredictability and intricacy of AI bahaviours [98] compli-

cated the automation process. While the potential for automating test case

generation based on MRs was acknowledged, the evaluations indicated that

automating the entire MT process for the MRs was difficult and currently
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limited by technology.

In summary, the MRs generated by GPT-4 had strengths in completeness, rel-

evance, and broad generalizability, demonstrating the model’s adeptness in gen-

erating useful MRs for various systems. However, the correctness of these MRs,

particularly in complex environments, highlighted areas for improvement through

the inclusion of more detailed and specific constraints. The novelty aspect of these

MRs stood out as a blend of innovation and established methodologies, indicating

GPT-4’s capability to integrate new ideas within traditional frameworks, though

suggesting room for further originality. The computational feasibility and system-

specific design of these MRs varied with system complexity, reflecting both the

capabilities and limitations of GPT-4 in generating contextually appropriate and

effective testing strategies. Therefore, while GPT-4’s MRs were useful in sys-

tem testing, particularly in standard applications, their effectiveness in complex

or novel scenarios could have been enhanced through more focused development

and refinement. It is also important to note that, despite these encouraging find-

ings, outputs from LLMs like GPT-4 should primarily be viewed as suggestions,

which means they do not remove the need for human oversight and judgment,

especially in MR generation tasks that involve complex situations and specialized

domain expertise.

4.3.4.3 Observations of the GPT and Human Evaluators

By summarizing the marks from the previous sections, it can be found that hu-

man evaluators tended to focus more on the practical and intricate aspects of

MRs. They were critical and detail-oriented, especially regarding system-specific

correctness and practical feasibility. GPT evaluation reflected a broader, possi-

bly less detailed perspective. It tended to be more optimistic in its assessments,

particularly regarding novelty, clarity, and computational feasibility.
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4.3.5 Discussion: GPT as an MR Evaluator

4.3.5.1 Strengths and Weaknesses

This study highlights several areas where GPT demonstrates notable strengths

over human evaluators in MR assessment. Firstly, GPT exhibits an impressive

capacity for rapidly evaluating a diverse range of MRs. This is particularly advan-

tageous for large-scale evaluations, where the volume of MRs would be impractical

for human evaluators to assess within a reasonable timeframe.

Additionally, GPT’s evaluations are characterized by remarkable consistency, free

from the biases and fatigue that may affect human evaluators. In terms of novelty,

clarity, and computational feasibility, GPT consistently delivered objective and

broad assessments. This capability of GPT could be especially beneficial in the

initial screening processes of MRs, where quick and extensive evaluations are

necessary.

However, the experiment results also revealed limitations in GPT’s evaluation,

especially in its capacity to examine the details of MRs. A recurring observation

was GPT’s tendency to overlook the details of MRs when evaluating the correct-

ness criterion, often resulting in higher scores. This tendency was particularly

evident when evaluating MRs for large, complex systems, both with and without

AI/ML components.

In contrast, human evaluators consistently demonstrated a more critical and

detail-oriented approach, emphasizing the need for additional constraints to en-

sure MR correctness. This discrepancy indicates that while GPT can provide

broad assessments, it sometimes struggles with the detailed and context-specific

aspects that are crucial in evaluating complex systems—areas where human eval-

uators currently show greater adeptness.

However, it is important to note that such ability of human evaluators is largely
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Figure 4.3: Human experts and ChatGPT work together to evaluate MRs

dependent on their specific knowledge bases. In scenarios where human experts

are not familiar with certain systems, GPT’s evaluations, benefiting from its ex-

tensive training data encompassing a wide range of contexts, can be more advan-

tageous. In such cases, GPT can provide insights or identify potential issues that

might not be immediately apparent to human evaluators with limited exposure

to the specific domain. This highlights the potential of GPT as a complementary

tool in MR evaluation, particularly in unfamiliar or less-explored domains for

human evaluators.

4.3.5.2 Complementary Roles of GPT and Human Evaluators

Given these strengths and limitations, the author proposed a synergistic frame-

work combining the capabilities of GPT with human expertise. Although GPT is

capable of effectively handling the initial, high-level assessment of MRs, its ten-

dency to overlook details requires a more thorough review by human evaluators.

This is especially important for complex systems, where the depth and specificity

of human judgment are essential to identify and rectify potential oversights by

119



4.3. ENHANCING MR GENERATION WITH CHATGPT (GPT-4)

GPT.

Therefore, as Figure 4.3 shows, GPT could serve as a first-line evaluator, rapidly

assessing and filtering MRs based on broad criteria such as novelty and computa-

tional feasibility. Subsequently, human evaluators, with their attention to detail

and critical perspective, could then thoroughly assess these MRs, ensuring that

additional constraints are identified and applied to guarantee certain aspects, such

as correctness, particularly in large and complex test cases. This hybrid approach

not only maximizes efficiency but also leverages the unique strengths of both AI

and human intelligence, leading to a more robust and comprehensive evaluation

process.

4.3.5.3 Areas for improvement

The observed tendency of GPT to overlook MR details and overestimate correct-

ness highlights a need for improvement in both the evaluation criteria and GPT

configurations. To better align with human evaluators, GPT could benefit from

integrating more sophisticated, context-aware evaluation metrics or training on

more diverse and complex datasets. Further, integrating algorithms or config-

urations that mimic human-like critical thinking and attention to detail could

improve its evaluative accuracy.

4.3.6 Limitations of the Current Study

This follow-up study’s exploration into GPTs’ ability to generate MRs for various

SUTs is set against the fast development of GPT versions. While recognizing that

each version of GPT might have a better performance, this rapid advancement

does not diminish the relevance and significance of the current research findings.

Rather, the current analysis of GPT-4’s capabilities offers valuable benchmarks

in the domain of MR generation. It is important to note, however, that although
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MRs generated by GPT could potentially be improved with more expertly crafted

prompts, this approach requires more specialized knowledge and a higher level

of proficiency in using GPT [139]. Therefore, it falls outside the scope of the

discussion. The studies discussed in this chapter aim to explore the performance of

GPT in generating MRs with fewer prompts, providing a more focused evaluation

of ChatGPT’s capabilities.

Although MRs generated by GPT-4 demonstrated strengths in completeness,

generalizability, and clarity, their limitations became evident when applied to

complex or AI-driven systems. In such contexts, the generated MRs often lacked

the necessary specificity and constraints required to ensure correctness and real-

world applicability. Furthermore, the level of novelty remained moderate, with

many MRs reflecting variations of existing ideas. These limitations suggest a

potential overreliance on AI-generated outputs, which may require critical human

oversight, especially in areas where specialized knowledge is crucial. To address

this, future work could focus on combining AI generation with careful human

review, structured refinement, and prompt design based on domain expertise.

Additionally, incorporating example-driven fine-tuning or post-processing steps

could also enhance the generated MRs more closely with the requirements of

complex systems to make them not only technically robust but also contextually

relevant.

Despite the rapidly evolving nature of specific GPT models like GPT-4, the

methodologies and evaluation criteria developed in this study hold significant

and lasting value. These methods offer a robust framework for assessing the gen-

eration of MRs in both current and future iterations of GPT models. As newer

versions of GPT are released, the established criteria provide a consistent and

reliable benchmark for comparison. This study, by evaluating the capabilities

and limitations of GPT-4, offers critical findings that are immediately appli-

cable. It also lays the groundwork for assessing future advancements in LLM
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technology. Additionally, the results emphasize the importance of improving the

training approaches for LLMs, particularly in enhancing the novelty of the MRs.

The methodologies introduced in this research can further serve as guidance for

training students to effectively communicate with LLMs and select MRs, thereby

optimizing the practical utility of these tools. Consequently, this research pro-

vides both a valuable assessment of GPT-4’s current capabilities and a starting

point for future explorations and improvements in LLM-driven MR generation.

4.3.7 Conclusion

The studies in this chapter conducted a comparative analysis of the MRs gen-

erated by GPT-3.5 and GPT-4, using established and then updated evaluation

criteria. The initial comparison explicitly demonstrated GPT-4’s advantages in

generating high-quality MRs compared to GPT-3.5. Further, applying the re-

fined criteria to a broader range of nine SUTs, including both simple and AI/ML

complex systems, provided a more comprehensive and thorough analysis of the

quality of the MRs generated by GPT-4. A novel aspect of this study was the use

of both a customized GPT evaluator and human evaluators, offering comparative

insight into the capabilities of AI versus human assessment of the MRs.

The findings highlight GPT-4’s advanced capabilities in software testing and MR

generation across various applications. They underscore the evolving capabili-

ties of AI in software testing, especially in generating and assessing MRs, while

also emphasizing the indispensable role of human expertise in critical and detail-

oriented evaluation processes.

In the next chapter, ChatGPT was used to test the CARLA simulator, produc-

ing MRs that helped reveal defects. Furthermore, Chapter 6 compares GPT-

generated MRs to those created by students with limited training, analyzing

ChatGPT’s role in supporting beginners to enhance the testing process. The
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GPT-MR evaluator was also used to assess the MRs, providing valuable insights

for enhancing teaching and training in MT.
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5.1. INTRODUCTION

5.1 Introduction

As mentioned at the end of Chapter 3, identifying the origins of anomalies in ADS

testing can be challenging [249]. Therefore, ensuring the validity of AD simulators

is essential to the overall testing process of ADSs, an area that remains relatively

underexplored in MT testing, and serves as a solution to help address RQ1 of the

thesis (How can MT be effectively applied in ADS testing to uncover anomalies

and enhance system understanding?).

The chapter begins with an examination of MT on the NIO1 AD simulator [249].

The simulator had not undergone MT previously, and the author employed

scenario-based testing instead of conventional unit testing [56] to identify defects

across various software components. The MT experiments revealed a significant

number of defects that were largely undetected by conventional testing methods,

most of which were related to scenario parsing and system logic, with many clas-

sified as high priority, highlighting the effectiveness of MT in identifying critical

issues.

During the testing, the author proposed a set of MRPs and MRIPs to facilitate

the generation of MRs. There were few MRPs/MRIPs that specifically target AD-

related systems in the literature; and these systems often exhibit a higher level

of complexity compared to other types of SUTs, such as language translation

programmes or navigation software [174][219][229]. This increased complexity

comes from the incorporation of multiple interconnected modules, intricate sen-

sor integration, sophisticated decision-making algorithms, and the need to handle

real-time data processing in diverse and dynamic driving scenarios [19]. To al-

leviate the challenges faced by practitioners unfamiliar with MT or ADSs and

struggling with the abstract nature of MRPs, each MRP is accompanied by an
1NIO is a Chinese company specializing in the design, development, manufacturing, and

sale of premium smart electric vehicles. Since its founding in November 2014, NIO has fo-
cused on developing and investing technologies in AD, digital systems, electric powertrains, and
batteries [2].
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5.1. INTRODUCTION

MRIP. This addition aims to provide further guidance and support for effectively

generating MRs. The MRs generated from these MRPs and MRIPs have been

empirically demonstrated to effectively reveal defects within the AD simulator,

which is crucial as the validation of the simulators is frequently overlooked during

the validation process of ADS functions in the existing literature [223].

In addition, a scenario-driven MT framework for scenario testing that integrates

ME and MT processes was proposed. The framework incorporates the complete

testing cycle (from test-case generation to test-result validation). The process

of implementing the framework is self-evolving, which means that the tester can

iteratively improve the test cases (i.e., scenarios) and MRs, as well as enhance

their understanding of the system, until a satisfactory result is achieved. This ap-

proach can significantly reduce the time and effort required for testers to prepare

for testing a new system. An industry case study was also provided to highlight

the strengths and limitations of this framework.

The successful outcomes of MT on the NIO AD simulator served as a motivation

for subsequent experiments. Since the MT was conducted on the simulator in

conjunction with the NIO ADS, one key challenge was identifying the root cause

of MR violations: Whether they originated from the simulated data or the ADS

algorithms [249]. To mitigate the influence of the ADS and better evaluate the

effectiveness of MT in AD simulators, the author conducted MT experiments on

the CARLA simulator, a widely adopted open-source platform [66].

Additionally, since Chapter 4 shows the effectiveness of ChatGPT in generating

MRs, a human-AI hybrid MT framework was proposed to enhance MR gener-

ation and testing through the integration of LLMs. This framework combines

human inputs with AI-driven automation to generate and refine MRs specifically

tailored to assess various aspects of the CARLA simulator. Central to this is an

open-access GPT-MR generator, a customized GPT configured using the MRPs

proposed in testing the NIO simulator [249], designed to generate MRs according
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5.1. INTRODUCTION

to user specifications. This innovation was made possible by OpenAI’s newly

introduced feature called GPTs, which allowed users to personalize ChatGPT for

particular tasks without the need for coding expertise [92]. These tailored GPTs

can incorporate specialized knowledge and perform designed functions, thereby

enhancing the adaptability and utility of AI applications.

As shown in the experiments of evaluating the GPT-generated MRs (Section 4.3),

these GPT models can produce correct MRs while still leaving room for enhance-

ment, such as novelty and computational feasibility. Therefore, to maximize the

effectiveness of MRs derived by the GPT-MR generator, these MRs are then se-

lected and refined by MT experts. The framework also includes a test harness,

designed to automate and enhance the efficiency of the testing process. This

harness automates the creation and execution of test cases, offering an interface

where users can input parameters that initiate specific functions. These include

generating follow-up test scenarios from a source scenario and executing multiple

scenarios in sequence. The harness is also equipped to generate vehicle control

sequences that manage the movements of the vehicle within simulations. Fur-

thermore, the parameters enable the activation of four internal modules within

the harness, each dedicated to executing and creating scenarios for various MRs.

Experiments with CARLA led to the discovery of four defects of the simulator,

highlighting the efficacy and importance of MT in improving the robustness and

accuracy of AD simulators, as well as its role in uncovering hidden issues and

validating simulation environments. This transformation from testing ADS to

AD simulators also underscores the importance of validating simulators to ensure

the reliability of ADS testing outcomes.

In conclusion, the findings of the experimental results successfully addressed RQ1

of the thesis, given the irreplaceable role of the simulations in ADS testing [240].

To alleviate the challenges in generating MRs mentioned in RQ2 (How can the

difficulty of generating MRs be reduced to assist beginners and testers in under-
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5.2. EXPLORING MT WITH THE NIO AD SIMULATOR

standing and testing new systems?), a set of MRPs/MRIPs were proposed. These

patterns, both when used independently and when integrated into an LLM, have

proven effective in facilitating the generation of MRs and identifying defects in

simulators. For RQ3 (How can MT usage in ADS testing be simplified to in-

crease efficiency and lower adoption barriers?), a scenario-driven MT framework

and a human-AI hybrid MT framework were introduced. The former notably

reduced testers’ preparation time and effort, while the latter automated the MR

generation process, enhancing both the efficiency and effectiveness of testing.

5.2 Exploring MT with the NIO AD Simulator

5.2.1 Facilitating MR Generation with MRPs and MRIPs

Due to the complexity of the AD-related systems, it is not sufficient to con-

struct test scenarios based only on the specifications of functions defined by the

Function Definition Specification (FDS) [75]. Even if the expected results are

obtained, including the passing and failure of test scenarios, there may still be

unforeseen changes in the internal logic of systems that are not directly related to

the specifications of the SUT (e.g., the routing results when emergency braking

is triggered). Traditional testing methods, such as unit testing, generate inde-

pendent test cases that lack interrelatedness [1]. Consequently, when assessing

the adequacy of internal signals, the oracle problem arises, but can be alleviated

through the usage of MT.

MRs are often designed at a high level of abstraction and may include not just

individual relations, but also combinations of several relations [255]. This com-

plexity has led to the introduction of MRPs to provide a generalized framework

for these groups of MRs [255]. MRPs have subsequently given rise to two sub-

classes of patterns: MRIPs [45] and MROPs [176]. This section introduces
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5.2. EXPLORING MT WITH THE NIO AD SIMULATOR

three MRPs designed for evaluating the functionality of AD simulators [249]:

MRPImpactAmplification, MRPMarginalEnsembleRevision, and MRPScenarioCombinations. For

each of these MRPs, a corresponding MRIP is specified. The purpose of these

MRIPs is to assist practitioners in efficiently generating and implementing test

scenarios and MRs that are applicable to their testing situations.

Since the simulator is applied closely to the ADS testing, it is essential to de-

termine whether the issue originates from the simulator or the ADSs. However,

this also means that the MRs derived by the MRPs and MRIPs can be used both

for testing the ADSs and simulators. Note that there is a subset relationship

between the MRs used for testing ADS functionalities and those used for simula-

tor evaluation: While assessing simulator performance sometimes requires certain

MRs (e.g., the spawning of actors within the simulation), a majority of the MRs

applicable in ADS testing should also be able to reveal potential defects within

the simulator.

The following MRPs and MRIPs were proposed and used to generate MRs for

testing the NIO self-developed AD simulator with the SAPA function2 [249]. The

results indicate that they exhibit impressive efficacy in uncovering discrepancies

within the simulator (the experiments can be found in Section 5.2.3). The poten-

tial reasons for this level of performance are detailed in Section 5.2.4.

5.2.1.1 The “Impact-Amplification” MRP and The “Revise-

Relevant-Element” MRIP

The “Impact-Amplification” MRP involves changing the elements in the scenario

that have impacts on the outputs of the SUT:

MRPImpactAmplification: Amplifying the “influential input factors”
2The system automatically searches for parking slots based on the vehicle’s gear position.

It takes control of steering, gear shifting, and movement to park the vehicle in or out of the
detected slot when a suitable one is found and the driver confirms their intention [210].
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5.2. EXPLORING MT WITH THE NIO AD SIMULATOR

that have a determinative impact on the system’s output aligns or

intensifies the system’s output, whereas altering the “non-influential

factors” leaves it unaffected.

The phrase “influential input factors” refers to distinct elements within a given

scenario that have a determinative impact on the successful execution of the

SUT’s functions. These elements may include, but are not limited to, the spatial

arrangement of entities within the scenario, or particular environmental configu-

rations. When these “influential factors” are increased or “amplified”, they cause

a corresponding change in the system’s output. This change could be in the form

of intensifying the output or aligning it more closely with the original outcome.

On the other hand, there are input factors considered “non-influential”: These in-

puts, when altered or modified, do not significantly affect the system’s output. In

other words, changes in “non-influential factors” do not lead to noticeable changes

in how the system operates or in the results it produces. The types of outputs

generated by the system can range from quantifiable metrics, such as signal read-

ings or patterns of variation, to less quantifiable constructs, such as observable

behaviours of vehicles. It is important to note that the input factors defined in

the MRP are determined based on human knowledge and understanding of the

systems, rather than being directly derived from the ML models, given that the

inherent randomness of these models makes output control impractical. This con-

sideration also applies to the later introduction of MRs and other MRPs/MRIPs

in this study.

As an example, consider an MR where the source scenario features a driverless

car (the ego vehicle) that is unable to park in a designated slot due to the sudden

appearance of a pedestrian obstructing its path. This unexpected event prompts

the SAPA function of the vehicle to abort the parking manoeuvre to ensure pedes-

trian safety. In this instance, the pedestrian is identified as the “influential input

factor”, directly influencing the ego vehicle’s decision to abort its parking func-
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5.2. EXPLORING MT WITH THE NIO AD SIMULATOR

tion. Record the position when the SAPA function has aborted. The follow-up

scenario is constructed where an additional obstacle is placed closely behind the

pedestrian, which does not affect the original impact of the pedestrian on the ego’s

final decision. This modification serves to amplify the “influential input factor”

in the source scenario—the increasing the obstacles causing the SAPA function

to abort. Despite the introduction of this additional element, the expected out-

come of the scenario should remain consistent with the source scenario: The ego

vehicle, adhering to its safety protocols, should still abort the parking manoeuvre

in a position that is the same or close to the original one in the source scenario.

Note that this MRP has potential applicability beyond ADs. For example, in the

field of search engine quality testing [256], one MR could be defined to integrate

the top search result in the source test case into the query terms of the follow-up

test cases. The underlying expectation is that this enhanced query, now more

directly targeting the anticipated top site, should yield the same leading result.

However, MRPImpactAmplification lacks comprehensive specifications for transform-

ing the source scenario into subsequent follow-up scenarios. To help users to de-

velop concrete MRs, MRIPReviseRelevantElement was introduced. This input pattern

focuses on the modification of the “relevant” entities and environments within the

source scenarios that are marked as the “influential and non-influential factors”

in MRPImpactAmplification, providing a structured way to change scenarios.

MRIPReviseRelevantElement: MRIPReviseRelevantElement refers to construct

follow-up inputs by adding or removing “relevant” elements, altering

the behaviours of existing “relevant” elements, or modifying “relevant”

environmental settings in the test scenario.

The “relevant” elements refer to those in the scenario that have a potential impact

on the output of the systems. It involves adding, removing, and repositioning the

vehicles (including the ego vehicle), pedestrians, and other interactive objects
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5.2. EXPLORING MT WITH THE NIO AD SIMULATOR

from the source input to construct follow-up inputs. Altering the behaviours

of existing “relevant” elements involves changing how key elements within the

scenario, like vehicles and pedestrians, behave. Influential behaviours, such as

a change in the vehicle’s speed or a pedestrian’s movement, can directly affect

the system’s response. For example, a faster-approaching vehicle (an “influential

factor” in the scenario) may prompt the system to take more decisive action.

In contrast, non-influential behaviours, such as changing the colour of a vehicle,

typically do not alter the system’s output, serving to validate the system’s abil-

ity to ignore “irrelevant” variables. Modifying environmental settings includes

changing the driving environment, like road conditions or weather. Influential

environmental changes, such as icy roads or heavy fog, can significantly impact

the system’s decision-making, requiring it to adapt appropriately. Non-influential

environmental changes, like a slight variation in ambient temperature, should typ-

ically not affect the system’s performance. These adjustments to the entities and

environments within the simulation can generate a broad range of scenarios to

test the SUTs that increase the possibility of revealing system defects.

Example MRs The following contents present two MRs that were generated

by using MRPImpactAmplification and MRIPReviseRelevantElement. One MR is generated

by amplifying the “influential factors” of the passed scenarios:

MRFollowSuccess: Suppose that in a source scenario (S0), the ego ve-

hicle successfully executes a function. In the follow-up scenarios (S ′
x,

where x is the index of the follow-up scenarios), we modify S0 in such

a way that the modification does not interfere with the manoeuvres

of the ego vehicle, and then the ego vehicle should still be able to

execute the same function.

Consider a source scenario S0, where the ego vehicle successfully parks in a des-

ignated space. According to MRPImpactAmplification and MRIPReviseRelevantElement, if
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Figure 5.1: MRFollowSuccess example

an obstacle is removed from scenario S0, the ego vehicle should retain its abil-

ity to park in the same space. By ensuring the modification does not interfere

with the manoeuvres of the ego vehicle, the output relation can be generated:

The ego vehicle should be able to execute the functions in both the source and

follow-up scenarios. Figure 5.1 illustrates a detected violation of MRFollowSuccess.

In Figure 5.1(a), the source scenario involves the ego vehicle successfully parking

in the middle parking space, marked in green. The arrows indicate the vehicle’s

movement path. For the follow-up scenario, shown in Figure 5.1(b), the obstacle

vehicle was repositioned (initially on the below-left parking space) further from

the ego vehicle’s path. This alteration unexpectedly resulted in the ego vehicle

not only failing to park but also colliding with the obstacle car, thereby violating

MRFollowSuccess.

Building on MRFollowSuccess, and in alignment with the MRP and MRIP, a com-

plementary MR was proposed, MRFollowFailure. This relation creates the opposite

scenarios to MRFollowSuccess, focusing on amplifying the situations where the sys-

tem failed.

MRFollowFailure: Suppose that in a source scenario (S0), the ego vehi-

cle fails to execute a function. In the follow-up scenarios (S ′
x, where

x is the index of the follow-up scenarios), we modify S0 in such a way

133



5.2. EXPLORING MT WITH THE NIO AD SIMULATOR

that the modification does not interfere with the manoeuvres of the

ego vehicle, and then the ego vehicle should still fail to execute the

same function.

A detected violation of MRFollowFailure was shown in Figure 5.2. The source sce-

nario showed the ego vehicle attempting to park in a space with poles at the four

corners (Figure 5.2(a)), which resulted in the SAPA function aborting. The space

between the poles (i.e., poles 1 & 2 in the image) positioned on the same side

of the parking slot, was narrower than the ego vehicle’s width, thereby prevent-

ing successful parking. Since the poles prevented the successful execution of the

SAPA function, they were the “influential factors” of these failure scenarios in

this case. The Abort Reason Code for why the function aborts was 47 (meaning

the vehicle was blocked during parking). In follow-up scenario 1 (Figure 5.2(b)),

removing one of the poles further away, the vehicle behaved the same as the source

scenario and therefore, did not violate the MR. However, in follow-up scenario

2 (Figure 5.2(c)), removing the diagonal poles altered the SAPA Abort Reason

Code from 47 to 37, and the system reported a planning failure.

The change in the Abort Reason Code from 47 to 37 between the source scenario

and follow-up scenario 2 was a significant observation that revealed a bug in the

SAPA function and the simulator. In the source scenario, an Abort Reason Code

of 47 was observed, indicating that the SAPA function recognized the vehicle as

being blocked, and aborted the parking attempt—aligning with the expectation

that the ego vehicle cannot park due to the presence of poles and the size of the

slot. In follow-up scenario 1, when one of the poles further away was removed,

the SAPA function maintained the same Abort Reason Code of 47, indicating

that it correctly recognized the parking situation. However, in follow-up scenario

2, when the diagonal poles were removed and the slot remained the same, the

SAPA function changed its response to an Abort Reason Code of 37, signifying a

planning failure of the function. Since removing one of the obstacles should not
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Figure 5.2: MRFollowFailure example

cause the function to fail to plan the route (i.e., removing noise in the scenario

should not affect the ability of the system), this inconsistency in function outputs

among the three scenarios suggests that the function’s decision-making process

may not be correctly evaluating the parking situation. In addition, this change

caused the ego vehicle to frequently shift gears and ultimately led to the function’s

failure (instead of aborting), which was not found in other scenarios, violating

the MR. This issue was further confirmed as the problem with the pole in the

simulator and has been fixed in later updates.

5.2.1.2 The “Marginal-Ensemble-Revision” MRP and The

“Entity-Property-Reconfigurations” MRIP

The second MRP, MRPMarginalEnsembleRevision, involves creating variations of the

entities such that the scenario outputs should remain the same.

MRPMarginalEnsembleRevision: Develop variations with negligible im-

pact on the entities that do not significantly alter the scenario’s out-

come, and the results should remain the same.

MRPMarginalEnsembleRevision includes alterations or adjustments to entities that have

minimal impact on the scenario outputs. The word “negligible” implies that the

changes are so small that they are almost non-existent or unimportant in terms
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of affecting the outcome. Examples include: rotating an entity within a small

range; adjusting the initial position within a limited range; or switching to a

similar entity type. These variations can be regarded as minor refinements that

should not fundamentally change the outcome or have a noteworthy impact on

the driving scenario.

The main difference between MRPImpactAmplification and MRPMarginalEnsembleRevision

lies in their approach to constructing follow-up scenarios. MRPImpactAmplification

focuses on adjusting the influence level of specific input factors: It amplifies the

“influential factors” to observe the system’s intensified or aligned response and

alters the “non-influential factors” to ensure that they do not affect the system’s

output. In contrast, MRPMarginalEnsembleRevision emphasizes varying the attributes

or types of entities in a negligible way within the scenario, while it does not need

to specifically identify those factors. The changes made are not significant enough

to change the SUT’s outputs.

In line with the approach described in the previous sections, an MRIP, which was

made to show how input scenarios can be transformed based on the MRP, was

presented.

MRIPEntityPropertyReconfigurations: The “Entity-Property-

Reconfigurations” MRIP is defined as the process of constructing

follow-up inputs by altering specific properties of the entities present

in the source scenarios.

The entities in this MRIP can be either “influential” or “non-influential”. “Alter-

ing specific properties” means making changes to the characteristics or attributes

of these entities: For instance, this could involve changing a vehicle’s size, colour,

or speed; or a pedestrian’s walking pattern on the sidewalks (walking or running).
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Example MRs Based on the proposed MRP and MRIP, two following MRs

were introduced. These MRs changed certain properties of the target entity in

ways that should not change the system outputs.

MROrientationInvariant: Suppose that in the source scenario (S0), the

ego vehicle successfully executes the function. Then, in the follow-up

scenarios (S ′
x, where x is the scenario index of the follow-up scenar-

ios), by changing the orientation of the components in the environ-

ment while ensuring the relative position between the ego vehicle and

surrounding components necessary for the successful execution of the

functions remains unchanged, the ego vehicle should still be able to

execute the function.

MROrientationInvariant refers to a collection of scenarios where a specific group of en-

tities undergo rotations, resulting in the relative positions among them remaining

unchanged. Figure 5.3 shows an example of the test cases of MROrientationInvariant.

In the source scenario, the ego vehicle is able to successfully park in a parking slot

that is perpendicular to the road. Rotating both entities from 0 to 90 degrees, the

vehicle should still park in the slot. The scenarios from left to right (Figure 5.3(a)

to (c)) show the scene after rotations of 0, 35, and 76 degrees as an example, with

the road and other components in the scenarios remaining unchanged. The ego

vehicle behaved consistently in these scenarios, and the MR was not violated.

Another implementation of the MRIP and MRP involves adjusting the initial

position of the ego vehicle:

MRInitPositionTolerance: Suppose that in the source scenario (S0), the

ego vehicle successfully executes the function. Then, in the follow-up

scenarios (S ′
x, where x is the scenario index of the follow-up scenarios),

by slightly adjusting the ego vehicle’s initial position in such a way
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Figure 5.3: MROrientationInvariant example

that the modification should not interfere with the manoeuvres of the

ego vehicle, the ego vehicle should still be able to execute the function.

Figure 5.4 shows an example violation of this MR. The source scenario showed

the initial position of the ego vehicle relative to the slot’s centre as (δx = 0m,

δy = 5m; where x and y refer to the horizontal and vertical coordinates on the

map), allowing the ego vehicle to park successfully. Adjusting the initial position

of the ego vehicle by 1 meter either horizontally or vertically should not affect the

vehicle’s ability to park successfully, as no obstacles were blocking the path of the

ego vehicle and the ego vehicle did not encroach on any slot. However, in follow-

up scenario 1 (Figure 5.4(b)), the ego vehicle was positioned closer to the slot

(δx = 1m, δy = 4m), resulting in the SAPA function’s abortion due to planning

failure. Nonetheless, in follow-up scenario 2 (Figure 5.4(c)), the ego vehicle’s

initial position was fine-tuned to a little further (δx = 1m, δy = 6m), facilitating

a successful parking outcome. The ego vehicle’s inconsistent behaviours among

the scenarios constituted a violation of the MR (the distance between the ego

vehicle and the slot did not violate the function’s specifications).
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Figure 5.4: MRInitPositionTolerance example

5.2.1.3 The “Scenario-Combinations” MRP and The “Entity-Integra

tions” MRIP

To extend the scope of scenario application and increase the variety of inputs,

the third MRP, MRPScenarioCombinations, was introduced. This pattern constructs

MRs by connecting a series of source scenarios.

MRPScenarioCombinations: If multiple source scenarios are independent

of each other and the system outputs consistent results, then by com-

bining the source scenarios to generate the follow-up scenarios, the

system output should remain unchanged.

In this context, “consistent results” does not strictly refer to identical sensor data.

Rather, it includes the ego vehicle’s behaviour, similar patterns in SUT outputs,

or other criteria that can be used to combine different scenarios. “Independent

scenarios” means that entities that lead to a specific system output in each sce-

nario are separate from each other. For example, if moving obstacles such as

a cat or a pedestrian are placed on the ego vehicle’s path, causing the SAPA

function to abort with the same abort reason, then they can be incorporated into

the follow-up scenarios (as long as they do not interact with each other). Figure

5.5 shows a cat and a pedestrian placed together in the scenario, moving towards

each other on the ego vehicle’s path.

To help users to develop concrete MRs in merging scenarios, the following MRIP
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Figure 5.5: Independent scenario example

was proposed:

MRIPEntityIntegrations: The “Entity-Integrations” MRIP is defined as

the process of constructing follow-up inputs by integrating entities

that are independent of each other in a series of scenarios.

The integration of independent entities in various scenarios involves creating a new

scenario where each entity retains its original properties and behaviours from the

initial scenarios, unaffected by the presence of other entities in the new scenario.

For example, as illustrated in Figure 5.5, the follow-up scenario is designed by

placing a pedestrian and a cat in their respective positions from source scenarios 1

and 2, without influencing each other. As a result, the follow-up scenario output

should be the same as the source scenarios 1 and 2.

Example MRs The following MR was constructed based on the proposed MRP

and MRIP:

MRScenarioIntegration: Suppose that in a series of source scenarios (Sx,

where x is the scenario index of the source scenarios), the ego vehicle

successfully executes the function with the same output. Ensuring the

entities in the source scenarios are different and do not interfere with

each other if they are put together. Then, by randomly combining
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Figure 5.6: Example violation of MRScenarioIntegration

source scenarios into follow-up scenarios (S ′
y, where y is the scenario

index of the follow-up scenarios) in such a way that the modification

does not interfere with the manoeuvres of the ego vehicle, the ego

vehicle should still be able to execute the function.

A detected example of MRScenarioIntegration violation was presented in Figure 5.6. In

the source scenario, the ego vehicle was unable to park in the target slot due to the

side vehicle in the left slot encroaching upon the target slot (Figure 5.6(a)). The

SAPA Abort Reason in this scenario was 47, indicating that the ego vehicle was

blocked. In source scenario 2 (Figure 5.6(b)), the ego vehicle behaved similarly

(i.e., failed to park), and the SAPA Abort Reason remained the same. Intuitively,

a new (follow-up) scenario created by combining the two source scenarios should

not result in a different SAPA Abort Reason since the ego vehicle was still blocked.

However, in the follow-up scenario (Figure 5.6(c)), the SAPA function became

unresponsive instead of aborting, and the ego vehicle behaved differently to the

source scenarios; therefore, the MR was violated because the SAPA Abort Reason

was different.

Figure 5.7 shows another MRScenarioIntegration violation example. In the first source

scenario, the ego vehicle was positioned at (δx = 1m, δy = 4m) relative to

the centre of a parking slot (Figure 5.7(a)). Here, the vehicle failed to park

successfully, and the SAPA function aborted. In the second source scenario, the

vehicle was initially placed in a location that could successfully park. However, a

pole was positioned inside the slot, near the corner, preventing successful parking
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Figure 5.7: Another example violation of MRScenarioIntegration

(Figure 5.7(b)). In this scenario, too, the SAPA function aborted with the same

abort reason code as in the first source scenario.

These two source scenarios were then merged into a unified follow-up scenario in

Figure 5.7(c), where the ego vehicle started from the initial position of the first

source scenario, but with the parking slot containing the pole from the second

scenario. According to the MR, the ego vehicle should not be able to park, and

the function should abort, as had happened in the source scenarios. Contrary to

expectations, the ego vehicle attempted to park but collided with the pole before

the function aborted, thereby violating the MR.

5.2.1.4 Methodology for Generating MRs for Common ADS Modules

In order to simplify the usage of the provided MRPs/MRIPs, the author pro-

posed a methodology to help generate effective MRs in a time-efficient manner.

The first step involves identifying the target module and obtaining a fundamen-

tal understanding of its input/output and functionality. Common ADSs, such as

those outlined in the literature [146][227][14], comprise multiple modules, includ-

ing planning, perception, routing, control, and localization [19]. These modules

have their own specific functions, yet they are interconnected [147]. For instance,

the planning module requires information from both the vehicle (data from chas-

sis, localization, and relative map modules) and the surrounding environment
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(data from perception and routing modules) to generate the trajectory for the

control module [19]. Once the target module has been selected, the user can create

a source scenario and choose the MRPs/MRIPs to construct MRs. The scenarios

can be created either by existing guidelines like ASAM OpenSCENARIO [13], or

following a template described in the next chapter of the thesis (Section 6.2.1).

An example of using an MRP and MRIP to generate an MR for the planning

module of an ADS is described below.

Suppose the user decides to test the AEB (Autonomous Emergency Braking)

function [230] and creates a source scenario, which involves a single-lane road.

The ego vehicle is initialized at the starting point with constant speed and is

expected to drive along the road. A pedestrian is scheduled to cross the road

horizontally, intersecting with the ego vehicle’s path. To generate the MR, the

user can select MRPImpactAmplification and MRIPReviseRelevantElement to create follow-

up scenarios. One possible method is to make the pedestrian start earlier but

ensure the distance to the ego vehicle is close enough to cause the ego vehicle to

activate the AEB function. The sooner the pedestrian starts, the earlier the AEB

is activated. Then if the ego vehicle successfully avoids collision in the source

scenario, it should also avoid collision in the follow-up scenarios.

The final MR could be stated as follows: In the source scenario, the ego vehicle

drives along the single-lane road and stops to avoid a pedestrian that suddenly

crosses the road, with the AEB function activated. In follow-up scenarios, by

making the pedestrian start earlier, while keeping other conditions unchanged,

the ego vehicle should activate the AEB function sooner, and reach a final stop

to avoid collision.

An issue was observed with the system where, despite the AEB being activated,

the vehicle failed to stop in time to avoid a pedestrian, yet the final output showed

no collision. After verification, it was confirmed that this was not an issue with

the ADS but rather an issue with the output report from the simulator, which
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highlights the effectiveness of the MRPs/MRIPs in identifying flaws within the

simulator.

5.2.2 A Scenario-Driven MT Framework

Alongside the MRPs and MRIPs, the author proposed a scenario-driven MT

framework that integrates ME and MT to enhance the issue identification and

reporting process. Unlike the ADS-based test harness discussed in Section 3.3.2,

which focuses on the practical test execution stage, the scenario-driven MT frame-

work encompasses the entire MT process, from generating MRs to identifying MR

violations. Both frameworks have played significant roles in advancing MT testing

and bug identification (Sections 3.3.3 and 5.2.2.3).

5.2.2.1 Framework Introduction

ME, as a variation of MT [255], aids testers in familiarizing themselves with the

SUT by generating HMRs. A violation of an HMR signifies a potential gap in the

tester’s comprehension of the system, rather than necessarily a software fault. In

some instances, HMR violations may prompt testers to enhance their knowledge

of the system and improve their skills in testing [255]. Within the scenario-

driven MT framework, ME plays an important role for helping testers quickly

and smoothly understand SUTs. To derive HMRs, testers are recommended to

employ two strategies:

1. Acquire knowledge of the system via available information sources: This

strategy involves gathering knowledge about the SUT through available

information sources, such as system specifications, documentation, and in-

sights from other testers. This knowledge can help to identify potential

HMRs that can be applied to test the system more effectively.
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2. Utilize observed system behaviour and scenarios generated through

scenario-driven MT: This strategy involves closely observing the SUT and

scrutinizing earlier testing outcomes to identify the kinds of inputs that

are more likely to reveal defects. By identifying such inputs, testers can

generate suitable testing scenarios and use them in the scenario-driven MT

procedure to generate relevant HMRs. This approach can help in identifying

and testing critical functionalities of the software system while improving

the efficiency and effectiveness of the overall testing process.

Initiating the ME process at the outset of testing a new function can acceler-

ate testers’ understanding of the system [140]. This is especially beneficial when

testers no longer need to comprehend lengthy FDS documents, which may re-

quire a significant amount of time [166]. This process helps with the preparation

for MT, and enhances the tester’s proficiency in performing MT. Furthermore,

additional iterations of the ME process can increase the probability of turning

HMRs into MRs and generating scenarios that are more likely to reveal system

problems. The HMRs are verified either by FDS or relevant stakeholders before

they become MRs, and ME transforms into the MT process.

The scenario-driven MT framework integrates ME and MT processes to assist

in the testing of ADSs and AD simulators. Figure 5.8 shows an overview of

the framework. Unlike other MT approaches that produce MRs first [175],

the scenario-driven MT framework develops the source scenario first, then the

(H)MRs are generated, based on the assumption that certain components of the

system are more susceptible to bugs. The (H)MRs are used to generate follow-

up test scenarios. These generated scenarios are input into the SUT, and the

results obtained are used to enhance the quality of (H)MRs and scenarios un-

til MR violations are detected. Once identifying such violations, the results are

communicated to the relevant developers based on the nature of the issues. If

developers acknowledge it as a problem with the HMRs, testers can then enhance
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Figure 5.8: Scenario-driven MT framework overview

the HMRs and get ready for the next testing phase. Conversely, if it is determined

to be a defect within the system, it will enter the subsequent bug-fixing process.

After the tests are completed, the entire procedure, along with the (H)MRs, is

documented and archived.

One limitation of the framework is that testers still need to manually create sce-

narios and generate test reports. The framework combines ME and MT, making

it possible for testers to spend less time reviewing SUT specifications before start-

ing testing (although this step remains necessary). This approach helps testers

to use MT more efficiently and confidently, as reported in Section 5.2.2.4.

5.2.2.2 Framework Stages and Procedures

Figure 5.9 presents the detailed procedures of the scenario-driven MT framework.

The complete framework has been grouped into three stages. The first stage

(STAGE 1 (ME)) is ME preparation. This is where testers create the scenario as
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the source test case and then use it with the MRPs and MRIP to produce HMRs.

Alternatively, they can use what they already know from their own experiences

or the experiences of others, like coworkers. They then generate follow-up test

cases (scenarios) based on the HMRs.

Figure 5.9: Scenario-driven MT framework details

In the second stage (STAGE 2 (ME)), the testers gather the outputs and eval-

uate them against the HMRs. When the HMRs are not violated (Q1 ), testers

only need to document the results and proceed to the next testing round. In

cases where HMR violations occur, testers are required to distinguish between

problems arising from erroneous HMR definitions and those indicative of actual

system problems (Q2 ). A common evaluation criterion is the determination of

the “abnormal” data, which is assessed depending on both the SUT specification

and on testers’ experiences. Such data can arise in situations where the system

behaviour does not meet specifications or falls outside the testers’ previously en-
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countered scenarios. Even when data appears to be normal, testers should stay

alert by carefully reviewing the system requirements or consulting with knowl-

edgeable colleagues for insights. Identification of any disparities between the

HMR and system specifications can facilitate the refinement of the HMR and

enhance testers’ comprehension of the system. This ME process is iterated until

it is verified that the MR violations are not related to the definition of the HMRs.

In this case, the HMRs become MRs, and the ME process has transformed into

the MT process (Transformation Stage in Figure 5.9).

The third stage (STAGE 3 (MT)) starts once the HMR has become an MR.

Testers must now determine whether or not the simulator or SUT is at fault

(Q3 ). As the ADS and sensor signals are simulated, the MR violations may be

attributable to the simulator, necessitating the validation and verification of the

simulator software. In such cases, testers should confirm the issue by checking

whether or not the simulator operates according to its intended functionality. In

both cases, testers should communicate with the relevant developers—either from

the simulation or ADS teams—to clarify the nature of the issues. These uncon-

firmed issues should be classified as potential system flaws until they undergo

thorough reproduction or are dismissed by the developers of the SUT. Finally, a

proper documentation is recommended for revision and reference in the future.

5.2.2.3 Impact of the Framework on MT Performance

This section explores the impact of the scenario-driven MT framework on MT per-

formance when used to test the NIO ADS and AD simulator. Table 5.1 provides

a quantitative analysis of the efficacy of transforming ME into the MT process.

Number of (H)MRs Constructed This metric represents the total number

of (H)MRs constructed through the scenario-driven MT framework (including

those later transformed into MRs). The value of 36 represents an obvious in-
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Table 5.1: Framework impact on HMR generation and transformation

Number of
(H)MRs

Constructed

Number of
HMRs

Confirmed

Number of
HMRs

Transformed

HMR-to-MRs
Transformation

Rate

36 5 31 86%

crease in the number of relations generated compared to the previous experiments

with ADSs [246, 250] presented in Chapter 3. This highlights the framework’s

effectiveness in motivating users to generate (H)MRs.

Number of (H)MRs Confirmed Among all the (H)MRs constructed (36),

five were confirmed as HMRs. These relations essentially help testers enhance

their understanding of the SUT.

Number of HMRs Transformed A total of 31 HMRs were transformed into

MRs, resulting in the bugs discussed in Section 5.2.3. This number indicates that

the framework is effective in both MR generation and bug discovery.

HMR-to-MRs Transformation Rate The rate of transformation from

HMRs to MRs is a key metric in evaluating the efficiency of the scenario-driven

MT framework. This rate is calculated using the formula:

HMR-to-MRs Transformation Rate = Number of MRs
Total Number of (H)MRs

The value of 86% in Table 5.1 suggests a high rate of successful transition from

HMRs to MRs. This reflects the framework’s effectiveness in improving both MT

efficiency and the testers’ ability to carry out testing.
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5.2.2.4 Impact of the Framework on Testing Process

This section outlines the impacts that the framework has had on the tester’s

perspective after interviewing several testers from NIO. By implementing the

scenario-driven MT framework, the testing process has been standardized, leading

to faster identification of defects and more efficient issue reporting. Additionally,

it has enhanced testers’ confidence and ability to use ME and MT effectively for

system exploration and testing. The detailed improvements include:

1. Enhanced issue reporting process: Prior to the deployment of the

scenario-driven MT framework, the testers faced considerable uncertainty

regarding where to initiate the MT procedures. Additionally, the confusion

extended to handling MR violations, as they were uncertain whether to

report problems to the simulator developers or the ADS function developers.

This uncertainty frequently led to delays and inefficiencies in the testing

process.

With the implementation of the framework, these uncertainties have been

effectively resolved by establishing a clear and well-defined pathway for both

testing and issue reporting. This approach has enabled quicker identifica-

tion and reporting of defects, significantly reducing overheads and enhancing

the overall efficiency of the testing process. As reported by one of the main

users of this framework, the adoption of this framework led to a marked im-

provement in bug-finding efficiency, primarily due to the framework’s role in

streamlining the process of addressing MR violations. Notably, the bug dis-

covery frequency—based on the estimated average time between each bug

found—revealed that before the introduction of the framework, bugs were

discovered at an average interval of six days. Following the framework’s

implementation, this interval decreased significantly, with bugs being dis-

covered every two days on average. The framework facilitated quicker tran-

sitions between ME and MT, which enhanced testers’ ability to promptly
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identify, report, and confirm issues.

2. Improved decision-making process: The framework’s structure natu-

rally guides the progression of testing steps. This progression begins with

testers developing the source scenario and culminates in a collaborative ef-

fort between testers and developers to identify and resolve MR violations.

This guided approach simplifies decision-making for testers, allowing them

to focus more on the intricacies of each test case than the overarching pro-

cess.

3. Boosted in tester confidence: Before the framework’s implementation,

the testers lacked familiarity and confidence with MT. The framework has

also served as an educational tool in this context. As testers became more

adept at employing the scenario-driven MT framework, their confidence in

using MT techniques has notably increased, as reported by their oral feed-

back. This increase in confidence is not merely psychological: It is reflected

in the enhanced efficiency of testing and has led to a quicker identification

of system defects, as previously mentioned.

4. Simplified testing process: Unlike traditional methods where testers

may spend days studying the FDS in detail, familiarity with the FDS is

helpful but not mandatory for starting tests when applying this framework.

It reduces the risk of forgetting system details during testing, which often

leads to time-consuming revisits of the FDS. Here, the FDS acts as a ref-

erence guide, consulted by testers only as needed. Engineers focus mainly

on the input-output relationships to construct MRs, where the FDS is used

for necessary validation and verification, streamlining the testing process.
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5.2.2.5 The Weaknesses of Scenario-Driven MT Framework

To maximize the framework’s potential, two weaknesses must be addressed: To

effectively identify the sources of MR violations, testers must work closely with

developers. Feedback from developers plays a crucial role in the overall test-

ing and learning process. Therefore, testers and developers of the SUT should

establish and maintain an effective communication channel. Meanwhile, the de-

termination of whether a given issue stems from the simulator or the self-driving

system necessitates additional effort and time, which would result in a reduc-

tion in testing efficiency. If testing the simulator in isolation, any MR violations

can be attributed directly to the simulators. This eliminates the need for a

time-consuming assessment to determine whether the issue lies with the simula-

tion team or the AD function development team. This approach would enhance

testing efficiency and conserve time, representing a potential avenue for future

research and optimization.

Secondly, the time span between initiating the test (ME) and identifying issues

(MT) can impact key performance indicators (KPIs) in industrial practice, which

are specific metrics used to evaluate the success of an organization or individual

in achieving their goals (e.g., the number of bugs that need to be identified within

a required time). While the ME process in the framework could enhance system

understanding and MR quality, it does pose time-related challenges. Therefore, it

is essential for testers to be well-informed and prepared for this time commitment.

5.2.2.6 Further Refinemens

Some potential further refinements that can improve the testing efficiency and

expand the practicality of the framework is as follows:

1. The scenario-driven MT framework works with traditional testing ap-
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proaches, such as the Software-in-Loop (SIL) test [52]. The SIL test is

the testing work that focuses on the finite state machine transitions, which

refers to the changes in the state of a system or application based on specific

conditions or events [114]. This testing approach is commonly used to test

the SUTs. However, these current methods require the tester to be familiar

with the FDS documents before starting testing. Since the scenario-driven

MT framework can simplify the testing preparation process (as mentioned

in the previous section), it can be used before SIL testing, which is some-

times necessary in industrial settings [156].

2. The scenario-driven MT framework helps with simulator consistency ver-

ification. The goal is to ensure that the simulator consistently produces

accurate and dependable data for its users. As described in the previous

section, identifying the origin of the issues detected when testing the AD

simulators is one of the challenges when applying this framework. Therefore,

future enhancements of the framework could involve refining the MRPs and

MRIPs within it. The objective would be to enable the generation of MRs

that focus exclusively on the simulator, independent of the involvement of

the ADSs.

3. The scenario-driven MT framework generates more testing scenarios for

other tests to use. Since test-case generation was one of MT’s original ap-

plications [47], scenario-driven MT can be used as a scenario-generation

methodology. With scenario-driven MT generating specific types of scenar-

ios, it may increase the likelihood of discovering bugs when these scenarios

are utilised by other testing methods.

4. Exploring the overheads of the scenario-driven MT framework by conduct-

ing future research on beginners in software testing, and comparing the time

and resources consumed with not using the framework.
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5.2.3 Discoveries and Insights

5.2.3.1 NIO AD WorldSim

This study conducted MT on the NIO self-developed simulator, NIO AD World-

Sim. It is an advanced simulation tool that simulates virtual roadways and envi-

ronments. This tool facilitates the establishment of closed-loop algorithmic func-

tionality by employing virtual simulated scenarios and sensor emulation, alongside

vehicle dynamics modelling. Its primary purpose is to facilitate the validation and

assessment of ADS algorithms and performance. NIO AD WorldSim encompasses

several crucial modules, including sensor simulation, map and scene simulation,

agent simulation, and vehicle dynamics simulation. It is capable of generating

synthesized data for perception model training and evaluation. It has 11 camera

channels and one lidar channel, which operate on both the image and point cloud

levels. Furthermore, it supports Hardware-in-the-Loop (HIL) [32] replay testing,

enhancing its utility in practical applications.

5.2.3.2 Issue Overview

Figure 5.10 presents an overview of the defects discovered when the scenario-

driven MT framework was used to test the parking function of the NIO ADS

and AD WorldSim simulator. As indicated in Figure 5.10(a), MT identified 28

defects, constituting 30% of all the defects detected in the simulator—the re-

maining 70% were detected through conventional testing methods, such as unit

testing. Furthermore, it is worth noting that among the identified defects, only

three were also discovered through alternative testing methodologies. This find-

ing underscores the effectiveness of the MT method, as it uniquely pinpointed a

significant majority of the defects, accounting for a total of 90% of the defects

identified (Figure 5.10(b)). This performance emphasizes the distinctive capa-

bilities and advantages of the MT approach in uncovering system defects in the
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Figure 5.10: Overview of defects found
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tested scenarios.

The majority of the defects revealed by MT fall under the categories of Parse and

Sim Core. The Parse category is related to the compilation of scenario elements

during simulation processes. Meanwhile, Sim Core pertains to defects involving

input signals and the underlying logic of the system. Together, they account

for up to 77% of the defects (Figure 5.10(c)). Additionally, 78% of all defects

identified were classified as high priority, falling under P0 and P1 (i.e., the top and

second priority) categories (Figure 5.10(d)). Table 5.2 presents several noteworthy

defects identified by MT across the different categories. For instance, the first

issue in the table (regarding the steering angle) arose from incorrect calibration of

the vehicle-dynamics parameters in a newer version of the simulator, which was

identified while testing a scenario where the ego vehicle approaches a front vehicle

in preparation for parking. The second issue, related to the way the poles were

compiled and presented in the simulation scene, emerged when the alignment of

the poles in the parking slot was adjusted. This scenario is linked to the MR

examples discussed in Section 5.2.1.1. Similarly, the third issue was found when

the inclination angle of the wall was modified, resulting from a misinterpretation

of the wall’s bounding box as an obstacle during parsing. This issue is related

to the MR examples outlined in Section 5.2.1.2. Lastly, the final issue in the

table arose from inconsistent results between different modules, reflecting a core

algorithm problem within the simulator.

In conclusion, the results indicate that while conventional testing methods, such

as unit testing [56], effectively identify a substantial portion of defects, MT stands

out by examining the SUT at a more comprehensive, scenario-based level. This

enables MT to focus on a broader range of system outputs, particularly those not

explicitly defined in the FDS. Moreover, the study emphasizes the importance of

paying attention to the specific categories of defects revealed by the MT approach,

such as Parse and Sim Core, which may be more challenging to detect through
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Table 5.2: Example defects found in NIO AD simulator

Issue Details Category Priority
The steering angle of the ego vehicle will change
dynamically when approaching the front vehicle. Control P0

The cross-section of the poles is wrong, which
will cause a core dump in the system. Parse P0

In this scenario, a wall, measuring 8 meters in
length and 0.1 meters in width, is positioned be-
hind the parking space. The wall is angled at
47 degrees relative to the horizontal plane. A
significant discrepancy arises between the sim-
ulation and the data playback on the develop-
ment side: the wall is mistakenly represented as
a cube, which encroaches upon the parking space.
This error triggers the vehicle’s emergency brak-
ing system. Compounding the issue, the vehi-
cle’s perception signal incorrectly indicates that
the parking slot is available, leading to potential
operational confusion.

Parse P0

In the simulation, a collision is detected due to
the intersection of the vehicle models’ bounding
boxes. However, despite this reported collision,
the distance signal from the parking application
still indicates a small remaining distance.

Sim Core P1

other testing methods due to the oracle problem. Traditional testing methods

depend on predefined expected outcomes to assess system behaviour [178]. How-

ever, for Parse and Sim Core issues, determining the correct behaviour can be

impractical or impossible. This uncertainty means that errors in parsing input

data or core simulation logic may not result in obvious failures, making them

difficult to detect with conventional testing.

5.2.3.3 Effectiveness of MRPs in Generating MRs to Reveal Defects

The following content compares the number of MRs generated by the MRPs with

their corresponding MR failure rates, as shown in Table 5.3. The MR failure

rate measures the proportion of MRs that are violated out of the total number of
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Table 5.3: Comparison of the effectiveness of MRPs

MRP Number of MRs
Generated

Number of
Violated MRs

MR Failure
Rate

MRPImpactAmplification 17 7 41%
MRPMarginalEnsembleRevision 11 4 36%
MRPScenarioCombinations 3 1 33%

generated MRs, which is calculated using the formula:

MR Failure Rate = Number of Violated MRs
Total Number of Generated MRs

Each violated MR resulted in a confirmed issue during testing. Compared to

manually crafted MRs, which often have limitations in quantity and quality [241],

both MRPImpactAmplification and MRPMarginalEnsembleRevision can generate a substan-

tial number of MRs (17 and 11) with relatively high MR failure rates (41% and

36%), meaning these MRs were effective in revealing defects in the SUT. The

tester’s preferences and the unique operational dimensions of each MRP have a

major impact on the MRs and test scenarios generated, further impacting these

metrics.

All three MRPs generated MRs with failure rates exceeding 30%. Although

MRPScenarioCombinations only generated three MRs, it achieved a failure rate of 33%.

The lower number of MRs for this pattern is mainly due to its built-in limitations,

including the need for more source scenarios with identical system outputs and the

requirement for relative independence among the elements within those scenarios.

In summary, both MRPImpactAmplification and MRP MarginalEnsembleRevision were able

to generate numbers of MRs and achieve high failure rates. MRPScenarioCombinations,

while operating under more restrictive conditions, also achieved a satisfactory

violation rate. The results highlight the effectiveness of MRPs in producing suc-

cessful MRs, providing valuable insights for MT in AD-related systems.
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Table 5.4: Number of defects revealed by each MRP

MRP Number of Defects
Revealed

MRPImpactAmplification 14
MRPMarginalEnsembleRevision 11
MRPScenarioCombinations 3

Table 5.4 further summarizes the effectiveness of the MRPs by presenting the

number of defects revealed. MRPImpactAmplification, with 14 defects revealed, was

highly effective in uncovering inconsistencies or faults in the system. This aligns

with the observation from Table 5.3, where this MRP produced the most MRs,

and achieved the highest violation rate. The significant number of defects uncov-

ered is evidence of its ability to reveal system defects. MRPMarginalEnsembleRevision

identified 11 defects. The focus of the MRP, centred on modifying the properties

of existing elements, effectively enhances its ability to generate MRs. This is

further illustrated by the violation rate presented in Table 5.3, where the number

of actual defects found shows a correlation to the number of MRs constructed,

highlighting the effectiveness of this MRP. Lastly, MRPScenarioCombinations identi-

fied three defects, consistent with its more constrained operational context, as

discussed in Section 5.2.3.3. Despite its inherent limitations in generating a large

number of MRs, it was still able to uncover actual defects. These findings demon-

strate the MRPs’ effectiveness in producing high-quality and abundant MRs.

5.2.4 Factors Contributing to MT’s Performance

Since the experiments were conducted using both the AD simulator and the ADS,

a key question is: Why were all the defects found related to the simulator rather

than the function being tested? Two potential reasons could explain this.

Firstly, it may be attributed to the nature of simulators, as they typically simulate

real-world sensor signals that may not accurately reflect actual scenarios [223]. As
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a result, there is a higher likelihood that the simulated data may be inaccurate,

leading to abnormal outputs of the SUT [167].

Secondly, the AD simulation is only one of the main approaches employed for

ADS testing purposes. In the actual production environment, resolving bugs and

addressing issues found by real-road testing takes precedence over the findings

obtained from simulation testing. This phenomenon can be attributed to both

limited human resources and time, and SUT developers’ past experiences with

false alarms due to simulator inaccuracies. Such situations might diminish the

developers’ confidence in simulation results, prompting them to prioritize defects

found through real-world testing results [130]. However, this situation also un-

derscores the critical importance of validating and ensuring the accuracy of the

simulator to maintain its reliability as a testing tool.

5.2.5 Limitations and Conclusions

The experiments in this section highlight the effectiveness of MT in validating

AD simulators. Three MRPs and MRIPs were proposed for the purpose of testing

the ADS simulator and ADSs. Additionally, a scenario-driven MT framework was

presented, for scenario testing that integrates ME and MT, which can significantly

reduce the time and effort required for testers to prepare and test a new system.

The case study within a real-world industrial setting presented in this study

highlights the strengths and limitations of the framework and suggests ways to

enhance its utility.

However, testing the simulator in conjunction with the ADS also brought the

limitations of the experiments, making it challenging to identify the source of

the detected defects. The determination of whether a given issue originated from

the simulator or the self-driving system necessitated additional effort and time,

resulting in a reduction in testing efficiency. Testing the simulator in isolation
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would allow any MR violations to be directly attributed to it, which would save

time and effort. In the following section, the MT was performed in isolation

using the well-known open-source AD simulator CARLA [66], uncovering several

significant defects with the proposed MRPs in this section.

5.3 Further Applications of MT in the CARLA

Simulator

To further explore the effectiveness of MT and MRPs on AD simulators, in this

study, a human-AI hybrid MT framework was proposed to enhance the robustness

and reliability of the CARLA simulator. The MT process has led to the discovery

of four defects of the simulator3, thereby highlighting the efficacy and importance

of the MRP-generated MRs in ensuring software reliability.

Four fundamental aspects of the CARLA simulator were evaluated: Parse, Sim

Core, Assessment, and Stability. Each aspect pertains to the simulator’s

fundamental performance. These aspects were chosen due to their critical impor-

tance in ensuring the simulator’s overall performance and reliability, as well as

their relevance based on issues identified in our previous research into simulator

MT [249].

The Parse aspect relates to the compilation of scenario elements during simula-

tion processes. Accurate parsing ensures that scenarios are correctly instantiated,

forming the foundation for all subsequent simulation processes [173]. Similarly,

the Sim Core aspect encompasses the internal logic and core functionalities

that drive the simulation, directly impacting on the realism and accuracy of the

simulated behaviours. The Assessment aspect involves evaluating the built-in
3The SUTs used CARLA simulator version 0.9.13 in conjunction with the scenario runner,

a separate program that enables scenario definition in ASAM OpenSCENARIO format [13] and
initiates the simulator to execute these scenarios.
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Figure 5.11: Overview of the human-AI hybrid MT framework

criteria for determining scenario success or failure. Effective assessment tools

are essential for objectively measuring the performance of ADSs in the simulated

environment [138]. Finally, the Stability aspect ensures that the simulator can

consistently reproduce scenarios, which is fundamental for validating the results

of repeated experiments and ensuring the reliability of the simulation outcomes.

The SUTs selected for testing are representative examples encompassing each

aspect. For the Parse aspect, the spawn function was chosen, which is the initial

step in generating actors in the simulation [136]. For the Sim Core aspect, the

Traffic Manager was selected, which is the module responsible for controlling

vehicles in autopilot mode [97]. For the Assessment aspect, the experiments

focused on the built-in evaluation criteria used to determine whether or not a

scenario was completed successfully. For the Stability aspect, the consistency of

the simulator were evaluated by executing a single scenario continuously.

5.3.1 Designing a Human-AI Hybrid MT Framework

Figure 5.11 shows an overview of the human-AI hybrid MT framework. The

process starts with the user providing essential inputs to generate MRs (includ-

ing scenarios, functions under test, and specific requirements for testing). These

inputs serve as prompts for the GPT-MR generator, a customized GPT model,

where MRPs are embedded in the configuration to make the model generate rel-
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evant MRs automatically. The MRPs from Section 5.2.1, MRPImpactAmplification

and MRPMarginalEnsembleRevision, have been proven effective at generating MRs for

AD simulators. The GPT-MR generator operates within predefined constraints

and guidelines, ensuring that the derived MRs are accurate and relevant to the

given scenarios and functions.

Figure 5.12 shows an example of the MRs generated by the GPT-MR generator

(The complete history of interactions can be found in Appendix B). The response

starts with an introduction that outlines the goal of the MRs. It is then divided

into individual MRs, each following a consistent format. The MRs generated

following the same MRP are grouped together. Each MR begins with a source

scenario. This is then followed by an MR input relation, which specifies how a

follow-up scenario is constructed. For instance, the MRs generated by following

MRPImpactAmplification are grouped under the “Metamorphic Relation Pattern:

Impact Amplification” section in the image. Each MR begins with a source sce-

nario, and then followed by an MR input relation, which specifies how a follow-up

scenario is constructed. The name “Amplified Scenario” in the response indicates

that the follow-up scenarios were generated by following the input relation pattern

in the MRPImpactAmplification. For instance, in MR1, the follow-up scenarios are

constructed by increasing the density of actors by spawning additional actors in

the same region, as specified in the “Amplified Scenario” MR input relation. Sim-

ilarly, those input relation that follows the pattern in MRPMarginalEnsembleRevision

are named by the “Marginal Revision Scenario”. The expected outcome describes

the MR output relation, which is what the simulator is expected to output. Lastly,

the rationale provides the reason for constructing this MR.

Once the MRs are derived, they are passed to the user for review. The user can

refine these MRs to ensure that they meet the testing needs. The refined MRs

enhance accuracy and abstraction compared to the originally derived MRs. This

collaborative step integrates human expertise with AI efficiency, enhancing the
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Figure 5.12: A snippet of answers from the GPT-MR Generator of the spawn
function
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overall quality and applicability of the MRs, as well as the productivity of their

generation.

The refined MRs are then fed into the test harness component. The component

includes a scenario generator that creates detailed scenarios in the ASAM Open-

SCENARIO format [13], widely used in the industry, based on refined MRs and

aimed at various simulator modules. These scenarios are executed automatically

under the control of the harness. The result processor analyzes the outcomes,

extracts key information from the results, and provides insights into any MR

violations.

Unlike existing ADS testing frameworks [154, 249] that depend on predefined MRs

for test-case generation and execution, this human-AI hybrid MT framework uses

LLMs to streamline MR generation specifically for AD-simulator testing. For

example, Pan et al. [154] used predefined MRs to automatically generate test

scenarios for foggy images, while Zhang et al. [249] proposed a framework to

regulate MT processes and defect orientation in AD simulators. This strategy

of bringing LLMs into MR generation could broaden framework applicability to

diverse SUTs, though users should possess basic knowledge of MT and the SUT

to effectively select and refine MRs.

5.3.1.1 Configuring a GPT-MR Generator

The configuration of the GPT-MR generator is organized into distinct sections:

Role and Goal, MRPs, Constraints, Guidelines, Clarification, and

Customization. This structured approach ensures that each component is

explicitly defined and systematically applied, enhancing clarity, efficiency, and

effectiveness in the model response. Configuration presents the detailed configu-

ration of the GPT-MR generator. Notably, while this configuration was applied

to customize a ChatGPT model, it does not contain any information specific to
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ChatGPT. This suggests that it is general and can also be used to customize the

responses of other LLMs.

The Role and Goal section sets the GPT-MR generator’s purpose and intended

outcomes. By defining the model’s role as an automated generator of MRs for AD

simulators, and its goal to enhance robustness and reliability by exploring system

behaviour under varying conditions, the model can comprehend user requirements

and provide appropriate responses.

The MRP section outlines the mechanisms of the MRPs in the MR-generation

process, including MRPImpactAmplification and MRPMarginalEnsembleRevision. These sec-

tions provide detailed examples to illustrate how these patterns are applied, in

order to make abstract MRP concepts more concrete and easier to comprehend

and adopt for the GPT model.

In the Constraints section, the boundaries were established within which the

GPT-MR generator operates, which ensures that the generated MRs remain rel-

evant to AD simulators and the function under test. Clearly stated constraints

help the GPT model to understand the limitations and appropriate use cases of

the MR generator.

The Guidelines section standardizes the MR generation process, ensuring con-

sistency and reliability in outcomes. It provides instructions on the proper steps

for how to apply the MRPs.

The Clarification section addresses scenarios where information might be in-

complete. This helps the model to generate the MRs with adequate details and

reasonably infer missing specifics from user prompts (e.g., only specify the name

of the SUT), which would enhance the adaptability and usability of the GPT-MR

generator. This approach allows for effective performance even with partial in-

puts, improving its utility across various testing environments and user expertise

levels.
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Finally, the Customization section tailors the GPT-MR generator’s responses

to be concise and technical, suitable for developers and testers. It requires the

model to output clear explanations and rationales for the generated MRs, en-

hancing usability and helping users to better understand and refine the results.

5.3.1.2 Designing and Implementing the Test Harness

To enhance testing efficiency, a test harness component was developed. This

component automates both the generation and execution of test cases. It provides

an interface for users to input parameters that trigger specific functions. These

functions include the generation of follow-up test scenarios from a source scenario

and the continuous execution of multiple scenarios. The harness is also capable

of producing vehicle control sequences to direct the movements of the ego vehicle

in simulations. The test harness has four internal modules, each responsible for

executing and generating scenarios for different MRs. These internal modules are

introduced in the later sections along with the experiment results.

Several features are implemented in the test harness to enhance the testing pro-

cess:

1. Dynamic Scenario Creation and Configuration:

The harness can dynamically generate new scenarios by processing existing

scenarios and modifying their parameters. For example, it can take a source

scenario and create multiple variations with different vehicle types or speeds,

ensuring a comprehensive coverage of possible scenarios. This capability

allows for flexible and reusable test scenarios, significantly improving the

scenario-generation efficiency.

2. Parameterized Randomization:

Scenario parameters can be randomized based on the definitions of the MRs,

such as the type and speed of actors, or their starting locations within
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Configuration GPT-MR MR Generator
1: Role and Goal:

• Role: Automated tool to create MRs for ADS simulators.
• Goal: Enhance robustness and reliability by exploring system behaviour

under amplified influential factors and marginally revised non-influential
factors.

2: MRPImpactAmplification:
• Amplifies influential input factors that significantly impact system’s out-

put.
• Ensures that amplifying these factors either aligns or intensifies the sys-

tem’s output.
• Demonstrates that altering non-influential factors leaves the system’s out-

put unaffected.
• Example: Adding more obstacles behind an initial obstacle to observe

heightened or mirrored reactions of an ego vehicle.
3: MRPMarginalEnsembleRevision:

• Develops variations with negligible impact on entities not significantly
altering scenario’s outcome.

• Ensures that the results remain consistent despite minor changes.
• Example: Slight rotations of a vehicle or small positional shifts that do

not fundamentally change the vehicle’s behaviour or the final result of the
scenario.

4: Constraints:
• The MR generator must only use the provided MRPs to generate MRs.
• Avoid generating MRs that are outside the scope of ADS simulators or

unrelated to the function under test.
5: Guidelines:

• Identify influential and non-influential factors in the given scenario.
• Apply MRPImpactAmplification to influential factors to observe amplified or

consistent outcomes.
• Apply MRPMarginalEnsembleRevision to non-influential factors to ensure out-

comes remain unchanged.
• Apply MRPImpactAmplification again to initially generated MRs to create fur-

ther MRs for verifying the reproducibility of outputs.
6: Clarification:

• The MR generator should bias towards generating an MR if sufficient
information is provided.

• If any information is missing, the MR generator should infer reasonable
details based on the provided context.

7: Customization:
• The MR generator responds in a concise and technical manner, suitable

for developers and testers of ADS simulators.
• It provides clear explanations of the generated MRs and the rationale

behind them.

168



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

specified ranges. This feature enables the generation of diverse scenarios by

slightly altering parameters, ensuring a wide range of possible situations is

covered.

3. Continuous Scenario Execution with Consistent Starting Points:

Multiple scenarios can be executed continuously, with the option to reset

the simulation starting state for each one. This ensures consistent starting

conditions, eliminating variations caused by residual effects from previous

tests. It is particularly useful for MRs that require controlled environments

where the initial starting conditions of the scenarios must remain the same.

4. Queue-based Command Execution for Vehicle Control:

Command sequences can be generated to control the ego vehicle, simulating

specific manoeuvres and actions during tests. For instance, sequences such

as accelerating for a set duration followed by braking, or executing a series

of turns, can be generated. These sequences test the vehicle’s response to

predefined actions, ensuring consistent and repeatable test conditions.

These features enhance the efficiency and effectiveness of the testing process,

enabling thorough exploration of different test scenarios and configurations ac-

cording to the MRs.

5.3.2 Investigating Actor Spawning Protocols

5.3.2.1 Metamorphic Relations

The spawn function in the CARLA simulator is used to create and place a new ac-

tor within the simulation environment [66]. An actor refers to anything that plays

a role within the simulator, including cars, pedestrians, and traffic lights [13].

An expected behaviour of the CARLA spawn function would be to prevent the
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Table 5.5: Part of MRs from the GPT-MR generator for the spawn function

MR Source
Scenario

Follow-up
Scenario

Expected
Outcome

MRSlightPositionalShifts Actors are
spawned without
causing collisions.

Slightly shift
spawn points by
small margins.

The system should
maintain
collision-free
spawning despite
minor positional
changes.

MRAmplifiedActorDensity Multiple actors
are spawned in a
region with no
initial collisions.

Increase the
density by
spawning
additional actors
in the same region.

The simulator
should prevent
spawning in
locations that result
in collisions.

instantiation of actors in locations that would lead to collisions. According to the

official documentation [136]:

“The actor will not be spawned in case of collision at the specified

location.”

In other words, the spawn function should prevent the creation of actors if the

intended spawning location overlaps with existing actors in a way that would

cause a collision. This mechanism ensures that new actors are only generated in

clear, unoccupied spaces.

The GPT-MR generator produced four MRs, with two MRs generated under each

MRP. The generator was only provided with the information about the function

to test. Table 5.5 shows some of the MRs generated by the GPT-MR generator as

an example (the complete list of MRs can be found in Appendix B). The MRs un-

der MRPMarginalEnsembleRevision were refined into a single MR, MRCollisionAvoidance.

This MR focuses on adjusting the starting position and orientation properties of

actors within a specific range that reflects the conditions triggering the spawn

function’s collision-avoidance mechanisms. By carefully varying the parameters,

170



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

the experiments aim to investigate how the spawn function reacts to situations

that could potentially lead to collisions. This approach helps to systematically

test and reveal the robustness and responsiveness of the spawn function under

different collision-prone scenarios.

MRCollisionAvoidance: In the initial scenario, the first actor is instan-

tiated at a randomly determined location, followed by an attempt to

instantiate another actor at that exact position. The spawning func-

tion should prevent the second actor’s instantiation. Subsequently,

in the follow-up scenarios, minor modifications are introduced to the

initial position of the second actor, involving adjustments on a per-

meter basis along the x, y, or z coordinates, and per-degree variations

of the orientation in specific test cases. Provided that these adjust-

ments are executed in a manner that would lead to a collision upon

the actor’s instantiation, the function should always prevent the in-

stantiation of the second actor, mirroring the behaviour observed in

the initial scenario.

To judge whether or not MRCollisionAvoidance violation was occasional, a new MR,

MRCollisionConsistency was derived. This MR complemented MRCollisionAvoidance

when a violation occurred: If MRCollisionAvoidance was violated, indicating a poten-

tial flaw in the spawn function, MRCollisionConsistency replicated the conditions of

the initial violation by introducing additional actors in the same manner, to test

whether or not the previous MR violation is occasional.

MRCollisionConsistency: If MRCollisionAvoidance is violated, identifying

particular scenarios where the spawn function permits the instanti-

ation of two actors resulting in a collision, those scenarios are desig-

nated as the source scenario of MRCollisionConsistency. In the follow-up

scenarios, an attempt is made to instantiate a third actor using the
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same approach as in MRCollisionAvoidance. In the event that the viola-

tion of the previous MR is not an isolated occurrence, actor spawn-

ing should continue under predefined conditions, resulting in new in-

stances of collision.

If MRCollisionConsistency is not violated, it suggests a systematic issue with the

limitations of the spawn function detected in the violation of MRCollisionAvoidance:

MRCollisionConsistency was created based on the assumption that the violation of

MRCollisionAvoidance could be reproduced. Therefore, no violation of this MR would

indicate that the MRCollisionAvoidance violation is not occasional, such that the

spawn function’s behaviour is uniformly impacted by the identified limitations,

providing evidence of a fundamental problem within the implementation of the

function itself. This MR and testing would reinforce the reliability of the findings

regarding the defects within the spawn function.

5.3.2.2 Harness Module

Figure 5.13 shows the mechanism of the testing module for the spawn function.

The process begins by initializing a scenario that includes only the ego vehicle.

Upon starting this scenario, the module attempts to introduce another actor

close to the ego vehicle, either horizontally or vertically, intending to trigger a

collision. If the spawn function operates as designed, the simulator will block the

creation of this actor, displaying a warning that spawning is impossible due to a

potential collision. The module initiates a subprocess to create follow-up scenarios

by systematically adjusting the actor’s coordinates (x, y, or z) and orientation,

restarting the scenario until the actor is successfully generated. It then checks

for collisions and generates a report on the results, including all the necessary

information for investigation and debugging.
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Figure 5.13: Harness module for testing the spawn function

5.3.2.3 Test Results

During the evaluation of MRCollisionAvoidance with the CARLA simulator, a sig-

nificant flaw was identified related to the actor-spawn function. One violation of

this MR occurred when an actor (the upper vehicle in Figure 5.14a) was tried to

be spawned at a certain position—a placement that logically led to a collision.

Ideally, the spawn function should recognize such overlapping positions and pre-

vent the actor’s creation, thereby avoiding the collision and potentially halting the

simulation to address the error (Figure 5.15b). However, contrary to the expected

behaviour, the actor was initialized and placed at the problematic location. The

result was a physical overlap and actual collision between the actor and the ego

vehicle, as illustrated in the simulation outputs (Figure 5.14a and 5.14b). Note

that this specific instance represented an MR violation instance regarding the

vehicle’s certain coordinates and orientation. In other scenarios, such as the up-

per vehicle oriented left by one degree, the spawn function successfully prevented

the actor’s spawning. This issue highlights a potential vulnerability in the spawn

function to manage actor placements and enforce collision-avoidance protocols.

Further tests were conducted according to MRCollisionConsistency to determine

whether or not the observed issues were occasional or indicative of a systemic
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(a) The actor was permitted to spawn at a position that would cause a collision

(b) Simulation details indicated that two actors intersect with each other

Figure 5.14: Example of MR violation cases in testing the spawn function

174



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

(a) The collision report proves three actors have collided

(b) Under normal circumstances, the spawn function should prevent actors from being
spawned above each other which would cause collisions

Figure 5.15: Terminal results of MR violation cases in testing the spawn function
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(a) The third actor was also permitted to spawn at a position that would cause a
collision

(b) Simulation indicates that three actors collided immediately after the physics simu-
lation was enabled

Figure 5.16: Follow-up MR violation cases in testing the spawn function

problem. Here, the same approach was applied to spawn a third actor. This

action was also permitted by the simulator, leading to additional collisions (Fig-

ure 5.16a). Notably, when activating the physics simulation option of the simula-

tor (i.e., gravity in the simulation environment), an immediate and simultaneous

collision occurred among all actors upon spawning (Figure 5.16b). This outcome
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confirmed that the spawn function failed to prevent these problematic placements.

The collision reports (Figure 5.15a) showed collisions involving all three actors,

meaning the MR violation was because of a consistent error within the simulator’s

spawn function. These findings reveal a significant flaw in the system, indicating

a need for reviewing and correcting the spawn function.

After the study of ADSs, the underlying issue was hypothesised to reside in the

adjudication process of the models intersecting along the z-coordinate4. This

hypothesis emerged from two critical observations. Firstly, the modifications on

the x or y coordinates did not trigger the bug, suggesting that these dimensions

are not the root cause. Secondly, changing the types of actors has also been found

to cause MR violations. This suggests that the issue was related to the internal

logic of the spawn function.

5.3.3 Assessing Traffic Light Compliance in Autopilot

Mode

5.3.3.1 Metamorphic Relations

To ensure vehicle safety in simulations, it is essential to implement functions that

adhere to traffic regulations and provide reliable sensor data. One of the key

components of CARLA’s toolkit is the Traffic Manager, a module that controls

vehicles (including the ego vehicle) in autopilot mode in a scenario [97]. The

autopilot mode for the actors populates a simulation with realistic urban traffic

conditions, allowing for the assessment of various AD algorithms [97]. It provides

researchers and developers with the opportunity to test their algorithms in a

virtual environment before deploying them in the real world. This is different

to testing the traditional ADS functions, where the focus is on evaluating the
4In the simulation context, the x-, y-, and z-coordinates represent the three-dimensional

spatial positioning of actors in the simulator, where the x- and y-axis define the horizontal
plane, and the z-axis represents the vertical height [240].
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Table 5.6: The violated MR from the GPT-MR generator for the autopilot func-
tion

Source Scenario Follow-up Scenario Expected Outcome

The ego vehicle approaches
a junction with a red traffic
light under standard
environmental conditions.

Introduce minor
environmental changes such
as slight variations in
weather (e.g., light rain or
fog) or time of day (e.g.,
dawn or dusk).

The ego vehicle should still
recognize and stop for the
red traffic light, regardless
of these minor
environmental changes.

system’s ability to perceive the environment, make decisions, and control the

vehicle accordingly [132]; in contrast, testing the Traffic Manager’s autopilot mode

serves to assess the reliability and fidelity of the simulator itself.

The generator was asked to generate MRs involving a typical scenario of the ego

vehicle approaching a junction when the traffic light was red. The GPT-MR gen-

erator produced five MRs (the complete list of MRs can be found in Appendix B).

Among the generated MRs, MR violations were observed specifically when testing

MRMinorEnvironmentalChanges, which is presented in Table 5.6. This MR focuses

on slight positional shifts, where the ego vehicle’s starting position is slightly ad-

justed by a few meters forward or backward from a junction with a red traffic

light. Despite this positional change, the expected outcome is that the vehicle

should still recognize the red traffic light and stop. However, scenarios in which

the ego vehicle passed through a red light when it was positioned near the stop

line at a junction were observed. To better identify the issue, the MR was refined

into MRStopLineSteadiness, described as follows:

MRStopLineSteadiness: In the source scenario, position the ego vehicle

before the stop line at an intersection. The traffic light remains red in

all the scenarios. Record the ego vehicle behaviour once the autopilot

mode is triggered. In the follow-up scenarios, make slight adjustments

to the ego vehicle’s initial position, moving it either forward or back-

ward by up to one meter from the stop line. The ego vehicle should
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behave the same as in the source scenarios.

Compared to the original MR, this MR has specified the starting position of the

ego vehicle, as anomalies were observed in the vehicle’s behaviour when it was near

the stop line. Observations found that the ego vehicle has an initial movement,

a brief deceleration phase, and then an acceleration phase that causes it to run

a red light. Importantly, the deceleration phase indicates that the ego vehicle

might be able to recognize the red light and take action when it approaches the

junction. Therefore, to identify whether or not the defects are within the autopilot

system, similar to the testing of the spawn function, MRRedLightViolationConsistency

was formulated, based on MRPImpactAmplification. Here, the previous MR violation

scenario was set as the source scenario, and follow-up scenarios were generated by

placing the starting position of the ego vehicle closer to the junction, specifically

at a position where it was in the deceleration phase in the source scenario. Since

the ego vehicle would have equal or less time to react to the red light, it should

still run the red light, as in the source scenario.

MRRedLightViolationConsistency: When activating the autopilot mode,

assuming that starting the ego vehicle at a specific location would

result in running the red light. Repositioning the ego vehicle closer

to the intersection, approximating the position where the ego vehicle

decelerates in the first scenario, the ego vehicle should still proceed

through the red light.

5.3.3.2 Harness Module

Figure 5.17 illustrates the functionality of the testing module for the autopilot

mode in the simulator’s test harness. The main process initializes a scenario

where the ego vehicle approaches a turn at a junction with a red traffic light. It

then activates the autopilot mode for the ego vehicle through a separate process.
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Figure 5.17: Harness module for testing the autopilot mode

Following this, the main process generates follow-up scenarios by adjusting the

initial coordinates of the ego vehicle based on the MRs. Furthermore, a subprocess

is deployed to monitor whether or not the ego vehicle runs the traffic light, and

to compile a test report upon scenario completion. This sequence of processes is

repeated until the predetermined number of scenarios has been executed.

5.3.3.3 Test Results

During the testing of MRStopLineSteadiness, an anomaly was identified and docu-

mented: When starting the autopilot mode of the ego vehicle within a certain

range of distances to the stop line in the simulation environment, the ego vehicle

would run the red light. To validate and document this behaviour, an evalu-

ation metric integrated within the simulator was used, called the RunningRed-

LightTest [158]. This was designed specifically to assess whether or not vehicles

respond correctly to red light signals, making it a tool for verifying traffic-law

compliance in simulated environments. The test results consistently indicated a

failure of the ego vehicle to stop at red lights. Figure 5.18 shows the results of

the test, where RunningRedLightTest confirms the run red light behaviour of the

ego vehicle (the expected value is 0, indicating the False value in the criterion,

while the actual value is 1, such that the test failed).
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Figure 5.18: The RunningRedLightTest shows the ego vehicle ran past the red
light

Figure 5.19: The ego vehicle’s speed when autopilot mode was enabled in the
source scenario
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After a thorough examination of the recorded position and speed data, it was

clear that the ego vehicle initially decelerated as it approached the red light.

Figure 5.19 shows the speed data of the vehicle, with a clear deceleration between

time segments ‘02’ and ‘03’. This indicates that the system had correctly identified

the red light and reduced the speed. However, instead of coming to a complete

stop, the vehicle accelerated again and continued to run the red light. The initial

slowing step of the ego vehicle is shown in Figure 5.20a. It was discovered that

the ego vehicle decelerated to a low speed (6 km/h, shown in Figure 5.19) at the

stop line, then accelerated again and ran the red light.

To investigate the underlying factors contributing to this behaviour,

MRRedLightViolationConsistency was generated and a comparative test was executed:

The previous MR violation scenario was chosen to be the source scenario for this

MR. In the follow-up scenarios, the ego vehicle was set 10 meters away from

the traffic light, specifically at the point where it began to decelerate in the

source scenario, and its response to the red light was observed. According to the

MR, the ego vehicle should still run the red light at this position. Surprisingly,

in this follow-up scenario, the vehicle demonstrated different behaviours to the

source scenario: After a short period of acceleration, it accurately recognized

and stopped before the red light, which violated MRRedLightViolationConsistency.

Figure 5.20b illustrates the ego stop location in the follow-up scenario. As a

result, the ego vehicle managed to stop before the stop line when the traffic light

was red.

Examination of the experimental data points the root of this issue to the inter-

nal logic governing the behaviour of the autopilot mode in the Traffic Manager

module, particularly in the logic of algorithms that respond to the traffic light.

These algorithms are designed to create a hazard zone for the system to react

to traffic regulators such as traffic lights, stop signs, and priority rules at inter-

sections [97]. Specifically, the issue originates in the Traffic Manager ’s Traffic

182



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

(a) In the source scenario, the ego vehicle failed to stop before the stop line; When it
passed the stop line, it accelerated again and ran the red light

(b) In the follow-up scenarios, by placing the ego vehicle slightly closer to the stop line,
the ego vehicle could have equal or less time to respond to the red light and stop before
the stop line

Figure 5.20: Differences in start positions between the two test scenarios led to
distinct behaviours of the ego vehicle
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Light Stage, which is tasked with detecting traffic signals and adjusting vehicle

behaviour accordingly: When the ego vehicle approaches a red light, the Traffic

Light Stage activates a traffic hazard condition to prompt the vehicle to decel-

erate and stop. The vehicle’s initial deceleration indicates correct recognition of

the red light. However, if the vehicle does not come to a complete stop before the

stop line and slightly crosses it, the Traffic Manager ’s logic does not consider the

vehicle under the influence of the red light (According to the documentation [97],

the Traffic Manager only “Sets a traffic hazard if a vehicle is under the influence

of a yellow or red traffic light or a stop sign”). Therefore, once the vehicle crosses

the stop line, the Traffic Light Stage removes the traffic hazard condition. As a

result, the Motion Planner Stage, which calculates vehicle movements based on

active hazards [97], no longer identifies any reason to keep the vehicle stationary.

It then commands the vehicle to accelerate and proceed through the intersection,

despite the traffic light remaining red.

This logic fails to address instances where a vehicle has partially crossed the

stop line but still needs to wait for the green light. Removing the traffic hazard

too soon results in the vehicle running the red light. In cases where the vehicle

approaches the stop line at a slower speed, it has enough time to come to a

complete stop before reaching the line. The traffic hazard condition is still in

effect since the vehicle has not left the designated influence zone. As a result, the

vehicle correctly remains stopped at the red light.

To address this problem and enhance compliance with traffic regulations, it is

recommended that the Traffic Light Stage’s logic be modified to extend the traffic

light influence zone beyond the stop line: Redefine the hazard zone to include an

area beyond the stop line, ensuring that vehicles remain under the influence of

the red light even if they have marginally crossed the line. This adjustment would

align with realistic driving scenarios where vehicles must wait for the green light

even if they have partially crossed the stop line. Furthermore, it is important to
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Table 5.7: Contents of MRSubtleBehaviouralChanges

Source Scenario Follow-up Scenario Expected Outcome

A scenario where the ego
vehicle drives at a constant
speed and adheres to all
traffic rules, completing the
route successfully.

Introduce subtle changes in
the ego vehicle’s behaviour,
such as slight variations in
speed or minor adjustments
in lane positioning, without
violating traffic rules.

The evaluation criteria
should still assess the
scenario as successful if the
ego vehicle completes the
route correctly, despite the
subtle behavioural changes.

maintain the traffic hazard condition until the light turns green, ensuring that

the removal of the hazard is based not only on the position of the vehicle but

also on the status of the traffic light. This means the hazard condition should

remain in effect until the light changes to green to ensure the safety of roads and

passengers.

5.3.4 Evaluating the Robustness of Built-in Criteria

5.3.4.1 Metamorphic Relations

Whether the ego vehicle is controlled by an ADS-like function such as autopilot,

or operated by a human, it is important that the evaluation criteria can reliably

determine the validity of the scenario. The scenario runner is a component of the

CARLA simulator that can start simulations from predefined scenario files [79].

It contains multiple evaluation criteria that can be used to analyze whether or not

a scenario was completed successfully [158]. For instance, checking the collision

status of the vehicle, or whether or not the vehicle has invaded other lanes during

the simulation.

The GPT-MR generator was asked to generate MRs to test the built-in simulation

criteria in the CARLA simulator. The generator produced five MRs, which can be

found in Appendix B. Experiments with these MRs did not reveal MR violations.

Among these, MRSubtleBehaviouralChanges (see Table 5.7) was selected for closer

185



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

examination because it specifically addresses the internal consistency of vehicle

behaviour—a critical aspect that directly impacts the reliability of the simulation

results. The other MRs primarily focus on external factors, such as environmental

complexity or spatial adjustments, which, while important, do not examine the

underlying behaviour of the vehicle itself.

In Section 5.3.3, MR violations exposed defects in the autopilot function, partic-

ularly in its logic for handling traffic lights. This function, due to its complexity

and centrality to vehicle control, has a high potential for revealing additional

defects of other parts of the simulator. By focusing on behavioural changes,

MRSubtleBehaviouralChanges is suited for identifying inconsistencies in how the ego

vehicle’s behaviour impacts the evaluation criteria when minor adjustments are

made.

One of the limitations of MRSubtleBehaviouralChanges is its reliance on the control

method (e.g., autopilot) remains constant, potentially overlooking variations in

outcomes that could arise when different control methods are applied. In real-

world scenarios, the ego vehicle may be controlled by different methods, either

from automated systems like autopilot, or from manual human control. These

varying control methods can introduce different behavioural dynamics, which the

evaluation criteria must be able to consistently assess to ensure the scenario’s

validity. For instance, an ADS might respond more quickly and predictably to

obstacles than a human driver, who may have slower reaction times and more

unpredictable behaviours. If the evaluation criteria do not account for these

differences, they might not accurately measure performance across various control

methods. Therefore, the evaluation framework needs to be adaptable, providing

fair assessments regardless of how the vehicle is controlled.

Therefore, to ensure the robustness of criteria functionalities across different con-

trol methods, MRControlMethodCriteriaConsistency was developed, as an extension of

MRSubtleBehaviouralChanges using MRPMarginalEnsembleRevision. This MR states that
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Figure 5.21: Harness module for testing the evaluation feature

changes in the control methods—whether automated, manual, or code-driven—

should not affect the ability of the criteria under test to accurately monitor the

state of the actors in success or failure.

MRControlMethodCriteriaConsistency: Whether the ego vehicle is con-

trolled by autopilot or manual control (such as code sequences), chang-

ing how the vehicle is controlled should not affect the final outcomes

of the evaluation criteria in the scenarios.

5.3.4.2 Harness Module

Figure 5.21 illustrates the operation of the testing module for evaluating criteria

within the simulator’s test harness. The harness’s main process generates a series

of control sequences, each representing a test case based on MRs. These sequences

simulate typical keyboard inputs for vehicle control in the simulator, such as the

‘w’, ‘a’, ‘s’, and ‘d’ keys, along with their timing. For instance, the sequence

“[[w, 4], [s, 2]]” directs the simulator to fully engage the throttle (like holding

down the ‘w’ key) for four seconds and then apply brakes for two seconds. To

ensure that these inputs are recognized by the simulator, the main process of

the test harness calls a separate control script in another process to interpret

the sequence and manage the ego vehicle’s movements in the simulation. This
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(a) Original piece of the CheckMaxi-
mumVelocity test code

(b) Updated piece of the CheckMaxi-
mumVelocity test code

Figure 5.22: Part of the CheckMaximumVelocity test code

approach guarantees precise control of the throttle and brakes, enhancing testing

efficiency while minimizing the risk of human error in the results’ validity.

The test harness also calls a scenario-generation module and generates follow-up

scenarios with the autopilot mode enabled. The source and follow-up scenar-

ios (one controlled by the throttle-control sequence and the other controlled by

the simulator) are then executed in sequence, with a result-comparison program

automatically comparing the outputs of the criterion to verify their equivalence.

5.3.4.3 Test Results

When testing the MRControlMethodCriteriaConsistency in a scenario involving the ego

vehicle’s motion along a straight road and passing through a junction, an issue

emerged within the testing procedures. This issue was related to the Check-

MaximumVelocity [158] criterion. It criterion compares the ego vehicle’s actual

maximum speed against an expected value. If the actual speed is less than the

expected value, the criterion will give the “SUCCESS” value; otherwise, it will

report the “FAILURE” value (Figure 5.22a).

In the validation of this criterion, the control sequence was designed to fully

engage the throttle of the ego vehicle for an intended period, allowing the vehicle

to reach high speeds. This setup facilitates the testing of various maximum speeds

and enables the creation of follow-up test scenarios that explore different speed

thresholds. The main thread generated and executed the follow-up scenarios by
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altering the speed values within the criterion, while another process monitored the

test criterion’s outputs, compiling a report upon the completion of each scenario.

During the experiments, an MR violation when switching the control methods

of the ego vehicle from autopilot to control sequence was identified: When the

ego vehicle was driving under the autopilot mode, the CheckMaximumVelocity

criterion gave the correct output. However, when the code sequence was employed

to control the ego vehicle’s throttle, such as pushing it to its limit for a long

period to simulate a relatively extreme case, the anomaly became evident: The

CheckMaximumVelocity criterion reported “SUCCESS” instead of “FAILURE”

when the actual maximum speed value exceeded the expected value. In other

tests, the results revealed that the CheckMaximumVelocity criterion consistently

reported “SUCCESS”, regardless of whether or not the actual maximum speed

surpassed the predefined threshold (Figure 5.23a).

An examination of the module’s internal logic identified the problem: the code

did not use the correct maximum speed value for comparison with the predefined

threshold. As shown in Figure 5.22a, the criterion update was based on compar-

ing the real-time velocity to the expected value rather than the actual maximum

speed (‘self.actual value‘), despite the developer having updated the variable in

the previous step, which may because of inaccurate coding practices. By modify-

ing the code to compare the actual maximum speed with the predefined threshold

(illustrated in Figure 5.22b), the problem was successfully resolved, and the cri-

terion gave the correct output when the maximum value exceeds the expected

value (Figure 5.23c).

Additionally, the potential cause of why this issue was found only when switching

from autopilot mode to manual control was revised. The default expected speed

set by the developer was not achieved in autopilot mode due to considerations of

other road factors such as speed limits, junctions, and traffic lights. As a result,

the issue was not revealed under autopilot mode. However, the manual code
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(a) The CheckMaximumVelocity test shows SUCCESS when the actual value exceeded
the expected value

(b) The CheckMaximumVelocity test has not updated the final result to the global
result: it only stores the final state

(c) After revising the inner logic of the criteria, the CheckMaximumVelocity test gave
the correct the results

Figure 5.23: The “CheckMaximumVelocity” test results in scenarios with different
value thresholds
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control uses a programmed control sequence (for instance, pushing the throttle to

the max for ten seconds) that does not consider such limits: The actual maximum

speed value of the ego vehicle can exceed the predefined expected value, thus

revealing the bug.

5.3.5 Analyzing Simulation Consistency Across Multiple

Runs

5.3.5.1 Metamorphic Relations

Ensuring consistent simulation performance across multiple runs—where the sim-

ulation produces the same results under the same conditions—is an important

objective in the context of simulators [201]. In simulations, actors should re-

spond consistently and promptly to certain triggers. Among all the MRs gen-

erated by the GPT-MR generator (the complete list of MRs can be found in

Appendix B), when testing the MRRepeatedRunsWithAmplifiedFactors (Table 5.8), MR

violations were identified in a scenario involving the interaction between the ego

vehicle and a cyclist. This MR tests the consistency of a simulator when the

same scenario is run repeatedly under identical conditions. In this MR, the ego

vehicle drives through a predefined route with standard traffic and environmental

conditions. The scenario is executed several times (for example, 10 times), with

the expectation that the simulation results remain consistent throughout all itera-

tions, meaning that the actors and environments behave similarly across different

runs. To enhance the simplicity and applicability of the MR, it was refined into

MRScenarioReproducibility. This MR aims to identify potential flaws or limitations

in the simulation engine by comparing repeated and individual scenario runs.

MRScenarioReproducibility: Executing the same scenarios, whether run

repeatedly or individually, should always produce consistent outputs.
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Table 5.8: Contents of MRRepeatedRunsWithAmplifiedFactors

Source Scenario Follow-up Scenario Expected Outcome

A baseline scenario where the ego
vehicle drives through a predefined
route with standard traffic and
environmental conditions.

Increase the number of runs for the
same scenario under identical
conditions (e.g., 10 repeated runs).

The simulation outputs should be
consistent across all runs, showing
similar ego vehicle behaviours,
routes, and interactions with
other entities.

Disparities between these runs could indicate issues with the simulator’s reliability

and repeatability, making this validation process essential for ensuring consistent

and accurate simulation results.

5.3.5.2 Harness Module

Figure 5.24 illustrates the mechanism of the testing module designed to evaluate

the consistency of the simulator. This is achieved by executing the same scenario

multiple times, as indicated in the diagram. The main process of the test harness

is responsible for initiating and repeatedly running the scenario until the number

of executions reaches the value specified by the tester. The module can facilitate

the sequential execution of multiple scenarios while reloading the simulation state

for each scenario. This ensures that each simulation starts from the same point,

eliminating variations due to residual effects from previous tests. Additionally, a

subprocess is employed to compare the scenario outputs. This helps to identify

any differences in the simulation outputs across different runs of the same scenario.

5.3.5.3 Test Results

While executing a scenario focused on an interaction between a vehicle and a cy-

clist during a right-turn manoeuvre, inconsistencies were observed in the cyclist’s

behaviour across multiple runs. This inconsistency in behaviour led to different

simulation outcomes, prompting a comprehensive examination.

The scenario simulates a simple object collision between the ego vehicle and a

192



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

Figure 5.24: Harness module for testing the consistency of the simulator

cyclist. According to the predefined scenario parameters, the ego vehicle turns on

autopilot mode and navigates through a road until encountering a cyclist after

a right turn. The cyclist is positioned to await the entry of the ego vehicle in a

certain region. Once this condition is met, the cyclist begins crossing the road.

The objective is for the ego vehicle to successfully avoid a collision following the

right turn, subsequently resuming its journey after the road is clear.

During multiple executions of the scenario, a discrepancy was observed in the

cyclist’s behaviours when it started. The issue relates to the cyclist’s acceler-

ation phase, which is triggered when the distance between the cyclist and the

ego vehicle reaches a predefined threshold. In the first iteration of the scenario,

the cyclist immediately accelerated upon the trigger condition was satisfied—a

behaviour that aligns with expectations. The simulation had the ego vehicle wait

until the cyclist had completed the crossing, and then continued driving (Fig-

ure 5.25a). However, in other iterations, the cyclist exhibited an obvious delay

(e.g., one or two seconds) in acceleration after the condition was satisfied. In

such circumstances, the ego vehicle could not stop in time to avoid the collision

(Figure 5.25b).

An in-depth analysis of the open-source scenario runner codebase led to an ex-

amination of the KeepVelocity class. According to the specification [78], this class
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(a) The source scenario where the cyclist responded appropriately

(b) The follow-up scenario where the cyclist activated unexpectedly

Figure 5.25: The trigger timings of the cyclist show a large difference between
the source and follow-up scenarios
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includes a function to maintain the specified velocity: The controlled traffic par-

ticipant should accelerate as quickly as possible until achieving the target velocity,

which would then be maintained for the duration of the behaviour. To record

and compare the starting time of the cyclist’s acceleration process, supplementary

code was introduced into the KeepVelocity class. This added code was designed

to log the precise timing when the cyclist started acceleration.

The data revealed a delay between the output of the “Start Acceleration” mes-

sage in the terminal and the actual execution of the cyclist’s road-crossing ac-

tion. This was visually apparent in the simulation window, providing evidence

of the latency (Figures 5.26a and 5.26b). The hypothesis was that this latency

might be attributed to computational overhead within the KeepVelocity class or

its associated components, especially when executing the scenario multiple times

continuously, considering the issue was not apparent when executing the sce-

nario in singular times. Additionally, the scenario runner might contain timing

inconsistencies or race conditions that become more pronounced during repeated

executions. The variability in system load during continuous runs could also

influence the simulation’s performance, with higher loads causing greater incon-

sistencies in the behaviour of traffic participants [115]. To address this issue, the

potential improvements would be identifying and resolving any bottlenecks or in-

efficiencies within the KeepVelocity class. This could involve using performance

analysis tools to locate and improve the algorithms where the code is consuming

excessive computational resources or causing delays.

5.3.6 Discussion

5.3.6.1 Effectiveness of MT in Testing the CARLA Simulator

In this study, the use of MT has demonstrated efficacy in verifying the reliability

and accuracy of the CARLA simulator. The integration of MRPs into this testing
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(a) Under normal circumstances (source scenario), when the acceleration start message
is sent, the cyclist should start to cross the road

(b) In the abnormal scenarios (follow-up scenarios), the cyclist experienced a clear delay
to start acceleration when the message was sent

Figure 5.26: The comparison of the cyclist actions in the source and follow-up
scenarios
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framework has been valuable, serving to accelerate and simplify the process of

generating MRs. The inclusion of configuring a GPT would be especially bene-

ficial for individuals new to the CARLA simulator, providing a structured guide

that facilitates effective testing even for those with limited familiarity with the

system and MT.

The MRs in this study led to the rapid discovery of four significant and diverse

issues in the simulator, each impacting its real-world applicability in distinct ways.

For example, the last issue associated with latency in code execution pinpointed

a potential bottleneck that could reduce the simulator’s efficiency and accuracy

in the continuous execution of scenarios.

The issues detected in this study could have easily remained hidden using conven-

tional testing methods, reinforcing the role that MT—and specifically MRPs—

plays in deeply testing the simulator’s functionality. For instance, in the testing of

MRCollisionAvoidance, traditional software tests with fixed oracles, might conclude

their evaluation after verifying that the spawn function behaves correctly under

several certain test cases, such as preventing the instantiation of a second actor

at the same location as the first actor, as described in the source scenario of the

MT. In contrast, the MT approach goes further by slightly altering the location

of the second actor to find the potential point where the two actors collide, and

using the same approach to spawn a third actor to prove the existence of the

error. Through the application of MT, researchers can methodically uncover in-

consistencies or unexpected behaviours arising from complex interactions among

the simulator’s components. This, in turn, contributes to improving the overall

reliability and performance of the simulator.

In summary, the application of MRPs within MT not only aids in identifying

issues but also significantly increases the ability of derived MRs to expose a

broad range of flaws. The variety and importance of the issues uncovered serve

as a testament to the efficacy of MT, further enhanced by the optimized MR-
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generation approach provided by MRPs. It ensures a more comprehensive and

efficient evaluation, making it a robust tool for uncovering vulnerabilities and

improving system reliability.

5.3.6.2 Threats to Validity

While the findings presented in this study offer valuable insights into the effec-

tiveness of MT for testing the CARLA simulator, the author also acknowledges

certain potential threats to the validity of the results. These threats stem from

factors that could potentially impact the generalizability and reliability of the

outcomes.

1. MR Selection: The selection of MRs in this study may have shaped the

kinds of issues that were uncovered. Due to time and resource constraints,

the author focused on specific, limited aspects of the simulator for testing.

Although the MRs chosen have facilitated the identification of issues in

various aspects of the simulator, exploration of alternative relations could

potentially yield further insights into the simulator’s behaviour.

2. Simulator Configuration and Versions: The issues identified could be influ-

enced by the specific configuration and version of the CARLA simulator

used in the study. For example, such issues may manifest within partic-

ular versions of the software or may be obscured or mitigated by updates

to other components. Different configurations or simulator versions might

yield varying results.

3. Test Scenario Representation: The test scenarios used in this study could

not encompass the full spectrum of real-world driving situations. Vari-

ations in scenarios and environmental conditions could lead to different

issue-discovery rates.
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4. Human Bias: Human involvement in selecting the MRs and interpreting the

results could introduce biases that impact on the objectivity of the study.

5. Reproducibility of Results: The evolving nature and stochasticity of LLMs

might affect the reproducibility of the results [44]. However, the proposed

configuration in this study standardizes the response mechanism without

modifying the underlying training data. As models are further trained with

expanded datasets, their accuracy is expected to improve, potentially en-

hancing the quality of the generated MRs.

5.3.6.3 Performance of the GPT-MR Generator in This Study

Previous research [247] found that ChatGPT can generate useful MRs, but the

quality and correctness were unimpressive. In other words, not all the MRs

generated were correct and effective in the initial response of the model. This

performance may be attributed to the quality of training data and the capability

of the models (GPT-3.5 in that study [234]). However, with the usage of GPT-4

in this study (the base model behind the GPTs by OpenAI, and the current most

powerful ChatGPT version [151]), and the configurations involving the MRPs and

guidelines, the MRs generated by the GPT-MR generator have shown obvious im-

provements in quality and clarity. Specifically, the MRs were correctly generated

following the MRPs; they could be applied directly to testing; and some have

led to the discovery of defects. Additionally, the situation where users needed to

provide multiple prompts to improve the quality of MRs in the previous study

did not occur with the GPT-MR generator: The configurations limited the search

space of the customized GPT and improved the accuracy of the answers, allowing

the GPT to provide responses that could be directly adopted [92].

However, based on the observations from the MRs generated (Appendix B), it also

found that the diversity of the MRs was limited. For instance, among the MRs

derived by the model for different functions under test, there is always one MR
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that includes increasing the traffic density/complexity of the scenario. In other

words, the innovative features of the answers are limited, which is a common issue

among GPT-generated responses [31]. Additionally, the selection and refinement

of the MRs derived by the GPT still require users to possess a basic knowledge of

MT, even though this knowledge can be easily obtained through user interactions

with the GPT.

Although this GPT-MR generator was originally designed for AD simulator test-

ing, it can be easily applied for deriving MRs for other domains. A short study

was conducted by asking the model to derive MRs for SUTs in different domains.

Two types of the SUTs that have been tested by MT (i.e., there were MRs created

to test them and revealed bugs in the literature) were selected — search engine

and navigation software, each is a well-represented example in MT [256][30] with

a high citation count (100+), and they are commonly used in everyday scenar-

ios, such as Bing for search engines [256] and Google Maps for navigation [30].

To provide simple and straightforward evaluation of these MRs, the evaluation

criteria, CriteriaV 0, described in Section 4.2.1, was used [247]. Furthermore, to

avoid any potential bias from previously published MRs that could have influ-

enced the training of ChatGPT, the model was not asked to derive MRs for any

specific systems from the existing literature. Instead, straightforward and gen-

eralized prompts was used, such as “I want to create MRs for a search engine”

and “I want MRs for the routing function of a navigation application”, simulating

scenarios that beginners might encounter while using this tool. For instance, Fig-

ure 5.27a shows an example snippet of asking the GPT-MR generator to derive

MRs for the search engine.

Additionally, to address potential validity concerns regarding the use of these

MRs in training the GPT and to ensure the model is “inferring” answers [213]

rather than “retrieving” the MRs from the database, the GPT-MR generator

was also asked to produce MRs for SUT types that had not been tested by MT.

200



5.3. FURTHER APPLICATIONS OF MT IN THE CARLA SIMULATOR

Specifically, the model was tasked with generating MRs for an email program and

an ordering system, both of which are widely used in real life. Figure 5.27b shows

an example of MRs derived for the email app. The complete list of MRs can be

found in Appendix C.

Four experienced evaluators from diverse domains assessed the quality of the

MRs. The average marks for each system were calculated and are presented in

Table 5.9. The table indicates that the MRs for all four SUTs scored well (over

three out of five) in correctness, applicability, clarity, relevance, and computa-

tional feasibility. This suggests that the MRs are generally accurate and useful,

demonstrating that the GPT-MR generator can effectively produce valuable MRs

for various SUTs beyond just ADS testing. The novelty and overall usefulness

scores were relatively lower, consistent with findings from a study on ChatGPT’s

MR generation capabilities [247]. Notably, some MRs for SUTs tested with MT

(such as search engines and navigation software) showed similarities to existing

literature, as shown in Table 5.10. For example, both the MRs generated for

the search engine and those found in the literature involved reordering query

terms, while both MRs for navigation software involved minor positional shifts

in starting and destination points that would leave the route unchanged. This

suggests that the generator is capable of producing MRs that are comparable in

quality to those created by humans. Furthermore, for the types of SUTs that

are untested with MT, the MRs derived were also valuable. Table 5.11 presents

two examples of MRs from the email app and ordering system. Both examples

have clear input-output relations with appropriate rationales, making them easy

to understand and effective for testing. These evaluation findings and MR exam-

ples highlight the capabilities of the GPT-MR generator in producing MRs across

different domains.

In summary, using the capabilities of GPT-4, along with the configurations of

MRPs and guidelines, has enhanced the quality and applicability of MRs derived
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(a) An example snippet of the derived MRs for the search engine

(b) An example snippet of the derived MRs for an email app

Figure 5.27: Example MRs derived for other domains
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Table 5.9: Evaluation of SUT types across different metrics

Metrics Search
Engine

Navigation
Software

Email
App

Ordering
System

Correctness 4.1 3.6 3.8 3.6

Applicability 4.3 4.3 3.8 4.2

Novelty 2.4 2.8 2.1 2.6

Clarity 3.7 4.0 3.5 3.8

Relevance to SUT 4.4 4.7 4.3 3.7

Overall Usefulness 3.3 3.8 3.0 2.8

Computational Feasibility 4.6 4.0 4.4 4.6

Average 3.8 3.9 3.6 3.6

by the GPT-MR generator. Experiments have demonstrated that this generator

can produce MRs across multiple domains. However, the results showed limited

variation and innovation. This indicates that while the GPT-MR generator has

improved the MR generation, there is still potential for further improvements in

order to boost the diversity and creativity of its responses.

Furthermore, although the GPT-MR Generator could effectively generate MRs for

AD-simulator testing, the use of generative AI in safety-critical applications still

faces challenges [155]. For instance, the tool may be sensitive to input variations,

and could also carry retain biases that exist in the training data. To address these

concerns, the framework proposed includes expert review to ensure that the tool

not only enhances efficiency, but also adheres to the safety standards required in

ADS testing.

Therefore, to maximize the capabilities of the GPT-MR Generator, users are

advised to be familiar with MT and the SUT before using the MR generator.

While the model can produce MRs with simple prompts, enriching the details of

the requests would make the results more accurate and useful.
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Table 5.10: Similar MRs derived by the model and those in the literature

SUTs MRs derived by the model MRs in the literature

Search Engine MR: Slight reorder of query
terms
Source Input: Query: ”electric
car prices”
Relation: Reorder query: ”car
electric prices”. The search
results should remain
unchanged, as the reordering
does not alter the intended
meaning of the query.

MR: SwapJD [256]
Description: The source query
A contains only two words
(without quotation marks) and
the follow-up query B is
constructed by swapping the
two words. A stable search
engine should return similar
results for A and B if these two
queries have similar meanings,
regardless of their word orders.

Navigation
Software

MR: Minor Position Shift
Source Input: The navigation
software generates a route from
Point A to Point B.
Relation: Slightly shift the
starting point by a few meters
(e.g., 5 meters in any direction).
The system should still generate
the same route, as this minor
change should not influence the
overall route. This MR verifies
that the system can handle
small GPS inaccuracies without
deviating from the expected
route.

MR: MRSimilar [30]
Description: Slight variations
in starting or ending points
should not result in drastically
different route
recommendations.

5.3.6.4 Future Work

In terms of future research, several directions present promising opportunities

to build upon the current study’s findings. Firstly, the MRs derived could be

extended to evaluate a broader range of functionalities within the CARLA simu-

lator, thereby providing a more comprehensive evaluation of its overall reliability

and performance. Furthermore, a systematic quantitative analysis comparing

GPT-generated and human-derived MRs can be conducted, using metrics like

fault detection rates and coverage improvement along with methods for identify-

ing biases.
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Table 5.11: Example of valuable MRs from SUTs not tested with MT

SUT MR Description

Email App MR: Small Change in Email Subject
Scenario: The user sends an email with the subject line ”Meeting at
10 AM”.
Modification (Marginal Revision): The subject is changed to
”Meeting at 10 A.M.” (minor punctuation revision).
Expected Behaviour: The email should still be sent successfully,
and the system should not treat the revised subject as significantly
different in functionality.
Rationale: Ensures that minor textual changes do not affect the
ability to send or classify the email.

Ordering
System

MR: Amplify Order Quantity
Original Scenario: Place an order with 10 units of an item.
Amplified Scenario: Increase the order to 100 units of the same
item.
Expected Outcome: The system should show an amplified increase
in total price and inventory update. If inventory is insufficient, the
system should prompt a warning or partial order.
Rationale: This MR ensures that changes in order quantity lead to
proportional or consistent changes in total cost and inventory levels,
helping verify if the system appropriately handles large orders.

Beyond utilizing the existing MRPs, there is potential for developing alternative

MRPs that are tailored to specific functionalities or complexities of the simulator.

These new MRPs could offer a more specialized or streamlined approach to MR

generation, optimizing the testing process for distinct use cases. Additionally,

these new MRPs could involve patterns of output transformations, an aspect

that the current MRPs not possess (they focus on output equivalence relation

in the derived MRs), to enhance the diversity of the MRs generated and the

capabilities of the GPT-MR Generator.

Thirdly, the performance of the framework can be further explored by applying

it to the testing of other SUTs, which will improve its overall effectiveness. Con-

ducting a comprehensive quantitative analysis on how the framework enhances

MT efficiency would help reveal areas for improvement. Moreover, as mentioned

in Section 5.3.1.1, the configuration used to customize the GPT-MR Generator

could also be used to enhance the responses of other LLMs. This would expand
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the framework’s applicability, offering users the flexibility to select their preferred

platform. Finally, optimizing the test harness architecture to integrate advanced

LLM functionalities, such as automated test scenario generation and automated

MR evaluation and validation, can further improve efficiency and reduce human

effort.

5.3.7 Conclusion

In conclusion, the human-AI hybrid MT framework has proven to be an effective

method for identifying bugs in the CARLA simulator. The customized GPT-MR

generator facilitated the generation of MRs and simplified the testing process,

making it more user-friendly, especially for users less acquainted with the simula-

tor and MT. The test harness developed further automated this process, enhanc-

ing the efficiency of generating and executing test scenarios while allowing for

extensive examination of the simulator’s diverse functionalities. The issues un-

earthed through the MT underscore the importance of the evaluation of various

facets of the simulator’s functionality to ensure its reliability and real-world ap-

plicability. While there are acknowledged threats to validity, the insights gained

from this study are valuable, highlighting both the strengths and limitations of

employing MT, enhanced by MRPs, for evaluating complex systems. Future re-

search work might include the development of additional or alternative MRPs,

refinement of existing MRs, and the expansion of the framework, all aimed at

achieving an even more comprehensive and effective issue-detection process.
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6.1. INTRODUCTION

6.1 Introduction

In the previous chapters, various frameworks and guidelines were proposed to

enhance MT efficiency and alleviate challenges. However, these approaches still

require users to possess fundamental knowledge of MT. Additionally, finding ef-

fective methods to educate students, professional software engineers, testers, and

end-users about MT has become a critical concern [47]. To promote MT and

address RQ3 of the thesis (How can MT usage in ADS testing be simplified to

increase efficiency and lower adoption barriers?), an OER1 was created [251].

It empowers users to easily generate test cases and MRs for ADS functions by

providing accessible, comprehensive resources and tools, specifically aimed at re-

ducing the learning and application hurdles of MT for beginners. To enhance

the learning experience and help users develop their skills, a notable feature of

the OER is the inclusion of a scenario template: This template is designed to

guide users through the process of generating test scenarios, a challenging aspect

of MT for ADSs. Furthermore, the OER encompasses a specific methodology to

simplify and standardize the process of generating MRs. These educational tools

are designed to make the learning process more intuitive and structured, enabling

both novices and experienced software testers to better understand and apply the

concepts. The launch of this OER is an important contribution to both the edu-

cational and practical aspects of MT. It not only bridges the knowledge gap but

also promotes a deeper understanding of MT principles and their application in

real-world scenarios.

Alongside providing tools to enhance MT learning, two studies were conducted to

explore the capabilities of novice testers, with little to no prior experience in soft-

ware testing or ADSs, in generating MRs for a typical ADS function [214]. The

initiative was based on the hypothesis that even individuals new to the field could

contribute valuable insights when provided with appropriate guidance [127]. The
1Link: https://www.mt-expertsystem.tech/welcome/
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two studies, which include a pilot study with a small number of participants and

comparing the MRs with GPT-3.5, followed by a larger study that recruited ad-

ditional participants and compared MRs with those produced by GPT-4, demon-

strate the potential of beginners with appropriate guidance to effectively generate

MRs that exhibit similar qualities to those produced by powerful LLMs. More-

over, these studies underscore areas for improvement in the teaching and training

for both humans and LLMs.

6.2 Developing an OER

6.2.1 Creating Templates for ADS Scenario Generation

In the context of MT for testing ADSs by using scenarios, a clearly defined sce-

nario format is crucial for the generation and evaluation of MRs [22]. This thesis

introduced a scenario template that standardizes the format and elements for

scenario creation, which not only simplifies the initial steps in scenario creation

but also reduces the difficulty in generating MRs, making it more efficient and

understandable for beginners who are unfamiliar with MT and testing ADSs.

This is particularly important in complex domains like testing ADSs, where the

generation of effective MRs is critical, but can be challenging for beginners [247].

The use of a template can significantly reduce the complexity and variability in

describing MRs [177]. The results of using this template, which is described in

Section 6.2.6, show that such a structured approach not only facilitates easier and

more accurate testing of ADSs but also contributes to the overall progression and

adoption of MT techniques [251].
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6.2.1.1 Scenario Template Compoenents

This section introduces the components of the scenario template. A scenario is

made up of five separate parts: the scenario type; scenario initialization; actor

behaviours; specialized information that affects outcomes; and scenario outputs.

Below are the explanations for each component:

1. Scenario Type: This component describes the types of scenarios employed

in the testing framework, which can be classified into two categories: “in the

source scenario” and “in the follow-up scenario”. The term “in the source

scenario” indicates a scenario as the source test case, while “in the follow-up

scenario” refers to those scenarios that have been derived from the source.

It is important to note that the types of these scenarios are interchangeable:

Scenarios defined as follow-up test cases are equally capable of being utilized

as source test cases in a different MT practice.

2. Scenario Initialization: The initial setup of a scenario in testing involves

two steps: initializing the actors involved; and defining the environment

(including any unique infrastructure elements related to the ADS functions,

such as traffic lights or speed signs). This stage is crucial for establishing the

baseline conditions of the scenario. It contains in-depth information about

the actors, such as the ego vehicle and other entities with which it might

interact. Additionally, the environmental setup is specified, incorporating

features that might impact the scenario, such as parking areas equipped

with poles. This setup ensures that all relevant variables are taken into

consideration within the testing environment.

3. Actor Behaviour Definition: This component describes the initial ac-

tions of the actors, such as the ego vehicle attempting to park. This de-

scription completes the initialization of the actors by introducing the initial

state and activities of the key participants.
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4. Special Information That Affects Outcomes: The “special informa-

tion that affects behaviours” component specifies the particular conditions

or events in the scenario that impact the SUT’s outputs. It highlights

the reason-and-cause logic within the scenario. For example, consider a

situation where an ego vehicle is navigating a roadway. In this context,

an unforeseen obstacle that necessitates the vehicle to initiate emergency

braking is the “special information affecting behaviour” component within

this scenario. This knowledge helps testers generate MRs and follow-up

scenarios, as described in detail in Section 6.2.1.3.

5. Scenario Outputs: This final component specifies the results of the sce-

nario, usually focusing on the aspects of the ego vehicle, such as the be-

haviours or sensor values.

6.2.1.2 Example of a Scenario Generated by Following the Template

An example of a scenario that follows this template is as follows:

In the source scenario (Scenario Type), spawn the ego vehicle be-

hind a front vehicle V1 on a straight road (Scenario Initialization).

Both vehicles drive along the road at a constant speed (Actor be-

haviours). When the front vehicle V1 suddenly reduces the speed

(Special Information that Affects Outcomes), the ego vehicle

triggers emergency braking and stops before V1 (Scenario Out-

puts).

6.2.1.3 Enhancing MR Generation Through Scenario Templates

The author proposed a methodology on how to use the scenarios created with

the template to generate those MRs that can be split into input relations and
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Figure 6.1: Abstractions of the relationships among inputs and outputs of the
scenarios and MRs

output relations [176]. An input relation is used to generate follow-up test cases

from the source test case, and an output relation is used to evaluate the system’s

correctness by comparing it against the outputs. The MR output relation is

a user-defined rule that specifies the expected relationship between the source

output and follow-up output. This is based on the understanding of the system’s

behaviour.

Figure 6.1 shows the abstractions of the relationships among inputs and outputs of

the scenarios and MRs. The source input contains the scenario initialization and

actor behaviours defined in the template. Since the scenario type only indicates

the scenario as a source or follow-up, it is not included in the equations. Therefore,

equation (a) can be seen as the inner logic of a source scenario, where the source

input plus special information that affects outcomes will lead to the source output

(e.g., cause the ego vehicle to take certain actions). Equation (b) specifies a
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typical MR validation process, where the follow-up output and the source output

are compared against the MR output relation. If the equation holds, the MR is

not violated, and vice versa. However, since the MR output relation is human-

defined, testers can combine it with the source output to derive the expected

follow-up output. For instance, the MR output relation can be defined as the

follow-up output has the same value as the source output. This is a typical MR

output relation that has been proven effective in many studies [176][250].

Once the follow-up output is derived, the follow-up inputs can be derived through

equation (c). The rationale behind equation (c) is that the source and follow-

up scenarios should focus on testing the same aspect of the SUT, such that the

scenario outputs can be comparable and meaningful for MR validation. However,

the “special information that affects output” in equations (a) and (c) are not

necessarily the same, as long as they have the same impact on the output. For

instance, it can be “a pedestrian suddenly appears in front of the ego vehicle”

that makes the ego vehicle trigger emergency braking in the source scenario, and

“a cyclist suddenly appears in front of the ego vehicle” that makes the ego vehicle

trigger the same emergency braking in the follow-up scenario—the only difference

being changing the pedestrian to a cyclist. The follow-up inputs are derived by

retaining such details and generating variations on the source input. There are

many kinds of variations, with each kind linked to unique MR input relations.

Once the follow-up inputs are derived, the MR input relations can be determined

by applying equation (d), and then the MR can be confirmed by combining the

input and output relations.

In summary, the MR generation process can be described as follows: It begins

with the identification of metamorphic output relations. This allows the tester to

derive the follow-up output based on the known source output. Then the tester

uses their understanding of the “special information that affects behaviours” to

derive the follow-up input. This step is similar to reverse engineering [34], where
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the effect is known and the cause is sought. Finally, by comparing the source

input with the new follow-up input, the tester can determine the metamorphic

input relations.

An example of such an MR generation process could be: assume a source scenario

has been set to be the one defined in Section 6.2.1.2. Then the MR output relation

is set to be equal, meaning the follow-up scenario outputs remain the same as the

source scenario output (i.e., “the ego vehicle triggers the emergency braking and

stops before the front vehicle V1”). The special information that affects the ego

vehicle’s behaviour is the event that the front vehicle suddenly stops. To derive

the follow-up inputs, variations need to be generated from the source inputs. For

instance, it could be changing the initial speed of the front vehicle to be less than

in the source scenario. Then, by comparing and summarising the changes in the

inputs of the scenario, the MR input relations can be determined: For instance,

in this case, it is reducing the initial speed of the front vehicle. Finally, the MR

can be derived as follows:

MRReduceSpeed:

In the source scenario, spawn the ego vehicle behind a front vehicle V1

on a straight road. Both vehicles drive along the road at a constant

speed. When the front vehicle V1 suddenly stops, the ego vehicle trig-

gers emergency braking and stops before V1.

In the follow-up scenarios, reducing the initial speed of the front vehi-

cle V1. Keep the other conditions unchanged. When the front vehicle

V1 suddenly stops, the ego vehicle triggers the same emergency brak-

ing and stops before V1, as in the source scenario.

Differences to the MR Generation Methodology with MRPs/MRIPs

in Section 5.2.1.4

Section 5.2.1.4 describes a methodology for generating MRs using MRPs and
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Figure 6.2: Updated MR generation methodology from the original ones (Fig-
ure 6.1)

MRIPs. Unlike the previous methodology, the approach presented here is more

comprehensive. It includes four equations that describe the relationships between

the MR and test scenarios, detailing the logic flow for generating MRs without

necessarily requiring prior knowledge about MRPs.

A comparison of the steps in both methodologies shows that both start by setting

up the initial source scenarios. Therefore, the previous approach can complement

the methodology presented here: Specifically, since the MRP includes both the

input and output relations of MRs, users only need to determine the follow-up

input and output (Figure 6.2) to construct the complete MRs. Consequently,

Equation (c) from Figure 6.1 becomes optional in this case.

Figure 6.2 presents the updated methodology that integrates the approach dis-

cussed in Section 5.2.1.4. For instance, according to MRPImpactAmplification (Sec-
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tion 5.2.1.1), the follow-up outputs of scenarios are intensified based on the out-

puts of the source scenario. Consequently, these follow-up outputs can be derived

from Equation (b), where the ego vehicle still activates the AEB function but

with earlier timing. Referring to Equation (d), since the input relation in the

MRP involves amplifying influential input factors in the source scenario (e.g., the

pedestrian’s starting time causing the ego vehicle to activate the AEB function),

the follow-up inputs can be established by adjusting the pedestrian’s starting time

earlier than in the source input. If the user is unaware of the “influential input

factors” in the source scenario, they can refer to Equation (a) to identify which

elements impact the ego vehicle’s behaviour in the scenario outputs. By following

this process, the same MR introduced in Section 5.2.1.4 can also be reproduced.

6.2.1.4 Comparing the Scenario Template with the ASAM OpenSCE-

NARIO Standard

ASAM OpenSCENARIO [165] is a standardized file format used for defining driv-

ing and traffic simulations. It is primarily aimed at the automotive industry, pro-

viding a structured way to describe both simple and complex driving manoeuvres

and traffic scenarios.

In the OpenSCENARIO definition [13], the complete scenario description is rep-

resented by the “storyboard”, which encompasses the who, what, and when as-

pects. It starts with an “Init” element that sets the initial conditions of the

scenario, such as actor positions and speeds. Optional “Story” elements group

various scenario components and structure larger scenarios, and the scenario con-

cludes with a “stopTrigger” element. Within this framework, “Story” instances

contain “Acts” that define when actions occur, regulated by start and stop trig-

gers. “Acts” include “ManoeuverGroup” elements specifying who performs ac-

tions, while “Maneuvers” detail what happens, organizing events and actions

under common conditions.

216



6.2. DEVELOPING AN OER

Figure 6.3: Excerpt from an XML script showcasing the
‘Init’ element in ASAM OpenSCENARIO examples [13]

However, scenarios in OpenSCENARIO are defined using a structured, XML-

based language, instead of natural language. XML is a markup language that

defines a set of rules for encoding documents in a format that is both human-

readable and machine-readable [111]. For instance, Figure 6.3 displays a segment

of an XML script, illustrating the ‘Init’ element within the ASAM OpenSCE-

NARIO examples. When creating a scenario in ASAM OpenSCENARIO, each

aspect of the scenario is represented as an XML element or attribute. Simulation

tools designed to work with ASAM OpenSCENARIO can read and interpret these

XML files. Once the XML file is loaded into the simulation tool, it executes the

scenario as defined by the XML script. The tool translates the XML instructions

into dynamic actions within the simulation environment, like moving vehicles,

changing traffic lights, or altering weather conditions.

Compared with the scenario template proposed in this section, the ASAM Open-

SCENARIO format shares some common types of components, such as initializa-

tion and actions. The main differences between the two are related to the usage
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of the scenarios and certain scenario elements. The proposed scenario template

emphasizes a narrative, text-based approach, aiming to enhance its accessibility

and comprehensibility for beginners, while XML code can be challenging to read

and understand due to its structured format and syntax rules [111]. The scenario

template is crafted to describe scenarios in a natural language format, which is

inherently more intuitive and user-friendly. This design choice is particularly

beneficial for constructing MRs, as it includes specialized components like “spe-

cial information that affects outcomes”. This feature is important for explaining

the cause-and-effect logic intrinsic to each scenario, thereby streamlining the MR

generation process. In contrast, the ASAM OpenSCENARIO standard [13] uses

a standardized, machine-readable format. While effective for developing ADSs,

it is more focused on enhancing the efficiency of the simulation tools instead of

clarity in reading and comprehending.

6.2.2 Building the OER with Django Framework

In the development of the OER, Django [171], a web framework, was used to

enhance user experience. It primarily handled backend operations such as data

management and server-side logic [195], which are essential for a dynamic on-

line educational platform [180]. Examples of such successful implementations

include a resource-sharing website [182] and a content repository for an educa-

tion project [185].

The user interfaces of the OER were created to provide learners with an experience

in navigating and interacting with the educational material. A key aspect of

this was Django’s content management system [171], which allowed for dynamic

content updates and efficient maintenance of the website. This capability ensured

that the content was delivered seamlessly to the front end, resulting in a user-

friendly and engaging learning experience.
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The development of the backend was primarily focused on smoothly handling user

requests and interactions. This was achieved through a structure designed for

processing actions such as submitting answers and accessing educational content.

The requirement for a comprehensive and scalable architecture, necessary for

managing data flow and ensuring responsive user interactions on the website,

served as the primary factor in the choice of Django [195].

6.2.3 Principles Guiding OER Design

The design of the OER followed the principles below:

• Universal accessibility and ease of use: The OER focused on universal

design to ensure a consistent user experience across various devices and to

accommodate diverse learners [55]. To achieve this, the user interface was

designed to be straightforward and easy to navigate, eliminating potential

barriers to learning and engaging. This includes implementing features such

as clear and consistent navigation menus, text with high contrast for bet-

ter readability, and the inclusion of alternative text for images to support

learners with visual impairments. Furthermore, the content is structured

to support different learning styles, incorporating multimedia elements like

videos and interactive quizzes, along with traditional text-based materi-

als [55].

• Responsive design for device diversity: Considering the diversity of

devices used in accessing online resources, the OER was developed as a

website. This decision was influenced by several key factors. Firstly, using

a website ensures that users do not need to install any additional applica-

tions, providing immediate and hassle-free access to the educational content.

This is particularly advantageous for learners who may have constrained

resources (e.g., limited storage space). Secondly, developing a web-based
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OER reduces the complexity of development and maintenance. Unlike ap-

plications that may require separate versions for different operating systems

(iOS, Android, etc.), a single website can cater to all users, regardless of

their device type. This approach significantly simplifies the development

process and allows for more efficient updates and bug fixes. Thirdly, a

web-based platform ensures consistency in content appearance and func-

tionality across different devices and browsers [258]. Using responsive web

design techniques, the OER automatically adjusts its layout and content to

fit the screen size and resolution of any device, from desktop computers to

smartphones. This consistency is essential for maintaining the quality and

effectiveness of the educational experience.

• Clarity and focus on educational content: The visual design of the

OER was organized to emphasize the educational content. A clean and

uncluttered layout was employed to enhance content readability and learner

focus, with careful consideration given to the choice of typography, colour

schemes, and spacing.

6.2.4 Licensing

To align with the OER licensing guidelines [179], the OER uses an Attribution-

ShareAlike 4.0 International (CC BY-SA 4.0) license. The license was chosen for

this OER to comply with OER licensing standards and the principles of Creative

Commons. This license allows educational content to be freely used, adapted,

and shared. For instance, a teacher could adapt and redistribute the material for

their classroom without legal barriers, ensuring wide accessibility while protecting

creators’ rights [54].

This license encourages a collaborative environment for continuous development

and sharing of educational resources, contributing to a self-sustaining community.
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Figure 6.4: The flow of the OER

Under this license, the works provided on this OER can be widely used and

adapted, while also contributing to a growing community of shared educational

resources.

Below is the licensing information that appears on the OER:

This website © 2024 by Yifan Zhang is licenced under Attribution-

ShareAlike 4.0 International L M U

6.2.5 Implementing the OER: Features and Functionality

The flow of the OER is presented in Figure 6.4: It starts with a Welcome Page

that directs users to a Menu Page, acting as a gateway to different features.

Users can learn about MT or ADSs through dedicated introductory pages, which

provide explanations on these concepts.

Upon selecting either MT or ADSs from the Menu Page, users are guided to the

respective sections that introduce these concepts. The MT section provides a

comprehensive introduction to MT. It outlines what MT is, elaborates on MRs,
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Figure 6.5: Questions of the Scenario Generator that encourage users to think
like experienced MT practitioners

and explains how these are used in generating test cases. It also outlines the

basic steps for performing MT. The ADSs section, on the other hand, caters

to beginners with an introduction to self-driving technologies, providing insights

into the features of these systems. It highlights popular functions that contribute

to the autonomy of these systems, such as obstacle detection, lane keeping, and

adaptive cruise control.

After introducing the theoretical groundwork of MT and ADSs, users are guided

to a template for generating scenarios, which offers a structured approach to cre-

ate diverse testing scenarios reflecting real-world complexities. The template, as

detailed in Section 6.2.1.1, is presented in a visually appealing, colourful, and

user-friendly format, enhancing the learning experience by making complex con-

cepts more accessible and engaging.
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Figure 6.6: Example generated scenario

An important element in the OER is the Scenario Generator. It provides a

form to users so that they can define and customize their scenarios based on the

template. Figure 6.5 shows the interface of the Scenario Generator: It begins

by asking whether any additional actors, such as vehicles or pedestrians, are

involved in the scenario, allowing users to specify other entities interacting with

the ego vehicle. Next, users are prompted to indicate the location of these actors,

such as on a straight road or near a parking slot. This helps to specify the

environment in which the scenario takes place. The form also requires users to

define the initial actions the actors should take, which is important to establish a

clear starting point for the scenario, like “the ego vehicle drives along the road”.

Further, users can specify additional details or constraints that might impact

the ego vehicle’s behaviour, such as “the front vehicle slows down”, to introduce

dynamic conditions. Finally, users need to describe the actions the ego vehicle

takes in response to these conditions, such as “the ego vehicle slows down”, to

determine the expected behaviour of the ADS.
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Figure 6.7: Example MR results

After users define their scenarios, the OER organizes the user answers into the

complete scenario definition, following the template defined in Section 6.2.1.1.

Figure 6.6 shows the scenario generated after the user has submitted answers. It

uses a colour-coding system to differentiate various components of a test scenario,

enhancing the clarity and comprehension of the narrative. This method of colour

differentiation aids users in quickly identifying the critical sections of the scenario.

For instance, the yellow bold highlights the starting positions and states of the

actors, green underlines indicate their actions, and red italics draw attention to

special events that affect the behaviours of SUT, leading to the outcomes in blue.

This visual strategy not only simplifies the process of reviewing the scenario but is

also especially beneficial when generating MRs that require careful consideration

of how input variations influence the outcome. Located at the bottom of the

webpage are three interactive buttons. The first button allows for the generation

of example MRs directly tailored to the scenarios input by the user, designed to

follow the guidelines in Section 6.2.1.3. For those wishing to review or modify

their inputs, the second button redirects back to the scenario entry page. Lastly,

for additional guidance or to revisit the introduction of the concepts, the third

button links directly to the scenario introduction page.
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Table 6.1: Survey questions for assessing the OER

Section Q. No. Question Content Response Options

Content and Usability 1.1 How would you rate the relevance and clarity
of the OER content for learning about
metamorphic relations and test scenarios?

Excellent, Good, Fair,
Poor

1.2 How easy was it to navigate and use the
OER?

Very easy, Somewhat
easy, Neutral,

Somewhat difficult
Learning Outcome 2.1 After using the OER, how confident do you

feel in generating metamorphic relations and
test scenarios for autonomous driving
systems?

Much more confident,
Somewhat more

confident, Unchanged

Overall Satisfaction 3.1 Overall, how satisfied are you with the OER? Very satisfied,
Somewhat satisfied,
Neutral, Somewhat

dissatisfied
Additional Comments 4.1 Please provide any suggestions for improving

this OER.
Open-ended response

Once users choose the “Generate MRs” button, the OER calls a program on the

server to process the defined scenarios, and generate example MRs. Figure 6.7

shows a screenshot of the MRs generated by processing the scenario in Figure 6.6.

Users can choose to save the MR results into text files or go back to other pages

to explore other features.

6.2.6 Evaluating the OER’s Effectiveness

In a recent application of the OER, a group of ten testers, primarily students and

beginners to MT, were invited to try the OER. The participants were provided

with a survey (Table 6.1) to record their experience. The survey asked the par-

ticipants to assess the OER in three dimensions: content and usability; learning

outcome; and overall satisfaction. The key findings are summarized in Figure 6.8.

For the first part, Figure 6.8a shows that during a series of testing exercises, the

participants reported a notable improvement in their confidence to generate test

cases and identify relevant MRs. These beginners, unfamiliar with creating ro-

bust test cases, found the narrative, text-based approach of the scenario template

particularly beneficial. For instance, by prompting them to articulate “special

information that affects outcomes”, the template guided the testers to think crit-

225



6.2. DEVELOPING AN OER

(a) The confidence of users in generating MRs and test scenarios

(b) The ease of navigation and use of the OER

(c) The relevance and clarity of the OER content

Figure 6.8: The findings of the survey
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ically about the cause-and-effect relationships inherent in their scenarios. This

process not only aided in generating more precise MRs but also in facilitating a

deeper comprehension of the SUT.

For the second part (Figure 6.8b), most participants (90%) thought the OER was

easy to use and navigate. The flow of the contents allows them to learn the knowl-

edge in a step-by-step manner. Moreover, as shown in Figure 6.8c, the clarity

and relevance of the OER contents helped them to reduce the ambiguity during

the learning process. As a result, these users were able to construct detailed and

concrete test cases, where the results were confirmed by an experienced MT tester

with several years of expertise in both MT and ADSs.

Feedback gathered from this group indicated a significant enhancement in their

confidence and ability to apply MT techniques. The OER’s approach, combin-

ing theories and applications, proved instrumental in bridging the gap between

theoretical understanding and practical application for these beginners in MT.

In summary, the assessment of the OER with students demonstrated its effective-

ness in enhancing users’ confidence and ability to generate MRs and test scenarios

for ADSs. Given the successful applications of LLMs in MR generation and eval-

uation (the GPT-MR generator in Section 5.3.1.1 and the GPT-MR evaluator

in Section 4.3.3.2), and many existing products offer APIs2 for integration with

other applications, this OER can be enhanced by connecting to these customized

models. It would enable users to generate and evaluate MRs more efficiently,

thereby enhancing the educational impact of the website.
2An API (Application Programming Interface) is a set of rules and protocols that allows

different software applications to communicate and interact with each other, enabling them to
exchange data or functionality [26].
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6.3 Enabling Effective MR Generation by Stu-

dents with Limited Training

In addition to providing learning tools for MT, two studies were conducted on

educating students, with little to no prior experience in software testing or ADSs,

to generate MRs for a typical ADS function. The OER, alongside a short lecture

session, has been provided to students to explore their potential of generating

useful MRs within a limited timeframe. The generated MRs were evaluated by

several MT experts, and also compared with the ChatGPT-produced ones in

Chapter 4. The findings from that chapter indicated that while ChatGPT can

create effective MRs, there is still potential for improvement in their correct-

ness and innovation. Similar results were also anticipated for the students, as a

prior study [127] demonstrated that inexperienced testers with a small amount of

training can identify a sufficient number of MRs. These comparisons would help

highlight the strengths and weaknesses in the training of both human testers and

AI models, contributing to enhancing MT education.

6.3.1 Conducting a Pilot Study

In this section, a pilot study [248] is presented, which focuses on the potential

of novice testers to generate MRs for a critical ADS function: automated park-

ing [214]. The investigation centres on assessing the MRs with the evaluation

framework [247] proposed in Section 4.2.1 (CriteriaV 0). Given the limited expo-

sure of participants to MR generation and ADS functionalities, this study also

evaluates the educational strategies employed, focusing on their ability to teach

essential skills and foster confidence among novice testers. Furthermore, the

students-generated MRs were compared to those generated by ChatGPT (GPT-

3.5) in Section 4.2, which also assessed MRs for the automated parking function

using CriteriaV 0.
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6.3.1.1 Recruitment of Participants

This pilot study recruited four male and two female students via email invitations.

They were all novices in software testing, MT, and ADSs. All participants were

undergraduate students.

6.3.1.2 Study Design

The study was structured to introduce students to the concept and application

of MRs within the context of ADSs. The design consisted of a one-hour session

divided into two parts: a forty-minute lecture and a twenty-minute hands-on

workshop.

The initial lecture aimed to equip students with the necessary knowledge to under-

stand and generate MRs and scenarios related to ADS functions. It started with a

broad overview of ADSs using real-life examples, then delved into the challenges of

testing these intricate systems, introducing the concept of MT. Following a brief

explanation of essential concepts, students were instructed on creating and gener-

ating driving scenarios and MRs. The lecture detailed the fundamental elements

of driving scenarios and their utilization in the generation of MRs, supported by

various examples [175, 246, 250]. Since the lecture only took forty minutes, only

the necessary knowledge required to generate MRs for the workshop task was

taught, aiming to maximise efficiency.

Following this, the workshop provided a hands-on experience where students were

challenged to generate two MRs specifically for an ADS parking function, in

which they were provided with a paragraph describing its typical functionality

and usage to ensure their understanding of the SUT. Throughout the session,

students were encouraged to ask questions related to the lecture content to deepen

their understanding. However, to ensure the originality and unbiased nature of

the MRs generated, they were restricted from requesting hands-on instructions
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on tasks or example answers in the workshop. This approach aimed to prevent

instructor bias [29] from impacting the quality of the MRs produced.

The choice of the parking function as the focus for MR generation was strate-

gic. The parking function, being a task closely related to the everyday driving

experience, was considered to be more accessible and understandable for novice

testers compared to more complex ADS functions such as Adaptive Cruise Con-

trol3 (ACC) and Lane Keeping Assist4 (LKA). Additionally, the relatively closed

environment of a parking lot offered a more manageable setting for imagining and

designing scenarios.

6.3.1.3 Data Collection

Data collection involved gathering students’ generated MRs and their responses

on provided answer sheets. These sheets were structured to facilitate organized

thought and clarity in the generation of MRs. Each sheet was divided into sections

corresponding to the components of an MR, including the source scenario, input

relation, follow-up scenario, output relation, and their combinations [255]. The

purpose of structuring the answer sheets in this way was to guide the participant’s

thought process, taking them from comprehending the ADS parking function in a

practical setting to conceiving relationships among various scenarios. By dividing

the MR generation process into different parts, this structure attempted to reduce

the difficulty of MR generation while taking into account the students’ diverse

academic backgrounds and degrees of skill.
3Adaptive Cruise Control (ACC) automatically adjusts a vehicle’s speed to maintain a safe

distance from the vehicle ahead, enhancing comfort and safety during varying traffic condi-
tions [225].

4Lane Keeping Assist (LKA) actively helps to keep the vehicle centred within its lane,
providing steering corrections if the vehicle begins to drift unintentionally, thus reducing the
risk of lane departure accidents [207].
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6.3.1.4 Data Analysis

The analysis of the MRs and scenarios generated by the students employed the

CriteriaV 0 (Section 4.2.1). The evaluation was performed by a group of evalua-

tors (primarily the author), who are experts in the area. This pilot study used

CriteriaV 0 to compare student-generated MRs with those generated by GPT-3.5

for two main reasons:

1. Despite its limitations, GPT-3.5, available through the free version of Chat-

GPT, has demonstrated the ability to generate useful MRs [247]. This is

comparable to the performance of human beginners who have received only

brief instruction because both GPT-3.5 and novice students can produce

MRs that are functional but exhibit limitations, potentially due to their

limited training and experience (for GPT-3.5, it is the constraints of the

model architecture and training data [213]). By comparing the MRs gener-

ated by both, the strengths and weaknesses in the capabilities of each one

can be identified.

2. Existing analyses of GPT-3.5-generated MRs have used Criteria|V 0 for

assessment. Therefore, to directly compare the student-generated MRs with

those generated by GPT-3.5, the same criteria were adopted.

6.3.1.5 Quality of Students-Generated MRs

In the experiment, each of the six participating students was tasked with gener-

ating two MRs, resulting in a total of 12 MRs under evaluation. The MRs were

assessed using CriteriaV 0, with each criterion rated on a scale of 1 to 5.

Correctness The average score for the correctness criterion was 2.9, indicat-

ing that approximately half of the MRs encountered issues with correctness. The
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main issues revolved around weak or absent connections between the source and

follow-up scenarios, and unclear descriptions of certain elements of driving scenar-

ios, such as the precise actions of the ego vehicle during events. For instance, the

following is an example of the human-generated MR which has some problems:

“In the source scenario, at a crowded mall parking lot with only two

available parking spots (one big and one small). The ego car is small

and can fit in both spots. Soon another big car (B) comes in, which

can only fit in the big parking spot. And the ego vehicle has not driven

into the parking space.

In the follow-up scenario, the ego vehicle had better drive in the

smaller spot so another car (B) can fit into the bigger one. The SUT

can utilize all the space fully.”

There are two main problems with this MR: First, in the source scenario, the

event logic is not clearly shown: The reason why the ego vehicle does not drive

into the parking space and how this relates to the parking function is unclear.

Second, in the follow-up scenario, the input relation is unclear (i.e., how the

follow-up scenario is derived from the source scenario), and the relation between

the ego vehicle’s behaviour in the source and follow-up scenarios is not speci-

fied. Moreover, the description of the ego vehicle’s behaviour lacks specificity in

demonstrating the system’s decision-making processes. Instead, the expressions

attribute human-like decision-making to the vehicle (e.g., “the ego vehicle had

better drive into the smaller spot”), which diverges from the expected output

formats of an ADS, typically characterized by binary or clearly defined actions

(e.g., proceed with parking manoeuvre or abort).

Applicability The applicability criterion received an average score of 3.5, indi-

cating that several MRs demonstrated potential for practical testing applications.

One common problem with the generated MRs was that the description closely

232



6.3. ENABLING EFFECTIVE MR GENERATION BY STUDENTS WITH
LIMITED TRAINING

mirrored existing function specifications, making them more suitable for single-

scenario testing [211] rather than emphasizing the relationships among different

scenarios. However, a portion of the MRs demonstrated potential for testing

applications. An example of MRs in this context involved manipulating the po-

sitioning of obstacles around the parking spot. Specifically, it proposed swapping

the obstacles’ locations on either side of the designated parking space, and the

distance between the ego vehicle and the nearby obstacles was similar in both the

source and follow-up scenarios.

Novelty The evaluation under the novelty criterion yielded an average score of

2.3, indicating a general trend toward MRs with limited innovation. This obser-

vation aligned with the earlier discussion on applicability, where a portion of MRs

were similar to functional specifications, thereby constraining their potential to

provide new insights. Despite this trend, a few MRs stood out for their original-

ity, such as an MR exploring the effects of relocating a light source around the

parking spot to test the ADS’s parking angle consistency. The MR was about

placing the light ahead of the target spot in the source scenario and moving the

light to the back of the target spot in the follow-up scenario, where the angle

of the ego vehicle when it parked into the slot should have been similar in both

scenarios. This MR differed from typical obstacle-based tests and was innovative

in using the placement of lights to test the angle of the vehicle.

Clarity, Relevance to Safety, and Computational Feasibility These cri-

teria each received an average score of 2.8. A significant portion of the MRs

suffered from ambiguous descriptions and lacked a focus on safety aspects. For

instance, below is an example of the MRs generated:

“In the source scenario, the ego car is going to drive into the parking

lot with a lot of parking spots. In the follow-up scenario, suddenly,
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someone has fallen or tripped over a pack of fruit or other commodities

left in your parking spot. The ego vehicle stops and waits or drives

away to find a new parking spot.”

This MR had shortcomings in three aspects: First, in the source scenario, only the

initial behaviour of the ego vehicle was mentioned without detailing the ADS’s

interaction with the environment or other traffic participants. Second, the follow-

up scenario’s description of the ego vehicle’s action did not concretely outline the

ADS’s decision in response to the pedestrian hazard. The tester should have

specified a single action taken by the vehicle instead of presenting options such as

“stops and waits” or “drives away”, indicating a misunderstanding of the system.

This absence of detail decreased the MR’s utility in testing the ADS’s safety

mechanisms and presented challenges for accurately simulating or implementing

the MR in real-world tests. Third, the connection between the behaviours of the

ego vehicle in both the source and follow-up scenarios was unclear, making it

difficult to determine any violations of MRs during the experiments.

Overall Usefulness The overall usefulness criterion scored an average of 2.6,

reflecting a mixed assessment of the MRs generated by humans. This score reflects

the challenges faced in the generation of MRs, with a notable number being

either incomplete or inaccurately conceptualized, which consequently limits their

practical application in testing environments. Despite these limitations, it is

important to acknowledge that within the MRs evaluated, some MRs stood out

for their innovative approach and relevance, demonstrating potential value for

implementation in testing scenarios.

In summary, the findings indicated that ensuring the correctness of the MRs was

difficult for students due to challenges in accurately describing the actions and

events of the traffic participants, as well as weak connections between the source

and follow-up test scenarios within the same MR. Clarity, safety relevance, and

234



6.3. ENABLING EFFECTIVE MR GENERATION BY STUDENTS WITH
LIMITED TRAINING

Figure 6.9: Comparison of students-generated and ChatGPT-generated
(GPT-3.5) MRs

computational feasibility of the MRs were also areas of weakness, with many

MRs failing to provide clear, safety-focused, and realistically testable scenarios.

However, some MRs exhibit applicability that could be useful in practical testing.

Despite these challenges, some innovative MRs showed promise in uncovering

bugs.

6.3.1.6 Comparison of Student-Generated and ChatGPT-Generated

MRs

Figure 6.9 presents the comparison results of the MRs in this study with those

generated by GPT-3.5 from Section 4.2.

The clarity scores of MRs generated by human beginners and ChatGPT were sim-

ilar. Both groups produced MRs that were easily understood but closely aligned

with function specifications. This could have led to a lack of focus on the logi-

cal progression and connection between scenarios. Such connections are essential

for MRs to effectively test system responses across different scenarios [47]. In

terms of safety relevance, ChatGPT’s MRs slightly outperformed those of the

humans. This suggests that ChatGPT might be better at incorporating safety

considerations into MRs than human novices.

ChatGPT’s MRs were better in applicability, computational feasibility, and over-

all usefulness, possibly due to its extensive training on diverse datasets [222],

allowing it to generate more MRs that were well-tuned to existing specifications
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Table 6.2: Students’ feedback regarding ease of generating MRs

Ease of Generating MRs Percentage
Difficult: Had to overcome some challenges and occasionally
sought guidance. 17%

Moderate: encountered occasional challenges but managed to
navigate through. 33%

Easy: Found the process fairly straightforward with minimal
challenges. 33%

Very Easy: The process was intuitive and faced no significant
challenges. 17%

and systems. The slightly better correctness score for ChatGPT could have been

because it followed logical and real-world data patterns [222], an area where be-

ginners might struggle without extensive knowledge or experience.

Notably, despite their brief education on the subject, the human participants

managed to score higher than ChatGPT in the novelty criterion. This suggests

that even at a beginner level, there is a chance for humans to approach problems

with an innovative perspective, leading to testing scenarios that an AI may not

consider. This is impressive, given the complexity of MR generation and the

limited exposure to the subject matter.

The comparative analysis of the MRs indicates that although AI is capable of

producing MRs that are more technically precise and relevant, humans demon-

strate a remarkable ability for innovation, particularly after receiving only a short

introduction to the subject. This highlights the potential for growth and learning

among human participants, which could be enhanced through more comprehen-

sive training and learning materials.

6.3.1.7 Student Feedback on Learning and Practice

After generating the MRs, the students were encouraged to take a short self-

evaluation survey to report their experience in learning and generating MRs.

The self-evaluation surveys assessed students’ ease with which they generated
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Table 6.3: Students’ feedback regarding the confidence of generated MRs

Confidence in Generated MRs Percentage
Low: Slightly unsure about certain aspects of
the MRs. 17%

Moderate: Fairly confident, but see areas of potential improve-
ment. 33%

High: Very confident in most parts, with minor uncertainties. 33%
Very High: Extremely confident; certain about the quality and
effectiveness of the MRs. 17%

them and their confidence in their own MRs. The ease of MR generation ranged

from “Very Difficult” to “Very Easy”, indicating the students’ perceived difficulty

of the task and their need for assistance (Table 6.2). Confidence levels ranged

from “Very Low” to “Very High”, reflecting students’ trust in the quality and

applicability of their MRs (Table 6.3). These surveys aimed to evaluate the

effectiveness of the instructional methods and the student’s understanding of MR

generation.

According to the data in the tables, the diversity in the ease of MR generation

suggested that while some students found the methodology accessible, there was a

notable variation in how different students perceived the complexity of generating

MRs. The fact that 17% found the process “Difficult” points to a need for clearer

and more detailed instructions that can cater to a range of learning styles and

paces, ensuring that all students receive the support they need.

Confidence levels in the MRs produced indicated that while a substantial number

of students felt confident in their work, some students expressed reservations, with

17% indicating “Low” confidence. This split underscores the importance of rein-

forcing confidence-building in MR generation through practice and feedback. It

also highlights the potential for introducing peer review or collaborative learning

exercises where students can engage with and learn from each other’s approaches

and thought processes.

The variation in both ease of MR generation and confidence levels indicates that
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while the workshop’s one-hour timeframe was designed to maximize participa-

tion by not being overly time-consuming, it may have influenced the depth of

understanding for some students. In an empirical study exploring MT effec-

tiveness [127], it was demonstrated that inexperienced students with a longer

learning time (three hours) could deliver a sufficient number of appropriate MRs.

The decision to use a shorter timeframe in the research was made to attract

more participants and replicate situations where time is limited, such as brief

guest lectures, since longer sessions might discourage potential attendees. How-

ever, this decision may have implications for the thoroughness of the educational

experience, suggesting a trade-off between attracting participants and providing

extensive instruction. Meanwhile, the quality of MRs and the ease of the gen-

eration process are also dependent on the complexity of the SUT. In this study,

the ADS function might have been relatively more complex than the SUTs that

the students faced in the empirical study [127], which comprised five JAVA math

programs.

These self-evaluations indicated that, although the instruction in this pilot study

showed effectiveness, the teaching strategies still needed refinement. In the follow-

up study, the author improved instructional clarity by focusing on a detailed

scenario-generation process and incorporating practical examples, helping stu-

dents to overcome challenges and produce higher-quality MRs.

6.3.2 Expanding Research with a Follow-up Study

In this follow-up study, a larger number of participants (fourteen students) were

recruited, and the teaching materials were updated by addressing the weaknesses

of student-generated MRs revealed in the pilot study, while keeping the same

teaching time. The qualities of the new MRs generated by students were then

compared with those generated by GPT-4, using CriteriaV 1, which was also

used to evaluate the qualities of MRs by GPT-4 (Section 4.3.2). This approach
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aimed to validate the expected improvements in outcomes, based not only on the

enhanced training materials developed from the pilot study’s findings but also on

earlier results indicating that GPT-4 produces more effective MRs than GPT-3.5.

6.3.2.1 Updated Training Materials

In the updated training session, the content has been refined to better teach stu-

dents how to generate MRs based on insights from the pilot study. The new

training materials not only include the standard introduction to ADSs and MT

but also put a stronger emphasis on scenario construction and the general struc-

ture of MRs for ADSs. This structure includes key elements such as the source

scenario, input relation, follow-up scenario, and output relation. The structure

integrity of MRs was the weakness of the students-generated MRs in the pilot

study. The scenario template and its accompanying MR generation methodology

in the OER (Section 6.2.1) were also introduced in this training session.

Furthermore, the training process was enriched with more detailed examples of

MRs for ADSs, aiming to provide participants with clearer, practical illustra-

tions. More interactive elements to engage participants actively were incorpo-

rated. These activities were designed to facilitate brainstorming sessions about

real-life driving scenarios, which could be beneficial for the MR generation pro-

cess.

To keep the training session within the allocated time frame, the time spent on

introducing ADS concepts was decreased. The pilot study revealed that most par-

ticipants already possess varying degrees of knowledge about driverless vehicles,

likely due to the rapid advancements and widespread commercial advertising of

similar ADAS systems in recent years (e.g., Tesla’s Full Self-Driving (FSD) [14]).

This adjustment allows the training to focus more on the practical aspects of MR

generation within the time, ensuring that participants can apply what they learn
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Table 6.4: Comparative table of the follow-up and pilot study results

Criteria Follow-Up
Study Score

Pilot Study
Score (scaled)

Improvement

Completeness 1.0 N/A N/A

Correctness 2.1 1.74 20.69%

Generalizability 2.3 2.1 9.52%

Novelty 2.0 1.38 44.93%

Clarity 2.3 1.68 36.90%

Computational
Feasibility

1.9 1.68 13.10%

Applicability 2.1 1.68 25.00%

more effectively.

6.3.2.2 Comparison of MR Quality with Pilot Study Findings

The follow-up study used CriteriaV 1 for evaluation, which was different to the

pilot study (which used CriteriaV 0). To enable a comparison between the results

of the follow-up study and the pilot study, the pilot study marks were scaled: The

pilot study employed a 5-point evaluation scale for each criterion, whereas the

follow-up study used a 3-point scale. Consequently, the pilot study scores were

scaled to correspond with those of the follow-up study (given that CriteriaV 1

is more comprehensive than CriteriaV 0). With the updates of the evaluation

frameworks, the generalizability criteria scores from the follow-up study were

compared to the applicability criteria scores from the pilot study. Meanwhile, the

applicability criteria scores of the follow-up study were evaluated in relation to

the safety relevance criteria scores of the pilot study. The comparative results of

the MRs from both studies are presented in Table 6.4.

The follow-up study on student-generated MRs showed notable improvements

across several evaluation criteria compared to the pilot study. The analysis re-

vealed that the completeness of MRs scored a full mark (1.0), indicating that all
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essential components were present in the evaluated MRs. Although CriteriaV 0

does not have this criterion, as mentioned in the findings (Section 6.3.1.5), some

of the MRs lacked the necessary components to form an MR, such as the input

or the output relations between the source and follow-up scenarios.

In terms of correctness, the follow-up study achieved a score of 2.1 out of 3,

reflecting an improvement of 0.36 points (20.69%) from the pilot study’s scaled

score of 1.74. This enhancement can be attributed to the updated training sessions

that emphasized the correct formulation of the relations, which were previously

identified as weaknesses. By focusing on scenario construction and detailed ex-

amples, the training provided students with a clearer understanding of how to

ensure the correctness of their MRs. For instance, Table 6.5 displays two MRs

created by students from the pilot study and the follow-up study. Both MRs

include the scenario of another vehicle parking ahead of the ego vehicle during

the auto-parking stage. By comparing the two MRs, it is evident that the MR

from the pilot study lacks clear input and output relations between the source

and follow-up scenarios: The transition between the inputs of both scenarios is

vague. In other words, the “scenario initialization” element (defined in the sce-

nario template of the OER in Section 6.2.1) is missing in the follow-up scenarios,

making the follow-up scenario incomplete. Furthermore, the scenario outputs

(i.e., ego behaviours) are not compared between the two scenarios. In contrast,

the MR from the follow-up study clearly shows the difference between the source

and follow-up scenarios while also comparing the scenario outputs with a defined

relationship. Although this MR has other areas for improvement, it includes the

correct and necessary components of an MR for ADSs.

Generalizability in the follow-up study was rated at 2.3, slightly outperforming

the 2.1 score in the pilot study with a 9.5% improvement. The improved general-

izability reflects the emphasis on the general structure of MRs for testing ADSs

in the training. Practical examples and interactive brainstorming sessions helped
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Table 6.5: Correctness comparison between the pilot study and the follow-up
study

MR from the pilot study MR from the follow-up study

“At a crowded mall parking lot with
only two parking available parking
spots (one big and one small). The
ego car is small and can fit in both
spots. Soon another big car (B)
comes in, which can only fit in the
big parking spot. And the ego
vehicle has not driven into the
parking space. In the follow-up
scenario, the ego vehicle had better
drive in the smaller spot so another
car (B) can fit into the bigger one.
The SUT can utilize all the space
fully.”

“In the source scenario, spawn ego
vehicle in a mall parking lot, driving
along a parking lane with one open
space on the right. Another vehicle
is driving towards ethe go vehicle in
the same lane. The other vehicle
slows down, let the ego vehicle reach
the open space first. The ego vehicle
turns right, and parks in the open
space. In the follow-up scenario, the
other vehicle speeds up, and reaches
the open space first. ego vehicle
should stop, let the other vehicle
finish parking, and then search for
open space. The follow-up scenario
output is the opposite of the source
scenario output.”

participants think more broadly about applying their MRs across different SUTs,

enhancing the adaptability of their generated MRs.

Novelty gained a significant improvement, scoring 2.0 in the follow-up study,

which represents an increase of 0.62 points (44.93%) from the pilot study’s scaled

score of 1.38. The inclusion of more practical illustrations and interactive brain-

storming sessions in the training helped students generate more innovative and

unique MRs. The emphasis on real-life driving scenarios and the structure of MRs

facilitated the creation of new input/output relations. Section 6.3.2.4 provides a

detailed examination of such innovative MRs.

Clarity also improved, with a score of 2.3 in the follow-up study, up by 0.62

points (36.90%) from the pilot’s 1.68. The reduction in time spent on intro-

ductory ADS concepts allowed the training to concentrate more on MR usage

and structures, making the MRs more comprehensible to individuals with ba-

sic knowledge of the field. This approach ensured that students could produce
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Table 6.6: Clarity comparison between the pilot study and the follow-up study

MR from the pilot study MR from the follow-up study

“In the source scenario, the ego car
is going to drive into the parking lot
with a lot of parking spots. In the
follow-up scenario, suddenly,
someone has fallen done or tripped
over a pack of fruit or other
commodities left in your parking
spot. The ego vehicle stops and
waits or drives away to find a new
parking spot.”

“In the source scenario, the ego
vehicle is trying to park in the slot.
A human walks before the ego
vehicle. The ego vehicle does not
stop and continue parking. In the
follow-up scenario, the human walk
after the ego vehicle. The ego
vehicle should stop.”

clearer and more accessible MRs. Table 6.6 shows a comparison of MRs from

the pilot study and the follow-up study. Both MRs describe similar scenarios

involving human interaction with the ego vehicle during the parking stage. In the

MR from the pilot study, the follow-up scenario’s description of the ego vehicle’s

action/decision is unclear. For example, it presents an ambiguous choice between

“stops and waits” and “drives away”, which fails to specify a final decision made

by the ADS. In contrast, the MR from the follow-up study provides a clearer

and more concise description of the scenarios, along with well-defined input and

output relations, which also reflects the effectiveness of the updated training ma-

terials to let students have a deeper understanding of the ADS mechanisms. This

clarity ensures that the MR is easily understandable and accurately represents

the intended behaviour of the ADS.

Computational feasibility had a smaller improvement relative to the pilot

study, scoring 1.9 compared to the pilot study’s scaled score of 1.68, an increase

of 0.22 points (13.10%). The updated training emphasized practical aspects in-

volving generating source test cases and MRs, which made these concepts more

accessible and easier to implement for the students.

Finally, the applicability of the MRs in the follow-up study, when compared to

the pilot study’s “relevance to safety” criterion, improved by 0.42 points (25.00%),
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from a scaled score of 1.68 to 2.1. The emphasis on scenario construction and

the specific examples used during training, which focused on real-world driving

situations and practical applications, ensured that the MRs were more relevant

and useful for a larger group of SUTs.

In summary, the follow-up study indicates significant improvements in all areas

due to enhanced training methods. Emphasizing practical examples and tack-

ling weak points helped to improve the quality and applicability of the student-

generated MRs.

6.3.2.3 Comparison of MR Quality between Human Beginners and

GPT-4

As outlined in Section 4.3.4, ChatGPT, especially GPT-4, can produce MRs that

are complete, relevant, and generalized for complex systems while there is po-

tential for improvement in originality and accuracy. This aligns with the results

from student-generated MRs. Since both the human and ChatGPT produced

MRs target the same type of ADS function, the following comparison was con-

ducted on the quality of the MRs between the two, where Table 6.7 displays the

scores for human-generated and GPT-generated MRs across each criterion, with

the bold value indicating the higher score.

In terms of completeness (1.0), both human- and GPT-4-generated MRs con-

tained all essential components for an MR. The same mark was also found in

correctness (2.1), indicating that the input and output relations correspond well

with the specifications of the SUT. This comparison suggested that the enhance-

ments in training have raised the accuracy of human-generated MRs to a level

similar to those generated by GPT-4, although not all MRs were completely ac-

curate. Clarity was another area where both human- and GPT-4-generated MRs

scored equally (2.3). Both sets of MRs were understandable to a broad audience,
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Table 6.7: Evaluation comparison table of MRs between students and GPT-4

Evaluation Criteria Human MRs
(Follow-up Study)

GPT-4 MRs

Completeness 1.0 1.0

Correctness 2.1 2.1

Generalizability 2.3 2.7

Novelty 2.0 1.8

Clarity 2.3 2.3

Computational Feasibility 1.9 2.0

Applicability 2.1 2.9

Total Score 13.7 14.6

including individuals with a basic understanding and domain experts. This clar-

ity ensured that the MRs could be effectively communicated and used by various

stakeholders involved in the testing process.

Notably, the gap in novelty between GPT-4 (1.8) and human-generated MRs

(2.0) is smaller than in the previous pilot study (1.0 vs 2.3), while the novelty

of the MRs in the follow-up study has also increased compared to the previous

study. This aligns with the observations found in Section 4.3.1 that GPT-4’s

ability to generate innovative MRs has greatly improved compared to GPT-3.5,

making its MRs almost as novel as those created by human beginners.

Additionally, GPT-4 exhibits obvious strengths in several areas. GPT-4-

generated MRs were more generalizable (2.7) compared to human-generated

MRs (2.3). This suggested that GPT-4 could produce MRs that were applicable

to a broader range of SUTs, demonstrating greater adaptability and versatility.

In terms of computational feasibility, GPT-4 maintained a slight advan-

tage (2.0) over human-generated MRs (1.9). The results indicated that GPT-

4-generated MRs were easier to automate in test case generation and validation

processes.
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Applicability was another area where GPT-4 outperformed, scoring 2.9 com-

pared to 2.1 for human-generated MRs. GPT-4-generated MRs showed a stronger

relevance to the key features of the SUT, indicating a deep understanding and

alignment with the unique characteristics and behaviours of the SUT, making

these MRs effective for targeted testing scenarios.

In summary, while both human- and GPT-4-generated MRs scored the same in

completeness, correctness, and clarity, GPT-4-generated MRs have advantages in

generalizability, computational feasibility, and applicability. Although these MRs

were less novel than human-generated ones, the gap has significantly narrowed

compared to GPT-3.5 in the pilot study. The training improvements have also

brought the correctness of human-generated MRs closer to the GPT, compared

to the results in the pilot study.

Despite these improvements, GPT still struggles with generating highly creative

and original MRs that require deep insights or unique ideas. To address this,

the training of LLMs should include a wider range of diverse MRs and their

applications across various fields. Future research could also explore techniques

and frameworks that blend structured guidance with human feedback to enhance

the novelty of the generated MRs. Furthermore, teaching students skills such as

prompt engineering and MR selection will help them collaborate effectively with

AI to merge human insight with the strengths of LLMs.

6.3.2.4 Unique Features of the Human-Generated MRs

Among the MRs generated in the follow-up study, students demonstrated a re-

markable ability to incorporate realistic, everyday scenarios into their MRs, which

is a unique advantage that has not been found in AI-generated MRs. This ability

reflects their understanding of common driving situations, adding variety to the

simulation testing. The personal experiences and observations allowed students
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to create more natural and comprehensive scenarios that better simulate the un-

predictability and variety of real-world driving conditions. It not only enhances

the novelty and applicability of the MRs but also ensures that the ADSs are eval-

uated against a broader range of challenges, which leads to more reliable and safer

systems. The following contents highlight some of the key innovative features of

the students-generated MRs.

1. Passenger Interaction:

• Innovative element within the scenario: Passengers get off from

another vehicle next to the parking space.

• Rational: This scenario is rarely seen in typical testing scenarios for

parking, which usually focus on the behaviours of the ego vehicle. By

including the behaviour of passengers from another vehicle, this MR

introduces additional real-world dynamics and safety considerations,

requiring the ego vehicle to respond to unpredictable human actions

from other traffic participants, thus improving the robustness of the

testing.

• Example:

“In the source scenario, spawn the ego vehicle in a mall park-

ing lot, with one open space on the right. ego vehicle is driving

along the parking lane. The ego vehicle turns right, and parks

in the empty slot. In the follow-up scenarios, keep other con-

ditions unchanged. The passengers in the car right next to the

empty space are currently getting off. The ego vehicle should

wait till all passengers leave the open space, then turn right,

and park in the empty space. The source scenario output is a

subset of the follow-up scenarios.”

2. Snatch Parking Space
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• Innovative element within the scenario: The ego vehicle attempts

to park, but another car parks in the slot first.

• Rational: This element demonstrates competitive and aggressive

parking behaviours often seen in real-life situations. Such behaviours

are less commonly seen in existing scenarios, which tend to focus on

more predictable and cooperative interactions. By introducing these

real-world competitive behaviours, human-generated MRs highlight

the need for the ADS to handle complex, real-time decision-making

and adapt to more adversarial driving conditions.

• Example:

“In the source scenario, spawn ego vehicle in a mall parking

lot, driving along a parking lane with one open space on the

right. Another vehicle is driving towards the ego vehicle in the

same lane. The other vehicle slows down, let the ego vehicle

reach the open space first. The ego vehicle turns right, and

parks in the open space. In the follow-up scenario, the other

vehicle speeds up and reaches the open space first. The ego

vehicle should stop, let other vehicles finish parking, and then

search for open space. The follow-up scenario output is the

opposite of the source scenario output.”

3. Decision-Making in Parking

• Innovative element within the scenario: The ego vehicle decides

between a nearby tight parking spot and a distant, spacious one.

• Rational: This element highlights the ability of the ego vehicle to

evaluate and prioritize parking options, which simulates a common

decision-making process drivers face. It adds complexity by requir-

ing the vehicle to balance convenience and practicality, enhancing the

MR’s depth and applicability.
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• Example:

“In the source scenario, there is a tight parking space between

two cars. The ego vehicle will detect the tight parking area and

steer itself into the space. In the follow-up scenario, there is

another parking area. The second parking area is much easier

for the ego vehicle to park, because there is nothing around

the second place. But the location is far away from the car,

such as 10 meters. The ego vehicle should still choose the first

parking area it detected.”

4. Dynamic Parking Conditions

• Innovative element within the scenario: An elevated car parking

slot that suddenly moves.

• Rational: This element introduces complexity with moving parts in

a parking environment, similar to mechanical failures or adjustments.

Elevated car parking slots are less common to find in real-life and

testing, making this scenario unique. It tests the ego vehicle’s ability

to adapt to unexpected changes in its environment, a critical capability

for real-world autonomous systems. This ensures that the vehicle can

safely handle dynamic and potentially hazardous conditions, thereby

improving the reliability and safety of the system.

• Example:

“In the source scenario, the ego vehicle is going to park in a

slot in an elevated car parking slot. Suddenly the slot begins

to move, and the ego vehicle stops. In the follow-up scenario,

the moving slot has been fixed, and the ego vehicle continues

to park in the slot.”

5. Spatial Awareness Challenges
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• Innovative element within the scenario: Car doors open into the

parking slot, blocking the ego vehicle.

• Rational: This element emphasizes the need for spatial awareness

and adaptability when faced with dynamic obstacles. Such type of

scenarios is rarely found in existing scenarios, which typically view

other vehicles as whole, static entities without focusing on moveable

elements like doors. This limitation often arises because simulating

individual components adds complexity and variability, making the

scenarios harder to control and replicate. By including such elements,

human-generated MRs test the ego vehicle’s ability to navigate around

dynamically changing obstacles, reflecting real-world parking lot chal-

lenges where surrounding vehicles can create unexpected obstructions.

• Example:

“In the source scenario, the ego vehicle is going to park in an

empty slot. Suddenly the car next to the slot has opened its

door on the side close to the target slot, and invaded the target

slot. The ego vehicle stops parking accordingly. In the follow-

up scenario, change the door to another side of the car, and

the ego vehicle successfully parks in the slot.”

In summary, the ability of students to incorporate realistic, dynamic, and com-

plex scenarios into their MRs reflects their intuitive understanding of real-world

situations. These innovative elements enhance the relevance and applicability of

their MRs, which demonstrates the human advantage in designing and transform-

ing a broader range of real-life variables and interactions, adding significant value

to the testing process.
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Chapter 7

Discussion and Conclusion

Figure 7.1 illustrates the relationships between contributions and their role in

achieving the thesis’s ROs. This thesis examines the challenges and solutions

related to the oracle problem in ADS testing through MT, focusing on both

ADSs and simulators, as addressed in RO1 (Examine the effectiveness of MT

for ADS testing, involving ADS and AD simulators). The initial application of

ME on the Baidu Apollo ADS enhanced the understanding of the ADS mecha-

nisms and MT familiarity, demonstrating ME’s value in educating SQA profes-

sionals. It also inspired MT experiments on the object-detection algorithm of

the perception-camera module, where adjusting brightness in scenarios revealed

conflicting obstacle-detection results, addressing the oracle problem in validating

complex ADS modules. Furthermore, acknowledging the importance of reliable

simulation data in ADS testing, the research extended MT to evaluate AD sim-

ulators from NIO and CARLA. The experiments uncovered issues in the built-in

functions and performance limitations, highlighting MT’s effectiveness in validat-

ing simulation platforms to ensure ADS development accuracy.

To address the challenges of constructing test cases and generating MRs (RO2:

Tackle the challenge of MR generation, especially for beginners and testers in new

systems), the thesis introduces a structured test case template with MR genera-
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Figure 7.1: Connections among contributions and ROs

tion methodology to simplify scenario creation for beginners. The introduction

of the MRPs and MRIPs provided diverse templates for various testing scenarios,

reducing MR generation complexity and allowing testers to focus on identifying

and resolving system defects. Additionally, the integration of LLMs like GPT-3.5

and GPT-4 further reduced barriers to MT. These models were proven capable of

effectively generating high-quality MRs. This approach simplified MR generation,

allowing less experienced testers to participate more easily and efficiently. Com-

parisons with human-generated MRs showed comparable performance, proving

LLMs as valuable tools.

To enhance MT efficiency in ADS testing (RO3: Enhance MT efficiency by au-

tomating and regulating the process of ADS testing, while also lowering the entry

barriers for beginners using MT ), the thesis introduces various frameworks and

tools. An ADS-based MT harness streamlined testing procedures, minimizing

manual effort and improving test management. A scenario-based MT framework

was developed to integrate ME and MT processes, covering the entire testing

cycle from test case generation to result validation. Both frameworks were vali-

dated through industry case studies. A human-AI hybrid MT framework was also
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proposed to combine human expertise with AI-driven automation by integrating

LLMs for MR generation with human oversight for MR selection and refinement.

It also allowed test automation by integrating multiple modules designed specifi-

cally for the assessment of the simulator performance. Finally, the development

of an OER significantly promoted MT and simplified ADS testing. It provided

clear instructions and tools to streamline scenario creation and MR generation,

lowering entry barriers. This fostered a better understanding of MT principles

and encouraged broader adoption in practical applications.

In summary, this research has made meaningful advancements in the domain

of MT for ADS testing, and has successfully met the ROs outlined in the In-

troduction Chapter. By addressing key challenges in MR generation and MT

application, and by integrating innovative technologies such as LLMs, the thesis

lays a foundation for more robust and efficient testing practices. The method-

ologies and tools developed not only enhance testing efficiencies but also provide

a roadmap for future research aimed at ensuring the safety and reliability of

complex autonomous systems.

7.1 Addressing the Research Questions

The following contents summarize the work performed in this PhD project to

address the RQs outlined in the Introduction of the thesis (Section 1.2).

RQ1. How can MT be effectively applied in ADS testing to uncover

anomalies and enhance system understanding?

In the Baidu Apollo ADS experiments, MT was successfully applied to

uncover anomalies and enhance system understanding. In the ME prac-

tice on the perception and localization modules of the Baidu Apollo ADS

(Section 3.2), the insights gained from ME not only contribute to a deeper
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understanding of the ADS but also suggest the potential use of ME ex-

periences in teaching and training SQA professionals. Furthermore, the

findings from ME serve as a foundation for the subsequent MT experi-

ments, in which the author applied MT on the object-detection algorithm

of the perception-camera module (Section 3.3.3). The experiments re-

vealed conflicting obstacle-detection results by raising the brightness of a

specific part of the driving scenarios, both in individual and sequential

frames, demonstrating the ability of MT to address the oracle problem

when validating the perception module of ADSs.

During the experiments of testing ADS, it is sometimes difficult to deter-

mine the origin of the anomalies: Whether it comes from the ADS or the

simulator. Therefore, the author realized that ensuring the validity of AD

simulators was also important in the overall testing process of ADSs, and

it was an area that has been relatively underexplored in the MT testing

domain. Experiments on the NIO AD simulator (Section 5.2.3) demon-

strated that MT was effective in identifying various issues within the simu-

lator, thus addressing the oracle problem in AD simulator testing. Subse-

quent experiments on the CARLA simulator (Section 5.3), implementing

the MRPs proposed in NIO simulator testing, identified four major bugs

linked to the simulator’s built-in functions and performance. These find-

ings underscore the importance of validating simulators to ensure reliable

ADS testing outcomes, highlighting that MT can be systematically ap-

plied to uncover hidden issues and improve the robustness and accuracy

of AD simulators.

In summary, by covering both ADSs and AD simulators, the two most

significant areas in ADS testing [110], the experimental results successfully

demonstrate the effectiveness of MT in this domain.

RQ2. How can the difficulty of generating MRs be reduced to assist

beginners and testers in understanding and testing new systems?
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MR generation is a critical challenge in MT, specifically for beginners and

new testers to the system [123]. To address this issue, the author proposed

a series of approaches to regulate and streamline the MR generation pro-

cess for testing ADSs and simulators, including guidelines, patterns, and

integration with new technologies.

The MR generation methodology, along with a test case generation tem-

plate for ADSs included in the OER (Section 6.2.1), can both simplify

the initial steps in scenario creation and reduce the difficulty of generating

MRs, making it more efficient and understandable, especially for begin-

ners who are unfamiliar with MT and testing ADSs. The methodology

includes four equations that explain the relationships between the MR

and test scenarios, outlining the logic for generating MRs without needing

prior knowledge of the MR generation process. Additionally, three MRPs

and MRIPs were proposed for the purpose of testing the AD simulator

and ADSs (Section 5.2.1). These MRPs/MRIPs were able to generate a

substantial number of MRs and reveal a number of defects during testing.

An MR generation instruction on the usage of MRPs is also provided to

reduce the difficulty of using MRPs.

With the fast development of LLMs, this thesis examines their effectiveness

in reducing the difficulty and complexity of generating MRs, especially for

beginners and new testers. The exploration with ChatGPT, specifically

GPT-3.5 and GPT-4, demonstrates it could significantly simplify the MR

generation process for MT (Sections 4.2 and 4.3). Evaluations reveal that

these AI-driven methods produce high-quality MRs tailored to ADS func-

tions, with a customized GPT-MR evaluator performing comparably to

human evaluators, showing AI’s potential to enhance MT practices. Com-

parisons with MR generation by students (Section 6.3) further underscore

that LLMs can effectively support those struggling with MR generation,

making them valuable tools for helping novices improve their understand-
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ing of the system.

RQ3. How can MT usage in ADS testing be simplified to increase

efficiency and lower adoption barriers?

During the testing of the Baidu Apollo ADS, the author proposed an

ADS-based MT harness to facilitate the testing of ADSs (Section 3.3.2),

which would increase efficiency and help testers better organize the testing

procedure. An industry case study to illustrate its usage in the actual

production phases is also presented. This test harness can not only benefit

testers by increasing their productivity when testing ADSs, but the case

study can also raise awareness of the additional human efforts wasted

during the testing-preparation phase.

In addition, to regulate and simplify the testing process of MT for AD

simulators, the author proposed a scenario-based MT framework that

integrates both ME and MT processes (Section 5.2.2). The framework

encompasses the entire testing cycle, from test-case generation to result

validation. Its self-evolving design allows testers to iteratively refine test

cases and MRs while enhancing their understanding of the system until

system defects are revealed. This approach can significantly reduce the

time and effort needed to prepare for testing a new system. The author

also presents an industry case study to illustrate the framework’s strengths

and limitations and suggests areas for further enhancement.

To leverage the effectiveness of LLMs in streamlining MT, a human-AI

hybrid MT framework was proposed (Section 5.3.1). This framework com-

bines human input with AI automation to generate and refine MRs, which

involves a GPT-MR generator, a customized GPT designed with the MRPs

outlined in this thesis, capable of producing MRs based on user specifi-

cations. MT experts select and refine these MRs, which are then fed

into a test harness that automates the testing process, including test case

generation and execution. The program interface allows users to input pa-
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rameters that trigger specific functions, such as generating follow-up test

scenarios and executing multiple scenarios sequentially. It can also create

vehicle control sequences for managing vehicle movements in simulations.

The harness consists of five internal modules, each dedicated to executing

and creating scenarios for different MRs.

Finally, the author developed an OER (Section 6.2) to help lower the

learning and application barriers of MT for students, testers, and SQA

professionals who are new to MT and testing ADSs. It contains instruc-

tions and tools to simplify the steps in scenario creation, making MR

generation more efficient and understandable for beginners. It not only

bridges the knowledge gap but also fosters a deeper understanding of MT

principles and their application in real-world scenarios.

7.2 Recommendations for Future Work

The following recommendations may guide future work based on this thesis:

1. Enhance the applications of MT on other ADSs and AD-related

platforms: This thesis involves MT on the ADS and AD simulators (Chap-

ters 3 and 5), as in the context of ADS testing. However, there are other

systems contributing to ADS validity that remain underexplored by MT.

For instance, communication systems that encompass Vehicle-to-Everything

(V2X) technology [238]. These systems allow ADS-equipped vehicles to

communicate with other road users and infrastructures. MT could test the

reliability of ADS in handling communication-related scenarios by intro-

ducing variations in V2X data, which would test the system’s adaptability

and robustness. For instance, testing conflicting V2X signals from different

sources, like two vehicles reporting differing road conditions, could test the

ADS’s capacity to prioritize or merge data accurately.
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2. Enhance the framework proposed in this study: This thesis has pro-

posed various frameworks and guidelines designed to enhance MT efficiency

and simplify the generation of MRs, as detailed in Section 7.1. Although

these approaches targeted ADS testing, future work could adapt them to

other ADSs and software. This would enhance testing efficiency by mini-

mizing manual efforts, allowing users to identify limitations and opportuni-

ties for refinement. Some frameworks may even be combined to provide a

more general and streamlined user experience. For instance, integrating the

ADS-based test harness into the human-AI hybrid MT framework could ex-

tend its applicability to both ADS and AD simulators. With AI-driven MR

generation capabilities, this integration would make the framework more

powerful in enhancing testing efficiency and accuracy.

3. Enhance MRPs/MRIPs to cover a wider range of MRs and im-

prove applicability to various SUTs: The proposed MRPs/MRIPs are

a significant contribution of this thesis (Section 5.2.1). While initially de-

signed for ADS testing, the exploration in Section 5.3.6.3 has shown the

potential of the LLM configured with these MRPs to generate MRs for

other application domains. Therefore, future work could enhance their

adaptability and generalizability by testing the MRs derived from these

MRPs/MRIPs on SUTs across different domains and refining them based

on the results [132].

4. Improve the MR generation strategy on the using the LLMs: In

Section 4.2.2.3, efforts of using prompt-engineering to improve the quality of

ChatGPT’s answers have been introduced. Although it is proven effective,

this approach is relatively brief and requires users to have a foundational

understanding of MT and some experience. Therefore, future work could

focus on developing a systematic guideline for interacting with LLMs using

minimal prompts to enhance MT application. This thesis has introduced

two customized GPT models, a GPT-MR evaluator (Section 4.3.3.2) and a
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GPT-MR generator (Section 5.3.1.1). Future work could focus on integrat-

ing these models to automatically generate and select the effective MRs. For

instance, developing an expert system that covers the entire MT cycle could

significantly simplify the learning process and enhance testing efficiency.

5. Connect LLMs with the OER introduced in this thesis: In align-

ment with OER principles (open access, collaboration and sharing) [206],

the source code of the website in Section 6.2 is available as open-source on

GitHub. Given the powerful capabilities of LLMs to help users grasp new

concepts quickly [213], and many existing products offer APIs [26] for inte-

gration with other applications, future work could work on connecting the

website to the GPT models introduced in this thesis. This would enable

users to efficiently generate and assess their MRs, enhancing the educational

impact of the website.

6. Conduct a systematic quantitative analysis comparing GPT-

generated and human-derived MRs: This thesis has demonstrated

the effectiveness of GPT-driven MR generation (Section 5.3), yet quantita-

tive comparisons between GPT-generated and human-derived MRs remain

underexplored. Future work could systematically evaluate these MRs using

metrics such as fault-detection rates, improvements in test coverage, and the

ability to reveal previously undetected faults. Conducting such an analysis

would provide users with a more comprehensive understanding of both MR

generation techniques, enhancing guidance in teaching MR generation, im-

proving strategies for training LLMs, and exploring possibilities to combine

the strengths of AI-driven and human-driven approaches.
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Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev

Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,

Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantu-

liano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Pas-

sos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Bel-

bute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael,

281



Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power,

Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya

Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross,

Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,

Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John

Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,

Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,

Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang

Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya

Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet,

Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry

Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,

Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben

Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter

Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens

Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,

Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming

Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang,

Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Bar-

ret Zoph. “GPT-4 technical report”. In: arXiv preprint arXiv:2303.08774

(2023).

[152] Thomas J. Ostrand and Marc J. Balcer. “The category-partition method

for specifying and generating fuctional tests”. In: Communications of the

ACM 31.6 (1988), pp. 676–686.

[153] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex

Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie

Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and

Ryan Lowe. “Training language models to follow instructions with human

282



feedback”. In: Proceedings of the 36th International Conference on Neu-

ral Information Processing Systems (NIPS ’22). New Orleans, LA, USA:

Curran Associates Inc., 2024, pp. 1–15. isbn: 9781713871088.

[154] Ya Pan, Haiyang Ao, and Yong Fan. “Metamorphic Testing for Au-

tonomous Driving Systems in Fog based on Quantitative Measurement”.

In: 2021 IEEE 21st International Conference on Software Quality, Relia-

bility and Security Companion (QRS-C). 2021, pp. 30–37. doi: 10.1109/

QRS-C55045.2021.00015.

[155] Jon Perez-Cerrolaza, Jaume Abella, Markus Borg, Carlo Donzella, Jesús
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Appendix A

Example Conversations to

Enhance Prompts with ChatGPT

1. User: Give me five metamorphic relations (MRs) for testing the

parking module of autonomous driving systems (ADSs)

ChatGPT: Sure, here are five MRs for testing the parking module of au-

tonomous driving systems:

• MR1: Change in starting position - This MR involves changing

the starting position of the car before parking. The expected behaviour

is that the car should be able to detect the new position and park

accordingly.

• MR2: Change in parking spot size - This MR involves changing

the size of the parking spot. The expected behaviour is that the car

should be able to adjust its parking manoeuvre to fit in the new spot

size.

• MR3: Change in parking lot layout - This MR involves changing

the layout of the parking lot. The expected behaviour is that the car

should be able to detect the changes and adjust its parking manoeuvre
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accordingly.

• MR4: Change in obstacle position - This MR involves changing

the position of obstacles in the parking lot. The expected behaviour is

that the car should be able to detect the new position of the obstacles

and park accordingly.

• MR5: Change in weather conditions - This MR involves changing

the weather conditions, such as rain or snow. The expected behaviour

is that the car should be able to adjust its parking manoeuvre to

account for the slippery surface or reduced visibility.

2. User: You should include the input relations and output relations

for each MR.

ChatGPT: Sure! Here are the input relations, output relations, and ex-

pected behaviours for each of the five MRs I listed previously for testing

the parking module of autonomous driving systems:

• MR1: Change in starting position

– Input relation: Starting position of the car

– Output relation: Final parking position of the car

– Expected behaviour: The car should detect the new starting

position and park accordingly, resulting in a final parking position

that is appropriate for the new starting position.

• MR2: Change in parking spot size

– Input relation: Size of the parking spot

– Output relation: Final parking position of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to fit in the new spot size, resulting in a final parking

position that is appropriate for the new spot size.

• MR3: Change in parking lot layout
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– Input relation: Layout of the parking lot

– Output relation: Final parking position of the car

– Expected behaviour: The car should detect the changes in the

parking lot layout and adjust its parking manoeuvre accordingly,

resulting in a final parking position that is appropriate for the new

layout.

• MR4: Change in obstacle position

– Input relation: Position of obstacles in the parking lot

– Output relation: Final parking position of the car

– Expected behaviour: The car should detect the new position

of the obstacles and park accordingly, resulting in a final parking

position that is appropriate for the new obstacle position.

• MR5: Change in weather conditions

– Input relation: Weather conditions

– Output relation: Final parking position of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the slippery surface or reduced visibility

due to the changed weather conditions, resulting in a final park-

ing position that is appropriate for the new conditions.

3. User: The input relation and output relation for each MR are

vague. State the changes among inputs and the relations among

outputs more clearly.

ChatGPT: Sure! Here are the more specific input relations and output

relations for each MR for testing the parking module of autonomous driving

systems:

• MR1: Change in starting position
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– Input relation: The initial position (x,y) of the car before park-

ing

– Output relation: The final parking position (x’,y’) of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the change in the initial position and park

accordingly, resulting in a final parking position that is appropri-

ate for the new starting position.

• MR2: Change in parking spot size

– Input relation: The size of the original parking spot (length,

width)

– Output relation: The final parking position (x’,y’) of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to fit in the new spot size, resulting in a final parking

position that is appropriate for the new spot size.

• MR3: Change in parking lot layout

– Input relation: The original and new parking lot layouts

– Output relation: The final parking position (x’,y’) of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the changes in the parking lot layout and

park accordingly, resulting in a final parking position that is ap-

propriate for the new layout.

• MR4: Change in obstacle position

– Input relation: The original and new position (x,y) of obstacles

in the parking lot

– Output relation: The final parking position (x’,y’) of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the new position of the obstacles and park
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accordingly, resulting in a final parking position that is appropri-

ate for the new obstacle position.

• MR5: Change in weather conditions

– Input relation: The original and new weather conditions, such

as rain or snow

– Output relation: The final parking position (x’,y’) of the car

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the slippery surface or reduced visibility

due to the changed weather conditions, resulting in a final park-

ing position that is appropriate for the new conditions.

4. User: the expression “resulting in a final parking position that is

appropriate for the new conditions” is vague. Make it clearer for

each MR

ChatGPT: Certainly! Here are the updated expected behaviours for each

MR that make the final parking position more specific:

• MR1: Change in starting position - The car should adjust its

parking manoeuvre to account for the change in the initial position

and park accordingly, resulting in a final parking position that is ap-

propriate for the new starting position. For example, if the starting

position is closer to the edge of the parking lot, the final parking po-

sition should be adjusted to avoid hitting any objects or pedestrians.

• MR2: Change in parking spot size - The car should adjust its

parking manoeuvre to fit in the new spot size, resulting in a final

parking position that is appropriate for the new spot size. For example,

if the parking spot is larger, the car should park closer to the centre

of the spot to avoid leaving too much space on either side.

• MR3: Change in parking lot layout - The car should adjust its

parking manoeuvre to account for the changes in the parking lot lay-
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out and park accordingly, resulting in a final parking position that is

appropriate for the new layout. For example, if the parking lot layout

changes to include diagonal parking spaces, the car should adjust its

parking angle accordingly.

• MR4: Change in obstacle position - The car should adjust its

parking manoeuvre to account for the new position of the obstacles

and park accordingly, resulting in a final parking position that is ap-

propriate for the new obstacle position. For example, if an obstacle is

now positioned closer to the parking space, the car should park farther

away from the obstacle to avoid hitting it.

• MR5: Change in weather conditions - The car should adjust

its parking manoeuvre to account for the slippery surface or reduced

visibility due to the changed weather conditions, resulting in a final

parking position that is appropriate for the new conditions. For ex-

ample, if the surface is slippery due to rain, the car should park more

slowly and cautiously to avoid slipping or sliding.

5. User: You miss the input and output relations

ChatGPT: I apologize for the confusion. Here are the updated input and

output relations for each MR, along with the clearer expected behaviours:

• MR1: Change in starting position

– Input relation: Original starting position (x,y) and new starting

position (x’,y’)

– Output relation: Final parking position (x”,y”)

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the change in the initial position and park

accordingly, resulting in a final parking position (x”,y”) that is

appropriate for the new starting position. For example, if the

starting position is closer to the edge of the parking lot, the final
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parking position should be adjusted to avoid hitting any objects

or pedestrians.

• MR2: Change in parking spot size

– Input relation: Original parking spot size (length, width) and

new parking spot size (length’, width’)

– Output relation: Final parking position (x”,y”)

– Expected behaviour: The car should adjust its parking ma-

noeuvre to fit in the new spot size, resulting in a final parking

position (x”,y”) that is appropriate for the new spot size. For ex-

ample, if the parking spot is larger, the car should park closer to

the centre of the spot to avoid leaving too much space on either

side.

• MR3: Change in parking lot layout

– Input relation: Original and new parking lot layouts

– Output relation: Final parking position (x”,y”)

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the changes in the parking lot layout and

park accordingly, resulting in a final parking position (x”,y”) that

is appropriate for the new layout. For example, if the parking lot

layout changes to include diagonal parking spaces, the car should

adjust its parking angle accordingly.

• MR4: Change in obstacle position

– Input relation: Original and new position (x,y) of obstacles in

the parking lot

– Output relation: Final parking position (x”,y”)

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the new position of the obstacles and park

accordingly, resulting in a final parking position (x”,y”) that is
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appropriate for the new obstacle position. For example, if an ob-

stacle is now positioned closer to the parking space, the car should

park farther away from the obstacle to avoid hitting it.

• MR5: Change in weather conditions

– Input relation: Original and new weather conditions, such as

rain or snow

– Output relation: Final parking position (x”,y”)

– Expected behaviour: The car should adjust its parking ma-

noeuvre to account for the slippery surface or reduced visibility

due to the changed weather conditions, resulting in a final park-

ing position (x”,y”) that is appropriate for the new conditions. For

example, if the surface is slippery due to rain, the car should park

more slowly and cautiously to avoid slipping or sliding.
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