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Abstract 

 

Patient adherence to inhalation therapy for chronic respiratory 

conditions, specifically asthma and Chronic Obstructive Pulmonary 

Disease (COPD) remains a persistent challenge in healthcare, 

undermining treatment efficacy and leading to worsened health 

outcomes and increased costs. This thesis investigates the potential of 

sensor-based interventions, guided by Human Factors Engineering 

(HFE) principles, to improve patient adherence in these specific 

chronic respiratory conditions. By integrating real-time monitoring 

technologies and personalized feedback mechanisms, the research 

aims to design and evaluate systems that better support asthma and 

COPD patients in managing their inhalation therapy. 

The thesis begins by establishing the theoretical foundations of patient 

adherence, sensor technologies, and the HFE framework (Chapter 2). 

It also outlines the research methodologies, with an emphasis on user-

centered design approaches tailored to inhalation therapy for asthma 

and COPD (Chapter 3). As part of this structured, multi-phase 

approach, key factors influencing adherence—such as emotional 

experiences, environmental conditions, and cultural beliefs—are 

identified through semi-structured interviews within the HFE 

framework (Chapter 4). These insights inform the design of the 

XIAOXI system through participatory workshops (Chapter 5), and its 

development, which integrates multiple sensors to monitor patients' 

physiological conditions, inhaler usage, and environmental factors in 

real time (Chapter 6). The system’s usability and effectiveness are 

evaluated, and machine learning models are applied to classify 

adherence behaviors based on the collected data (Chapter 7). 

A comprehensive discussion of the key findings (Chapter 8) 
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showcases the successful application and validation of the Patient 

Adherence to Inhalation Therapy Work System Model, demonstrating 

how the integration of HFE principles into the design significantly 

enhanced patient adherence in asthma and COPD. The research 

highlights the XIAOXI system as an innovative, sensor-based 

intervention that effectively combined user-centric design with 

personalized feedback, improving patient adherence and management 

of inhalation therapy in these patients. The assessment of data-driven 

approaches revealed that machine learning models were highly 

effective in classifying adherence behaviors, with emotional and 

environmental factors playing a crucial role. The final chapter 

(Chapter 9) concludes by summarizing the thesis' primary 

contributions and identifying avenues for future research to further 

improve patient adherence and outcomes in inhalation therapy for 

asthma and COPD. 

Keywords: Patient Adherence, Inhalation Therapy, Asthma and 

COPD, Human Factors Engineering, Sensor-based Technology, 

Health Interventions 
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Chapter 1 Introduction 

 

 

1.1 Introduction and Aims 

 

Chronic respiratory diseases, notably asthma and chronic obstructive 

pulmonary disease (COPD), represent significant global health challenges 

due to their chronic inflammatory nature and progressive airflow 

limitation(Sabaté, 2003; Soriano et al., 2017). These conditions impose 

substantial burdens, given their persistent symptoms, frequent 

exacerbations, and the intensive management they require(Quaderi & 

Hurst, 2018; Soriano et al., 2017). According to World Health 

Organization (WHO), COPD is projected to be the third leading cause of 

death globally by 2030, highlighting the severity and urgency of 

addressing these diseases(C.-T. Wu et al., 2021). Similarly, asthma affects 

millions worldwide, significantly contributing to healthcare costs 

associated with frequent hospitalizations and emergency 

treatments(Nurmagambetov et al., 2018). While inhalation therapy is 

applicable to various respiratory conditions, this thesis specifically 

focuses on asthma and COPD due to their high prevalence globally, 

substantial impact on patient quality of life, and significant economic 

burden on healthcare systems. Effective and accessible treatment 

strategies are therefore essential for managing these chronic conditions. 

Inhalation therapy has become a primary treatment modality for chronic 

respiratory diseases due to its ability to deliver medication directly to the 

lungs(Bhattacharyya & S Sogali, 2018; Borghardt et al., 2018). This 

method facilitates rapid symptom relief and reduces systemic side effects 
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compared to oral medications(Cochrane et al., 2000; Dalby & Suman, 

2003). The widespread prescription of inhaler devices worldwide 

underscores their critical role in disease management(S. Anderson et al., 

2022; Y. Liang & Mak, 2021). However, the effectiveness of inhalation 

therapy is critically dependent on patient adherence, which remains 

problematic due to the complexity involved in inhaler usage(DiMatteo, 

2004; Mäkelä et al., 2013). 

Adherence is defined as the extent to which patients follow their 

prescribed treatment regimens(Sabaté, 2003). Compared to oral 

medications, inhalers—classified as drug-device combination products 

(DDCPs)—pose unique “patient-device interaction” challenges(Leiner et 

al., 2015). DDCPs are therapeutic products that integrate a 

pharmacological component (the drug) with a device component (such as 

an inhaler device), and effective medication delivery relies on the correct 

use of the device(Leiner et al., 2015; Y. Wang & Burgess, 2010). Inhalers 

require multiple procedural steps, including medication preparation, 

inhaler usage, and device maintenance, increasing the likelihood of errors 

and non-adherence(Gregoriano et al., 2018). Poor adherence can lead to 

ineffective treatment, persistent symptoms, frequent disease exacerbations, 

and increased healthcare costs(Osterberg & Blaschke, 2005; Sabaté, 2003). 

These limitations highlight the necessity of exploring new methods to 

support patient adherence. 

There have been recent advancements in sensor-based technologies, 

which promise to bring solutions to these adherence challenges(Aldeer et 

al., 2018; Bhatia et al., 2020; Himes et al., 2019). Sensors integrated with 

inhalers can monitor inhaler usage patterns in real time, enabling 

healthcare providers (HCPs) to identify adherence issues promptly and 

offer personalized interventions, such as reminders or corrective 

feedback(Himes et al., 2019; G. Mosnaim et al., 2021; G. S. Mosnaim et 

al., 2022). By targeting individual adherence barriers, sensor-based 

technologies can potentially enhance patient engagement and improve 
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clinical outcomes(Al-kahtani et al., 2022; Blakey et al., 2018; Chrystyn et 

al., 2019). 

However, the successful implementation of sensor-based interventions 

demands a thorough understanding of patient-device interactions, making 

the application of Human Factors Engineering (HFE) essential. HFE is a 

discipline focused on optimizing interactions between people, technology, 

and systems by considering human capabilities, limitations, and 

characteristics(Meister, 2018; Tsao et al., 2019). In healthcare, HFE 

principles have effectively improved patient safety, usability, and care 

quality by tailoring technology and systems to patient needs(Carayon et 

al., 2006; Holden et al., 2013; Salwei et al., 2021). Nevertheless, 

integrating HFE into sensor-based inhaler interventions remains 

challenging, requiring detailed insights into specific adherence barriers, 

such as improper inhaler technique, which directly affect therapeutic 

effectiveness(J. Anderson et al., 2010; Carayon & Wooldridge, 2020; 

Hegde, 2013; Holden et al., 2013). 

Despite the recognized importance of sensor technologies and inhalation 

therapy in managing chronic respiratory diseases, significant research 

gaps remain. Current studies often overlook critical patient-device 

interaction factors unique to inhalers, limiting their effectiveness in 

addressing adherence challenges comprehensively(Leiner et al., 2015). 

Additionally, systematic integration of HFE frameworks into the design 

and evaluation of sensor-based interventions in inhalation therapy is still 

emerging, and comprehensive empirical studies are scarce(Tsao et al., 

2019). Addressing these gaps requires focused research to identify patient 

adherence barriers more precisely and to leverage HFE approaches 

effectively, facilitating the design of targeted, patient-centered 

interventions. 

The objective of this PhD thesis is therefore to design and evaluate sensor-

based interventions aimed at improving patient adherence to inhalation 

therapy for asthma and COPD patients by integrating HFE principles. 
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Specifically, this research examines factors influencing patient adherence, 

develops a sensor-based system tailored to patient needs, and assesses the 

practical effectiveness of sensor-driven interventions. Ultimately, this 

work seeks to enhance treatment outcomes and optimize inhalation 

therapy management for patients with chronic respiratory diseases. 

 

 

1.2 The Call for Research on Sensor-based 

Interventions through an HFE Theoretical 

Framework 

 

This research highlights the urgent need for sensor-based interventions, 

framed through the lens of HFE, by analyzing the intricacies of disease 

characteristics, inhalation adherence, and existing literature. 

Related Studies: The use of sensor technology in healthcare has become 

increasingly popular, improving diagnostic procedures and offering 

individualized patient approaches(Al-kahtani et al., 2022; Awad et al., 

2021). Innovations often focus on enhancing sensor sensitivity, optimizing 

algorithms, and improving data analysis. Examples of these advancements 

can be seen in applications like remote care and wearable health 

devices(Conway & Kelechi, 2017; Kaplan et al., 2023; G. Mosnaim et al., 

2021). However, many of these developments prioritize technological 

improvements over the patients' experiences in real-world use(Tsao et al., 

2019), especially in the context of managing chronic respiratory 

conditions such as asthma and COPD(Chrystyn et al., 2019). 

HFE has been effectively implemented in healthcare to improve safety, 

usability, and patient outcomes. For example, HFE-based designs have 
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improved surgical equipment arrangement to minimize mistakes and 

enhance teamwork(Hignett et al., 2013). Similarly, redesigning 

medication dispensing systems with HFE principles has reduced errors, 

and educational tools based on HFE have enhanced patient 

comprehension and engagement(Rousek & Hallbeck, 2011; Vaughn-

Cooke et al., 2015). Despite these successes, HFE is rarely applied to 

sensor-based interventions in DDCPs such as inhalers. Existing research 

often focuses on device functionality and data accuracy, overlooking 

critical aspects like user interaction and adherence behaviors(Leiner et al., 

2015; Tsao et al., 2019). This gap highlights the need to integrate HFE 

principles to better align sensor-based technologies with patient needs. 

Characteristics of Diseases and Adherence Complexity: Asthma and 

COPD, as chronic respiratory diseases, present unique challenges due to 

their long-term and variable nature. Patients’ responses to treatment often 

differ significantly, necessitating personalized monitoring and continuous 

management(George, 2018; Y. Liang & Mak, 2021; Quaderi & Hurst, 

2018). Given the chronic course of these conditions, adherence to 

prescribed therapy is critical. However, non-adherence not only disrupts 

disease control but also undermines the effectiveness of continuous 

interventions(Bryant et al., 2013; George, 2018).  

Adherence to inhalation therapy is particularly complex compared to oral 

medications. It involves intricate interactions between the patient and the 

inhaler device, requiring correct execution of multiple steps—including 

device preparation, device usage, and device maintenance(Cochrane et al., 

2000; Rogliani, Calzetta, et al., 2017). These technical demands increase 

the likelihood of errors and make adherence more difficult. Furthermore, 

common barriers to oral medication adherence—such as forgetfulness, 

lack of understanding, and low motivation—are often intensified in 

inhalation therapy due to its procedural complexity(Monteiro et al., 2021; 

Skrabal Ross et al., 2020). Therefore, improving adherence requires 

addressing both behavioral challenges and technical demands of inhaler 
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use(Chrystyn et al., 2019; Melani, 2021). This is especially critical for 

asthma and COPD patients, whose health outcomes rely heavily on 

consistent and correct use of inhalers(Barjaktarevic & Milstone, 2020; 

Bhattacharyya & S Sogali, 2018). 

Sensor-Based Intervention Needs: Sensor-based technologies offer 

promising solutions to the challenges of inhalation therapy adherence by 

enabling objective, real-time monitoring of inhaler use(Aldeer et al., 2018; 

A. H. Y. Chan et al., 2021). These sensors can capture crucial data on 

inhalation timing, frequency, and technique, revealing adherence patterns 

and identifying specific errors such as missed doses or incorrect 

usage(Foster, Smith, Usherwood, et al., 2012; Nousias et al., 2018; 

Pradeesh et al., 2022). Real-time data also allows HCPs to deliver timely 

and personalized interventions based on actual patient behavior. In 

addition, proactive reminders and feedback mechanisms can help patients 

stay on track with their prescribed regimen, improving both engagement 

and clinical outcomes(J. Chen et al., 2020; De Simoni et al., 2021; Foster 

et al., 2014). 

Despite these advancements, most existing sensor-based systems remain 

limited to passive monitoring and fall short in transforming data into 

meaningful, actionable feedback. Many studies fail to conduct real-world 

evaluations from multiple perspectives—such as usability, acceptance, 

and clinical effectiveness—which are essential to assess the true impact of 

these technologies on adherence(L. J. Anderson et al., 2020; Blakey et al., 

2018; Farzandipour et al., 2017; Merchant et al., 2018). Moreover, while 

machine learning and data analytics have become prevalent in broader 

healthcare applications, their use in inhalation therapy adherence remains 

scarce(C.-T. Wu et al., 2021; Xiong et al., 2023). Few studies utilize these 

methods to classify adherence behaviors or extract insights from sensor-

generated data. 

Therefore, it is crucial that sensor-based interventions move beyond data 

collection to become more proactive, engaging patients directly through 
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tailored feedback mechanisms. Current systems are often effective at 

acquiring data but fail to close the loop with users, offering little in the 

way of dynamic, real-time interaction(Kelders et al., 2012; A. Xu et al., 

2014). There is a growing need for responsive systems that not only 

monitor patient behavior but also adapt feedback based on individual 

actions and preferences(Minian et al., 2023; Silva & Canedo, 2024). 

Tailoring such systems to the specific needs of asthma and COPD patients 

could significantly enhance adherence by supporting correct and 

consistent inhaler use(Basheti et al., 2014; Chorão et al., 2014; Eikholt et 

al., 2023). 

Application of HFE Theoretical Framework: HFE offers a systematic 

approach to analyzing and improving the interactions between patients 

and inhaler devices, particularly in the context of chronic respiratory 

diseases such as asthma and COPD. These conditions often require 

complex and sustained self-management, where improper inhaler use is a 

common barrier to adherence(Bourbeau & Bartlett, 2008; Mäkelä et al., 

2013). HFE provides tools to examine patient-device interactions, identify 

points of failure—such as incorrect technique, device handling issues, and 

misunderstandings—and guide the design of interventions that improve 

both usability and adherence(Leiner et al., 2015; Powell-Cope et al., 2008). 

These insights are crucial for developing interventions that improve 

adherence by addressing real-world patient-device interactions. In the 

context of asthma and COPD, such tailored interventions can directly 

target the specific challenges these patients face. 

HFE emphasizes understanding the user experience, enabling the 

development of tailored interventions such as personalized training, 

enhanced instructional materials, or feedback systems that directly address 

the specific challenges patients face(J. Anderson et al., 2010; Carayon & 

Wooldridge, 2020; Holden et al., 2013). By integrating the perspectives of 

patients and HCPs, it becomes possible to design systems that provide 

more personalized feedback and support, improving both patient 
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satisfaction and adherence(Jayaratne et al., 2019; Tsao et al., 2019). 

Incorporating HFE principles ensures that sensor-based interventions 

account for patient behavior, adherence patterns, and device interaction, 

ultimately enhancing patient care. 

 

 

1.3 Research Aims 

 

The primary objective of this thesis is to investigate the effectiveness and 

underlying mechanisms through which sensor-based interventions 

enhance patient adherence to inhalation therapy for asthma and COPD. 

This study aims to contribute both theoretically and practically by 

developing a framework for understanding adherence behaviors and 

evaluating the impact of sensor-supported systems in real-world settings. 

The specific goals are as follows: 

1. To develop and apply an HFE framework to systematically analyse 

the factors influencing patient adherence to inhalation therapy in 

asthma and COPD. 

2. To investigate the design and implementation of sensor-based 

interventions tailored to asthma and COPD patients, with the aim of 

enhancing adherence to inhalation therapy. 

3. To evaluate the effectiveness of these interventions in improving 

adherence within the context of asthma and COPD management. 

 

 



9 

 

1.4 Research Questions 

 

This study investigates how sensor-based interventions can support 

patient adherence to inhalation therapy for asthma and COPD, with 

the following specific aims: 

1. Identify the key factors influencing patient adherence through 

the lens of the HFE theoretical framework. 

2. Examine the scope and effectiveness of support offered by 

sensor-based interventions. 

3. Evaluate the impact of these interventions on improving 

adherence to inhalation therapy. 

Additionally, the study explores the design considerations of these 

interventions, including data collection methods, feedback delivery 

strategies, and integration approaches to ensure contextual 

relevance and practical effectiveness. 

The primary research question is: 

How can sensor-based interventions, informed by Human 

Factors Engineering principles, improve patient adherence to 

inhalation therapy for asthma and COPD? 

This primary question is further divided into three groups of sub-

questions:  

RQ1. What are the key factors influencing patient adherence to 

inhalation therapy in the context of asthma and COPD? 

 What is the current state of patient adherence to inhalation 

therapy?  
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 How can the HFE framework help identify specific factors 

influencing adherence? 

The first group of questions focuses on identifying the factors that 

influence patient adherence to inhalation therapy within the HFE 

context, with a particular focus on asthma and COPD patients. This 

approach aims to deepen the understanding of patient behaviors—

whether adherent or non-adherent—and to identify determinants 

that affect adherence to prescribed inhalation therapy. 

RQ2. How can sensor-based interventions be designed to 

support patient adherence to inhalation therapy for asthma 

and COPD? 

 How can sensor-based interventions collect data on patient 

adherence to inhalation therapy? 

 How can they facilitate timely and personalized feedback based 

on adherence data?  

 How can sensor-based approaches be effectively integrated into 

adherence support interventions? 

The second set of questions explores the design and 

implementation of sensor-based interventions. Building on the 

findings from RQ1, it focuses on the technical and methodological 

elements necessary for developing effective adherence-support 

interventions for asthma and COPD. 

RQ3. How can sensor-based interventions impact patient 

adherence to inhalation therapy for asthma and COPD? 

 How can the effectiveness of sensor-based interventions in 

improving patient adherence be evaluated?  

 How can data from sensor-based interventions be utilized to 
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monitor and classify patient adherence behaviors?  

The third group of questions investigates the impact of sensor-

based interventions on patient adherence. It includes both the 

evaluation of effectiveness and the use of sensor data, supported by 

machine learning techniques, to monitor and classify adherence 

behaviors, thereby contributing to a deeper understanding of patient 

engagement and treatment response. 

 

 

1.5 Research Scope, Theoretical Basis, and 

Contributions 

 

This thesis adopts an HFE perspective, specifically applying and 

extending the SEIPS 2.0 model to address patient adherence to 

inhalation therapy in asthma and COPD populations. Rather than 

focusing solely on technological development, this research 

systematically explores how HFE principles and systems thinking 

can guide the design, development, and evaluation of sensor-based 

interventions. The resulting system, XIAOXI, serves both as a 

practical intervention and as a validation platform for the proposed 

theoretical framework and identified adherence factors. 

The research delivers integrated contributions across four domains: 

theoretical, methodological, technological, and practical. Central to 

these is the advancement of theoretical understanding through the 

adaptation of SEIPS 2.0 into a context-specific framework for 

inhalation therapy adherence. 

Theoretical Contributions: This thesis extends the SEIPS 2.0 



12 

 

framework by developing the Patient Adherence to Inhalation 

Therapy Work System Model, which systematically defines and 

operationalizes five critical dimensions: Person, Task, Tool, 

Physical Environment, and Cultural & Social factors. This adapted 

model addresses a key theoretical gap by offering a structured 

understanding of multifactorial influences on adherence behavior 

within inhalation therapy. Moreover, since inhalers are 

representative DDCPs, this framework provides a transferable 

foundation for supporting patient adherence in other DDCP-based 

treatment contexts, broadening its theoretical relevance beyond 

respiratory care. 

Methodological Contributions: A structured, HFE-driven mixed-

methods approach was designed and applied across four sequential 

studies: qualitative exploration, participatory design workshops, 

sensor-based intervention system development, and an integrated 

evaluation of usability, effectiveness, and adherence behavior 

classification using machine learning. This structured approach not 

only facilitated the identification of key adherence factors but also 

demonstrated how these factors could be operationalized and 

validated through a sensor-based intervention. The methodology 

showcases how theoretical models can be effectively translated into 

real-world digital health solutions, providing a replicable process 

for future research in similar healthcare contexts. 

Technological Contributions: The development of the XIAOXI 

system embodies the practical application of the theoretical and 

methodological frameworks. Guided by HFE and SEIPS principles, 

the system integrates adherence-related factors through a structured 

sensor deployment strategy developed in this study, based on the 

‘Person–Task–Physical Environment’ framework. XIAOXI 

features real-time monitoring of inhaler usage, physiological 

conditions, and environmental factors, alongside interactive support 
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components such as self-assessment tools, educational resources, 

and personalized feedback. This comprehensive design not only 

addresses behavioral challenges and context-specific barriers to 

adherence, but also serves as a prototype for scalable solutions in 

both respiratory care and broader DDCP applications. 

Practical Contributions: This thesis offers actionable 

recommendations for HCPs and researchers regarding the design, 

implementation, and evaluation of sensor-based adherence 

interventions. The data-driven approach facilitates early 

identification of non-adherence risks, enabling HCPs to tailor 

treatment strategies. Simultaneously, patients benefit from 

enhanced self-management through real-time feedback, 

personalized reminders, and educational support. The demonstrated 

improvements in adherence outcomes among asthma and COPD 

patients highlight the system’s practical value and its potential for 

broader clinical adoption in chronic disease management. 

 

 

1.6 Mapping of Research Questions, Research 

Gaps, and Research Methods 

 

To address the need for a clearer articulation of the relationship between 

research questions, identified gaps, and methodological choices, this 

section presents a structured mapping that clarifies the overall research 

logic and coherence. It explicitly links the primary research question and 

sub-questions to their corresponding research gaps and methodological 

approaches. Table 1.1 provides an overview demonstrating how each 

research question systematically responds to specific gaps identified in the 
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literature through appropriate qualitative, quantitative, or mixed-methods 

approaches. Sampling strategies and methodological choices were 

carefully aligned with the nature of each research question to ensure that 

participant selection and research design directly addressed the identified 

gaps. Detailed rationale for sampling, methodological procedures, and a 

study-by-study mapping of objectives and methods are provided in 

Chapter 3. 

Table 1. 1: Mapping of research questions, research gaps, and research 

methods. 

Research 
Questions 

Research Gaps 
Addressed 

Type of 
Research 
Approach 

Specific Methods 
(Detailed in 
Chapter 3) 

Primary Research 
Question: How can 
sensor-based 
interventions, 
informed by Human 
Factors Engineering 
principles, improve 
patient adherence to 
inhalation therapy 
for asthma and 
COPD? 

Integrative question 
addressing all 
identified gaps 

Mixed-
methods 
research 

Semi-structured 
interviews, 
participatory 
workshops, system 
development, system 
evaluation, machine 
learning analyses 

RQ1: What are the 
key factors 
influencing patient 
adherence to 
inhalation therapy in 
the context of 
asthma and COPD? 

Limited exploration 
of patient 
engagement with 
inhalation therapy; 
Scarcity of studies 
applying HFE 
principles to identify 
adherence factors 

Qualitative 
exploratory 
research 

Semi-structured 
interviews 

RQ2: How can 
sensor-based 
interventions be 
designed to support 
patient adherence to 
inhalation therapy 
for asthma and 
COPD? 

Limited application 
of HFE principles in 
designing adherence 
support systems; 
Insufficient use of 
multidimensional 
sensor technologies; 
Need for intuitive and 
effective feedback 
systems 

Qualitative 
design, 
participatory 
research, and 
system 
development 

Persona 
development, 
scenario design, 
participatory design 
workshops, sensor-
based system 
prototyping and 
implementation 
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RQ3: How can 
sensor-based 
interventions impact 
patient adherence to 
inhalation therapy 
for asthma and 
COPD? 

Insufficient multi-
perspective 
evaluation of 
intervention systems;  
Limited use of 
advanced data 
analytics for 
classification and 
evaluation of 
adherence data 

Qualitative 
and 
quantitative 
evaluation & 
classification 
analysis 

Multi-perspective 
system evaluation; 
machine-learning-
based classification 

 

 

1.7 Overview of Thesis 

 

The structure of this thesis follows a traditional research format 

(Figure 1.1). It begins with a literature review, followed by a 

methods chapter detailing all the research activities. Next, there are 

four chapters, each describing one of the main research activities. 

The discussion and conclusion chapters complete the thesis. A 

more detailed overview of each chapter is provided below. 
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Figure 1. 1: Thesis structure. 
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Chapter 1 – Introduction: This chapter introduces the background, 

context, and motivation for investigating patient adherence to 

inhalation therapy in chronic respiratory diseases such as asthma 

and COPD. It highlights the need for sensor-based interventions 

through an HFE theoretical framework, defines the research aims 

and questions, and outlines the theoretical basis, contributions, and 

scope of the study. It also maps the relationships between the 

research questions, research gaps, and the methods used to address 

them, and concludes with an overview of the thesis structure. 

Chapter 2 - Literature Review: This chapter reviews the existing 

literature to establish the foundational knowledge for this research. 

Section 2.1 introduces the aims of the literature review. Section 2.2 

focuses on inhalation therapy, including its evolution, device types, 

usage processes, and the rationale for focusing on asthma and 

COPD. Section 2.3 examines patient adherence as a multifaceted 

concept, reviewing related theories, the SEIPS model and HFE, and 

adherence measurement methods. Section 2.4 reviews adherence-

supporting interventions, with a focus on assistive technologies and 

sensor-based components. Section 2.5 outlines evaluation 

approaches and key assessment dimensions. Finally, Section 2.6 

discusses key themes and gaps in the literature, highlighting this 

study’s contribution in integrating HFE and sensor-based 

interventions to improve adherence in asthma and COPD. 

Chapter 3 - Research Methodology: This chapter outlines the 

research methodology adopted in this study, which is grounded in 

the HFE framework and the SEIPS 2.0 model. Section 3.1 

introduces the methodological aims and overall approach. Section 

3.2 presents the theoretical framework, explaining the core 

concepts of SEIPS 2.0 and its relevance to the context of inhalation 

therapy for asthma and COPD. Section 3.3 describes the research 

methods, including data collection, design and prototyping, and 
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evaluation strategies. Section 3.4 addresses methodological 

challenges encountered during the research and the strategies used 

to address them. Finally, Section 3.5 details the specific methods 

applied in each of the four studies, mapping them to research 

questions and discussing reliability and validity considerations. 

Chapter 4 - Investigating Factors Affecting Patient Adherence 

to Inhalation Therapy: This chapter describes the semi-structured 

interviews conducted with patients and HCPs to understand the key 

factors influencing adherence to inhalation therapy in the context of 

asthma and COPD. The analysis, guided by the SEIPS 2.0 model, 

revealed a complex interplay of person, task, tool, physical 

environment, and cultural & social factors that shape patient 

adherence behaviors. 

Chapter 5 - Design of a Sensor-Based System for Inhalation 

Therapy Adherence: This chapter focuses on the participatory 

design process of the XIAOXI system. Participatory workshops 

with patients and HCPs guided the conceptual design, helping to 

determine the system's core functionalities and components 

targeted for asthma and COPD patients. This chapter also compares 

different visualization strategies based on patient and HCP 

preferences, directing the user-centered design approach. 

Chapter 6 - Implementation of a Sensor-Based System for 

Inhalation Therapy Adherence: This chapter details the technical 

implementation of the XIAOXI system, including sensor selection 

and integration for real-time monitoring of patient behavior. The 

final system design was informed by user requirements identified 

during the design phase, enabling the provision of personalized 

feedback and enhanced support for adherence to inhalation therapy 

in asthma and COPD. 

Chapter 7 - Evaluation and Classification Analysis of the 
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Sensor-based Intervention System: This chapter presents a field 

study evaluating the XIAOXI system from both patient and HCP 

perspectives. The study uses quantitative data and qualitative 

feedback to assess system usability and effectiveness. It also 

introduces the application of machine learning models to classify 

daily inhaler adherence behaviors based on sensor and 

questionnaire data. 

Chapter 8 - Discussion: This chapter discusses the main findings 

of the thesis. These findings primarily pertain to the application and 

evaluation of the patient adherence to inhalation therapy work 

system model, the role of HFE in enhancing adherence, and the 

strengths and challenges of data-driven approaches in supporting 

patient adherence specifically within the context of asthma and 

COPD. 

Chapter 9 - Conclusion: The final chapter summarizes the 

primary contributions of this research, emphasizing the novel 

integration of HFE and sensor-based technologies to support 

patient adherence to inhalation therapy for asthma and COPD. The 

chapter also outlines potential avenues for further research that can 

be derived from this thesis. 



20 

 

Chapter 2 Literature Review 

 

 

2.1 Introduction and Aims 

 

This chapter establishes the theoretical foundation for 

understanding patient adherence to inhalation therapy. It begins 

with an overview of inhalation therapy, including its evolution, 

device types, usage processes, and the rationale for focusing on 

asthma and COPD (Section 2.2). Section 2.3 discusses patient 

adherence as a multifaceted concept, covering both dosage and 

technique adherence, and introduces theoretical models such as the 

SEIPS framework and HFE for analyzing patient adherence. 

Section 2.4 reviews adherence-supporting interventions, 

highlighting the role of assistive technologies and sensor-driven 

mechanisms in enhancing inhaler usage and monitoring. 

In Section 2.5, evaluation methods and dimensions are examined to 

understand how adherence-supporting interventions are evaluated 

through field studies and real-world applications. Finally, Section 

2.6 synthesizes global trends, challenges, and innovations in 

inhalation therapy, and discusses the novelty of this research in 

integrating HFE principles with sensor-based technologies under 

the SEIPS framework. The overall aim of this chapter is to provide 

a relevant theoretical perspective that can inform the research 

process in the context of inhalation therapy for asthma and COPD. 

The specific objectives are:   
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1. To understand key concepts related to patient adherence and 

inhalation therapy.  

2. To explore assistive technologies and sensor-driven 

mechanisms for adherence support. 

3. To investigate theoretical and technical approaches for 

designing and evaluating adherence interventions. 

 

 

2.2 Inhalation Therapy 

 

2.2.1 The Evolution and Significance of Inhalation Therapy 

Inhalation therapy has been known for many centuries, and the first 

records of its application can be traced back to ancient civilizations 

that used herbal smoke in the treatment of respiratory diseases (see 

Figure 2.1)(Lavorini, Buttini, et al., 2019; Rogliani, Calzetta, et al., 

2017). A major breakthrough in modern inhalation therapy came 

with the introduction of the pressurized metered-dose inhaler 

(pMDI) in the 1950s, providing an efficient and portable method 

for delivering medication directly to the lungs. This advancement 

was followed by the development of the dry powder inhaler (DPI) 

and the soft mist inhaler (SMI), further enhancing the precision and 

convenience of drug delivery(Brocklebank et al., 2001; Sorino et al., 

2020).  

Significant technological advancements have established inhalation 

therapy as a cornerstone in the management of respiratory 
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diseases(Bhattacharyya & S Sogali, 2018; Borghardt et al., 2018; Y. 

Liang & Mak, 2021). Its primary advantage lies in delivering 

medication directly to the lungs, resulting in fewer systemic side 

effects and faster drug action(Borghardt et al., 2018; Sorino et al., 

2020). The evolution of inhaler devices has not only improved 

treatment efficiency but also expanded their role in clinical 

practice(George, 2018; Quaderi & Hurst, 2018; Rogliani, Calzetta, et al., 

2017). Despite these advancements, respiratory diseases remain a 

major global health concern, underscoring the need for continuous 

innovation in inhaler design and technology to enhance treatment 

outcomes and patient quality of life(Bhattacharyya & S Sogali, 2018; 

Chrystyn et al., 2019; Steiropoulos et al., 2021). 

 

(a)                                                   (b) 

Figure 2. 1: A drawing (a) and photo (b) of the Mudge Inhaler. 

 

2.2.2 Types of Inhalers 

Inhalation devices are categorized primarily into four types (see 

Figure 2.2): pMDIs, DPIs, SMIs and Nebulizers (Bhattacharyya & S 

Sogali, 2018; Chrystyn et al., 2019; Garcia-Contreras et al., 2015; Usmani, 

2019). Each type varies in their action and application and have 
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different efficacy and indications for use with different patients. 

          

(a) pMDI           (b) DPI.           (c) SMI.           (c) Nebulizer. 

Figure 2. 2: Types of inhalers. 

pMDIs: pMDIs are designed to release a specific amount of 

medication in aerosol form through gas pressure. However, proper 

hand-breath synchronization is crucial for effective inhalation, 

which can be challenging for some patients, particularly the elderly 

and those with limited hand mobility. To improve drug deposition 

and reduce the need for precise synchronization, spacers are often 

recommended(Dhand et al., 2018; Steiropoulos et al., 2021; Usmani, 

2019). 

DPIs: DPIs deliver medication in powdered form and are breath-

activated, meaning the medication is released when the patient 

inhales. This eliminates the need for hand-breath coordination, 

making DPIs especially suitable for patients who have difficulty 

using pMDIs. Due to their convenience and efficacy, DPIs are 

currently among the most commonly used inhalation devices 

worldwide(Islam & Gladki, 2008). However, effective use of DPIs 

requires a strong and consistent inspiratory flow rate, which may be 

challenging for certain populations, such as children, the elderly, 

and individuals with severe respiratory impairments(Altman et al., 

2018; Clark et al., 2020). 

SMIs: SMIs are a relatively newer device for drug delivery which 

is developed to overcome certain disadvantages of pMDIs and DPIs. 
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They produce a slow moving, fine droplets which take longer 

before they settle, this gives the patient enough time to take in the 

drug deep into the lungs(Komalla et al., 2023). SMIs require minimal 

inspiratory effort, making them suitable for patients with reduced 

lung capacity. However, they tend to be more complex to operate 

and are generally more expensive than pMDIs and DPIs, which 

may limit their accessibility(Nelson, 2016). 

Nebulizers: Nebulizers convert liquid medication into a mist or 

aerosol, which is inhaled over an extended period using a mask or 

mouthpiece. They are particularly beneficial for patients who 

cannot effectively use other inhalation devices, such as infants, the 

elderly, or those with severe respiratory conditions(Barjaktarevic & 

Milstone, 2020). Nebulizers are widely used in hospitals for the 

management of severe and acute asthma and COPD, as well as in 

patients requiring high or long-term dosages. However, their larger 

size and limited portability often restrict their use to home or 

hospital settings, compared to the more portable pMDIs, DPIs, and 

SMIs(Tashkin, 2016). 

 

2.2.3 Usage Process of Inhalers 

Success of inhalation therapy is dependent on performing a precise 

series of interdependent steps(Basheti et al., 2014; Bosnic-Anticevich 

et al., 2018; Chorão et al., 2014). A thorough understanding of these 

steps is crucial for identifying potential adherence challenges and 

developing effective intervention strategies. The inhaler usage 

process can be broadly divided into three key phases: Device 

Preparation, Device Use, and Device Maintenance(Price et al., 2013; 

Sanchis et al., 2016; Usmani et al., 2018). 
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2.2.3.1 Device Preparation 

Device preparation is a crucial phase consisting of two key aspects: 

Usage Training: Before using an inhaler, patients need proper 

training on its operation. This training is typically provided by 

HCPs during clinical consultations or through clear instructions in 

the device’s user manual(Bosnic-Anticevich et al., 2018; Dabrowska et 

al., 2019). Effective training ensures that patients understand the 

proper techniques and can perform the necessary steps accurately. 

Preparation of the Inhaler: Once trained, patients must physically 

prepare the device for use. This involves several steps(Sanchis et al., 

2016): 

1. Uncapping: Removing the cap or cover from the inhaler. 

2. Dose Loading: Loading the medication into the inhaler. This 

process varies by device type. For example, pMDIs require 

shaking the device to mix the medication and propellant, while 

DPIs often require twisting the cover/base to load a dose. 

3. Holding the Inhaler: Positioning the device correctly to 

maximize medication delivery. 

Common Errors in Device Preparation: Common errors during 

device preparation include insufficient training, where patients may 

misinterpret proper setup instructions, leading to mistakes. 

Improper uncapping can block medication delivery, while 

inadequate dose loading—such as forgetting to shake a pMDI or 

not fully twisting a DPI—reduces the effective dosage. 

Furthermore, incorrect handling, such as holding the inhaler in the 

wrong orientation, can significantly decrease lung deposition of the 

medication(Bosnic-Anticevich et al., 2018; Dabrowska et al., 2019; 

Sanchis et al., 2016; Usmani et al., 2018). 
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2.2.3.2 Device Use 

Usage of the Inhaler: The effective use of an inhaler requires 

patients to perform the following steps correctly(Sanchis et al., 2016): 

1. Exhalation: Fully exhale to clear the lungs before inhaling the 

medication. 

2. Sealing: Place the lips firmly around the mouthpiece to form an 

airtight seal. 

3. Inhalation: Breathe in deeply and steadily to allow the 

medication to reach the lungs. 

4. Breath-Holding: Hold the breath for several seconds to allow 

the medication to efficiently reach the airways. 

Common Errors in Device Use: Errors during device use often 

arise from improper exhalation, which limits the depth of inhalation. 

Inadequate sealing of the mouthpiece may result in medication 

leakage, reducing the amount of medication delivered to the lungs. 

Additionally, irregular or shallow inhalation patterns prevent the 

medication from reaching the lower respiratory tract, thereby 

diminishing its therapeutic effectiveness(Azouz et al., 2015; Basheti et 

al., 2014; Bosnic-Anticevich et al., 2018; Sanchis et al., 2016). 

 

2.2.3.3 Device Maintenance 

Maintenance of the Inhaler: Proper maintenance is crucial to 

ensure the effectiveness and longevity of the inhaler(Lavorini, 

Janson, et al., 2019; Ma et al., 2023; Rajan & Gogtay, 2014). Key 

maintenance steps include: 
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1. Cleaning: Wipe the device mouthpiece with a clean dry cloth 

when it needs cleaning. 

2. Closing: Put the cap back on the mouthpiece and make sure it 

is firmly closed. 

3. Storage: Store the device in a clean, dry place, away from 

direct sunlight and humidity. 

4. Medication Update: Regularly check the medication level and 

expiration date, and replace it as needed. 

Common Errors in Device Maintenance: The most frequent 

errors in device maintenance include forgetting to clean the 

mouthpiece, which can lead to blockages, and failing to properly 

close the cap, increasing the risk of contamination. Improper 

storage, such as leaving the device in humid or excessively hot 

environments, may degrade the medication. Additionally, patients 

sometimes continue to use inhalers that are expired or empty, 

which compromises treatment effectiveness(Price et al., 2013; Rajan 

& Gogtay, 2014, 2014; Sanchis et al., 2016). 

 

2.2.4 Rationale for Focusing on Asthma and COPD 

While inhalation therapy is applied to various respiratory 

conditions, this research specifically focuses on asthma and COPD, 

two of the most prevalent and impactful chronic respiratory 

diseases where adherence challenges are particularly pronounced 

and clinically significant(Bateman et al., 2008; Bousquet & 

Weltgesundheitsorganisation, 2007; Sabaté, 2003). Concentrating on 

these diseases allows for an in-depth analysis of adherence issues 

while providing insights that may be adapted to other inhalation-

based therapies. 
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Prevalence and Global Health Impact: Asthma and COPD are 

among the most common chronic respiratory diseases worldwide, 

significantly affecting patient quality of life, morbidity, and 

healthcare resource utilization. Asthma currently affects 

approximately 300 million people globally and remains a major 

chronic condition across all age groups, with an estimated 100 

million additional individuals projected to be at risk(Levy et al., 2023; 

Nurmagambetov et al., 2018; Q. Y. A. Wong et al., 2023). Meanwhile, 

COPD is projected by the WHO to become the third leading cause 

of death worldwide by 2030, reflecting its growing impact on 

public health(Mathers & Loncar, 2006; Nurmagambetov et al., 2018).  

Complexity of Disease Management: Both asthma and COPD 

require sustained long-term management strategies, making patient 

adherence especially critical(Sabaté, 2003). Patients with these 

diseases typically need ongoing medication delivered via inhalers, 

and adherence challenges frequently arise not just from medication-

taking frequency but also from the complexity of correctly using 

inhalation devices(Chorão et al., 2014; Chrystyn et al., 2019; Leiner et 

al., 2015). This complexity offers a valuable context for 

investigating adherence-related factors, positioning asthma and 

COPD as ideal case studies for intervention development. 

Need for Personalized Intervention: Asthma and COPD have 

highly individualized treatment responses, requiring tailored patient 

monitoring and personalized interventions(George, 2018; Y. Liang & 

Mak, 2021). This heterogeneity underscores the importance of 

technology-enhanced, patient-centered approaches to adherence 

support—an area that is central to this research(Blakey et al., 2018; A. 

Chan et al., 2022; Kaplan et al., 2023; Van De Hei et al., 2023). 

Socioeconomic and Regional Variability: The management of 

asthma and COPD is also heavily influenced by socioeconomic 

factors and healthcare accessibility, with marked disparities 



29 

 

observed across different regions(Beran et al., 2015; Jansen et al., 2021; 

Mortimer et al., 2022; Soriano et al., 2017). In high-income countries, 

patients often benefit from advanced inhaler devices and robust 

healthcare support, contributing to better disease outcomes. 

Conversely, in low- and middle-income countries, inadequate 

disease management is common due to limited healthcare resources, 

high medication costs, and insufficient patient education, 

exacerbating health inequalities(Ait-Khaled et al., 2001; Mortimer et 

al., 2022). In China, asthma and COPD are major public health 

concerns due to the large patient population and persistently low 

adherence rates, highlighting the urgent need for targeted 

interventions(Kurmi et al., 2018; Q. Y. A. Wong et al., 2023).  

By focusing on asthma and COPD, this research targets the most 

critical adherence challenges in inhalation therapy, establishing a 

framework to guide future interventions across similar therapeutic 

contexts. 

 

2.2.5 Global Trends in Inhalation Therapy 

The most recent development in inhalation therapy is the 

integration of technology in the design of digital inhalers(Al-kahtani 

et al., 2022; Blakey et al., 2018; A. Chan et al., 2022; A. H. Y. Chan et al., 

2021). These innovative devices incorporate sensors and wireless 

communication technologies to track inhaler usage and monitor 

patient adherence to prescribed dosages(A. H. Y. Chan, Harrison, et 

al., 2015; Eikholt et al., 2023). By providing real-time feedback to 

both patients and HCPs, digital inhalers enhance compliance and 

improve treatment outcomes, holding significant promise for 

improving inhalation therapy adherence among asthma and COPD 

patients(A. Chan et al., 2022; G. S. Mosnaim et al., 2022; Rumi et al., 

2022). Below are some of the most commonly used digital inhalers 
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(see Table 2.1). 

Table 2. 1: Different types of digital inhalers. 

Device Name Mechanism/Function Device Image 

CapMedic 

An attachable sensor for pMDIs that 
provides real-time feedback on critical 
errors, measures inhalation flow, and 
records inhaler usage. 

 

Digihaler 

Built-in inhalation flow sensor that 
monitors inhaler use and measures 
inhalation technique, including 
inspiratory flow rate. 

 

Hailie 

Monitors inhaler shaking, orientation, 
and inspiratory flow; connects via 
Bluetooth to a patient’s smartphone 
app. 

 

INhaler 
Compliance 
Assessment 
(INCA) 

Audio recording sensor for Diskus 
inhalers; detects inhalation errors like 
incorrect priming and inadequate 
inspiratory flow. 

 

Respiro 
Vibration sensor for various inhalers; 
provides feedback on inhalation steps 
and monitors inhaler usage. 

 

Smart 
AeroChamber 

A digital spacer with an inhalation 
flow sensor that detects inhaler 
technique errors; currently available as 
a research prototype. 

 

Smart inhalers are increasingly recognized as essential tools for 

enhancing treatment outcomes due to their capacity to minimize 

human errors associated with inhaler use(Blakey et al., 2018; A. H. Y. 

Chan et al., 2021). These devices facilitate better communication 

between patients and HCPs, enabling more accurate tracking of 

inhaler technique and medication adherence(Chrystyn et al., 2019). 

As technology advances, it is anticipated that digital inhalers will 
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become the gold standard for managing chronic respiratory 

diseases(Blakey et al., 2018; Chrystyn et al., 2019; Himes et al., 2019). 

Recent trends indicate a growing demand for advanced inhalation 

devices that are both effective and user-friendly. The integration of 

digital health technologies into inhalers reflects a shift towards 

personalized medicine and data-driven healthcare, marking a new 

era in respiratory disease management(Greene & Costello, 2019; 

Kikidis et al., 2016; Xiroudaki et al., 2021). For asthma and COPD 

patients, these advancements enable more precise monitoring and 

tailored interventions, addressing the inherent complexity and 

variability of these conditions. With the rising global prevalence of 

respiratory disorders, inhalation therapy remains a rapidly evolving 

field. The development of tailored, technology-driven interventions 

will be critical in meeting the global challenges of chronic 

respiratory diseases(Bosnic-Anticevich et al., 2023; G. Mosnaim et al., 

2021). 

 

2.2.6 Efficacy of Inhalation Therapy 

DDCPs are defined as systems comprising a pharmaceutical active 

substance and a delivery device that work together to achieve 

therapeutic effects(Y. Wang & Burgess, 2010). Inhalation therapy, 

where inhalers are employed to administer respiratory medications, 

is a classic example of a DDCP. For optimal therapeutic efficacy, 

three core dimensions must be addressed: safety, effectiveness, and 

usability (see Figure 2.3)(Hegde, 2013; Leiner et al., 2015; Pirozynski 

& Sosnowski, 2016; Skoner, 2002).  

Safety: The safety of inhalation therapy is contingent upon both the 

medication and the device itself. Medications must be effective 

with minimal side effects, while the device should be designed to 
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prevent misuse and avoid causing harm to the user(Alshammari, 

2016; Donaldson et al., 2017). Proper design considerations can 

significantly reduce risks associated with incorrect handling or 

accidental exposure. 

Effectiveness: The effectiveness of inhalation therapy is 

determined by the ability of the device to deliver the prescribed 

medication accurately to the targeted regions of the lungs(Borghardt 

et al., 2018; Patton & Byron, 2007). Achieving optimal therapeutic 

outcomes is heavily reliant on the formulation quality of the 

medication and the delivery precision of the inhaler. Devices such 

as pMDIs and DPIs are specifically engineered to ensure controlled 

and precise drug release, minimizing the risk of formulation 

degradation during the delivery process(Sorino et al., 2020). The 

reliability of these devices in maintaining dosage accuracy is 

critical for consistent treatment outcomes. 

Usability: Usability refers to the ease with which patients can 

operate their inhalers correctly and consistently(Hegde, 2013; Leiner 

et al., 2015). Unlike oral medications, inhalers require users to learn 

specific handling techniques, such as positioning the device and 

synchronizing breathing. This complexity often leads to misuse and 

administration errors, thereby reducing treatment 

efficacy(Dabrowska et al., 2019; Hesso et al., 2020; Melani, 2021). HFE 

plays a crucial role in optimizing inhaler design to align with user 

needs, enhancing intuitiveness and reducing the cognitive and 

physical demands on patients(Carayon & Wooldridge, 2020; Hignett et 

al., 2013; Leiner et al., 2015). By applying HFE principles, developers 

can systematically evaluate how patients interact with inhalers, 

identify common usage errors, and refine device designs to 

improve usability.  

Global Regulatory Landscape and Challenges: Regulatory 

bodies like the FDA and MHRA have incorporated HFE into their 
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guidelines for DDCPs, emphasizing real-world usability testing to 

address patient variability and device complexity(Lauritsen & 

Nguyen, 2009; R. Patel et al., 2019). However, global adoption of 

these standards remains uneven. In developing countries like China, 

awareness of HFE's role in DDCP design is growing, yet the 

regulatory framework remains underdeveloped(Singh et al., 2023; 

Tian et al., 2022). Current Chinese guidelines predominantly focus 

on drug safety and effectiveness, with limited emphasis on device 

usability and human factors. This regulatory gap means that critical 

factors such as individual differences, device usability, and 

environmental conditions are often neglected in the design and 

evaluation of inhalers and other DDCPs(Carayon & Wooldridge, 2020; 

Hegde, 2013; Holden & Abebe, 2021; Leiner et al., 2015).  

 

Figure 2. 3: Efficacy of inhalation therapy. 

 

 

2.3 Patient Adherence to Inhalation Therapy 
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2.3.1 Defining Adherence: A Multifaceted Concept in 

Inhalation Therapy 

2.3.1.1 Definition of Adherence 

Patient adherence is a complex concept with varied interpretations 

across medical literature. The WHO defines adherence as “the 

extent to which a person’s behavior – taking medication, following 

a diet, and/or executing lifestyle changes – corresponds with agreed 

recommendations from a health care provider”(Sabaté, 2003). While 

this definition is widely accepted, it primarily emphasizes the 

patient's alignment with prescribed medical guidance, without fully 

addressing the unique demands of inhalation therapy. Balkrishnan 

(2005) further refines the definition by describing medication 

adherence as the degree to which a patient follows a treatment 

regimen after providing informed consent. Although both 

definitions underscore the importance of patient cooperation, they 

do not account for the specific procedural complexities associated 

with inhaler-based treatments. 

To address the complexity of adherence, Vrijens et al. (2012) 

introduced the ABC taxonomy, categorizing adherence into three 

distinct phases: initiation, implementation, and persistence. 

“Initiation” refers to the first use of the prescribed medication, 

“implementation” describes how well the patient maintains correct 

dosing, and “persistence” measures the duration of therapy. While 

the ABC taxonomy provides a structured framework for assessing 

adherence, it falls short in capturing the precise handling and 

correct inhalation techniques required for optimal inhalation 

therapy. This gap is particularly significant for conditions like 

asthma and COPD, where effective delivery depends heavily on 
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patient technique. 

In the context of inhalation therapy, adherence extends beyond 

merely following dosage schedules; it also includes correct inhaler 

technique. Nikander et al. (2014) emphasize that true adherence 

encompasses both prescription adherence (taking medication as 

prescribed) and inhaler technique adherence (correctly using the 

inhaler device). Pritchard and Nicholls (2015) further quantify this 

dual-component perspective, suggesting that “adherence equals the 

percentage of adherence to the prescribed regimen multiplied by 

the percentage of correct inhaler technique.” This dual-layered 

definition highlights the need for interventions that not only 

encourage consistent use but also ensure proper technique to 

maximize clinical efficacy. 

An additional perspective in understanding non-adherence is the 

application of Human Error Theory(Barber et al., 2005; R. Patel et al., 

2021; Vaughn-Cooke et al., 2015). Barber et al. (2005) suggest that 

non-adherence can be analyzed similarly to human errors observed 

in high-risk industries, such as aviation or nuclear energy. From 

this viewpoint, non-adherence is not always a matter of deliberate 

choice; it can result from memory failures, misunderstandings, or 

environmental distractions. Applying Human Error Theory to 

inhalation therapy allows healthcare systems and device 

manufacturers to identify common usage errors and design 

interventions that minimize these mistakes. This perspective is 

aligned with HFE principles, which aim to optimize system design 

by accounting for human limitations and enhancing user 

experience(Vaughn-Cooke et al., 2015). 

 

2.3.1.2 Forms of Non-adherence 
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Adherence in inhalation therapy is not a binary concept but occurs along a 

spectrum, with several forms of non-adherence often overlapping(Rand & 

Wise, 1994; Van Dulmen et al., 2007): 

Non-Fulfillment: This includes “failure to start”, when patients do 

not commence therapy after filling the prescription. 

Non-Persistence: This occurs when patients discontinue therapy 

on their own, often without consulting a physician, typically within 

two to three months. Non-persistence is particularly problematic in 

chronic conditions where long-term adherence is crucial. 

Unintentional Non-Adherence: This form is often due to 

cognitive factors such as lack of concentration, forgetfulness, or 

dementia. Patients may unintentionally make errors in inhaler 

technique, significantly compromising the effectiveness of the 

treatment. 

Intentional Non-Adherence: Derived from the patients’ beliefs 

and attitudes, this type involves a deliberate decision not to adhere 

strictly to the prescribed regimen. Some of the reasons include: fear 

of side effects, doubt in the effectiveness of the medication or a 

particular stigma of using the inhaler among other factors. 

Non-Conforming Behaviors: Includes overuse, underuse, or 

unauthorized modifications to the dosage regimen. This type of 

non-adherence reveals that it can be difficult to manage treatments 

when the patient’s behavior and preferences differ significantly. 

 

2.3.1.3 Adherence Thresholds 

Measuring adherence in inhalation therapy is inherently complex 

due to the multitude of influencing factors(Aldan et al., 2022; Khdour 

et al., 2012; Monteiro et al., 2021). Researchers have proposed various 
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thresholds to define "good" adherence, which often vary based on 

clinical context and patient populations. 

In inhalation therapy, adherence is typically quantified by the 

percentage of prescribed doses taken by the patient. Some studies 

consider adherence rates of 80% or higher as indicative of good 

adherence(Baumgartner et al., 2018; Murphy et al., 2012). However, 

recent research suggests that an adherence level of 75% is generally 

sufficient for maintaining clinical stability, particularly for patients 

with asthma or COPD(Asamoah-Boaheng et al., 2021; Huurne et al., 

2015; Jansen et al., 2021). Deviations below this threshold have been 

associated with significant health deterioration, emphasizing the 

importance of maintaining this minimum adherence level. In terms 

of classification, adherence rates between 50% and 75% are often 

regarded as partial adherence, while rates below 50% are classified 

as poor adherence, reflecting a substantial gap in medication intake 

that could compromise disease control(Gutiérrez et al., 2017; J. Lee et 

al., 2018). Additionally, excessive medication usage, defined as 

more than 125% of the prescribed dosage, is associated with 

adverse effects and may paradoxically worsen disease 

outcomes(Baumgartner et al., 2018; Huurne et al., 2015; Rogliani, Ora, et 

al., 2017). This highlights the need not only to maintain the required 

dosage for therapeutic effectiveness but also to avoid overuse, 

which could contribute to medical complications and reduced 

therapeutic efficacy. 

Beyond simple dosage adherence, proper inhalation technique is 

equally vital for effective therapy. The success of inhalation 

therapy is not solely dependent on the quantity of medication 

administered but also on the patient’s ability to use the inhaler 

correctly(Melani, 2021; Nikander et al., 2014; Pritchard & Nicholls, 

2015). Research indicates that patients frequently exhibit poor 

inhaler technique, such as incorrect device preparation, suboptimal 
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inhalation flow rates, insufficient inhalation duration, and 

inadequate breath-hold after inhalation(Dabrowska et al., 2019; 

Eikholt et al., 2023; Hesso et al., 2020). These errors can substantially 

reduce drug deposition in the lungs, directly affecting treatment 

outcomes. Therefore, a comprehensive evaluation of adherence in 

inhalation therapy must consider not only the frequency of use but 

also the quality of inhalation technique, as both are crucial for 

optimizing patient outcomes in asthma and COPD 

management(Melani, 2021; Nelson, 2016). 

 

2.3.2 Related Theories in Understanding Adherence 

Understanding the factors influencing adherence in inhalation 

therapy requires an exploration of multiple theoretical models that 

address the psychological, environmental, systemic, physiological, 

and contextual dimensions of patient behavior. Below are the key 

models widely utilized in adherence research. 

Health Belief Model (HBM): The HBM is widely applied to 

explain and analyze health behaviors by considering constructs 

such as perceived susceptibility, perceived severity, perceived 

benefits, and perceived barriers(Janz & Becker, 1984). In the context 

of patient adherence, HBM has been particularly effective in 

illustrating how patients' perceptions of their health conditions and 

treatment efficacy influence their medication-taking behaviors(C. J. 

Jones et al., 2014). For example, Khdour et al. (2012) utilized the 

HBM to examine how psychosocial factors affect medication 

adherence among COPD patients in secondary care settings. Their 

findings indicated that adherence in COPD patients is 

predominantly influenced by their perceptions of health status and 

medication effectiveness, rather than demographic factors or 

disease severity. Further supporting this perspective, Zhao et al. (2022) 
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identified that perceived risk and perceived benefits significantly impact 

health information-seeking behaviors among patients with chronic 

conditions.  

Social Cognitive Theory (SCT): The SCT emphasizes the role of 

beliefs, self-efficacy, and social influences in shaping health 

behaviors(Conner & Norman, 2015). This model posits that individuals' 

confidence in their ability to perform a behavior (self-efficacy), along 

with environmental factors, significantly affect adherence outcomes. 

Bennett et al. (2018) applied SCT to analyze medication adherence among 

patients with depression, revealing that self-control, expectations about 

medication use, age, and race are significant determinants of adherence. 

Similarly, Heidari-Soureshjani et al. (2018) conducted a cross-

sectional study exploring the relationship between adherence to 

health behaviors and SCT constructs among women with diabetes. 

Their findings demonstrated that outcome expectations, self-

efficacy, and self-regulation were directly correlated with 

adherence levels. 

Transtheoretical Model (TTM): The TTM proposes that 

individuals progress through six stages of change: 

precontemplation, contemplation, preparation, action, maintenance, 

and termination(Hashemzadeh et al., 2019). This model is frequently 

used to guide interventions by identifying a patient's readiness to 

change and tailoring support accordingly(Bridle et al., 2005; 

Prochaska et al., 2008). Johnson et al. (2006) applied TTM-based 

expert systems to enhance adherence to antihypertensive 

medications, demonstrating that stage-specific interventions can 

positively influence adherence irrespective of the patient's initial 

readiness. However, Ficke and Farris (2005) noted that TTM 

remains underutilized in medication adherence research, despite its 

capacity to segment patient populations based on readiness for 

behavioral change.  



40 

 

Theory of Planned Behavior (TPB): The TPB links health-related 

behaviors to attitude, perceived control, and subjective 

norms(Godin & Kok, 1996). According to TPB, an individual's 

intention to adhere to therapy is influenced by these three 

constructs, which in turn predict actual adherence behavior. Lin et 

al. (2016) utilized TPB in combination with action planning and 

coping planning to assess medication adherence among adults with 

epilepsy, finding that these factors collectively explained over 50% 

of adherence variance. Additionally, Ho and Lee (2014) conducted 

a cross-sectional analysis indicating that attitude, subjective norms, 

and perceived behavioral control significantly influenced 

hypertensive patients’ intentions to adhere to medication, 

ultimately impacting their actual behavior. 

WHO’s Multidimensional Adherence Model (MAM): The 

MAM developed by the WHO classifies adherence determinants 

into five dimensions: patient-related, therapy-related, condition-

related, healthcare system-related, and social/economical(Sabaté, 

2003). This comprehensive framework addresses the multifaceted 

nature of adherence by examining both patient behaviors and 

systemic influences. For example, Aldan et al. (2022) found that 

medication adherence in COPD patients was primarily influenced 

by factors related to the patient, the treatment, and the condition 

itself. They recommended that HCPs implement tailored training 

and counseling programs for newly diagnosed patients, those with 

multiple medications, and individuals with comorbidities. 

Furthermore, Wu et al. (2008) demonstrated that patient education, 

perceived health benefits, and access to healthcare significantly 

impact adherence rates in heart failure patients, underscoring the 

relevance of MAM in understanding complex adherence behaviors.  

While these models effectively capture various determinants of 

patient adherence, they largely overlook the critical role of device-
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related interactions specific to inhalation therapy. Factors such as 

device handling, user confidence, technical complexity, and 

comfort of use substantially influence adherence but are 

inadequately represented in these theoretical frameworks. This gap 

suggests a need for models that integrate patient-device interaction 

to more accurately predict and support adherence behaviors in 

asthma and COPD patients (see Table 2.2). 

Table 2. 2: Related theories in understanding adherence. 

Theory Core Factors Strengths Limitations in the Context 
of Inhalation Therapy 

HBM 
Perceived susceptibility, 
severity, benefits, 
barriers, and stigma 

Explains motivation and 
health beliefs 

Primarily focuses on 
individual beliefs and does 
not fully address practical 
challenges of device use 

SCT 

Self-efficacy, interaction 
between behavior, 
personal factors, and 
environment 

Highlights self-efficacy 
and social support 

Does not fully account for 
the impact of device design 
and usability on adherence 

TTM 

Stages of change: 
precontemplation, 
contemplation, 
preparation, action, 
maintenance, termination 

Supports stage-based 
interventions 

Focuses mainly on behavior 
change and does not 
consider device-related 
barriers or external factors 
impacting adherence 

TPB Attitude, perceived 
control, subjective norms 

Analyzes intention and 
motivation 

Lacks a comprehensive 
approach that accounts for 
device intricacy or external 
conditions 

MAM 

Patient-related, therapy-
related, condition-related, 
healthcare system-related, 
and socioeconomic 
factors 

Considers multiple 
dimensions 

May require more granular 
insights into device-specific 
barriers 

 

2.3.3 SEIPS Model and HFE in Adherence 

2.3.3.1 The Role of HFE in Patient Adherence 

HFE provides a structured approach to optimizing patient 

interactions with healthcare systems, emphasizing safety, efficiency, 

and usability(J. Anderson et al., 2010; Carayon & Wooldridge, 2020; 

Hignett et al., 2013). In the context of DDCPs like inhalers, HFE 

addresses critical barriers such as device complexity, cognitive 
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overload, and inadequate user training that can impair proper 

usage(Leiner et al., 2015; Saidi et al., 2019). By focusing on user-

centered design and ergonomic principles, HFE enhances both 

patient experience and adherence, leading to improved treatment 

outcomes(Sheehan et al., 2022; Tsao et al., 2019). 

HFE is instrumental in analyzing patient-device interactions by 

identifying how design flaws, poor user interfaces, and operational 

complexity impact effective use(Hegde, 2013; Leiner et al., 2015; R. 

Patel et al., 2019; Privitera et al., 2017). For example, Grant et al. 

(2015) demonstrated the design optimization of the ELLIPTA DPI, 

focusing on user-friendly features to enhance medication delivery 

and task compliance. Their study applied HFE principles to 

evaluate in vitro dosing performance and real-world usability, 

showcasing how well-structured design reduces patient errors. 

Similarly, Leiner et al. (2015) highlighted that integrating HFE into 

inhaler design minimizes user errors and optimizes therapeutic 

outcomes by prioritizing patient needs and regulatory standards. 

Beyond patient-device interactions, HFE also considers the broader 

context of patient-healthcare system interactions. This perspective 

includes understanding how patients manage their treatment 

regimens outside clinical settings, where environmental factors and 

real-world challenges often disrupt optimal usage(Albahri et al., 2018; 

Carayon & Wooldridge, 2020; Merchant et al., 2018; Negoescu et al., 

2023). Fortuna et al. (2019) proposed a theoretical model 

emphasizing peer support as a critical human factor in digital health 

interventions for individuals with serious mental illness. Their 

findings suggest that community-driven engagement significantly 

improves adherence. Similarly, O’Connor et al. (2016) underscored 

the importance of human factors in digital health recruitment, 

highlighting how motivation, personal agency, and life context 

influence participation. They argue that user-centered digital health 
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interventions (DHIs) must align with patient values and daily 

routines to ensure long-term engagement.  

 

2.3.3.2 SEIPS Applications in Patient Adherence 

The Systems Engineering Initiative for Patient Safety (SEIPS) 

model, grounded in HFE, provides a structured framework to 

analyze healthcare systems by examining the interactions between 

Person, Tasks, Tools, Organization, and Environment. SEIPS 1.0 

primarily focused on enhancing patient safety and healthcare 

outcomes through systematic design improvements(Carayon et al., 

2006). Building on this foundation, SEIPS 2.0 expanded the 

framework to include patient-centered considerations, emphasizing 

how patient engagement and environmental factors contribute to 

successful healthcare interventions(Holden et al., 2013). 

The SEIPS model has been widely applied across various 

healthcare domains, demonstrating its effectiveness in optimizing 

system design, enhancing patient education, improving device 

usability, and streamlining healthcare workflows(Berman et al., 2021; 

Frith, 2013; Strauven et al., 2020; Wooldridge et al., 2017). Although 

not always explicitly targeting adherence, these applications often 

result in improved patient compliance as a secondary benefit. 

Patient Education and Training: The SEIPS model has been 

instrumental in tailoring educational interventions by identifying 

system-level and patient-specific barriers. For example, Brick et al. 

(2023) utilized SEIPS to examine patient education among 

hospitalized older cancer survivors, revealing that hospital size, 

illness severity, and cancer type significantly impact educational 

delivery. Their findings suggest that a system-based approach is 

essential to address these contextual factors. Similarly, Papautsky 
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(2019) applied SEIPS to breastfeeding education in hospitals, 

highlighting how patient-specific elements like environmental 

settings and personal goals can optimize educational outcomes. 

These examples underscore SEIPS's ability to design patient-

centered education that aligns with individual needs, ultimately 

supporting better adherence. 

Device Design and Usability Optimization: SEIPS has proven 

effective in optimizing the usability of medical devices, thereby 

indirectly enhancing patient adherence. Keller et al. (2017) 

employed the SEIPS framework to evaluate the use of home 

medical devices by older adults during transitions from hospitals to 

home settings. The study identified barriers like complex device 

interfaces and insufficient support during discharge, emphasizing 

the need for coordinated system-level solutions. Likewise, Santos 

et al. (2013) used SEIPS to identify performance obstacles related 

to medical devices in emergency settings, highlighting the 

importance of human factors and user-centered design to reduce 

errors during critical moments. These findings reflect SEIPS's 

capacity to bridge the gap between device complexity and user 

capability, leading to improved safety and adherence. 

Process and Workflow Improvements: SEIPS is also effective in 

optimizing healthcare processes and workflows to enhance 

treatment delivery and patient safety. Martinez et al. (2017) applied 

SEIPS 2.0 to the CONDUIT-HID intervention, which aimed to 

manage hypertension in diabetic patients through consumer health 

informatics (CHI). Their findings showed that simplifying 

workflows and enhancing usability were crucial to program success, 

particularly in supporting patient self-management. Steele et al. 

(2018) also utilized SEIPS to evaluate medication safety in mental health 

settings, identifying critical vulnerabilities such as interruptions during 

medication administration and insufficient pharmacological training for 
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nurses. These studies illustrate how SEIPS-driven process 

optimization can minimize risks and improve patient adherence. 

Through its patient-centered, systems-based approach, SEIPS not 

only optimizes education, device usability, and care processes but 

also inherently addresses many adherence challenges. By 

considering the holistic interactions within healthcare systems, 

SEIPS creates opportunities for interventions that align with patient 

needs, thereby supporting consistent and effective medication use. 

 

2.3.4 Measuring Adherence 

Assessing patient adherence in real life and clinical trials presents 

significant challenges due to its multifaceted nature. Assessment 

methods can be broadly categorized into subjective and objective 

measures, or a combination of both(Cowen et al., 2007; Rand & Wise, 

1994; Vitolins et al., 2000). Each method has distinct strengths and 

limitations, as outlined below. 

 

2.3.4.1 Subjective Measures 

Subjective measures rely on patient self-reporting and include 

questionnaires, diaries, and interviews. These methods are widely 

used due to their cost-effectiveness, simplicity, and non-intrusive 

nature. However, they are often criticized for their susceptibility to 

recall bias and overestimation of adherence(Anghel et al., 2019; W. Y. 

Lam & Fresco, 2015; Quirke-McFarlane et al., 2023). 

Questionnaires: Standardized self-reported measures like the 

Morisky Medication Adherence Scale (MMAS-4), Medication 

Adherence Rating Scale (MARS-5), and Test of Adherence to 

Inhalers (TAI) are commonly used(Kwan et al., 2020; Plaza et al., 



46 

 

2016; Quirke-McFarlane et al., 2023). The TAI is particularly effective 

for assessing inhaler adherence and can distinguish between 

different types of non-adherence(Plaza et al., 2016). Studies by 

Muneswarao et al. (2021) and Ayele and Tegegn (2017) have 

validated its reliability and sensitivity in various populations, 

demonstrating its capacity to identify barriers such as 

polypharmacy and comorbidities. 

Diaries: Diaries allow patients to log their medication usage over 

time, providing insights into daily patterns and potential adherence 

gaps(Svensson et al., 2021). Despite offering temporal context, their 

accuracy is often questioned due to potential fabrication and 

inconsistent entries(Wood-Baker et al., 2012). 

Interviews: Structured or semi-structured interviews provide in-

depth insights into patient behavior, perceived barriers, and 

attitudes towards inhalation therapy(Anghel et al., 2019; Garber et al., 

2004). They are especially valuable for exploring patient-specific 

challenges but remain limited by recall bias and the reliability of 

self-reported data. 

 

2.3.4.2 Objective Measures 

Objective measures provide quantifiable data on medication usage, 

offering a more reliable assessment of adherence(Jensen et al., 2021; 

Jiang et al., 2009; W. Y. Lam & Fresco, 2015). 

Canister Weight/Dose Counter: In inhaler-based therapies, 

measuring the canister weight or using dose counters helps track 

the number of actuations(Bender et al., 2000; O’Connor et al., 2004). 

This method is straightforward but does not account for proper 

inhalation technique. 
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Pharmacy Refill Records: Monitoring pharmacy refill data is an 

indirect method to estimate adherence, assuming that refilled 

medications are used as prescribed(C. Jones et al., 2003; Sherman et 

al., 2000). However, it cannot verify whether the medication was 

consumed correctly or consistently(Jensen et al., 2021; W. Y. Lam & 

Fresco, 2015). 

Electronic Monitors: Considered the gold standard for inhalation 

therapy adherence, electronic monitors record precise data on 

inhaler usage, including timing, frequency, and inhalation quality 

(Blakey et al., 2018; Chrystyn et al., 2019). Despite their accuracy, 

challenges remain, such as high costs, technical reliability, and 

patient acceptance(A. H. Y. Chan, Harrison, et al., 2015). Recent studies 

have demonstrated their value not only in tracking adherence but also in 

improving technique and reducing long-term costs for patients with 

asthma(Pleasants et al., 2022; Van De Hei et al., 2023). 

 

2.3.4.3 Biochemical Measures 

While less common in inhalation therapy studies, biochemical 

assays provide direct evidence of medication intake by measuring 

drug levels in blood, saliva, or exhaled breath condensate(Chmelik 

& Kao, 1996; George, 2018; Rand & Wise, 1994). Exhaled breath 

analysis, in particular, offers a non-invasive approach to detect drug 

markers, confirming correct administration. However, high costs 

and the invasive nature of some tests limit their use to clinical trials 

rather than routine practice. 

 

2.3.4.4 Mixed-Methods Approaches 

To achieve a more comprehensive assessment of adherence, many 
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studies employ mixed-methods approaches that integrate both 

subjective and objective measures. This method captures both 

quantitative usage data and qualitative patient insights, addressing 

the limitations of singular approaches. For example, Zeller et al. 

(2008) demonstrated significant discrepancies between self-

reported adherence and electronic monitoring, emphasizing the 

need for triangulation of data. Similarly, Wagner (2002) found that 

combining electronic monitoring with self-reported diaries not only 

identified key adherence barriers but also enhanced the validity of overall 

adherence measurements. 

 

 

2.4 Adherence-Supporting Interventions 

 

2.4.1 The Role of Assistive Technologies in Adherence 

Support 

2.4.1.1 Sensor-Integrated Devices 

Sensor-integrated devices have become pivotal in enhancing patient 

adherence by enabling continuous monitoring and delivering 

personalized, actionable feedback. These technologies—

encompassing electronic monitors, wearable devices, and IoT 

systems—collect comprehensive adherence-related data, supporting 

timely interventions and promoting sustained treatment 

engagement(Albahri et al., 2018; Aldeer et al., 2018; A. H. Y. Chan et al., 

2021; Kalantarian et al., 2016; Kaplan et al., 2023). 

Electronic Monitors: Primarily represented by smart inhalers, 

electronic monitors track medication usage by recording actuation 
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patterns, timing, and frequency. Integrated feedback mechanisms 

alert patients to missed doses or incorrect use, improving adherence 

and clinical outcomes(Blakey et al., 2018; A. Chan et al., 2022; A. H. Y. 

Chan et al., 2021). Jansen et al. (2021) found that these devices 

significantly enhance adherence in asthma and COPD management 

by providing objective usage data. Furthermore, Rumi et al. (2022) 

demonstrated that combining digital coaching with smart inhaler 

technology in community-based asthma programs resulted in 

improved self-management and adherence rates. These findings 

underscore the dual role of smart inhalers in monitoring behavior 

and facilitating timely interventions. 

Wearable Devices: Wearables equipped with sensors for continuous 

physiological monitoring (e.g., heart rate, activity levels) offer real-time 

health tracking and medication reminders(Kalantarian et al., 2016; C.-T. 

Wu et al., 2021). Kamei et al. (2022) found that integrating wearable 

devices with educational support significantly improved adherence in 

chronic disease management, such as diabetes and cardiovascular 

conditions. However, their application in respiratory care, particularly for 

asthma and COPD, remains limited, suggesting substantial potential for 

future research(Chrystyn et al., 2019). 

IoT Systems: IoT-based platforms provide a holistic solution by 

integrating data from electronic monitors, wearables, and environmental 

sensors(Al-kahtani et al., 2022; Blakey et al., 2018; Chakraborty et al., 

2023; Pradeesh et al., 2022). These systems automate data collection, 

deliver real-time feedback, and enable remote monitoring, reducing the 

need for frequent in-person consultations. For example, Serdaroglu et al. 

(2015) leveraged continuous activity recognition to address medication 

adherence challenges, while Hui et al. (2021) demonstrated that IoT-

enabled real-time guidance improved asthma self-management. Moreover, 

IoT solutions frequently incorporate environmental monitoring of air 

quality and humidity—factors crucial for managing respiratory 
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conditions(Bamashmoos et al., 2018; Chakraborty et al., 2023). 

Opportunities and Challenges of Sensor-Integrated 

Technologies in Adherence Support: Sensor-integrated 

technologies, including electronic monitors, wearables, and IoT-

based systems, share common features that enhance their 

effectiveness in supporting patient adherence. These devices 

facilitate real-time monitoring of patient status, medication usage, 

and environmental conditions, providing a comprehensive 

foundation for intervention strategies. Their passive data collection 

reduces disruption to daily routines while continuously capturing 

critical information. A key strength of these systems lies in their 

capacity to deliver personalized and actionable feedback, fostering 

proactive self-management and encouraging sustained treatment 

engagement(Aardoom et al., 2020; Al-Durra et al., 2015). Moreover, 

their seamless integration within broader healthcare ecosystems 

enables effective remote monitoring and tailored intervention 

delivery(Chakraborty et al., 2023; Davis et al., 2018).  

Despite these advantages, several challenges persist, including 

ensuring sensor accuracy, addressing data privacy concerns, 

maintaining long-term user engagement, and overcoming technical 

limitations such as battery life and connectivity issues(Hui et al., 

2022; Kenyon et al., 2016; Kuipers et al., 2019; Quinde, 2020). 

Furthermore, many existing sensor-based interventions remain 

heavily focused on data acquisition, often neglecting critical 

aspects of dynamic patient interaction and adaptive feedback 

mechanisms(S.-H. Kim, 2022; Rodriguez & Déry-Pinna, 2012). This 

highlights a significant need for future developments to better align 

technological capabilities with human-centered design principles, 

ensuring that sensor-integrated solutions not only monitor 

adherence but also actively promote behavioral change and patient 

empowerment. 
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2.4.1.2 Digital Health Tools 

Digital health tools, including mobile applications and 

conversational agents (chatbots), offer scalable solutions for 

monitoring and supporting patient adherence. These technologies 

provide reminders, educational content, and direct communication 

channels between patients and HCPs, facilitating real-time 

intervention and personalized support (Axelsson et al., 2022; C.-C. 

Lin et al., 2023; Milne-Ives et al., 2020). 

Mobile Health Applications: Mobile health applications have 

become integral components in patient self-management, 

particularly for adherence monitoring(Farzandipour et al., 2017; 

Jácome et al., 2021; Kosse et al., 2019). These apps typically feature 

medication reminders, health tracking capabilities, and 

personalized health information to enhance patient engagement. 

Liu et al. (2020) demonstrated that mobile applications with these 

functionalities significantly improve adherence among patients 

with chronic conditions. Similarly, Agarwal et al. (2019) found that 

continuous engagement through app-based interventions maintains 

long-term adherence by providing timely feedback and ongoing 

support. These studies highlight the potential of mobile 

applications to not only track medication use but also foster 

sustained behavioral change through interactive health management. 

Chatbots for Patient Engagement: Chatbots simulate human-like 

conversation and provide real-time, personalized interactions, 

making them effective tools for enhancing patient engagement and 

adherence(Axelsson et al., 2022; Laranjo et al., 2018; H. Li et al., 2023; 

Milne-Ives et al., 2020). Kadariya et al. (2019) demonstrated that 

chatbots integrated with mobile health platforms could deliver 

tailored medication reminders and educational content, 
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significantly improving adherence rates among users. Furthermore, 

Suehs et al. (2023) compared traditional face-to-face therapeutic 

education with a chatbot-guided program (Vik-Asthme) for asthma 

patients. Their findings indicated that the chatbot effectively 

improved adherence, enhanced asthma control, and reduced the 

burden on medical staff, emphasizing the potential of chatbot-based 

interventions to complement traditional healthcare delivery. 

 

2.4.1.3 Telehealth Services 

Telehealth platforms play a pivotal role in extending healthcare 

access and enabling continuous monitoring—both of which are 

critical for adherence in chronic disease management(Du Toit et al., 

2019; Janjua et al., 2021). These technologies support remote 

consultations, real-time data sharing, and timely adjustments to 

treatment plans, making them indispensable for managing 

conditions that require ongoing adherence and personalized care. 

One of the primary benefits of telehealth is its ability to support 

remote monitoring services. When combined with real-time 

feedback mechanisms, telehealth allows for continuous supervision 

and prompt interventions, significantly enhancing adherence and 

clinical outcomes(Haddad et al., 2023). Video consultations further 

complement this model by providing direct, personalized 

interactions between patients and HCPs. These virtual visits enable 

immediate adjustments to care plans and address adherence barriers 

as they arise(Dhunnoo et al., 2024). This direct communication not 

only reinforces patient engagement but also improves the quality of 

care through timely intervention. 

 

2.4.2 Sensor-Driven Components and Mechanisms in 
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Adherence-Supporting Interventions 

2.4.2.1 Sensor-Driven Data Collection 

This subsection reviews sensor technologies used in adherence-

supporting interventions, focusing on their roles in monitoring 

person-related, task-related, and physical environment-related 

behaviors and conditions. In adherence-supporting interventions, 

the quality and comprehensiveness of data collection are crucial. 

Effective interventions collect data across multiple dimensions, 

capturing person-related, task-related, and environment-related 

information. Below is a more detailed overview (see Table 2.3). 

Person-Related Data: Physiological parameters are central to 

understanding the health context in which adherence occurs. 

Commonly collected metrics include: 

1. Heart Rate and Blood Oxygen Levels: The study by 

Chakraborty et al. (2023) developed an IoT-enabled asthma 

monitoring system that uses sensors like the MAX30100 to 

collect heart rate and blood oxygen data, providing real-time 

feedback and enhancing remote health management for asthma 

patients. Another study by Kadariya et al. (2019) focused on 

the development of kBot, a knowledge-enabled personalized 

chatbot designed for the self-management of asthma in 

pediatric patients. The system integrated real-time heart rate 

and blood oxygen data collection through wearable sensors, 

helping to monitor patients' adherence to their asthma care 

plans and providing timely feedback to improve health 

outcomes. 

2. Lung Function Metrics: Lung function is routinely monitored 

using spirometers and peak flow meters to assess respiratory 

health. For example, Hui et al. (2022) assessed the feasibility of 
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a connected-for-asthma (C4A) system that integrates multiple 

smart devices, including smart peak flow meters, to provide 

accurate, real-time lung function data, supporting asthma self-

management for both patients and clinicians. Similarly, 

Jochmann et al. (2017) evaluated the use of electronic 

monitoring devices for assessing adherence to inhaled 

corticosteroids in children with asthma, including the 

measurement of lung function parameters. The findings 

highlighted the critical role of precise monitoring in optimizing 

asthma management, particularly in pediatric patients. 

Task-Related Data: Task-related data focuses on the proper use of 

inhalers, including dosage accuracy and technique. Key data points 

include: 

1. Medication Actuation and Timing: Devices record each 

actuation, capturing timestamps and frequency. Gupta et al. 

(2021) focused on the use of sensor-based electronic 

monitoring devices to measure inhalation time and frequency 

among children with asthma. These sensors captured data on 

medication use, including the precise timing and number of 

inhalations, providing real-time feedback to improve adherence 

and asthma management. Kenyon et al. (2016) utilized 

electronic monitoring devices to measure inhalation timing and 

frequency in pediatric asthma patients. These devices captured 

detailed data on each inhalation event, including the exact time 

and number of inhalations, offering insights into medication 

use patterns and adherence, which are critical for managing 

asthma in high-risk populations. 

2. Inhalation Technique: Smart inhalers equipped with sensors 

monitor key inhalation parameters, including speed and depth, 

to enhance medication adherence. Dierick et al. (2022) utilized 

a digital smart spacer that detects inhalation metrics such as 
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flow rate, inhalation timing, actuation coordination, and 

inhalation duration. These data are analyzed in real-time to 

identify common errors like insufficient flow, incorrect timing, 

and inadequate breath-hold, providing feedback to help patients 

correct their technique. Similarly, Chan et al. (2015) employed 

an electronic monitoring device with sensors that captured 

detailed data on inhalation technique, including timing, 

coordination, and flow rate. The device delivered real-time 

audiovisual feedback, alerting patients to inhalation errors and 

guiding them to improve their technique, thereby enhancing the 

overall effectiveness of asthma medications. Hasegawa et al. 

(2023) developed a method using an inertial measurement unit 

(IMU) sensor attached to an inhaler to measure inhalation 

technique by capturing data on the angular velocity and angle 

of the device during use. This data was analyzed using a 

dynamic programming (DP) matching algorithm to evaluate the 

correctness of inhaler movements, such as the timing and 

coordination of inhalation steps, providing a precise assessment 

of inhalation technique without the need for direct supervision 

by HCPs. 

Physical Environment-Related Data: Environmental factors may 

also influence patient adherence and management strategies, with 

commonly monitored metrics including temperature, humidity, and 

air quality. For instance, Su et al. (2017) utilized inhaler sensors to 

capture real-time data on these environmental conditions during 

inhaler use, helping to identify triggers that could worsen asthma 

symptoms and supporting personalized management strategies. 

Similarly, Pradeesh et al. (2022) explored an IoT-based smart E-

Inhaler equipped with sensors to monitor air quality, temperature, 

and humidity, providing patients with immediate feedback on 

environmental conditions. These smart systems enhance asthma 

management by alerting patients to unfavorable conditions, thereby 
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supporting better adherence and symptom control. 

Table 2. 3 : Sensor types, monitored parameters, and examples in 

adherence-supporting interventions. 

Category Subcategories Parameters Sensor 
examples 

Person Physiological 
condition 

Lung function 
Electronic 
spirometer or 
peak flow meter 

Heart rate/ 
oxygen 
saturation 

Pulse oximeter 
and heart rate 
sensor 

Task 

Inhalation 
actuation 

Date and time 
of actuation 

Electronic 
monitoring 
devices 

Location of 
actuation Smartphone 

Inhalation 
technique 

Acoustic 
features of 
inhalation 

INCA or 
microphone 

Inhalation 
motion 

Inertial 
measurement 
unit 

Inhalation 
airflow 
characteristics 

Airflow sensor 

Physical 
Environme
nt 

Environmental 
trigger 

Temperature Thermometer 
Humidity Hygrometer 

Air quality Dust sensors and 
gas sensors 

 

2.4.2.2 Processing Sensor-Generated Data 

The data collected from these systems requires robust processing to 

yield actionable insights, which can be categorized into three key 

stages: data preprocessing, data analysis, and data application. 

Data Preprocessing: Ensuring data quality through preprocessing 

is essential for accurate analysis in adherence monitoring. Common 

techniques include: 

1. Normalization: Aligning sensor data to a consistent scale 

improves comparability across metrics. Taylor et al. (2016) 

highlighted the importance of normalization in preprocessing 
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sensor data from inhalation monitoring devices, which adjusts 

sensor readings for reliable comparisons across various 

inhalation events, enhancing overall assessment accuracy.  

2. Filtering: Signal filtering techniques remove noise and artifacts, 

resulting in cleaner data for analysis. Taylor et al. (2018) 

emphasized the use of filtering in preprocessing audio signals 

from inhaler compliance assessments, which is crucial for 

isolating relevant inhalation events and improving the accuracy 

of inhaler technique analysis. 

3. Feature Engineering: Extracting relevant features from raw 

data enhances the accuracy of adherence classification. Nousias 

et al. (2018) utilized feature engineering techniques such as 

Mel-Frequency Cepstral Coefficients (MFCC), Spectrogram, 

and Cepstrogram for audio classification, which help 

distinguish between inhalation, exhalation, and other sound 

events, significantly improving adherence monitoring in 

respiratory conditions. 

Data Analysis: In adherence interventions, data analysis typically 

combines statistical methods, traditional algorithms, and machine 

learning models. Statistical methods are the most prevalent, used 

for summarizing data and drawing inferences, while traditional 

algorithms are applied less frequently, and advanced machine 

learning models are relatively rare but growing in use. 

1. Statistical Method: Foster et al. (2012) used descriptive 

statistics to evaluate the reliability and patient acceptability of 

the SmartTrack device for monitoring inhaler use. Descriptive 

statistics were employed to summarize patient demographics, 

device accuracy, and usability scores, providing a clear 

overview of the device's performance and patient experience. 

Hesso et al. (2023) utilized various statistical methods, 
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including descriptive and inferential statistics, to analyze data 

from the use of the INCA™ device. Descriptive statistics were 

used to summarize patient characteristics, inhaler usage errors, 

and questionnaire responses, while inferential statistics, 

including the Wilcoxon signed-rank test and McNemar test, 

were applied to compare adherence and inhaler technique 

measures before and after the intervention. 

2. Algorithmic Approaches: Traditional algorithms are employed for 

specific data analysis tasks in respiratory management. Zhao et al. 

(2021) developed a novel adherence sensor system for valved holding 

chambers, utilizing customized algorithms to ensure correct usage is 

recorded and incorrect use is flagged. These algorithms distinguish 

between deep breaths and tidal breaths, classifying the technique as 

good or poor, directly enhancing adherence monitoring and feedback. 

D'Arcy et al. (2014) employed algorithms for processing 

acoustic recordings of inhaler use to assess adherence, 

developing an automated signal processing method that 

accurately detects inhalation and exhalation events, enabling 

objective assessment of timing and technique adherence. 

Hasegawa et al. (2023) utilized Dynamic Programming (DP) 

matching algorithms to evaluate inhalation motion using data 

from an inertial measurement unit (IMU) sensor attached to an 

inhaler, allowing automated evaluation without the need for 

direct supervision. 

3. Machine Learning: The use of machine learning in adherence 

monitoring is still developing but offers significant potential for 

personalized intervention. Quinde (2020) employed machine learning 

to develop personalized asthma management solutions. These 

methods allow the system to adaptively learn from past cases and 

context, enhancing its ability to provide tailored recommendations 

based on current environmental and health data. Nousias et al. 
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(2018) employed Gaussian Mixture Models (GMM) for 

classifying inhaler usage events based on audio features 

extracted from sound recordings, demonstrating the potential of 

machine learning in monitoring adherence in respiratory 

conditions. 

Data Application: Processed data on patient adherence can be 

applied in various ways to enhance asthma and COPD management, 

particularly in evaluating effectiveness, monitoring behavior, and 

identifying risk factors. 

1. Effectiveness Evaluation: Evaluating the effectiveness of 

adherence interventions involves comparing health outcomes 

across different groups. Moore et al. (2021) assessed a 

connected inhaler system (CIS) for improving medication 

adherence in patients with uncontrolled asthma. The study 

found that CIS significantly increased adherence to 

maintenance therapy compared to the control group, 

demonstrating its potential to enhance asthma management 

through real-time feedback on medication use and extended 

rescue-free periods. Similarly, Hesso et al. (2020) used an 

electronic monitoring device (EMD) to assess adherence and 

inhalation technique in patients with COPD and asthma. The 

EMD revealed significantly lower actual adherence rates 

compared to traditional methods such as dose counters and 

self-reports, highlighting the effectiveness of electronic 

monitoring in providing accurate adherence data and 

identifying inhalation errors. 

2. Behavior Monitoring: Real-time monitoring of patient behavior 

helps reduce inhaler errors and supports long-term adherence. 

Taylor et al. (2018) utilized audio-based methods to estimate 

inhalation flow profiles, using acoustic sensors to capture 

inhalation sounds and assess inhaler technique and adherence. 
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This non-invasive, objective approach provides valuable 

insights into patient behavior during inhaler use. In another study, 

Chen et al. (2020) used electronic monitoring devices combined with 

weekly feedback and reminders to monitor inhaled corticosteroid 

adherence in pediatric asthma patients. The monitoring system 

recorded inhalation frequency and timing, significantly improving 

adherence compared to the control group. 

3. Risk Identification: Combining behavioral and environmental 

data can effectively identify high-risk scenarios associated with 

non-adherence, supporting timely classification of patient 

behaviors and enabling early intervention. Su et al. (2017) used 

electronic inhaler sensors to monitor patient behavior by 

capturing real-time data on rescue inhaler use, including the 

time and location of each event. Killane et al. (2016) employed a 

remote monitoring device to predict asthma exacerbations based on 

adherence patterns, identifying patients with poor adherence who 

were at higher risk of exacerbations.  

 

2.4.2.3 Feedback Provision Based on Sensor Data 

Providing timely and personalized feedback is crucial for 

supporting adherence (see Table 2.4). Effective feedback 

interventions can be categorized into three main areas: Reminders 

and Alerts, Data Visualization, and Persuasive Features. 

Reminders and Alerts: Reminders based on patient behavior and 

environmental conditions have been proven to significantly 

enhance adherence. Chakraborty et al. (2023) developed an IoT-

enabled asthma patient monitoring system that integrates an 

alerting mechanism, sending email and SMS alerts to patients and 

physicians when sensor readings exceed safe levels. This real-time 
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feedback enhances the system’s ability to monitor patient 

conditions and respond promptly to emergencies. Quinde et al. 

(2020) implemented a context-aware reasoning system, featuring a 

mobile app that delivers reminders and alerts based on contextual 

data such as environmental triggers and medication schedules. 

These timely notifications help patients manage their condition 

more effectively and improve adherence. 

Data Visualization: Simplifying complex data through 

visual/audio feedback tools is essential for engaging patients and 

supporting self-management. 

1. Audiovisual Indicators: Simple audiovisual indicators provide 

quick, intuitive feedback on adherence status. For example, 

Chan et al. (2015) evaluated an electronic monitoring device 

with audiovisual reminders for children with asthma, using a 

color-coded light system and sound alerts to signal adherence 

status: green for correct usage, yellow for missed doses, and 

red for prolonged non-adherence. This immediate, easy-to-

understand feedback helped significantly improve adherence 

rates. 

2. Graphical Representations: Visual tools such as graphs and 

charts help patients track their adherence over time, making 

complex data more accessible and understandable. These data 

visualizations enable patients and HCPs to easily identify 

patterns, recognize missed doses, and adjust treatment plans as 

needed. For example, Foster et al. (2014) described how the 

SmartTrack device uses bar charts on a secure website to 

display inhaler use, allowing patients and HCPs to easily 

identify missed doses and adjust treatment plans. Pradeesh et al. 

(2022) utilized scatter plots in their IoT-based smart E-Inhaler 

system to correlate inhaler usage patterns with environmental 

factors like air quality and temperature, helping patients 
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understand the relationship between environmental triggers and 

their symptoms for more personalized management. 

Additionally, infographic interfaces, as discussed by Meyer et 

al. (2016), employed metaphor-based elements (e.g., shoe or 

tree) to simplify the display of complex health data on mobile 

devices, making real-time feedback and historical data review 

both intuitive and visually appealing. Furthermore, Kim (2022) 

highlighted that well-designed visualizations for self-generated 

health data, such as bar charts and infographics, can improve 

users’ understanding and promote better self-management by 

making the data more actionable and personalized. 

Persuasive Features: Integrating persuasive elements such as 

gamification, rewards, and peer competition can motivate 

consistent inhaler use and strengthen patients’ self-efficacy. 

Grossman et al. (2017) incorporated gamification and rewards into 

an asthma management app, featuring a basketball-themed game 

where participants could earn rewards for proper inhaler use. This 

engaging and interactive approach, combined with peer 

competition, significantly boosted adherence among adolescents. 

De Simoni et al. (2021) implemented financial incentives to 

enhance adherence in adolescents, using electronic reminders 

paired with electronic monitoring devices. Participants received 

rewards, such as gift cards, for consistent inhaler use, 

demonstrating the effectiveness of financial incentives in 

promoting adherence and motivating younger patients. 

Table 2. 4: Feedback mechanisms and types. 
Feedback 
mechanism Type Description 

Reminders 
and alerts 

Application 
or dashboard 

Delivering scheduled medication reminders 
through paired smartphone applications or 
web dashboards. 

Audio-visual 
functionality 

Providing visual feedback on device usage 
and sound alarms for timely notifications. 

Data 
visualization Light signal Applying color-coded indicators to convey 

device status. 
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Graphical 
representation 

Utilizing graphical representations to 
provide feedback. 

Persuasive 
features 

Gamification 
Targeting children/adolescents with 
gamification techniques to enhance 
engagement and interaction. 

Rewards Utilizing incentives to encourage consistent 
use. 

Peer 
competition 

Leveraging a public leaderboard and 
reward points to introduce a competitive 
element, motivating adherence. 

 

 

2.5 Evaluation of Adherence-Supporting 

Interventions 

 

2.5.1 Evaluation Methods 

2.5.1.1 Quantitative Methods 

Quantitative methods provide objective and statistically robust 

measures, which are crucial for assessing the direct impact of 

adherence interventions. 

1. Randomized controlled trials (RCTs): RCTs are considered the 

gold standard for evaluating intervention effectiveness(P. 

Agarwal et al., 2019; Fedele et al., 2018; Gupta et al., 2021). They 

compare outcomes between intervention and control groups, 

allowing for causal inferences about the impact of adherence 

strategies such as electronic monitoring devices, reminders, and 

educational programs. For instance, Hollenbach et al. (2021) 

conducted a pilot RCT to evaluate the effectiveness of an EMD 

in improving adherence levels among children with asthma. 

The study demonstrated that the EMD, which recorded inhaler 

use and sent daily reminders, significantly improved adherence 
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rates and asthma control compared to standard care. Similarly, 

Chen et al. (2020) used an RCT to assess electronic monitoring 

combined with feedback and reminders, showing substantial 

improvements in adherence among infants and younger 

children with asthma compared to the control group.  

2. Observational Studies: Observational studies, such as cohort, 

case-control, and cross-sectional designs, are valuable for 

evaluating real-life adherence behaviors(Dima et al., 2015; Hesso 

et al., 2020; Hillyer et al., 2011; Melvin et al., 2017). Kenyon et al. 

(2016) used an observational cohort design to assess the 

acceptability of electronic adherence monitoring in high-usage 

pediatric asthma patients and identified different adherence 

profiles along with better control of asthma symptoms. Melvin 

et al. (2017) performed an observational study of the 

BreatheSmart mobile application, which is a device that counts 

the number of inhalations and the FEV1 parameter. The 

effectiveness of this technology in increasing adherence among 

adults with asthma in real life was confirmed. 

3. Pre-Post Intervention Studies: These studies compare 

adherence levels at baseline and after an intervention has been 

implemented and can be very useful when RCTs are not 

feasible(Newman-Casey et al., 2018). Leader et al. (2018) applied a 

pre-post design to investigate adherence interventions for CML 

patients on tyrosine kinase inhibitors, showing important 

improvements in adherence, with particular significance among 

patients with initially low adherence. Muneswarao et al. (2021) 

used a combination of reminders and motivational interviewing 

to achieve significant increases in medication adherence after 

the intervention. 

4. Surveys and Questionnaires: Standardized tools like the 

Morisky Medication Adherence Scale (MMAS) and the Test of 
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Adherence to Inhalers (TAI) are used to measure self-reported 

adherence and the perceived impact of interventions(Foster, 

Smith, Bosnic‐Anticevich, et al., 2012; Kwan et al., 2020; 

Muneswarao et al., 2021). For example, Vitolins et al. (2000) 

highlighted the extensive use of self-reported questionnaires, 

marking their ease of use and the importance of careful 

interpretation due to potential inaccuracies. 

5. Data Analytics and Machine Learning: As technology advances, 

data analytics and machine learning techniques are increasingly 

applied to examine large volumes of data from electronic 

monitoring devices, providing insights into patterns of 

adherence and supporting both the evaluation of intervention 

outcomes and the identification of adherence-related 

risks(Jourdan et al., 2021; Milne-Ives et al., 2020; C.-T. Wu et al., 

2021). By systematically assessing machine learning models, 

including logistic regression and random forest, Xiong et al. 

(2023) demonstrated the viability of these methods for 

classifying adherence behaviors and evaluating interventions 

related to asthma exacerbations. Similarly, Alazzam et al. 

(2021) used machine learning algorithms within a smart 

healthcare monitoring system to analyze adherence-related 

physiological patterns, highlighting the utility of ML 

techniques in monitoring and managing adherence. 

 

2.5.1.2 Qualitative Methods 

Qualitative methods, such as interviews and focus groups, provide 

in-depth insights into patient and provider perspectives on 

adherence interventions, exploring barriers and facilitators to 

success(Abdolkhani et al., 2020; S. A. Adams et al., 2017; Heijsters et al., 

2022; Minian et al., 2023). For example, Kenyon et al. (2016) utilized 
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semi-structured interviews and focus groups to assess the feasibility 

of electronic monitoring in pediatric asthma patients, gathering 

valuable feedback on the intervention's acceptability and areas for 

improvement. Hui et al. (2022) also applied qualitative methods, 

conducting interviews with patients and HCPs to evaluate the 

connected-for-asthma (C4A) system. Their analysis employed 

thematic analysis to study the system’s impact on usability and 

adherence. 

 

2.5.1.3 Mixed Methods 

Mixed methods combine quantitative and qualitative approaches, 

offering a comprehensive evaluation of adherence interventions by 

integrating statistical data with contextual insights(R. A. Calvo et al., 

2023; Hamine et al., 2015; Jácome et al., 2021). Makhecha et al. (2020) 

undertook a mixed-methods analysis to evaluate the viability of 

novel electronic adherence monitoring devices (NEMDs) for 

children with asthma. This assessment combined both quantitative 

data related to adherence and qualitative insights gathered from 

interviews and focus groups with patients, parents, and HCPs, 

providing a rich understanding of the devices' usability, 

acceptability, and their role in asthma management in real-world 

settings. Similarly, De Simoni et al. (2021) combined data obtained 

from electronic monitoring devices with qualitative information 

collected from both adolescents and their parents through thematic 

analysis, in order to better understand the facilitators and barriers to 

adherence and ultimately enhance the evaluation of the 

intervention's effectiveness. 

 

2.5.2 Evaluation Dimensions 
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It is necessary to consider different dimensions when evaluating 

interventions that support patient adherence, as these dimensions 

fully represent the comprehensive impact of these interventions. 

Evaluation dimensions help in understanding not just whether the 

intervention works, but how and why it works by assessing 

outcomes across various domains: 

Clinical Outcomes: The direct effect of adherence interventions on 

patient health is measured through clinical indicators, such as lung 

function quantities (e.g., FEV1, PEFR), the frequency of 

exacerbations, and the management of symptoms(M. A. Barrett et al., 

2017; Boddy et al., 2021; A. H. Y. Chan, Stewart, et al., 2015; M. Patel et 

al., 2013). Barrett et al. (2017) evaluated a mobile health platform 

that integrated sensors for asthma management, assessing clinical 

outcomes such as reduced SABA use, improved symptom-free days, 

and better overall asthma control to determine how self-

management impacts health outcomes. Similarly, Boddy et al. 

(2021) investigated the INCA electronic monitoring apparatus's 

effect on clinical outcomes, including better lung function and 

reduced blood eosinophil counts, emphasizing that monitoring 

adherence could prevent unnecessary therapy escalation. 

Behavioral Adherence: Behavioral strategies focus on whether 

patients comply with prescribed treatments in terms of dosage, 

timing, and inhalation technique(Dierick et al., 2022; Hesso et al., 

2020; Mokoka et al., 2017; O’Dwyer et al., 2016; Taylor et al., 2016; 

Taylor, Zigel, et al., 2018). Moore et al. (2021) measured adherence 

using a connected inhaler system (CIS) that recorded all actuations 

electronically in real-time, providing precise adherence rates and 

confirming the usefulness of digital monitoring in improving 

medication adherence. Anderson et al. (2020) reviewed various 

adherence measurement methods, including electronic monitoring, 

pill counts, and self-reports, finding that evidence quality varied 



68 

 

considerably, with electronic monitoring proving more reliable than 

self-reports. 

Patient Experience and Satisfaction: Achieving both the success 

and sustainability of adherence interventions requires attention to 

patient satisfaction and experience(Ali Alkhoshaiban et al., 2019; 

Basheti et al., 2008; Davis et al., 2018; Jácome et al., 2021). According 

to Hirsch et al. (2021), the use of personalized interventions led to 

substantial improvements in patient satisfaction over time, which in 

turn supported adherence through enhanced communication 

between patients and their providers. Another study involving 

elderly diabetic patients employed the Diabetes Medication 

Satisfaction (DiabMedSat) questionnaire to assess satisfaction, 

revealing significant improvements following intervention. These 

findings highlight the positive effect of personalized pharmacist 

counseling on patient satisfaction(Ali Alkhoshaiban et al., 2019). 

Quality of Life and Long-term Sustainability: Chronic disease 

management places great importance on quality of life (QoL), and 

the sustainability of behavioral changes demonstrates whether there 

are lasting benefits over time(Abdulmalek et al., 2022; Anghel et al., 

2019; Butt et al., 2016; Selzler et al., 2020; Wahyuni et al., 2018). Butt et 

al. (2016) evaluated a pharmacist-initiated intervention for type 2 diabetes 

patients, reporting significant improvements in blood sugar control and 

adherence. However, they acknowledged that QoL outcomes remained 

uncertain, emphasizing the challenges of achieving long-term QoL 

improvements. In another study, McGillicuddy et al. (2015) demonstrated 

that adherence interventions had persistently positive effects on blood 

pressure management, documenting sustainable reductions in systolic 

blood pressure 12 months after the intervention. This underscores the 

lasting benefits of patient-centered interventions for health outcomes. 
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2.6 Discussion of Literature 

 

This section integrates key insights from sections 2.2 to 2.5, 

synthesizing the findings to frame the research within the broader 

literature. Each subsection addresses the core elements of the 

respective sections, offering a balanced discussion that connects 

foundational concepts with the novel contributions of this study. 

 

2.6.1 Global Trends in Inhalation Therapy: Challenges, 

Innovations, and Device Usability 

Section 2.2 provided a comprehensive overview of inhalation 

therapy, emphasizing its global significance in managing chronic 

respiratory diseases like asthma and COPD(Barjaktarevic & Milstone, 

2020; Borghardt et al., 2018; Y. Liang & Mak, 2021). Despite its critical 

role, adherence remains a major challenge, leading to suboptimal 

patient outcomes(Aldan et al., 2022; Bourbeau & Bartlett, 2008; 

Chrystyn et al., 2019; George, 2018). Additionally, disparities in 

healthcare systems, socioeconomic barriers, and uneven access to 

advanced inhaler technologies hinder the consistent adoption of 

effective inhalation therapies, particularly in low- and middle-

income countries(Ait-Khaled et al., 2001). 

Technological advancements, particularly the introduction of 

sensor-integrated smart inhalers, have demonstrated significant 

improvements in monitoring patient usage patterns, correcting 

inhaler techniques, and providing personalized feedback(Blakey et 

al., 2018; A. Chan et al., 2022; Merchant et al., 2018). For asthma and 

COPD patients, such advancements offer the promise of more 
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precise monitoring and tailored interventions that address the 

unique challenges of managing these conditions. However, the 

uneven distribution of such technologies remains a concern, 

highlighting the need for greater global access and cost-effective 

implementation strategies(Ait-Khaled et al., 2001; Bender et al., 2000; 

Lycett et al., 2018; Pleasants et al., 2022). 

Furthermore, patient preferences and satisfaction are heavily 

influenced by the type of inhaler device used, given that each type 

has distinct advantages and limitations(P. Anderson, 2005; Chorão et 

al., 2014). For example, while DPIs mitigate coordination issues 

commonly associated with pMDIs, they demand adequate 

inspiratory flow from the patient. Studies indicate that proper 

matching of inhaler type with patient capability significantly 

improves adherence and clinical outcomes(Kaplan & Price, 2018; 

Mancuso & Rincon, 2006). This underlines the importance of 

personalized device selection in enhancing adherence rates. 

The success of inhalation therapy extends beyond pharmacological 

effectiveness to include device usability, safety, and patient 

engagement (Hegde, 2013; Leiner et al., 2015; Pirozynski & Sosnowski, 

2016; Skoner, 2002). Issues with improper handling, incorrect 

inhalation technique, and inconsistent usage have been well-

documented as barriers to optimal therapeutic outcomes(Biswas et 

al., 2016; Dabrowska et al., 2019; Miravitlles et al., 2016; Newman, 2014). 

By focusing on usability and intuitive design, these issues can be 

mitigated, enabling patients to use inhalers more effectively and 

consistently. 

In developed regions such as the US and Europe, regulatory bodies 

like the FDA and MHRA have established guidelines to ensure that 

DDCPs are user-friendly and optimized for real-world use(Lauritsen 

& Nguyen, 2009; R. Patel et al., 2019; Stephenson, 2014). In contrast, 

regulatory frameworks in developing countries like China remain 
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focused primarily on safety and efficacy, with less emphasis on 

usability and human factors(G. Su & Deng, 2023; Yu et al., 2010). 

Bridging this gap is critical to ensuring that patients worldwide 

benefit equally from advanced inhalation therapies. Efforts to align 

global regulatory standards and integrate usability considerations 

into device design are essential for achieving better adherence and 

clinical outcomes. 

 

2.6.2 Inhalation Therapy Adherence: A Multifaceted 

Approach 

Inhalation therapy adherence is a multifaceted concept that 

involves not only following the prescribed dosage but also ensuring 

the correct use of the inhalation device. Both prescription 

adherence (adhering to the dosage regimen) and inhaler technique 

adherence (ensuring correct inhalation technique during use) are 

crucial for achieving optimal therapeutic outcomes(Eikholt et al., 

2023; Pritchard & Nicholls, 2015). Errors in inhaler technique can 

significantly reduce the medication’s effectiveness, which is why 

adherence in inhalation therapy must be viewed through these two 

critical lenses(Chorão et al., 2014; Gregoriano et al., 2018; Hesso et al., 

2020). 

A range of factors contribute to patient adherence, including 

cognitive, physical, and environmental conditions, along with the 

complexity of the inhaler device itself(Aldan et al., 2022; Ayele & 

Tegegn, 2017; George & Bender, 2019; Leiner et al., 2015). Non-

adherence is not a binary concept; it exists along a spectrum, 

manifesting in various forms, such as unintentional errors due to 

forgetfulness or poor understanding, and intentional deviations 

driven by patient beliefs or concerns about medication(Rand & Wise, 

1994; Van Dulmen et al., 2007). In the context of inhalation therapy, 
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the interaction between patients and their inhalers is crucial for 

adherence. Even when patients follow their prescribed dosage, 

improper use of the inhaler can undermine the effectiveness of the 

treatment(Chorão et al., 2014; Nelson, 2016; Usmani, 2019). 

The evaluation of adherence in inhalation therapy typically 

employs either subjective or objective strategies, each with its 

specific pros and cons(Anghel et al., 2019; Bender et al., 2000; A. H. Y. 

Chan, Harrison, et al., 2015; Chmelik & Kao, 1996). Subjective 

measures, such as questionnaires, interviews, and patient diaries, 

provide valuable insights into patient behavior and perceptions but 

are prone to recall bias and inaccuracies, as they rely heavily on 

self-reporting. On the other hand, objective measures such as dose 

counters, weight measurements from canisters, and pharmacy refill 

data provide more reliable information on medication ingestion 

frequency but do not indicate whether the inhaler was used 

correctly. The most advanced objective method involves electronic 

monitors, which track not only inhaler usage but also provide 

detailed insights into inhalation technique(Blakey et al., 2018; Kikidis 

et al., 2016). However, these devices tend to be expensive and may 

encounter technical challenges, including battery failures and 

device malfunctions. Given the limitations of both subjective and 

objective methods, mixed-methods approaches, which combine 

both types of measures, are increasingly regarded as the most 

comprehensive approach. Integrating patient self-reports with 

objective monitoring data allows mixed methods to provide a 

holistic view of adherence, capturing both behavioral intentions and 

real-world actions(L. J. Anderson et al., 2020; Bender et al., 2000; 

Chrystyn et al., 2019). 

Although several behavioral models have been developed to 

explain patient adherence, they each have limitations when applied 

to inhalation therapy(Aldan et al., 2022; Cassidy, 1999; Horne & 
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Weinman, 2020; Stepnowsky et al., 2006; Y. Zhang & Zhao, 2021). For 

example, HBM focuses on patient perceptions of risks and benefits 

but overlooks the technical challenges of inhaler use. SCT 

emphasizes self-efficacy but overlooks the cognitive and physical 

demands of correct inhaler usage. Similarly, while TTM accounts 

for stages of behavioral change, it fails to address device-specific 

barriers. TPB links intention to behavior but lacks consideration of 

external factors that influence inhaler use. MAM provides a broad 

framework for understanding adherence but does not account for 

how the complexity or usability of different inhaler designs can 

impact patient adherence outcomes. These models are useful for 

understanding patient behavior but do not fully address the 

interaction between patients and their inhalation devices, 

highlighting the need for a more comprehensive framework that 

integrates both behavioral and technical aspects of adherence(Drotar 

& Bonner, 2009; Gray et al., 2018; Schaffer & Tian, 2004). 

To address this gap, this research adopts the SEIPS 2.0 model, 

which offers a holistic approach grounded in HFE(Holden et al., 

2013). SEIPS not only considers patient behavior but also focuses 

on optimizing the interaction between the patient and the inhaler, as 

well as the broader environmental and organizational factors that 

influence adherence. Unlike traditional behavioral models, SEIPS 

incorporates both technical usability aspects and behavioral 

dimensions, offering a more comprehensive framework for 

enhancing inhalation therapy outcomes(Carayon et al., 2006; 

Negoescu et al., 2023; M. L. Steele et al., 2018). By addressing these 

dimensions concurrently, SEIPS helps identify specific barriers in 

patient-inhaler interactions, including cognitive load, physical 

challenges, and environmental distractions that may impede correct 

use. Additionally, SEIPS emphasizes the importance of designing 

interventions that are adaptable to diverse patient needs and 

contexts, making it a powerful tool for enhancing patient 
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engagement, improving device usability, and ultimately optimizing 

treatment outcomes in inhalation therapy(Berman et al., 2021; 

Strauven et al., 2020; Wooldridge et al., 2017). 

 

2.6.3 Interventions in Patient Adherence 

Section 2.4 reviewed the role of digital health interventions in 

improving adherence, emphasizing how these technologies provide 

continuous, objective data on patient behavior and inhaler usage(A. 

Chan et al., 2022; Kaplan et al., 2023; Lycett et al., 2018). Among these 

tools, sensor-enabled inhalers are increasingly viewed as key 

components for enhancing the effectiveness of inhalation therapy. 

These devices function by tracking inhaler use and integrating with 

broader health information systems, delivering real-time 

monitoring and intervention opportunities(Foster, Smith, Usherwood, 

et al., 2012; Hale et al., 2023; O’Dwyer et al., 2016). The integration of 

sensor data with healthcare systems aligns with the trend toward 

more personalized, data-driven healthcare, enabling tailored 

interventions that adapt to the specific needs of individual 

patients(Blakey et al., 2018; Kikidis et al., 2016; G. Mosnaim et al., 

2021). 

However, beyond sensor-enabled technologies, the role of digital 

tools is becoming increasingly relevant. While conventional app-

based interventions are effective, they often require users to expend 

considerable effort in mastering and interacting with the software. 

In contrast, chatbots offer a more conversational and intuitive 

interface, reducing the learning curve and increasing engagement 

(Milne-Ives et al., 2020; Minian et al., 2023; Suehs et al., 2023). Unlike 

conventional apps, chatbots can mimic natural conversation, 

providing instructions, reminders, and feedback that are intuitive 

and accessible to a broader group of users, especially those with 
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limited technical literacy. The ability of chatbots to adaptively 

interact in real time allows the system to personalize its responses 

according to patient behavior, health data, or preferences. This 

flexibility makes chatbots an ideal companion for sensor-enabled 

interventions. By integrating chatbot functionalities with sensor 

data, patients can receive instantaneous, personalized feedback on 

their inhaler use, dosage adherence, and overall health status(Beck 

et al., 2021; Pereira & Díaz, 2019). For example, a chatbot could 

remind patients to use their inhaler when sensors detect missed 

doses, provide step-by-step guidance on proper technique, or offer 

encouragement based on the patient's current health status(Kadariya 

et al., 2019). This interactive, responsive approach enhances patient 

adherence by delivering a more engaging and supportive user 

experience. 

Despite the growing adoption of digital health interventions, 

significant gaps remain in their implementation and design. Many 

existing systems focus primarily on dosage adherence without 

considering the broader "Person-Task-Physical Environment" 

framework, which this research proposes to capture the 

complexities of patient adherence. This framework consists of three 

key dimensions:  

1. Person: Refers to the patient's physical, psychological, and 

cognitive characteristics. This includes factors such as health 

literacy, cognitive abilities, and emotional state, all of which 

influence how patients interact with their inhalers. It also 

extends to HCPs and caregivers who support the patient.  

2. Task: Encompasses the specific tasks related to completing 

inhalation therapy, such as correct device handling, 

coordination, and timing. The complexity of these tasks can 

greatly affect adherence, especially when patients struggle with 

the multi-step processes involved in using inhalers correctly.  
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3. Physical Environment: Refers to the surrounding 

environmental conditions that may influence a patient's ability 

to adhere to inhalation therapy. This includes factors such as air 

quality, noise, and other external stressors that can impact both 

the effectiveness of the therapy and the patient’s overall health. 

Additionally, current data processing methods often rely on basic 

analytical techniques, limiting their ability to uncover deeper 

patterns in adherence behavior((Jourdan et al., 2021; Xiong et al., 

2023). While conventional algorithms can detect general trends, 

they often miss subtle variations in patient behavior that may 

indicate emerging adherence issues. Advanced machine learning 

models, such as deep learning and support vector machines, remain 

underexplored. These sophisticated algorithms have the potential to 

provide more personalized feedback and proactive intervention 

strategies by offering a deeper understanding of complex adherence 

patterns and supporting tailored, data-driven classifications(Bae et 

al., 2021; Bhat et al., 2021; Gu et al., 2021). 

Moreover, current feedback mechanisms rarely prioritize patient-

centered design principles, which are essential for improving 

engagement and effectiveness(Bamashmoos et al., 2018; Benke et al., 

2020; Choi et al., 2017; Tsao et al., 2019). User interfaces are often 

developed with limited attention to the diverse needs of different 

patient groups, hindering both engagement and long-term 

adherence. Incorporating persuasive features into digital health 

tools can significantly enhance patient interaction and motivation. 

These features, such as reminders, rewards, and personalized 

messages, can create a more engaging user experience by 

encouraging patients to take an active role in their healthcare(S. A. 

Adams et al., 2017; Blakey et al., 2018; A. H. Y. Chan, Stewart, et al., 

2015). For instance, visualizing adherence data through intuitive 

charts or incorporating gamification elements—like challenges or 
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achievements—can make the process more enjoyable and 

rewarding for patients(S. Kim et al., 2021; Miller et al., 2016; Sardi et 

al., 2017). By enhancing sensor-based feedback systems with such 

persuasive elements, these technologies can provide personalized, 

user-friendly feedback that adapts to patient needs in real-

time(Grossman et al., 2017; Kelders et al., 2012). However, despite the 

potential of these approaches, they remain underutilized in current 

interventions, indicating a clear opportunity for innovation in 

patient interaction and feedback delivery. 

While digital health interventions are becoming integral to 

managing inhalation therapy adherence, there is a clear need for 

more comprehensive systems that incorporate the full spectrum of 

patient, task, and environmental factors. Future research should 

focus on addressing these gaps by developing interventions that 

integrate multi-dimensional data collection, advanced data 

processing techniques, and patient-centered feedback design—

specifically leveraging chatbots as interactive tools that support and 

enhance adherence in sensor-enabled interventions. By doing so, 

this research aims to create a more holistic and effective framework 

for supporting patient adherence in inhalation therapy. 

 

2.6.4 Evaluation Methods and Dimensions 

Section 2.5 provided an overview of the quantitative and qualitative 

methods used to evaluate adherence-supporting interventions, 

highlighting that no single measure is sufficient to capture all 

aspects of effectiveness. The review emphasized the importance of 

evaluating multiple dimensions, such as clinical outcomes, 

behavioral adherence, and patient-reported experiences. These 

dimensions provide a holistic view of how interventions impact 

patient adherence and overall well-being, ensuring that they are not 
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only clinically effective but also practical in real-world 

settings(Aardoom et al., 2020; Adejumo et al., 2022; Al-Durra et al., 

2015; L. J. Anderson et al., 2020). 

The literature supports this multi-dimensional evaluation 

framework, with studies indicating the need to integrate clinical 

measures, behavioral data, and subjective patient feedback. 

Although RCTs are widely regarded as the most reliable method 

for demonstrating the efficacy of interventions, other quantitative 

study designs, such as cohort studies and cross-sectional studies, 

also contribute to understanding adherence patterns and 

outcomes(Altman et al., 2018; R. A. Calvo et al., 2023; Fedele et al., 

2018; Gregoriano et al., 2017). These methods are often 

complemented by qualitative approaches, including interviews and 

focus groups, which are crucial for gaining deeper insights into 

patient experiences, perceived barriers to adherence, and the 

everyday challenges they face(Adejumo et al., 2022; J. L. Cohen et al., 

2009; Davies et al., 2020). Such qualitative findings help researchers 

and HCPs to develop more patient-centered and effective 

interventions that align with patients' needs and preferences. By 

employing both quantitative and qualitative methods, researchers 

can assess not only the clinical efficacy of the intervention but also 

its usability and feasibility in real-world contexts(R. A. Calvo et al., 

2023; De Simoni et al., 2021; Garin et al., 2023). 

Evaluating adherence interventions in non-clinical settings, such as 

the home or workplace, is particularly important, given that patients 

often use their inhalers in these environments(Ammari et al., 2019; 

Chrystyn et al., 2019). Studies have shown that adherence can 

fluctuate significantly based on environmental factors, time of day, 

and daily routines. Understanding how interventions perform in 

real-world contexts, where external factors can significantly impact 

behavior, is critical for ensuring practical application during the 
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intervention period(Ammari et al., 2019; Calvillo-Arbizu et al., 2021; 

Wooldridge et al., 2017). Therefore, a balanced and comprehensive 

evaluation strategy that combines objective measures with patient 

perspectives across diverse real-life scenarios is essential. Such an 

approach ensures that interventions are not only effective in 

improving clinical outcomes but also in enhancing quality of life 

over both short and long-term periods, contributing to sustainable 

adherence. 

 

2.6.5 HFE and Inhalation Adherence: From Device Design 

to Intervention Strategies 

This section focuses on the critical role of HFE principles in both 

the development of inhalation devices and the design of adherence 

interventions. The literature emphasizes that effectively 

incorporating HFE throughout the entire design and development 

process is essential for creating user-friendly and patient-centered 

devices 

For inhalers to be truly effective and intuitive, HFE principles must 

be integrated at every stage of the design process, from concept 

development to clinical evaluation(Carayon & Wooldridge, 2020; 

Hegde, 2013; Leiner et al., 2015). This involves moving beyond 

traditional lab-based evaluations and engaging directly with end-

users—patients—early and continuously throughout the 

development cycle. However, current design practices often fall 

short, prioritizing laboratory settings and clinical trials over real-

world patient experiences(Dalby et al., 2004; Faisal et al., 2023; Leiner 

et al., 2015). Consequently, many inhalers are designed based on 

assumptions rather than empirical evidence of how patients interact 

with the devices in daily life. HFE provides methodological tools—

such as usability testing, task analysis, and ergonomic 
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assessment—to systematically incorporate patient feedback and 

cognitive considerations, ensuring that devices are intuitive and 

reduce cognitive load(Bitkina et al., 2020; Dal Negro et al., 2019; Rajan 

& Gogtay, 2014). 

HFE is particularly valuable in understanding two critical 

interactions in the context of inhalation therapy: 

1. Patient-Inhaler Interaction: This encompasses how well 

patients understand and execute the correct technique when 

using an inhaler. HFE principles help identify common points 

of failure, such as difficulties in coordinating breath and 

actuation with pMDIs or challenges in generating sufficient 

inspiratory force with DPIs. Through task analysis and 

usability testing, designers can refine devices to align with 

patient capabilities, thus enhancing adherence(Association for 

the Advancement of Medical Instrumentation, 2018; Leiner et al., 

2015; Rau, 2005). 

2. Patient-Intervention System Interaction: Beyond the device 

itself, HFE plays a crucial role in designing adherence support 

systems. By leveraging HFE principles, key factors influencing 

patient adherence can be identified, including understanding of 

treatment protocols, motivation, cognitive load, and external 

barriers like environmental or social challenges(Barber et al., 

2005; Carayon et al., 2006; Werner et al., 2020; Wooldridge et al., 

2017). These factors provide a comprehensive understanding of 

the specific challenges patients face in maintaining their 

treatment routines. Once these factors are identified, HFE 

guides the systematic design of intervention strategies that 

specifically optimize Patient-Intervention System Interaction. 

HFE's contribution lies in understanding how patients engage 

with adherence support systems in real-world contexts, which 

provides valuable insights for designing systems that are not 
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only user-friendly but also tailored to patient needs(J. Anderson 

et al., 2010; Carayon & Wooldridge, 2020; Fortuna et al., 2019; Tsao 

et al., 2019).  

These insights underscore the importance of a structured 

framework to understand how interactions between patients, 

devices, intervention systems, and their environment influence 

adherence. The SEIPS model provides a structured framework for 

understanding how the interactions between patients, devices, and 

their environment influence adherence(Carayon et al., 2006; Holden et 

al., 2013; Strauven et al., 2020). In the context of Patient-Inhaler 

Interaction, SEIPS helps identify ergonomic and cognitive factors 

that may enhance or hinder proper inhaler use. For Patient-

Intervention System Interaction, SEIPS guides the design of 

adherence systems that are responsive to patient needs and 

adaptable to varied usage contexts. By integrating the SEIPS 

components—person(s), tasks, tools & technology, internal 

environment, and organization—the model ensures that both 

inhaler design and adherence support systems are optimized for 

real-world conditions. This holistic perspective supports a more 

patient-centered approach, ensuring that devices are easy to use, 

intuitive, and adaptive to patient-specific needs and contexts. 

Thus, the comprehensive application of HFE principles, supported 

by the SEIPS model, is crucial for identifying and addressing the 

complex factors influencing patient adherence in inhalation therapy. 

By focusing on usability, cognitive load reduction, and real-world 

adaptability, this research aims to develop more effective, patient-

centered strategies that enhance adherence and improve health 

outcomes. 

 

2.6.6 Novel Part of This Research 
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The literature reveals several key gaps in the field of inhalation 

therapy adherence and related interventions: 

Gap in the Definition of Inhalation Adherence: Current studies 

predominantly focus on prescription adherence, with only a limited 

number recognizing technique adherence as a critical component of 

overall adherence(Chrystyn et al., 2019; Eikholt et al., 2023; Hesso et al., 

2020; Nikander et al., 2011; Pritchard & Nicholls, 2015). This narrow 

focus leaves a gap in understanding the full scope of how patients 

engage with inhalation therapy. This research addresses this gap by 

clarifying the dual aspects of adherence, emphasizing both 

prescription adherence and technique adherence. By doing so, it 

provides a more comprehensive framework for understanding 

patient behavior and interactions with inhalation therapy. This dual 

focus enables the development of targeted interventions that better 

address the specific challenges patients face, thereby optimizing 

treatment outcomes. 

Integration of HFE Principles in Adherence Strategies: While 

the importance of HFE has been recognized in device design, few 

studies apply HFE principles to the development of patient-

centered adherence and self-management support systems 

(Abdolkhani et al., 2020; J. Anderson et al., 2010; Davies et al., 2020; 

Davis et al., 2018; Frith, 2013; Papautsky, 2019; Rau, 2005). This 

research fills this gap by focusing on the key factors that influence 

adherence, such as patient capabilities, environmental conditions, 

and treatment routines. It applies HFE principles to develop 

systems that are ergonomically appropriate, cognitively supportive, 

and seamlessly integrated into patients' daily lives. This integration 

not only enhances usability but also improves the overall 

effectiveness of adherence interventions by addressing both 

physical and cognitive demands placed on patients. 

Limited Use of Multi-dimensional Sensor Technology: Although 
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sensor technology is increasingly used in healthcare, its application 

in adherence interventions is largely confined to single-dimensional 

data, such as monitoring inhaler usage alone(Abdulmalek et al., 2022; 

S. A. Adams et al., 2017; Akhoundi & Valavi, 2010; M. A. Barrett et al., 

2017). This research extends existing approaches by leveraging 

multi-dimensional sensor technology within the adherence support 

system. These sensors capture real-time, multi-faceted data on 

patient usage patterns, environmental conditions, and physiological 

factors, enabling more timely and individualized interventions. By 

applying this multi-dimensional data within the Person-Task-

Physical Environment framework, the research bridges the gap 

between traditional adherence strategies and modern healthcare 

demands, providing more dynamic and personalized feedback 

loops. 

Limited Use of Machine Learning for Classification Analysis in 

Adherence Interventions: Although machine learning applications 

have been widely reported across various healthcare sectors, their 

utilization for classifying patient adherence behaviors, particularly 

in inhalation therapy, remains limited(Jourdan et al., 2021; Najafabadi 

et al., 2015; Xiong et al., 2023). Most current interventions rely on 

static models, which hinder the ability to provide timely and 

adaptive support(Bae et al., 2021; Janssoone et al., 2018). This 

research addresses this gap by incorporating advanced machine 

learning algorithms to classify adherence behaviors based on 

sensor-based intervention system data. This approach not only 

promotes patient adherence by identifying patterns of non-

adherence but also establishes a robust data collection framework 

for capturing detailed insights into patient behavior. While this 

study focuses on classification using retrospective data, it lays a 

solid foundation for developing future predictive capabilities that 

could enable real-time, personalized adherence support, thereby 

enhancing both the effectiveness of intervention systems and 
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patient outcomes. 

Need for More Intuitive Feedback Systems: Current adherence 

support systems often rely on traditional apps, which may not 

provide the most intuitive user experience(Beck et al., 2021; Belfin et 

al., 2019; Bharti et al., 2020; Chowdhury & Haque, 2023; Kadariya et al., 

2019). This research addresses this gap by introducing a chatbot 

interface as a key feedback mechanism. Unlike traditional apps, 

chatbots offer a conversational and user-friendly way for patients to 

receive real-time feedback, reminders, and guidance based on 

sensor data. This conversational interface reduces cognitive load 

and enhances patient engagement by providing a more natural and 

intuitive interaction with the adherence support system. Moreover, 

the interactive nature of chatbots allows them to adapt dynamically 

to patient behavior, ensuring that feedback is contextualized and 

timely, which significantly improves the patient experience. 

 

 

2.7 Conclusion 

 

This chapter provided a comprehensive review of the literature on 

inhalation therapy, patient adherence, and sensor-based 

interventions, establishing the foundation for the conceptual 

framework of this research. Key insights from the literature 

underscored that adherence in inhalation therapy is a 

multidimensional concept. It encompasses both prescription 

adherence and technique adherence, while also being influenced by 

physiological, psychological, and environmental factors. Effective 

management thus requires a holistic understanding of these 
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dimensions to optimize patient-device interactions and improve 

therapeutic outcomes. 

Technological advancements, particularly sensor-based 

interventions, have enhanced real-time monitoring and personalized 

feedback, addressing critical gaps in traditional adherence support. 

These innovations facilitate continuous observation of 

physiological status, patient behavior, and environmental 

conditions, paving the way for proactive, data-driven intervention 

strategies that are better aligned with patient needs. 

The literature further highlighted the importance of HFE principles 

and the SEIPS model in optimizing adherence interventions. This 

structured framework provides deeper insights into how patients 

interact with inhalers and digital health tools in real-world settings. 

Integrating sensor technology with HFE principles not only 

improves usability but also enhances the overall effectiveness of 

adherence strategies by ensuring that interventions are patient-

centered and context-aware. 

Finally, combining advanced analytics with personalized feedback 

mechanisms presents a promising pathway to overcoming existing 

barriers in inhalation therapy. This research contributes to 

addressing gaps in understanding adherence as a multifaceted 

phenomenon, offering innovative strategies to optimize patient 

engagement, device usability, and treatment outcomes in everyday 

contexts.  
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Chapter 3 Methodology 

 

 

3.1 Introduction and Aims 

 

The overall aim of this thesis is to explore how sensor-based 

interventions can be designed to enhance patient adherence to 

inhalation therapy. The previous chapter presented a detailed 

literature review and the theoretical underpinnings of the study; this 

chapter highlights the conceptual framework and the methodology 

of the study. 

The study of patient adherence to inhalation therapy is complex 

because patient adherence to inhalation therapy is a multifaceted 

process that depends on cognitive, behavioral, and environmental 

factors in addition to a dynamic relationship between patient, 

device, and context(Aldan et al., 2022; George & Bender, 2019; Gray et 

al., 2018). To comprehensively guide the design, development, and 

evaluation of the intervention, this study adopts the SEIPS 2.0 

model as the central theoretical framework(Holden et al., 2013). This 

chapter will outline the mixed-methods approach employed, 

integrating both qualitative and quantitative research methods to 

understand and support patient adherence to inhalation therapy. 

The overall aim of this chapter is to provide a methodological 

framework for this research, and the specific objectives are: 

1. To introduce the SEIPS 2.0 model as the guiding framework. 
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2. To provide an overview of the research methods used across 

the studies. 

3. To describe strategies for ensuring reliability and validity. 

 

 

3.2 Theoretical Framework 

 

3.2.1 SEIPS 2.0 Model: Core Concepts 

SEIPS 2.0 model serves as the primary theoretical framework 

guiding this research (Figure 3.1). This model was originally 

developed by Carayon et al. (2006) and further elaborated upon in 

SEIPS 2.0 by Holden et al. (2013). Its holistic approach focuses on 

how work systems engage processes in order to impact patient 

outcomes. Thus, the SEIPS 2.0 model, which was initially designed 

to examine complex healthcare interactions, is well-suited for 

investigating patient adherence to inhalation therapy. 

The SEIPS model emphasizes the interplay between five key 

components: Person(s), Tasks, Tools & Technologies, Internal 

Environment, and Organization(Carayon et al., 2006). SEIPS 2.0 

extends the original framework by incorporating concepts like 

configuration, engagement, and adaptation, emphasizing the 

dynamic and interactive nature of healthcare work systems(Holden 

et al., 2013). These components facilitate the systematic 

identification of factors affecting patient adherence, from device 

usage to environmental influences. 
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Figure 3. 1: The SEIPS 2.0 model. 

In the following sections, each component of the SEIPS framework 

is explored to understand how it impacts patient adherence to 

inhalation therapy within the context of this study: 

Person(s): In this context, the primary focus is on the patient using 

the inhalation device. The patient’s physical status, their mental 

capacity and their health literacy are the key factors that define the 

likelihood of the patient’s compliance with the recommended 

therapy(Aldan et al., 2022; Berman et al., 2021; Bourbeau & Bartlett, 

2008; Gray et al., 2018). Although the patient is the main subject, the 

HCPs who prescribe the treatment and monitor the patient also 

influence the patient’s adherence to the therapy. 

Tasks: These include several specific activities that are required for 

proper inhalation therapy, such as setting up the device, performing 

the inhalation correctly, and maintaining the inhaler as 

needed(Chorão et al., 2014; Chrystyn et al., 2019; Dabrowska et al., 

2019). To achieve optimal treatment outcomes, all these tasks need 

to be done accurately and at the right time, forming part of the 

patient’s schedule.  

Tools and Technologies: This category focuses on the inhalation 
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device and its associated features, which may include technologies 

such as sensors or integration with other applications(Eikholt et al., 

2023; Jácome et al., 2021; Merchant et al., 2018). Such tools are 

important because their design and usability are directly linked to 

the patient’s willingness and ability to follow prescribed treatment 

protocols. 

Internal Environment: The internal environment refers to the 

physical conditions and surroundings of the patient when they use 

the therapy in daily life. Conditions such as appropriate 

temperature and humidity levels, as well as good air quality, are 

crucial for patients with respiratory conditions(Abdulmalek et al., 

2022; Bae et al., 2022; Bamashmoos et al., 2018). 

Organization: The organization includes the healthcare system and 

the social context associated with the patient. These encompass the 

availability of health facilities, educational support, and the 

assistance of family and other caregivers(Hui et al., 2021; López-

Campos et al., 2019; Margolis et al., 2019). 

 

3.2.2 SEIPS 2.0 in This Research 

While various behavioral theories (e.g., the Health Belief Model, 

Theory of Planned Behavior) emphasize individual beliefs and 

motivations(C.-Y. Lin et al., 2016; Y. Zhang & Zhao, 2021), the SEIPS 

2.0 model provides a systems-oriented perspective that captures 

dynamic interactions among persons, tasks, tools, environments, 

and organizational factors(Carayon et al., 2006; Holden et al., 2013). 

Given that adherence to inhalation therapy is influenced not only 

by patient intention but also by device complexity, contextual 

constraints, emotional states, and socio-cultural factors, SEIPS 2.0 

offers a comprehensive and holistic framework that is particularly 
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well-suited to this research. Its integrative nature facilitates the 

systematic identification of adherence barriers and informs the 

development of context-aware, multifactorial interventions. 

In this thesis, SEIPS 2.0 serves as the core theoretical foundation 

for examining patient adherence to inhalation therapy in asthma 

and COPD populations. Based on empirical findings from Study 1, 

the original SEIPS dimensions were refined to develop the Patient 

Adherence to Inhalation Therapy Work System Model, which is 

specifically tailored to the context of inhaler use. This adaptation 

redefined the "Internal Environment" as "Physical Environment" 

and separated cultural and social aspects from the original 

"Organizational Factors," forming a distinct "Culture & Social" 

dimension. This customized model provided consistent theoretical 

guidance throughout the design, development, and evaluation 

phases in Studies 2 to 4. 

 

3.2.2.1 Application in Study 1: Exploring Adherence Factors 

In Study 1, the original SEIPS 2.0 framework was applied to 

systematically explore key factors affecting patient adherence. Its 

five core dimensions—Person(s), Tasks, Tools and Technologies, 

Internal Environment, and Organization Factors—structured the 

development of a semi-structured interview protocol, ensuring 

comprehensive coverage of cognitive, behavioral, environmental, 

and systemic influences. Participants, including patients and HCPs, 

were introduced to the SEIPS 2.0 model to establish a shared 

conceptual foundation. Thematic coding of interview data 

according to these dimensions enabled the identification of both 

established and underexplored adherence factors. These insights 

informed the refinement of SEIPS 2.0, leading to the development 

of the Patient Adherence to Inhalation Therapy Work System 
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Model, which guided subsequent studies. 

This foundational exploration provided a theoretical basis for 

understanding patient interactions with inhalers and shaped the 

design considerations for the intervention system in later studies. 

 

3.2.2.2 Application in Study 2: Translating Insights into Design 

Building upon the findings from Study 1, Study 2 translated the 

identified adherence challenges into actionable design requirements 

for the sensor-based intervention system. This transition from 

exploration to design was structured in three steps: 

Step 1: Conceptualizing Core System Functions: Participants 

mapped identified barriers and facilitators to the five dimensions of 

the model (Person, Task, Tool, Physical Environment, Culture & 

Social), prioritizing system functions that addressed specific 

challenges.  

Step 2: Designing System Components and Sensor Deployment: 

Technical requirements and essential data types—such as 

physiological metrics, inhaler usage patterns, and environmental 

conditions—were defined to ensure alignment with the model’s 

structure. 

Step 3: Exploring User Interface Design Preferences: While not 

explicitly mapped to the model, this step adhered to user-centered 

principles by incorporating feedback on usability and data 

presentation. 

The structured application of the Patient Adherence to Inhalation 

Therapy Work System Model in Study 2 ensured that the 

intervention system was designed with a clear theoretical 

foundation and real-world applicability, setting the stage for system 



92 

 

development. 

 

3.2.2.3 Application in Study 3: System Development 

Following the design phase in Study 2, Study 3 focused on 

transforming the conceptual framework into a fully operational 

sensor-based intervention system. Guided by the Patient Adherence 

to Inhalation Therapy Work System Model, the system’s 

architecture, sensor deployment, and feedback mechanisms were 

designed to align with the five dimensions and nine key factors 

identified earlier. This ensured that theoretical insights were 

effectively embedded within practical solutions to address 

adherence challenges faced by asthma and COPD patients. 

The successful translation of theoretical concepts into system 

components demonstrated the practical utility of the SEIPS-guided 

framework, supporting the hypothesis that a structured model can 

enhance real-world adherence outcomes. 

 

3.2.2.4 Application in Study 4: System Evaluation and 

Classification 

Study 4 applied the Patient Adherence to Inhalation Therapy Work 

System Model to evaluate the usability and effectiveness of the 

XIAOXI system. Both quantitative and qualitative findings were 

guided by the model, ensuring that critical adherence challenges 

were addressed. Additionally, machine learning analysis of sensor 

and emotional data provided objective insights into adherence 

behavior patterns. 

This final phase validated the model’s capacity to both guide 

intervention design and support comprehensive evaluation, 
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establishing its relevance for future adherence-focused digital 

health solutions. 

 

 

3.3 Research Methods 

 

This research adopts a sequential exploratory mixed-methods 

design, in which qualitative research serves as the primary strategy, 

followed by quantitative and mixed-method validation. This 

approach was selected to first explore key influencing factors of 

inhalation therapy adherence (Study 1), and then use the qualitative 

insights to inform the design (Study 2), implementation (Study 3), 

and evaluation (Study 4) of a sensor-based intervention system.  

The research methods are categorized into three primary areas: data 

collection methods, design and prototyping methods, and 

evaluation and validation methods. Together, they reflect a user-

centered and iterative research process, integrating qualitative 

depth with quantitative rigor. 

 

3.3.1 Data Collection Methods 

The study employs a range of data collection methods, including 

interviews, questionnaires, participatory design workshops, and 

sensor technologies. Each method contributes uniquely to 

providing a comprehensive understanding of patient adherence to 

inhalation therapy by capturing different facets of patient behavior, 

decision-making processes, and real-world experiences. This 
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holistic approach not only enables in-depth insights but also 

facilitates data triangulation, thereby enhancing the robustness and 

validity of the research findings(Biswas et al., 2016; Gray et al., 2018; 

Jeminiwa et al., 2019). 

Interviews: Interviews are a qualitative research method used to 

gather detailed insights into participants’ experiences, beliefs, and 

behaviors(Hennink et al., 2020; Mack, 2005). Semi-structured 

interviews are particularly valuable in healthcare research as they 

allow for a flexible yet guided exploration of key themes(E. Adams, 

2010; Low, 2019; Whichello et al., 2019). Through open-ended 

questions and probing, interviews uncover cognitive and behavioral 

determinants of adherence, as well as external factors like 

environmental facilitators and barriers. However, it is essential to 

acknowledge potential limitations, such as interviewer bias and the 

challenges of generalizing findings from small, qualitative 

samples(E. Adams, 2010; Alshenqeeti, 2014; Lamont & Swidler, 2014). 

Despite these limitations, interviews remain indispensable for 

capturing nuanced patient experiences and contextual influences on 

adherence. 

Questionnaires: Questionnaires serve as a quantitative data 

collection tool to measure or assess knowledge, attitudes, and 

behaviors related to inhalation therapy(Dal Negro et al., 2019; Holmes 

et al., 2019; Maples et al., 2010; Muneswarao et al., 2021). By utilizing 

validated scales, this method enhances reliability and 

generalizability, allowing for broader application of findings across 

different patient populations. Although questionnaires offer a 

structured and easily replicable approach, they are prone to 

respondent bias and may oversimplify complex behaviors and 

attitudes. To mitigate these limitations, questionnaires are often 

used in conjunction with qualitative methods to triangulate findings 

and provide a richer understanding of patient experiences(Anghel et 
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al., 2019; Shi et al., 2010). 

Participatory Design Workshops: Participatory design workshops 

represent an innovative, patient-centered approach that actively 

involves stakeholders in the design process(Ozkaynak et al., 2021; 

Schmitt & Yarosh, 2018). These workshops facilitate collaborative 

activities aimed at co-creating solutions to adherence challenges. 

Through interactive sessions, patients and other stakeholders 

identify real-world behaviors, usage patterns, and decision-making 

processes. This user-centered approach ensures that the designed 

interventions are not only theoretically sound but also practical and 

responsive to the needs of patients in their daily lives(Abdolkhani et 

al., 2020; Bordier et al., 2021; Houben et al., 2023). However, the 

success of participatory design workshops depends heavily on 

participant engagement and the representativeness of the sample. 

Thus, careful attention to participant selection and diversity is 

critical(Danielsson et al., 2008; Spinuzzi, 2005). 

Sensor Technology: Sensor technology provides an advanced and 

reliable means of monitoring patient behaviors, including inhaler 

usage, timing, and patterns of use(Abdulmalek et al., 2022; Albahri et 

al., 2018; Al-kahtani et al., 2022). These technologies enable real-time, 

objective assessment of patient adherence under real-world 

conditions(Chakraborty et al., 2023; D’Arcy et al., 2014; Dierick et al., 

2022; Gregoriano et al., 2017; Gupta et al., 2021). Unlike self-reported 

measures, sensor-generated data offers objective, verifiable 

indicators of patient behavior, enriching qualitative data collected 

through interviews and observations. However, the dependence on 

technology also introduces challenges, such as ensuring sensor 

accuracy, data reliability, and addressing potential data privacy 

concerns(H. Chan & Perrig, 2003; Yi et al., 2015). Despite these 

limitations, sensor technology remains a cornerstone of modern 

adherence monitoring, offering high-resolution data that informs 
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personalized intervention strategies. 

 

3.3.2 Design and Prototyping Methods 

Design and prototyping are essential components in realizing the 

iterative, user-centered approach required to meet the needs 

identified during data collection. 

Persona and Scenario: Personas are representative user archetypes 

derived from research data that help inform design decisions(Pruitt 

& Adlin, 2010; Salminen et al., 2020). They capture key characteristics, 

motivations, and potential challenges faced by users in real-world 

scenarios. Scenarios, on the other hand, are text-based narratives 

that illustrate how users interact with a system in specific contexts, 

enabling designers to anticipate user needs and potential 

problems(Alexander & Maiden, 2005; Brauer et al., 2009; van der Bijl-

Brouwer & van der Voort, 2013). In healthcare settings, personas and 

scenarios are particularly valuable as they help designers 

understand diverse patient requirements and create solutions that 

are both inclusive and practical(A. M. Turner et al., 2013; Valaitis et 

al., 2019). However, their abstraction of user behaviors can 

sometimes oversimplify complex real-world interactions, 

potentially leading to design gaps(Gudjonsdottir & Lindquist, 2008; 

Lopez-Lorca et al., 2014). 

Prototyping: Prototyping is an iterative process of developing, 

testing, and refining early versions of a system or 

interface(Bischofberger & Pomberger, 2012; Camburn et al., 2017). For 

sensor-based systems, prototyping involves constructing functional 

sensor modules to test data accuracy, signal processing, and system 

integration(Ayaz et al., 2017). This process facilitates early-stage 

testing and refinement of sensor placement, connectivity, and data 
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acquisition methods before final deployment.  

1. Low-Fidelity Prototypes: Low-fidelity prototypes employ basic 

sensor setups connected to microcontrollers for rapid data 

capture and processing. This configuration enables quick 

prototyping and testing of sensors in various positions, 

orientations, and environmental conditions(Bird et al., 2009). 

These prototypes may also include simple software interfaces 

that visualize raw sensor data in real time, providing early 

feedback from users and stakeholders(Fay et al., 1990). While 

adaptable and cost-effective, low-fidelity prototypes may lack 

the complexity needed to capture real-world data interactions, 

potentially affecting the accuracy of early-stage evaluations 

2. High-Fidelity Prototypes: High-fidelity prototypes integrate 

comprehensive processing units and advanced software (e.g., 

embedded systems and data analysis platforms) to simulate 

real-world deployment conditions. These prototypes often 

include full sensor arrays capable of capturing multiple 

variables and real-time feedback algorithms for user interaction 

(Alazzam et al., 2021; Mathivanan et al., 2024). Although high-

fidelity prototypes provide deeper insights into system 

performance, they are resource-intensive, requiring custom 

circuitry, enhanced connectivity, and sophisticated data 

processing frameworks(Tiong et al., 2019).  

The main limitation of prototyping in sensor-based systems lies in 

the trade-off between fidelity and resource investment. High-

fidelity prototypes offer realistic performance insights but demand 

substantial development costs and time. In contrast, low-fidelity 

prototypes allow for rapid iteration but may fail to account for the 

complexities of real-world conditions(Camburn et al., 2017; Walker et 

al., 2002). 
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3.3.3 Evaluation and Validation Approaches 

Evaluation and validation methods are crucial for assessing the 

usability, efficacy, and practicality of the designed intervention. 

These methods ensure that the system not only benefits users but 

also functions effectively under real-world conditions. 

Lab-based Experiments: Lab-based experiments are conducted in 

controlled settings to evaluate the technical characteristics of the 

system, such as sensor accuracy and interface effectiveness(Dutta et 

al., 2018; Pansiot et al., 2007). These experiments enable researchers 

to isolate specific variables, allowing for a clearer understanding of 

how the system performs under ideal conditions. For instance, 

sensor sensitivity and data transmission reliability can be 

thoroughly assessed without the unpredictability of real-world 

environments. However, the controlled nature of lab-based 

experiments may limit their capacity to capture the complexities of 

real-world use, where multiple interacting factors are 

present(Diamond, 1986; Pincus & Sokka, 2009). This gap highlights 

the importance of complementary field-based evaluations to 

understand the system's practical implications. 

Field-based Experiments: Field-based experiments are conducted 

in real-world settings, providing insights into the system's 

performance during actual usage(Card et al., 2011; Sun & May, 2013). 

These experiments capture a holistic view of usability and 

effectiveness, accounting for the everyday complexities and 

environmental variability that patients experience. Through the 

collection of sensor data, questionnaire responses, and interview 

feedback over extended periods, field-based studies reveal 

interaction patterns and identify adherence barriers that may not be 

evident in controlled environments. Despite their strength in 
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ecological validity, field-based experiments introduce variability 

due to external factors that are harder to control, such as weather 

conditions, patient lifestyle changes, and unexpected environmental 

shifts(Blumenschein et al., 2001; Diamond, 1986; Ghose et al., 2021). 

 

 

3.4 Concerns and Challenges 

 

While the methods employed in this research provided valuable 

insights, several challenges emerged that required strategic 

management. This section discusses the key concerns and the 

strategies implemented to address them: 

Participant Bias and Subjectivity: Semi-structured interviews 

and participatory design workshops rely heavily on participant 

feedback, which is susceptible to recall bias, social desirability bias, 

and individual perceptions(E. Adams, 2010; Alshenqeeti, 2014; Lamont 

& Swidler, 2014). To mitigate these risks, data collection was 

conducted through multiple sources, including interviews, sensors, 

and questionnaires, employing triangulation to cross-validate 

findings. This approach helped to enhance the reliability and 

robustness of the collected data. 

Translation and Language Barriers: Since the interview and 

questionnaire materials were originally designed in English, 

translating these materials into Chinese while maintaining their 

semantic integrity presented a significant challenge. Special 

attention was given to ensure that the translations accurately 

captured the original content, thereby minimizing any loss of 

meaning or misinterpretation. This careful translation process 
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ensured that participants fully understood the questions and tasks, 

enhancing the overall quality and validity of the data collected. 

Participant Engagement and Fatigue: Maintaining participant 

engagement and preventing fatigue during participatory workshops 

posed another challenge(Bertella et al., 2021; Spinuzzi, 2005). To 

address this, structured activities were designed to balance 

interactive discussions with designated rest periods, ensuring 

sustained participant involvement throughout the sessions. These 

strategies were particularly critical in managing longer workshops, 

which sometimes extended for several hours. 

Ethical and Privacy Considerations: Data collection—

particularly sensitive health information obtained through sensor 

monitoring and interviews—raised ethical concerns(H. Chan & 

Perrig, 2003; Yi et al., 2015). To address these issues, several 

protective measures were implemented: 

1. Informed Consent: All participants provided informed consent, 

ensuring they understood the study's purpose and their 

involvement. 

2. Anonymization: Participant data were anonymized to prevent 

identification, protecting personal privacy. 

3. Data Protection Compliance: All data collection and processing 

activities adhered strictly to data protection policies. 

4. Ethical Approval: All experiments were conducted with the 

approval of the Ethical Committee of the University of 

Nottingham Ningbo China. 

These measures were crucial in safeguarding participant rights and 

maintaining the ethical integrity of the research. 
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3.5 Research Methods in This Research 

 

This section provides a comprehensive overview of the research design, 

detailing the alignment of research questions with each study phase, the 

rationale for participant selection, data collection procedures, and analysis 

methods. All studies were conducted with participants recruited from the 

respiratory department of a major hospital in Ningbo, China. Ethical 

approval was obtained from the Ethics Committee of the University of 

Nottingham Ningbo China, ensuring compliance with ethical research 

standards. 

 

3.5.1 Mapping of Research Questions to Studies 

To ensure a clear alignment between the research objectives and the 

empirical studies, Table 3.1 presents the focus of each study and its 

corresponding research questions. This mapping explicitly links each 

research phase to the overarching research aims outlined in Chapter 1, 

Section 1.6. This structured approach facilitates a systematic exploration 

of the research questions, ensuring that each study phase directly 

contributes to the overall understanding of adherence in inhalation therapy. 
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Table 3. 1: Mapping of research questions to studies. 

Study Focus RQs Addressed 
Study 1 (Chapter 4) Investigating 

Factors Affecting Patient 
Adherence to Inhalation Therapy 

Explore factors 
affecting adherence 

RQ1 

Study 2 (Chapter 5) 
Participatory Design of a Sensor-

Based Intervention System 

Translate insights 
into system design 

RQ2 

Study 3 (Chapter 6) 
Implementation of a Sensor-Based 

System for Inhalation Therapy 
Adherence 

Implement and 
deploy the 

intervention system 

RQ2 

Study 4 (Chapter 7) 
Evaluation and Classification 
Analysis of the Sensor-Based 

Intervention System 

Evaluate usability, 
effectiveness, and 

classification 

RQ3 

 

3.5.2 Methods Applied in Study 1 

Study 1 aimed to explore the key factors influencing patient 

adherence to inhalation therapy. Guided by findings from a 

literature review and informed by the SEIPS 2.0 framework 

(Holden et al., 2013), a semi-structured interview protocol with 

open-ended questions systematically examined cognitive, 

behavioral, and environmental challenges associated with inhaler 

use. Interview questions were structured around the five SEIPS 2.0 

components: Person(s), Tasks, Tools and Technologies, Internal 

Environment, and Organization, enabling an in-depth exploration 

of patient capabilities, inhaler usage, and the influence of 

environmental and healthcare system factors on adherence. 

Participant Recruitment and Setting: Participants for this study 

were recruited from the respiratory outpatient clinic through a 

structured selection process: 

1. Physician Screening: Patients attending outpatient 

appointments were identified by respiratory physicians based 
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on the following criteria: (a) a physician-confirmed diagnosis 

of asthma or COPD, (b) regular use of inhalation therapy for at 

least three months, and (c) a stable condition without acute 

exacerbations. 

2. Patient Invitation: After their medical consultations, eligible 

patients were introduced to the researcher, who explained the 

study objectives and procedures. 

3. Consent Process: Patients who agreed to participate received 

detailed information about the study, had the opportunity to ask 

questions, and subsequently signed informed consent forms. 

HCPs were recruited through convenience sampling: 

1. Initial Approach: Respiratory specialists were approached in 

their offices or consultation rooms during their available hours. 

2. Voluntary Participation: The study’s purpose, time 

commitment, and voluntary nature were introduced to the 

HCPs. Those interested signed informed consent forms to 

participate. 

Procedure and Data Collection: Each interview commenced with 

the signing of a consent form, followed by a brief explanation of 

the study background. Participants were asked to share their 

perceptions and experiences regarding inhalation therapy and 

inhaler use. All interviews were conducted face-to-face in a semi-

private hospital setting (see Figure 3.2), lasting up to one hour, and 

were audio-recorded with participant consent. 

Data Analysis: Interview recordings were transcribed in Chinese 

by the interviewers and subsequently translated into English by a 

bilingual translator. The research team performed a line-by-line 

review of the transcripts to ensure accuracy and consistency. Both 



104 

 

patient and HCP transcripts were coded separately using NVivo 14, 

guided by a SEIPS-based codebook. Thematic analysis was 

conducted independently by two researchers, following the 

principles of Charmaz (2006) and Strauss (1987) The analysis 

continued until thematic saturation was achieved, which occurred 

after interviewing 35 patients and 15 HCPs. Inter-rater reliability 

was assessed using Cohen’s Kappa (κ = 0.783), indicating 

substantial agreement. Discrepancies in coding were resolved 

collaboratively through consensus discussions. 

  

Figure 3. 2: Face-to-face interviews. 

 

3.5.3 Methods Applied in Study 2 

Study 2 involved two participatory design workshops with 10 

patients, 10 HCPs, and 2 researchers to co-design a sensor-based 

intervention. Personas and scenarios derived from Study 1 guided 

the discussions, ensuring a user-centered design approach that 

reflected the real-world experiences and challenges of both patients 

and HCPs. 

Participant Recruitment and Setting: Participants were recruited 

through a structured process designed to ensure both eligibility and 

diversity: 
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Recruitment Process: 

1. Public Advertisement: Posters outlining the study objectives, 

procedures, and eligibility criteria were displayed in waiting 

areas and consultation rooms. 

2. Voluntary Registration: Interested patients and HCPs registered 

their interest via the contact information provided on the 

advertisements. 

3. Screening: Patients were required to meet the following 

inclusion criteria: (a) a physician-confirmed diagnosis of 

asthma or COPD, (b) regular use of inhalers for at least three 

months, and (c) a stable condition without recent exacerbations. 

HCPs were required to have a minimum of three years of 

clinical experience in respiratory care to ensure familiarity with 

inhalation therapy protocols. 

4. Confirmation and Consent: Selected participants were 

contacted to confirm their availability, and written informed 

consent was obtained before their participation in the 

workshops. 

Workshop Procedure and Data Collection: The workshop 

process was organized into three main stages: 

 Step 1: Conceptualizing the core system functions. 

 Step 2: Designing system components and sensor deployment. 

 Step 3: Exploring user interface design preferences. 

The first two steps were completed during the first workshop 

(lasting approximately 2 hours), while the third step was conducted 

in the second workshop (30 minutes). All discussions were held in 

Mandarin, audio-recorded with participant consent, and transcribed 
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verbatim for analysis. Additionally, participants evaluated two 

interface prototypes using the TAM questionnaire, which assessed 

four key constructs: Perceived Usefulness, Perceived Ease of Use, 

Attitude Toward Using, and Behavioral Intention to Use(Holden & 

Karsh, 2010; Pai & Huang, 2011). 

Data Analysis: Data analysis was conducted in two phases: 

1. Qualitative Analysis: Two researchers collaboratively 

performed thematic analysis using NVivo 14 to extract key 

design requirements and identify common themes(Charmaz, 

2006; Strauss, 1987).  

2. Quantitative Analysis: Quantitative data from TAM responses 

were analyzed using SPSS v25. Subgroup analysis was 

performed to compare interface preferences between patients 

and HCPs, providing insights into differing expectations and 

usability perceptions. 

The results of the workshops, including detailed personas, 

scenarios, and design outcomes, are further elaborated in Chapter 5. 

 

3.5.4 Methods Applied in Study 3 

Study 3 focused on the technical development and implementation 

of the XIAOXI sensor-based intervention system, translating 

insights from the participatory design workshops into a functional, 

real-world solution. 

System Architecture and Components: The XIAOXI system was 

designed with a modular architecture composed of three core 

components: Monitoring, Knowledge & Awareness, and Feedback. 

Multi-sensor modules were integrated to continuously monitor 

inhaler usage, physiological indicators, and environmental 
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conditions. To facilitate seamless connectivity, real-time data 

processing, and user engagement, the system was built within the 

Tencent ecosystem, leveraging platforms such as WeChat for 

efficient data transmission and accessible user interaction. 

Sensor Integration and Chatbot Development: Custom-designed 

housings included an add-on module attached to the inhaler for 

monitoring inhaler usage and heart rate, and a standalone unit for 

home-based monitoring of air quality, temperature, and humidity. 

This dual-module setup enabled comprehensive, real-time data 

collection without disrupting daily routines. 

A chatbot was developed within the Tencent ecosystem, offering 

personalized feedback, usage reminders, and health education. The 

interface design was guided by user preferences identified during 

Study 2, ensuring both intuitive interaction and effective 

presentation of adherence data. Additionally, the chatbot 

incorporated self-assessment tools and educational resources to 

support dynamic adherence management, enabling users to track 

their progress, understand proper inhaler use, and receive timely 

alerts. 

Prototype Testing: Laboratory testing was conducted to validate 

the XIAOXI system's hardware accuracy, durability, and software 

reliability. Specific tests focused on the precision of sensor 

measurements, the stability of data transmission, platform 

synchronization, and the responsiveness of chatbot interactions. 

Iterative refinements were made based on performance outcomes to 

optimize sensor integration, user interface design, and real-time 

feedback mechanisms. These adjustments ensured that the system 

functioned seamlessly across various environmental conditions and 

user scenarios. Detailed technical development and testing 

outcomes are presented in Chapter 6. 
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3.5.5 Methods Applied in Study 4 

Study 4 evaluated the XIAOXI system’s usability, its effectiveness 

in improving adherence, and the classification of adherence 

behaviors through machine learning techniques during a 28-day 

real-world deployment with both experimental and control groups. 

3.5.5.1 Usability Evaluation 

Participants and Recruitment: Fifteen participants (10 patients, 5 

HCPs) were recruited following the same procedures as Study 1. 

Patients were selected based on physician recommendations if they 

(a) had a confirmed diagnosis of asthma or COPD, (b) regularly 

used Symbicort Turbuhaler for at least one month, and (c) were in a 

stable respiratory condition. The choice of Symbicort Turbuhaler 

was informed by local clinicians due to its widespread use and 

compatibility with the XIAOXI sensor system. After physician 

approval, researchers provided detailed study information and 

obtained written informed consent. HCPs were recruited through 

direct invitation, requiring a minimum of three years' experience 

managing asthma or COPD patients. 

Procedure: HCPs engaged in simulated usage scenarios and 

persona-based exercises with XIAOXI after receiving a detailed 

introduction to its functionalities. They interacted with the system 

based on predefined patient cases and completed structured 

evaluations on performance, usability, and clinical relevance. 

Patients used XIAOXI daily over a 28-day period and subsequently 

completed standardized questionnaires and semi-structured 

interviews to share their experiences. 

Data Collection and Analysis: Quantitative data were collected 

using two validated instruments: the System Usability Scale (SUS) 
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and a System Quality Questionnaire. The SUS evaluated overall 

system usability, while the System Quality Questionnaire, adapted 

from Kadariya et al. (2019), assessed chatbot performance—

including naturalness, information delivery, interpretability—and 

technology acceptance based on the TAM. 

Data analysis was conducted using SPSS v25 to summarize 

responses and compare perceptions between patients and HCPs. 

Following the quantitative assessment, semi-structured interviews 

captured qualitative insights into user experience and system 

interaction. All interviews were audio-recorded, transcribed 

verbatim, and analyzed using thematic analysis with NVivo 14, 

enabling the identification of key themes related to usability, 

satisfaction, and clinical applicability. 

 

3.5.5.2 Effectiveness Evaluation 

Participants and Recruitment: A total of 20 patients (10 in the 

experimental group and 10 in the control group) were recruited 

following the same criteria as Study 1. Eligible patients were 

identified by attending physicians based on the following criteria: 

(a) diagnosed with asthma or COPD, (b) undergoing inhalation 

therapy for at least one month, and (c) maintaining a stable 

respiratory condition without recent exacerbations. 

Patients were then assigned to two groups: 

 Experimental Group: Patients enrolled in the Usability 

Evaluation who regularly used the Symbicort Turbuhaler, 

compatible with the XIAOXI system’s sensor attachments. 

 Control Group: Patients using prescribed inhalers, continuing 

standard inhalation therapy without technological intervention. 
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Upon physician approval, researchers approached eligible patients 

after their clinical consultations, providing detailed study 

information and obtaining written informed consent. 

Procedure: The study employed a 28-day controlled experimental 

design. The experimental group used the XIAOXI system alongside 

their inhalation therapy, while the control group maintained 

standard care. Baseline assessments, including demographic data 

and adherence questionnaires, were collected before the 

intervention. Throughout the study period, XIAOXI continuously 

monitored sensor data from the experimental group, tracking 

inhaler usage patterns, environmental conditions, and physiological 

indicators. At the end of 28 days, both groups completed follow-up 

assessments to evaluate changes in adherence and health-related 

behaviors. 

Data Collection and Analysis: Adherence outcomes were 

primarily evaluated using the Test of Adherence to Inhalers (TAI), 

administered to both groups before and after the 

intervention(Muneswarao et al., 2021; Plaza et al., 2016). Statistical 

analyses were conducted using SPSS v25 to examine changes in 

adherence scores. 

For the experimental group, additional self-assessment tools were 

integrated within the XIAOXI system, including: 

 Consumer Asthma Knowledge Questionnaire (CQ) and 

Chronic Obstructive Pulmonary Disease Knowledge 

Questionnaire (COPD-Q): Assessed patient knowledge 

regarding asthma or COPD(Kritikos et al., 2005; Maples et al., 

2010). 

 Asthma Control Test (ACT) and COPD Assessment Test 

(CAT): Evaluated disease control status(Gregoriano et al., 2018; 
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Ţîrcă et al., 2022). 

 Usability, Preference and Satisfaction Questionnaire 

(UPSQ): Reviewed device usability, patient preferences, and 

overall satisfaction(Rajan & Gogtay, 2014). 

 The Beliefs about Medicines Questionnaire (BMQ): 

Explored perceptions of medication necessity and concerns(Nie 

et al., 2019). 

 General Self-Efficacy Scale (GSE): Assessed confidence in 

managing health behaviors(Dahlberg et al., 2022; Luszczynska et 

al., 2005). 

 Emotional Experience (Emocard): Administered daily to 

capture real-time emotional fluctuations and support 

personalized feedback(Reijneveld et al., 2003; Zenk et al., 2008). 

Figure 3.3 illustrates the structure of the Emocard and its 

emotional categories. 

 

Figure 3. 3: Emocard. 
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Except for the Emocard, participation in these embedded 

questionnaires was voluntary and flexible, enabling patients to 

engage with the tools based on individual needs, thereby enhancing 

personalized disease management. These instruments formed an 

integral part of the XIAOXI intervention, designed to foster patient 

awareness, motivation, and adherence behavior. 

Additionally, semi-structured interviews were conducted post-

intervention with participants from both groups to explore patient 

experiences, adherence barriers, and perceptions of inhalation 

therapy. All interviews were transcribed verbatim and analyzed 

using thematic analysis in NVivo 14. Key themes were compared 

across groups to identify differences in adherence behaviors and 

patient perceptions resulting from the XIAOXI intervention. 

 

3.5.5.3 Classification Analysis 

The classification analysis aimed to identify patterns of patient 

adherence behaviors by analyzing data collected from the 

experimental group during the 28-day intervention with the 

XIAOXI system. The primary objective was to classify daily 

inhaler usage into adherent (completed prescribed usage) and non-

adherent (missed or incomplete usage) behaviors. 

Data Sources and Preprocessing: The dataset included daily 

sensor readings—heart rate, temperature, humidity, PM2.5 levels, 

and inhaler usage frequency—alongside patient-reported emotional 

experiences captured via the Emocard. Data cleaning was 

performed using the Interquartile Range (IQR) method to identify 

and remove outliers, thereby ensuring data integrity. Subsequently, 

sensor data were aggregated by calculating daily median values, 

while emotional data were categorized into four quadrants based on 
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valence and arousal levels to facilitate structured analysis. 

Classification Task: A binary classification framework was 

established, where each day was labeled as adherent (1) if the 

prescribed inhaler usage was completed, and non-adherent (0) 

otherwise. To achieve this, seven different machine learning 

algorithms were employed, covering a range of linear, non-linear, 

and ensemble-based methods. The detailed descriptions of the 

algorithms, parameter settings, and performance metrics are 

presented in Chapter 7. This comprehensive evaluation enabled the 

identification of key predictors and adherence patterns, contributing 

to a deeper understanding of inhalation therapy behaviors in real-

world settings. 

 

3.5.6 Reliability and Validity 

Establishing reliability and validity is crucial in a mixed-methods 

study of this nature. Potential threats to reliability include 

participant error, participant bias, and observer bias(L. Cohen et al., 

2017; Franklin & Ballan, 2001). To enhance reliability, the study 

employed triangulation through the integration of multiple data 

sources: objective sensor data, subjective self-reported 

questionnaires, and qualitative interviews. For example, adherence 

behaviors captured through sensor logs were cross-verified with 

self-reported data from the TAI questionnaire, ensuring consistency 

and reducing the influence of biases associated with any single 

method. This multi-faceted approach provided a more balanced and 

reliable assessment of patient adherence. 

To ensure construct validity, only standardized and validated 

tools—such as the SUS, TAM, and TAI—were employed, aligning 

with established theoretical constructs(Holden & Karsh, 2010; 
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Kadariya et al., 2019; Plaza et al., 2016). External validity was 

strengthened by recruiting participants from a diverse demographic 

range, reflective of the broader population affected by chronic 

respiratory diseases. This diversity enhances the generalizability of 

findings across different patient populations. Furthermore, all 

protocols were applied consistently across participants to minimize 

procedural discrepancies, ensuring that observed differences in 

adherence behavior were genuinely reflective of individual 

variations rather than inconsistencies in data collection or 

intervention delivery. 

 

 

3.6 Conclusion 

 

This chapter presented a comprehensive overview of the research 

methodology employed in this study, detailing the theoretical 

foundations, methods, and procedures applied across the four 

studies. The SEIPS 2.0 model served as a critical framework for 

understanding the multifaceted factors influencing patient 

adherence to inhalation therapy and guided both the design and 

evaluation of the sensor-based intervention system. 

Key methodological considerations, including reliability and 

validity, were thoroughly addressed. The integration of 

standardized procedures, validated tools, and a combination of 

qualitative and quantitative data ensured methodological rigor, 

enhancing the reliability of the findings. This structured approach 

bridges the gap between theoretical concepts and practical 

application by thoroughly examining patient behaviors and the 
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effectiveness of the intervention system in real-world settings. 

The subsequent chapters will present the findings from each study, 

demonstrating how the methodological strategies outlined here 

contributed to a deeper understanding of patient behavior, 

intervention efficacy, and the role of technology in enhancing 

adherence to inhalation therapy. 
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Chapter 4 Investigating Factors 

Affecting Patient Adherence to 

Inhalation Therapy 

 

 

4.1 Introduction and Aims 

 

Asthma and COPD are chronic respiratory conditions with 

significant implications for global public health. Inhalation therapy, 

recognized for its rapid onset of action and targeted delivery, 

remains one of the primary treatment approaches for these diseases 

(Bhattacharyya & S Sogali, 2018; Borghardt et al., 2018). However, 

while existing research has identified various factors influencing 

patient adherence, specific challenges remain, particularly in 

developing regions like China—where limited healthcare resources, 

varying levels of health literacy, and cultural beliefs pose 

significant barriers to effective treatment(Ait-Khaled et al., 2001; C. 

Huang et al., 2016; C. Wang et al., 2023). Notably, the interaction 

between patients and inhalation devices in this context is 

underexplored, suggesting a need for deeper investigation into the 

specific factors affecting patient adherence. 

Building on the framework introduced in previous chapters, this 

chapter applies the SEIPS 2.0 model, a foundational framework in 

HFE, to systematically explore the complex interactions among 

Person(s), Tasks, Tools and Technologies, Internal Environment, 
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and Organization within the context of inhalation therapy. A 

primary focus of this exploration is understanding how patients 

engage with inhalation devices, accounting for both cognitive and 

behavioral challenges that may arise during use. Semi-structured 

interviews are utilized to reveal insights into these interactions and 

other contextual factors that shape patient adherence. These 

findings contribute to the construction of a theoretical framework 

that informs the design of individualized interventions aimed at 

enhancing adherence. The primary aim of this chapter is to identify 

the factors that influence patient adherence to inhalation therapy 

and to explore how these findings can guide the design of 

interventions tailored to the specific needs of patients. 

Understanding the challenges and barriers that patients currently 

face, alongside their characteristics, behaviors, and preferences, is 

critical for designing effective solutions. 

The objectives of this chapter are: 

1. To investigate the characteristics and needs of asthma and 

COPD patients in the context of inhalation therapy. 

2. To examine the current challenges and barriers affecting 

patient adherence.  

3. To explore the implications of these findings for designing 

personalized interventions that support improved adherence 

and better patient outcomes. 

 

 

4.2 Methods 
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This study employed semi-structured interviews to explore the 

multifaceted factors influencing patient adherence to inhalation 

therapy, guided by the SEIPS 2.0 framework for structured analysis. 

The interview protocol is provided in Appendix 4A. 

Methodological details, including participant recruitment strategies, 

interview protocols, and data analysis procedures, are 

comprehensively described in Chapter 3, Section 3.5.2. This 

section presents the demographic characteristics of the participants 

and outlines the thematic structure derived from the analysis, 

setting the context for the findings presented in the following 

sections. The demographic profiles of both patients and HCPs 

involved in this study are summarized below. 

Table 4. 1: Participant demographics (patients). 
Demographic Count (n=35) Percentage 
Gender 
Male 16 45.70% 
Female 19 54.30% 
Age Range 
18-35 10 28.60% 
36-50 18 51.40% 
51-65 7 20.00% 
Educational Level 
Primary 8 22.90% 
Secondary 15 42.90% 
Tertiary 12 34.30% 
Type of Disease 
Asthma 20 57.10% 
COPD 15 42.90% 
Disease Severity 
Mild 21 60.00% 
Moderate 14 40.00% 
Severe 0 0.00% 
Number of Inhaled Medications (Inhalers) 
1 19 54.30% 
2 12 34.30% 
>2 4 11.40% 
Number of Comorbidities 
0 15 42.90% 
1 13 37.10% 
2 or more 7 20.00% 
Type of Patient 
Outpatient 23 65.70% 
Inpatient 12 34.30% 
Experience with Inhaler Device (Years) 
<1 13 37.10% 
1-3 15 42.90% 
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>3 7 20.00% 

Table 4. 2: Participant demographics (HCPs). 

Demographic Count (n=15) Percentage 
Gender 
Male 7 46.7% 
Female 8 53.3% 
Age Range 
18-35 7 46.7% 
36-50 6 40.0% 
51-65 2 13.3% 
Work Experience 
3-6 4 26.7% 
7-10 7 46.7% 
>10 4 26.7% 

The thematic analysis resulted in five key categories aligned with 

the adapted SEIPS framework: (1) person, (2) task, (3) tool, (4) 

physical environment, and (5) culture and social factors. These 

thematic categories form the basis for the presentation and 

discussion of findings in the subsequent sections. 

 

 

4.3 Results 

 

4.3.1 Person-related Factors 

4.3.1.1 Patient Ability 

Participants highlighted the significance of patient abilities, both 

physical characteristics and cognitive ability, that hinder self-

efficacy during inhalation therapy. 

Physical Characteristics: Two primary aspects were identified: 

lung function decline and manual dexterity issues. Patients with 
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reduced lung capacity, common in respiratory diseases, struggle to 

achieve the necessary inhalation flow rate. “I know that during 

inhalation treatment I ought to take a deep breath, however, due to 

my lung disease I sometimes get barely able to draw normal 

breaths.” Additionally, many elderly patients reported difficulties 

in securely gripping the inhaler due to tremors or weakened hands. 

“I try to hold it tightly, but my hands are trembling which makes it 

difficult to use the inhaler.”  

HCPs observed that patients with physical impairments often face 

challenges using inhalers effectively, potentially reducing treatment 

efficacy. They suggested selecting devices tailored to patients' 

physical capabilities to optimize outcomes. “When prescribing, I 

consider the patient's physical abilities. For instance, the use of 

SMI shall be preferred for elderly patients because it provides the 

benefit of less inspiratory flow rate.”  

Cognitive Ability: Cognitive limitations, including disease 

knowledge gaps and communication barriers, were frequently 

linked to poor adherence. HCPs noted that misunderstandings about 

the chronic nature of conditions like asthma often led to 

inconsistent inhaler use. “Some patients mistakenly believe that the 

absence of symptoms means they are cured. Chronic conditions like 

asthma require long-term management, even when symptoms are 

not apparent.”  

HCPs emphasized the need for effective education to ensure 

patients understand their condition and the necessity of consistent 

inhaler use. However, patients expressed frustration with medical 

jargon, feeling overwhelmed and often leaving consultations 

without clear understanding. “In fact, I didn't understand the 

medical terms the doctor used, so all I could do was to pay the 

money and take the medicine that I had no clue about. It would be 

nice if they could explain it more.” 
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Some patients even questioned the credibility of their doctors due 

to vague explanations: “I found that my doctor often uses words 

like perhaps, probably, and maybe. How can I trust him when his 

diagnosis is so uncertain?” In response, HCPs acknowledged the 

difficulty of providing definitive answers due to medical 

uncertainties and individual differences.  

Furthermore, memory issues were noted as a barrier, with some 

patients forgetting to use their inhalers or struggling with dosage 

instructions. To mitigate this, some patients set phone alarms as 

reminders. “With my tendency for forgetfulness I put an alarm on 

my phone to serve as a reminder for using my inhaler daily.” 

 

4.3.1.2 Emotional Experience 

Negative interactions with inhaler devices were reported to 

significantly affect patients' emotional experiences, leading to 

burnout and resistance. The noise generated during inhaler use was 

cited as a source of stress: “While using the inhaler, there is 

probability of hearing the sound of internal mechanism, which 

raises my stress and hesitance to use it again.” Additionally, the 

repetitive nature of inhaler use contributed to feelings of frustration 

and fatigue: “For over a year now I’ve been using the same device 

and I have to repeat the same operation every single day as if I am 

a robot and this feels very boring and annoying.” 

While some HCPs acknowledged this emotional burden, they 

stressed that the effectiveness of the medication remains their 

primary concern, often placing less emphasis on emotional 

discomfort: “As doctors, our priority is the patient’s health, so the 

effectiveness of the inhaled medication is more important than the 

patient’s feelings about the inhaler.” Figure 4.1 illustrates the 
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person-related factors. 

 

Figure 4. 1: Person-related factors. 

 

4.3.2 Task-related Factors 

4.3.2.1 Task Type 

Collaborative Task: Inhalation therapy often requires effective 

cooperation between HCPs and patients. Proper inhaler technique 

training and regular assessments are critical for ensuring effective 

usage. However, many patients reported that the training they 

receive is insufficient for developing a consistently correct 

technique. Interviews revealed that 4 out of 5 patients received less 

than 10 minutes of inhaler technique training, and only 1 in 7 had a 

follow-up check on their usage. "The entire visit took just 10 

minutes with the doctor discussing how to use the inhaler for less 

than 1 or 2 minutes." HCPs acknowledged that heavy workloads 

and time constraints often prevent them from providing 

comprehensive training or conducting regular assessments. “Many 

patients come to me every day and I lack time to review all details 

regarding its use.” Some HCPs noted that patients often turn to 

self-education, such as reading instructions or watching online 

tutorials, to improve their inhaler techniques. To enhance patient 

understanding, several HCPs suggested incorporating visual aids 
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during consultations as a way to demonstrate proper inhaler use 

more effectively, even within limited timeframes. “I present a used 

inhaler to demonstrate how to operate it so the patient can learn 

quickly.”  

Independent Task: Tasks that patients carry out independently, 

such as administering inhalation therapy at home, are classified as 

independent tasks. Many patients reported that insufficient 

guidance on proper inhalation techniques made self-administration 

more challenging. Patients with chronic respiratory conditions, like 

asthma, are often prescribed both relievers and maintenance 

therapies, which can lead to inhaler mixing (using multiple inhalers 

with different techniques). Several patients expressed frustration 

over managing different devices: “The task of mastering one 

technique is challenging enough; attempting two simultaneously is 

even more difficult, and I get these two different techniques mixed 

up all the time.” Additionally, patients described difficulties with 

inhaler switching—transitioning from one device to another—

especially when adequate time or guidance was not provided. This 

often resulted in incorrect usage and reduced treatment 

effectiveness. “It appears that though this new device looks like the 

old one, it works differently; initially, I used the old way, but the 

operation was always unsuccessful.” 

 

4.3.2.2 Frequency and Flexibility 

The findings reveal that both the frequency of inhaler use and the 

lack of flexibility in treatment schedules can significantly impact 

patient adherence. Many patients reported that the more frequently 

they are required to use their inhaler, the greater the likelihood of 

missed doses. “Even if I set an alarm for using my inhaler in the 

morning and evening, sometimes I forget to use it, that is why it 
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would be so much easier if I needed to use the inhaler just once a 

day.” Additionally, some patients expressed frustration with the 

rigid schedules associated with inhalation therapy, citing 

difficulties in maintaining regular use due to work obligations or 

travel. “I frequently work overtime or have to travel for business, 

which makes it hard to stick to my inhaler schedule. Additionally, 

since an asthma attack can happen at any time, I always try to keep 

the device with me—like a pet on a leash.” HCPs acknowledged 

the inconvenience of strict inhalation routines but emphasized that 

patients must often endure these challenges for the sake of effective 

disease management. “Suffering is also therapy, perhaps, that is 

the cost of waging war on the disease, patients must endure it for 

the sake of their health.” Figure 4.2 shows the task-related factors. 

 

Figure 4. 2: Task-related factors. 

 

4.3.3 Tool-related Factors 

4.3.3.1 Type of Inhalers 

There are four main types of inhalers commonly used in clinical 

settings: pMDIs, DPIs, SMIs, and Nebulizers. According to our 

interviews, each type presents distinct advantages and drawbacks, 

and no single device meets the needs of all patients. For instance, 

71.4% of patients aged 51 and above expressed frustration with 

pMDIs, citing the need for coordinated timing between pressing the 
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inhaler and inhaling, which they found challenging compared to 

other devices. “Sometimes I remember to push the button but 

ignore the need to breathe and at other times I find myself 

breathing but failing to press the button.”  

In contrast, male patients voiced more concerns about DPIs, 

particularly issues with drug powder clumping due to improper 

cleaning. If the device is not properly maintained, powder residue 

remains in the mouthpiece, leading to clumping. We observed that 

female patients tended to be more diligent in maintaining and 

cleaning their inhalers, while male patients were more likely to 

overlook these "details." Some HCPs noted that a patient's clinical 

outcomes may depend on the type of inhaler they use, as patients 

often respond differently to various devices. They emphasized that 

the same patient might exhibit different adherence behaviors 

depending on the device selected. “He was initially a non-

compliant patient, but after switching to a different inhaler, he 

began using it correctly every time.”  

Additionally, several HCPs mentioned a newer category of 

inhalers—the digital inhaler—which includes built-in or add-on 

sensors capable of detecting inhaler use and measuring inspiratory 

flow. Although these devices are not yet widely promoted in China, 

HCPs believe that this technology could offer significant benefits to 

patients. However, when discussing the potential future adoption of 

digital inhalers, many patients expressed concern about increased 

costs. “As the inhalers become digital, does the price go up? If so, I 

do not know whether it is worthwhile.” 

 

4.3.3.2 Usability of Inhalers 

Participants emphasized the importance of inhaler usability, noting 
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that it plays a crucial role in promoting patient adherence to 

inhalation therapy. Many patients suggested that instead of more 

advanced devices, they primarily require inhalers that are user-

friendly and capable of providing feedback. 

Providing Feedback: In this study, nearly two-thirds of the 

patients expressed a desire for immediate feedback on their inhaler 

usage during treatment, while about three out of seven preferred 

receiving overall feedback after a period of use, such as weekly or 

monthly. During the interviews, approximately 88.6% of patients 

voiced concerns about whether the medication was truly being 

inhaled. Patients reported that their only indicators were "a change 

in the counter display" and "the bitter taste of the medication". 

Some participants suggested that inhalers should offer more real-

time information, such as feedback on how the device is being 

operated and the speed of inhalation, to ensure proper usage. “I 

doubt I am on the correct path. I want the device to provide more 

clues and details at that time.” 

Additionally, some patients mentioned that receiving regular 

reports on their inhaler usage might help them better track their 

progress and take control of their treatment. “I mark my calendar 

after each inhalation so I know how am I doing. When I realise I 

skipped some doses last week, I will take extra precautions this 

week.”  

HCPs also acknowledged the potential benefits of feedback 

mechanisms, particularly in helping patients establish better 

routines and refine their inhalation techniques. However, about 

four-fifths of HCPs reported feeling overwhelmed by the volume of 

information they already manage during clinical visits. While 

receiving overall feedback could assist HCPs in monitoring a 

patient’s condition and adjusting treatment plans accordingly, they 

indicated that real-time feedback is likely more valuable to patients 
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than to themselves. 

Intuitive to use: A key feature that patients desired was ease of use, 

which they noted would significantly reduce their cognitive burden 

and allow them to focus more effectively on their treatment. 

Patients explained that an intuitively designed inhaler would be 

easy to understand and operate without requiring much effort or 

instruction. One patient shared her vision of what an "intuitive 

inhaler" would look like: “One does not have to consider how to 

operate the device; simply open it up and take a breath.” HCPs 

also expressed their preference for intuitive inhalers, which would 

minimize the need for extended training sessions with patients. “It 

is less time-consuming when patients do not require additional 

explanation on how to use the device, allowing us to attend to more 

patients.” Figure 4.3 illustrates the task-related factors. 

 

Figure 4. 3: Tool-related factors. 

 

4.3.4 Physical Environment-related Factors 

4.3.4.1 Daily Environment 

All patients reported that they most often use their inhalers within 

their daily environment, with home settings being the primary 

location (see Figure 4.5). Several participants noted the influence of 

factors such as temperature, humidity, and storage location on how 
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their inhalers are maintained. One patient shared her experience 

with drug deterioration caused by improper storage conditions at 

home: “Because I rinse my mouth after every use, I leave the 

inhaler on the bathroom washstand for convenience; but the 

humidity and heat in the bathroom make the powder clump and 

deteriorate quickly.” 

Similarly, another patient described accidentally using the wrong 

inhaler after storing different types together: “By my bedside, there 

were both the reliever and the maintenance inhalers. One day, I 

used the reliever inhaler instead of the maintenance one. It was 

bad.” Some HCPs pointed out that managing patients’ health-

related behaviors in their daily environments is challenging, as it 

falls outside their direct control and expertise. They emphasized the 

need for better patient education on proper storage practices and the 

importance of differentiating between different types of inhalers to 

avoid mistakes. 

 

Figure 4. 4: Physical environment-related factor. 

 

4.3.5 Culture and Social-related Factors 

4.3.5.1 Cultural Beliefs 

Cultural beliefs, defined as "a set of behavioral patterns 

encompassing thoughts, manners, and actions shared by members 
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of a society and passed down through generations," can 

significantly influence patients' decisions regarding inhaler use(Md 

Hatah et al., 2015). In our study, we found that more than two-thirds 

of the participants held strong convictions in the effectiveness of 

Traditional Chinese Medicine (TCM) and traditional Chinese 

health beliefs. As a result, many of these patients had either 

reduced or entirely discontinued their inhaler use. One patient 

explained, “There’s an old Chinese saying, 'All medicine has du 

(toxicity) to some degree,' so once the symptoms are gone, there’s 

no need to keep using an inhaler.” HCPs noted that changing 

patients' cultural beliefs is particularly challenging, especially 

among older individuals whose beliefs are deeply ingrained. 

However, they also observed that younger patients tend to be more 

receptive to ongoing counseling and education. 

 

4.3.5.2 Social Stigma 

Social stigma refers to the negative judgment or discrimination 

directed at individuals or groups based on visible traits that set 

them apart from the rest of society(Latalova et al., 2014). In our study, 

approximately one in seven patients reported experiencing feelings 

of stigmatization due to their inhaler use during treatment. One 

patient shared feelings of social shame and devaluation when using 

her inhaler in public settings: “I feel embarrassed to use the inhaler 

around my family or colleagues. It's my fault for being the one 

who’s unwell when everyone else is healthy, and I need inhaled 

medications to get better.” Another patient described feeling 

discriminated against during interactions with HCPs: “When I was 

in the hospital, the nurses kept telling me I was doing the steps 

wrong and complained that I couldn’t learn them, which made her 

frustrated. I could tell she preferred dealing with 'smart patients' 

over 'dumb patients' like me.” Figure 4.5 illustrates the culture and 
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social-related factors. 

 

Figure 4. 5: Culture and social-related factors. 

 

 

4.4 Discussion 

 

This study, which analyzed interviews with 35 patients and 15 

HCPs, identified nine key factors influencing patient adherence to 

inhalation therapy, as outlined by the SEIPS 2.0 framework. The 

study revealed a broad range of factors—including person, task, 

tool, physical environment, culture and social influences—that 

shape adherence behaviors and outcomes in patients with asthma or 

COPD. By centering the participants' perspectives, the research 

highlighted that adherence to inhalation therapy is a dynamic 

process, influenced by the interplay of various elements such as 

patient abilities, emotional experiences, task type, frequency and 

flexibility of use, inhaler type and usability, daily environment, 

cultural beliefs, social stigma, and imperfect medical encounters. 

Figure 4.6 presents a comprehensive model consolidating these 

HFE influences. 
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Figure 4. 6: Patient adherence to inhalation therapy work system 

model. 

While several of these factors have been discussed in previous 

studies(Bourbeau & Bartlett, 2008; Brandstetter et al., 2017; Leventhal et 

al., 1992; Restrepo, 2008), this research reveals new dimensions 

affecting adherence behaviors. These newly identified factors 

include the challenges patients face in using inhaler devices due to 

negative emotional experiences, the influence of physical 

environmental conditions (such as the home setting), and the role of 

traditional cultural beliefs in shaping patients' decisions to use their 

inhalers. 

Emotional experiences related to patient-device interactions 

emerged as a critical factor influencing adherence, which is less 

explored in current literature. Most studies on chronic illness have 

primarily focused on emotional states at the individual level (e.g., 
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depression) or within interpersonal contexts (e.g., social support). 

Few studies have emphasized the emotional dimension of patient-

device interactions, even though it can significantly impact 

adherence. Previous research has illustrated that conditions like 

depression or anxiety increase the likelihood of patients 

discontinuing treatment and reduce the number of days they adhere 

to medication(Restrepo, 2008; Sanduzzi et al., 2014). Additionally, 

support from families or HCPs has been shown to improve patient 

adherence and enhance their quality of life(Bonito et al., 2013; 

DiMatteo, 2004). However, emotional consequences of human-

device interactions and their effect on adherence are rarely 

examined. One study found that emotional barriers negatively 

impacted patients’ confidence and satisfaction with self-injection 

devices, ultimately reducing their willingness to adhere to 

treatment—a pattern consistent with the findings of our 

study(Rekaya et al., 2020). This suggests that emotional design 

theories, such as Norman’s Emotional Design Theory and Kansei 

Engineering, could be leveraged to improve patient engagement 

and foster positive experiences during inhaler use(Nagamachi, 1995, 

2002; Norman, 2007). For example, emotional design principles have 

been successfully applied in the development of prosthetic devices, 

enhancing user acceptance and satisfaction(Sansoni et al., 2016).  

Environmental influences were also found to be significant, 

particularly the impact of temperature, humidity, and storage 

conditions on inhaler effectiveness. While clinical settings provide 

optimal conditions for drug storage and inhalation therapy, home 

environments often do not(Juliá Nehme et al., 2021; National Research 

Council et al., 2011). Patients reported improper storage practices, 

such as leaving inhalers in humid or overheated areas, which can 

degrade medication quality. This finding underscores the 

importance of simulating real-world environments during inhaler 

training to prepare patients for everyday usage scenarios. 
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Cultural beliefs were found to be another influential factor, 

particularly the traditional Chinese concept that "All medicine has 

du (toxicity) to some degree." This belief often led patients to 

reduce or discontinue inhaler use after symptom relief, despite 

medical advice to maintain treatment. Historically, in ancient China, 

"du" was perceived as an inherent attribute of medicine, 

symbolizing both its therapeutic potency and its risks(Y. Liu, 2021). 

This understanding has evolved, with many patients now 

interpreting "du" simply as "poison," influencing their willingness 

to adhere to inhaled medications. Although cultural beliefs are 

known to affect medication adherence, relatively few studies have 

examined their impact within the context of inhaler adherence. This 

underscores the need for culturally sensitive intervention strategies 

that respect traditional beliefs while promoting effective treatment 

practices(Shahin et al., 2019). 

The study also highlighted the mismatch between patient and HCP 

priorities. While HCPs tend to focus on treatment effectiveness and 

clinical outcomes, patients often prioritize comfort, usability, and 

their daily experiences with inhaler devices. Research suggests that 

involving patients in treatment decisions improves satisfaction and 

adherence(Cvengros et al., 2007; Pollard et al., 2017; Wilson et al., 2010). 

However, patients are frequently excluded from device selection 

and treatment planning, which may reduce their engagement and 

adherence. Time constraints, heavy workloads, and limited 

resources were cited by HCPs as barriers to providing 

comprehensive inhaler training and addressing patient concerns, 

consistent with previous findings(Fink & Rubin, 2005). 

Finally, the emergence of digital inhalers presents new possibilities 

for real-time monitoring and adaptive feedback. Digital inhalers 

can objectively track inhaler usage, monitor inspiratory flow, and 

capture environmental data, offering HCPs and patients deeper 
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insights into adherence behaviors(Pritchard & Nicholls, 2015). While 

cost and data management challenges remain, the integration of 

sensor technologies and digital interfaces could transform 

adherence monitoring, enabling more personalized and data-driven 

interventions(Chrystyn et al., 2019; Ghozali, 2023). Future research 

should focus on demonstrating the clinical and economic benefits 

of digital inhalers to justify their broader adoption. 

 

 

4.5 Conclusion 

 

This research identified nine key HFE elements that impact patient 

adherence to inhalation therapy. By developing a conceptual 

framework grounded in the SEIPS 2.0 model, the study highlighted 

previously underexplored factors, including emotional experiences, 

physical environment conditions, and traditional cultural beliefs, as 

crucial components for understanding patient adherence behaviors. 

These findings suggest that future interventions should place 

greater emphasis on patients' perceptions and experiences with their 

inhaler devices in real-world settings. 

Additionally, the study points to the potential of digital inhalers as 

promising tools for improving adherence. However, the 

effectiveness of such technologies hinges on their accessibility, 

ease of use, and alignment with patient-specific needs. This 

research offers practical insights for enhancing the patient 

experience in inhalation therapy, with implications that may extend 

to other DDCPs. 
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Chapter 5 Design of a Sensor-

Based System for Inhalation 

Therapy Adherence 

 

 

5.1 Introduction and Aims 

 

Poor adherence to inhalation therapy is influenced by various 

factors, including the complexity of inhaler use, challenges in 

environmental control, and differences in patient ability(Aldan et al., 

2022; Price et al., 2015). These challenges highlight the limitations of 

one-size-fits-all approaches and underscore the need for 

personalized interventions that account for the unique 

characteristics, behaviors, and environments of different patient 

groups. 

The theoretical background was discussed in Chapters 2 and 3; the 

factors that affect patient adherence to inhalation therapy were 

identified in Study 1 (Chapter 4), thus setting the stage for the user-

centered approach to intervention development. Drawing from 

these findings, this chapter is dedicated to the design of a sensor-

based intervention system named XIAOXI. The name XIAOXI (小

溪), which translates to "Little Stream," symbolizes the aspiration 

for smooth, uninterrupted breathing akin to the gentle flow of a 

stream. This metaphor reflects the system's goal of enhancing 
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patient comfort and consistency in inhalation therapy, promoting a 

sense of ease and natural rhythm in each breath. 

The objectives of this chapter are: 

1. To explain participatory design and its role in gathering user 

insights to guide the design process. 

2. To detail how workshop findings influenced the system’s 

functions, interface, and design features. 

3. To illustrate how personalized intervention strategies were 

incorporated to address diverse patient needs and behaviors. 

 

 

5.2 Methods 

 

This study adopted a participatory design approach to 

collaboratively develop a sensor-based intervention system, 

actively involving both patients and HCPs to ensure the design was 

firmly grounded in real user needs and clinical practices. The 

methodological framework—including participant recruitment, 

workshop procedures, and data analysis—is comprehensively 

detailed in Chapter 3, Section 3.5.3. To contextualize the 

participatory design process, this section presents the demographic 

characteristics of the participants involved. The demographic 

profiles of the participating patients and HCPs are summarized in 

Tables 5.1 and 5.2. 
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Table 5. 1: Participant demographics (patients). 

Demographic Count (n=10) Percentage 

Gender 
Male 6 60.00% 
Female 4 40.00% 
Age Range 
18-35 4 40.00% 
36-50 4 40.00% 
51-65 2 20.00% 
Educational Level 
Primary 1 10.00% 
Secondary 5 50.00% 
Tertiary 4 40.00% 
Type of Disease 
Asthma 8 80.00% 
COPD 2 20.00% 
Disease Severity 
Mild 9 90.00% 
Moderate 1 10.00% 
Severe 0 0.00% 

Number of Inhaled Medications (Inhalers) 

1 8 80.00% 
2 2 20.00% 
>2 0 0.00% 
Number of Comorbidities 
0 7 70.00% 
1 2 20.00% 
2 or more 1 10.00% 

Experience with Inhaler Device (Years) 

<1 2 20.00% 
1-3 6 60.00% 
>3 2 20.00% 

Table 5. 2: Participant demographics (HCPs). 

Demographic Count (n=10) Percentage 
Gender 
Male 3 30.0% 
Female 7 70.0% 
Age Range 
18-35 6 60.0% 
36-50 4 40.0% 
51-65 0 0.0% 
Work Experience 
3-6 2 20.0% 
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7-10 5 50.0% 
>10 3 30.0% 

 

 

5.3 Personas and Scenarios 

To ensure a patient-centered design approach, two personas were 

developed based on insights derived from semi-structured 

interviews, guided by the SEIPS 2.0 framework and the nine key 

factors influencing adherence identified in Study 1. These factors, 

categorized across five dimensions—Person, Task, Tool, Physical 

Environment, and Culture & Social—served as a structured 

reference for persona development, ensuring comprehensive 

coverage of adherence challenges. 

The nine key factors were systematically reviewed during the 

persona development process to ensure that each persona embodied 

distinct barriers and needs across these dimensions. For example, 

the Busy Professional primarily reflects challenges related to Task 

Type, Frequency and Flexibility, Emotional Experience, and 

aspects of Tool Usability, highlighting issues such as managing 

independent tasks within a busy schedule, emotional stress, and the 

need for intuitive inhaler use. In contrast, the Retired Senior 

emphasizes factors such as Patient Ability (physical and cognitive 

aspects), sensitivity to the Daily Environment, reliance on Effective 

Feedback Mechanisms, and the influence of Cultural Beliefs on 

self-management behaviors. 

The decision to focus on these two personas—Busy Professional 

and Retired Senior—was made to balance comprehensive user 

representation with analytical depth. This approach aligns with best 

practices in persona development, which recommend limiting the 
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number of personas to those most reflective of core user challenges 

to maintain design focus and effectiveness(Chang et al., 2008; Pruitt 

& Grudin, 2003). Scenarios were developed alongside these personas 

to contextualize the identified factors within realistic daily 

experiences, enabling workshop participants to engage with 

tangible adherence challenges grounded in the theoretical 

model(Gudjonsdottir & Lindquist, 2008; Lopez-Lorca et al., 2014). 

Persona 1: Busy Professional (Asthma, 1 years) 

 Background: A 30-year-old working 

adult managing daily tasks while 

adapting to a recent asthma diagnosis. 

This persona highlights challenges 

related to balancing professional 

responsibilities with consistent inhalation 

therapy adherence. 

 Pain Points: Frequent forgetfulness due to a demanding work 

schedule, anxiety over potential asthma attacks, and difficulties 

maintaining a standard treatment routine. These factors 

contribute to poor symptom control and inconsistent 

medication use. 

 Goals: Seeks an unobtrusive system that provides gentle 

reminders, monitors inhaler usage seamlessly, and offers 

proactive recommendations to avoid asthma triggers—without 

disrupting daily workflows. 

Persona 2: Retired Senior (COPD, >10 years) 

 Background: A 70-year-old male living 

with COPD for over a decade, representing 

elderly patients facing physical frailty and 

complex self-management needs. 
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 Pain Points: Requires educational support for proper breathing 

techniques, assistance in monitoring environmental and 

physiological conditions, and struggles with distinguishing 

normal symptoms from warning signs. 

 Goals: Needs a simple, intuitive system that offers clear 

educational guidance, environmental monitoring, and health 

status feedback to support informed self-management without 

cognitive overload. 

Scenario 1: A Typical Day for the Busy Professional 

The Busy Professional, a working woman managing both her 

career and asthma, rushes through her morning routine, trying to fit 

everything in before heading out the door. In the midst of preparing 

for a busy day, she quickly grabs her inhaler and uses it in a hurry, 

not paying much attention to whether she’s using it correctly. With 

no time to spare, she reassures herself that using it, even hastily, is 

better than not using it at all, hoping it will provide some relief for 

the day ahead. 

By midday, she may experience shortness of breath after climbing 

stairs or walking quickly to meetings, but she tends to brush it off, 

telling herself there’s no time for a break. As the workday 

continues, fatigue sets in. By evening, after long hours at the office 

or managing projects from home, she feels completely drained. 

Despite knowing she should use her inhaler before bed, exhaustion 

often leads her to forget, leaving the inhaler untouched on her 

nightstand as she drifts off to sleep. 

Scenario 2: A Day at Home for the Retired Senior 

The Retired Senior spends most of his day at home. After waking, 

he follows his prescribed treatment by using the inhaler to ensure 

stable breathing for the day ahead. Breathing exercises are 
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incorporated into his routine, helping to manage symptoms and 

instill a sense of control. Household chores, such as tidying up or 

preparing meals, are completed in short, manageable intervals to 

prevent overexertion. 

As the day progresses, he moves from room to room, occasionally 

needing to stop and rest due to shortness of breath. This discomfort 

leads him to wonder if it signals a worsening of his condition or if 

it's simply due to environmental factors, like changes in 

temperature or humidity. In the evening, as he uses the inhaler once 

more, he feels uncertain whether his unease is caused by an 

impending flare-up or just normal seasonal changes. 

These personas and scenarios provided a practical foundation for 

structuring the participatory design workshops, ensuring that user 

insights were effectively translated into actionable system design 

requirements. 

 

 

5.4 Workshop Structure and Procedures 

The overall structure of the participatory workshops—including 

recruitment procedures and the three-step framework—is detailed 

in Chapter 3, Section 3.5.3. For clarity, Figure 5.1 illustrates the 

structured workflow adopted during the workshops. 
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Figure 5. 1: Workshop structure and procedures. 

This section elaborates on the specific activities conducted within 

each step, highlighting how stakeholder engagement informed the 

functional design, technical architecture, and user interface of the 

sensor-based intervention system. 

 

5.4.1 Step1: Conceptualizing the Core System Functions 

This step began with a presentation of the theoretical model 

developed from Study 1, which summarized five main themes and 

nine sub-themes related to adherence challenges. To contextualize 

the discussions, personas and scenarios were introduced to ground 

participant insights in realistic patient experiences(Gudjonsdottir & 

Lindquist, 2008; Lopez-Lorca et al., 2014; Marshall et al., 2015). 

Key activities in this step included: 

1. Thematic Overview: Researchers introduced the conceptual 

model to frame discussions around adherence determinants. 

2. Personas and Scenarios Presentation: Two personas and their 

daily-life scenarios were presented to contextualize challenges 

faced by typical users(Gudjonsdottir & Lindquist, 2008). 
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3. Brainstorming Session: Participants identified adherence 

barriers and proposed potential system functions based on 

personal experiences and clinical practice(LaNoue et al., 2019). 

4. Group Discussion: Ideas were collaboratively reviewed to 

assess feasibility and prioritize core functionalities aligned with 

user needs(Bohnsack, 2004).  

 

5.4.2 Step 2: Designing System Components and Sensor 

Deployment 

Building on the functional insights from Step 1, this step focused 

on translating user-identified needs into technical requirements and 

sensor deployment strategies. 

Key activities in this step included: 

1. Technical Brainstorming: Participants discussed appropriate 

sensor types and data collection priorities to address identified 

adherence challenges. 

2. System Module Structuring: Group discussions organized core 

functions into preliminary system modules, considering 

usability and technical feasibility. 

3. Consensus Building: Collaborative alignment was reached on 

system architecture and sensor integration strategies, ensuring 

the design reflected both user needs and technological 

capabilities. 

 

5.4.3 Step 3: Exploring User Interface Design Preferences 
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The final step centered on evaluating user interface options to 

ensure intuitive interaction and user acceptance. 

Key activities in this step included: 

1. Prototype Demonstration: Researchers explained two distinct 

interface designs, emphasizing usability features. 

2. User Evaluation: Participants completed the TAM questionnaire 

to assess Perceived Usefulness, Perceived Ease of Use, Attitude 

Toward Using, and Behavioral Intention to Use(Pai & Huang, 

2011).  

3. Feedback Discussion: Group discussions allowed participants to 

elaborate on preferences and suggest improvements for 

interface refinement. 

 

 

5.5 Results 

 

5.5.1 Step 1: Conceptualizing the Core System Functions 

In this phase, participants collaborated to define the core needs and 

functionalities that the sensor-based intervention system should 

support. Below are the identified functions within each theme (see 

Table 5.3): 

Table 5. 3: Core functionalities of the sensor-based intervention system. 

Theme Sub-theme System 
function Feature description 

Person Patient 
ability 

Physiological 
condition 
monitoring 

Help users understand 
their current 
physiological state 

Disease control Allow users to know 
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assessment how the current disease 
is being controlled 

Disease-related 
knowledge 

Help users to know 
what to do to prevent an 
attack/exacerbation 

Pulmonary 
rehabilitation 
knowledge 

Help users to know the 
symptoms and signs of 
a 
worsening/exacerbation 

Emotional 
experience 

Supportive and 
positive 
messaging 

Provide users with 
supportive, positive 
response messages 

Inhalation 
emotional 
assessment 

Allow users to know 
their feeling about 
inhalation treatment 

Task 

Task type 

Inhalation 
technique 
instruction 

Help users understand 
their inhalation 
techniques 

Inhaler usage 
monitoring and 
reminder 

Remind users to use 
inhalers on time 

Frequency 
and 
flexibility 

Adherence 
reports 

Help users daily review 
their adherence-related 
data  

Tool 

Type of 
inhalers 

Inhaler 
preference 
assessment 

Allow users to know the 
usability, satisfaction, 
and preference of their 
inhalers 

Usability of 
inhalers 

Inhaler 
usability and 
satisfaction 
assessment 

Allow users to know the 
usability, satisfaction, 
and preference of their 
inhalers 

Physical 
Environ
ment 

Usage 
environmen
t 

Inhaler storage 
knowledge 

Help users store inhaled 
drugs correctly 

Environmental 
factor 
monitoring 

Help users understand 
their environment 
information 

Culture 
and 
Social 

Cultural 
beliefs 

Medication 
misconception 
clarification 

Clear up users' 
misunderstanding to 
“All Medicine Have 
Toxicity to Some 
Degree” 

Beliefs 
assessment 
about 
medications 

Access user's views 
about medication 

Social 
stigma 

Self-efficacy 
evaluation 

Understand the user's 
general self-efficacy 

Achievement 
acknowledgme
nt and peer 
competition 

Provide users with 
information about 
affirming their 
achievements; Leverage 
peer-influences to 
motivate users’ usage 
willingness 
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1. Person 

Patient Ability:  

 Physiological Condition Monitoring: Participants emphasized 

the importance of tracking physiological indicators. This 

feature enables patients to monitor their current health status, 

supporting informed decision-making in their therapy. 

 Disease Control Assessment: Participants reported uncertainty 

regarding their current disease control status. They expressed 

the need for ongoing assessments that clearly indicate how well 

their condition is being managed, allowing for timely 

adjustments to their treatment plans. 

 Disease-related Knowledge: Participants indicated a need for 

educational content, including preventive measures, symptom 

management, and specific actions to take during exacerbations. 

 Pulmonary Rehabilitation Knowledge: Suggestions were made 

to provide materials that support pulmonary rehabilitation, such 

as exercise guidelines and lifestyle adjustments to improve 

lung function. 

Emotional Experience: 

 Supportive and Positive Messaging: This feature sends 

encouraging messages to patients, reinforcing the importance 

of adhering to their treatment plans. Participants noted that 

such motivational content could enhance their commitment and 

overall experience. 

 Emotional Assessment: Participants recommended that the 

system offer insights into emotional responses toward their 

inhalation routine, helping to identify triggers of stress or 

anxiety. 
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2. Task 

Task Type: 

 Inhalation Technique Instruction: Participants highlighted the 

need for clear, accessible instructions on correct inhaler usage. 

Suggestions included visual aids, tutorials, and guided 

instructions to improve inhaler technique and patient 

confidence. 

 Inhaler Usage Monitoring and Reminders: This function 

monitors inhaler usage and its effectiveness while providing 

reminders to ensure proper use. 

Frequency and Flexibility: 

 Adherence Report: A daily adherence report was considered 

essential for monitoring real-time inhaler usage. Participants 

also expressed interest in receiving daily or weekly summaries 

to reflect on progress, review overall trends, and make 

necessary adjustments to their treatment. 

3. Tool 

Type of Inhalers: 

 Inhaler Preference Assessment: This feature allows patients to 

compare different inhaler types based on ease of use and 

effectiveness, supporting informed decision-making. 

Usability of Inhalers: 

 Inhaler Usability and Satisfaction Assessment: Participants 

stressed the importance of assessing inhaler usability and user 

experience regularly, highlighting its impact on adherence. 

4. Physical Environment 
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Daily Environment: 

 Inhaler Storage Knowledge: This feature provides guidance on 

proper storage conditions for inhaled medications to maintain 

their effectiveness. 

 Environmental Factor Monitoring: Participants suggested 

continuous monitoring of environmental conditions—such as 

temperature, humidity, and air quality. This feature aims to 

alert patients to environmental triggers that may worsen their 

conditions, offering timely recommendations for avoidance. 

5. Culture and Social 

Cultural Beliefs: 

 Medication Misconception Clarification: Participants identified 

the need to address common misconceptions about medications, 

such as the belief that "All medicine has toxicity to some 

degree." This feature would provide scientifically accurate 

information to dispel myths and support informed decision-

making. 

 Beliefs Assessment about Medications: This function would 

help evaluate patient attitudes toward medications, enabling 

HCPs to understand concerns that may influence adherence. 

Social Stigma: 

 Self-efficacy Evaluation: This feature assists patients in 

assessing their confidence levels in managing their condition, 

supporting strategies for enhanced self-management and 

autonomy. 

 Achievement Acknowledgment and Peer Competition: 

Participants suggested the inclusion of persuasive elements, 
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such as acknowledgment of personal milestones and friendly 

competition. They believed these features would boost 

motivation, foster accountability, and encourage consistent 

adherence. 

 

5.5.2 Step 2: Designing System Components and Sensor 

Deployment 

The second step involved specifying the necessary components to 

support the identified functions and designing the system 

architecture. The system was organized into three primary domains: 

Monitoring, Knowledge & Awareness, and Feedback (see Figure 

5.2). Drawing from the "Person-Task-Physical Environment" 

framework introduced in Chapter 2, sensor technologies were 

strategically deployed to ensure comprehensive monitoring and 

support across all relevant aspects of patient care. 

 

Figure 5. 2: The components of sensor-based intervention system. 

 



150 

 

1. Monitoring 

In the Monitoring component, participants emphasized the 

integration of sensor technologies and targeted metrics to collect 

data across three key areas: Person, Task, and Physical 

Environment. This holistic approach enables real-time data 

collection, which is critical for enhancing patient adherence to 

inhalation therapy. 

Physiological condition (Person): Continuous monitoring of 

physiological indicators, such as heart rate, was deemed crucial for 

assessing a patient’s overall health status.  

Inhaler usage (Task): Accurate tracking of the timing, frequency, 

and technique of inhaler use was prioritized. These metrics are vital 

for evaluating adherence and ensuring proper inhalation therapy. 

Environmental factors (Physical Environment): Given the 

significant impact of environmental conditions on respiratory 

health, participants unanimously agreed on the importance of 

monitoring temperature, humidity, and air quality. This data helps 

to ensure optimal medication storage and supports patients in 

managing their daily living environments. 

 

2. Knowledge and Awareness 

Participants emphasized the importance of providing patient-

specific educational materials and self-assessment tools. The 

system should deliver tailored information on disease management, 

medication storage, inhaler usage techniques, and pulmonary 

rehabilitation exercises. Additionally, self-assessment tools should 

enable patients to regularly monitor various health aspects, 

including: self-efficacy, disease control, emotional experience, 
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medication beliefs, preference and satisfaction, and adherence to 

inhalation therapy. These tools empower patients with real-time 

insights into their health status, enabling them to take proactive 

measures for effective disease management. 

 

3. Feedback 

The Feedback component was designed to deliver timely, 

personalized information that supports patient engagement and 

adherence. It is structured around four main features: 

Paired Application (Chatbot): The paired application serves as 

the primary interface for delivering real-time data, adherence 

reports, and motivational content. Participants were presented with 

both conventional health apps and chatbot-based health assistants 

during workshops. Most participants favored the chatbot interface 

due to its direct and conversational nature, which felt more 

personalized and less formal than traditional apps. Importantly, 

participants suggested that the chatbot should be integrated into 

familiar platforms, like popular messaging apps, to blend 

seamlessly into their daily routines. 

Reminder and Alert: Participants stressed the importance of 

effective reminders and alerts. The system should provide timely 

reminders for inhaler usage and real-time alerts when sensor data 

indicates abnormal health patterns, prompting immediate action. 

Adherence Report: Beyond immediate alerts, participants 

advocated for regular adherence reports that consolidate key 

adherence information. These reports would highlight both 

progress and areas for improvement, offering patients a clear view 

of their treatment journey and enhancing their motivation to 

maintain therapy. 
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Persuasive Features: Participants emphasized the need to integrate 

persuasive features that effectively influence patient behavior and 

adherence. Many users expressed enthusiasm for elements that 

foster friendly competition, allowing them to compare their 

adherence progress with peers. Personalized motivational messages 

were also highlighted as essential, with participants valuing 

messages that recognize milestones and provide encouragement 

during difficult periods. 

 

5.5.3 Step 3: Exploring Interface Design Preferences 

This phase of the study focused on evaluating user preferences for 

two distinct interface designs (see Figure 5.3): Infographic (Tree 

Metaphor) and Data Visualization (Line Chart). The evaluation was 

grounded in the Technology Acceptance Model (TAM), assessing 

four key criteria: Perceived Usefulness (PU), Perceived Ease of 

Use (PEOU), Attitude Toward Using (ATU), and Behavioral 

Intention to Use (BI). The questionnaire is presented in Appendix 

5A. Participants rated each interface using an 11-point Likert scale, 

ranging from 0 (strong disagreement) to 10 (strong agreement). 

Both descriptive and inferential analyses were conducted to capture 

user feedback and statistically validate differences. 
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(a) Infographic.                           (b) Data visualization. 

Figure 5. 3: Interface design prototypes. 

 

Prototype 1: Infographic Interface 

Patient Feedback: Patients rated the infographic interface highly 

across all four dimensions, with an average score of 9.3 for PU (SD 

= 0.48), 9.5 for PEOU (SD = 0.71), 9.4 for ATU (SD = 0.70), and 

9.1 for BI (SD = 0.88). The evolving tree metaphor was particularly 

well-received, as it provided a visually engaging and intuitive 

representation of their inhaler adherence. Patients expressed strong 

interest in incorporating this visually appealing design into their 

daily inhaler routines, noting its ease of understanding and 

motivational impact. 

HCP Feedback: HCPs provided more moderate ratings, with an 

average score of 7.5 for PU (SD = 0.71), 7.3 for PEOU (SD = 0.82), 

7.0 for ATU (SD = 0.67), and 7.6 for BI (SD = 0.52). While they 

acknowledged the interface's potential to engage and motivate 

patients, they noted that its lack of detailed data representation 

limited its utility for clinical assessments. HCPs suggested that 

while it is effective for patient engagement, it may not be robust 
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enough for critical medical evaluations. 

 

Figure 5. 4: Comparison of patients and HCPs feedback on infographic 

interface. 

Comparative Analysis: Mann-Whitney U tests revealed significant 

differences between patients and HCPs across all four TAM 

dimensions (see Table 5.4): PU, PEOU, and ATU showed highly 

significant differences (p = 0.000 < 0.01), indicating divergent 

perceptions regarding the interface's utility and ease of use. BI also 

demonstrated a significant difference (p = 0.001 < 0.01), reflecting 

variations in willingness to integrate the interface into daily or 

clinical practice. These findings suggest that while patients 

appreciated the intuitive and visually engaging design, HCPs found 

it insufficient for detailed medical evaluation. However, they 

acknowledged its potential as a motivational tool for patient use. 
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Table 5. 4: Comparative analysis of Mann-Whitney U test results for 

patients and HCPs across four dimensions (infographic). 
Dimensi
on 

Group Median  
(P25，P75) 

U z p 

HCP 
(n=10) 

Patient 
(n=10) 

Perceived 
Usefulne
ss 

8.00(7.0,8.
0) 

9.00(9.0,10.0
) 

0.0
0 

-
3.9
3 

0.00
0 

Perceived 
Ease of 
Use 

7.50(6.8,8.
0) 

10.00(9.0,10.
0) 

2.5
0 

-
3.7
0 

0.00
0 

Attitude 
Toward 
Using 

7.00(6.8,7.
3) 

9.50(9.0,10.0
) 

1.0
0 

-
3.8
1 

0.00
0 

Behavior
al 
Intention 
to Use 

8.00(7.0,8.
0) 

9.00(8.0,10.0
) 

9.0
0 

-
3.2
8 

0.00
1 

 

Prototype 2: Data Visualization Interface 

Patients found the line graph interface to be less intuitive and 

engaging compared to the infographic representation. The average 

scores were 6.3 for PU (SD = 0.48), 7.0 for PEOU (SD = 0.47), 6.4 

for ATU (SD = 0.52), and 6.6 for BI (SD = 0.52). Many patients 

mentioned that the interface appeared too abstract and demanded 

more cognitive effort to interpret. Some expressed willingness to 

adopt the interface if additional guidance or simplified explanations 

were provided, indicating a need for better onboarding or tutorial 

support. 

HCP Feedback: HCPs rated the line graph interface more favorably, 

with an average score of 8.4 for PU (SD = 0.70), 8.7 for PEOU (SD 

= 0.82), 8.5 for ATU (SD = 0.85), and 9.2 for BI (SD = 0.79). They 

appreciated the detailed data trends, which enabled accurate and 

comprehensive monitoring of patient adherence. HCPs expressed 

confidence in the interface's clinical utility, emphasizing its 

capacity to support data-driven decision-making due to its clear and 
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structured representation of patient information. 

 

Figure 5. 5: Comparison of patients and HCPs feedback on data 

visualization interface. 

Comparative Analysis: Mann-Whitney U tests identified significant 

differences between patients and HCPs across all four TAM 

dimensions (p = 0.000 < 0.01 for each; see Table 5.5), highlighting 

a clear divergence in perceptions. Patients generally found the 

interface less intuitive and more cognitively demanding, which 

potentially hinders regular use and reduces overall engagement. In 

contrast, HCPs favored the interface for its precision and clinical 

applicability, appreciating its capacity to display trends and 

adherence patterns effectively. This disparity suggests that while 

the line graph interface is well-suited for clinical settings where 

detailed monitoring and analysis are essential, its design may 

require simplification or enhanced user guidance to improve 

accessibility and usability for patients.  
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Table 5. 5: Comparative analysis of Mann-Whitney U test results for 

patients and HCPs across four dimensions (data visualization). 

Dimension 

Group Median  
(P25，P75) U z p 
HCP (n=10) Patient 

(n=10) 
Perceived 
Usefulness 8.50(8.0,9.0) 6.00(6.0,7.0) 1.50 -

3.81 0.000 

Perceived 
Ease of Use 8.50(8.0,9.3) 7.00(7.0,7.0) 2.50 -

3.77 0.000 

Attitude 
Toward 
Using 

8.50(8.0,9.0) 6.00(6.0,7.0) 2.00 -
3.74 0.000 

Behavioral 
Intention to 
Use 

9.00(8.8,10.0) 7.00(6.0,7.0) 0.00 -
3.88 0.000 

Overall Comparative Analysis of Interfaces: Wilcoxon signed-

rank tests conducted separately for HCPs and patients revealed 

distinct user experiences between the two interface designs. For 

patients, significant differences were observed across all four TAM 

dimensions, including PU (p = 0.024 < 0.05), PEOU (p = 0.010 < 

0.05), ATU (p = 0.007 < 0.01), and BI (p = 0.004 < 0.01). These 

findings indicate a strong patient preference for the infographic 

interface, which was perceived as more intuitive and engaging, 

making it easier to understand adherence information. Conversely, 

for HCPs, significant differences were also found across all 

dimensions, with PU (p = 0.003 < 0.01), PEOU (p = 0.005 < 0.01), 

ATU (p = 0.005 < 0.01), and BI (p = 0.005 < 0.01). These results 

underscore HCPs' preference for the data visualization interface, 

valuing its precision and ability to present detailed insights 

essential for effective patient management and clinical evaluation.  

 

Additional Suggestions:  

Adaptive Interface Options: Participants emphasized the need for 

adaptive interface designs that could flexibly cater to different 

types of feedback. For daily usage, patients found the tree metaphor 
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highly effective due to its intuitive and engaging nature. However, 

for longer-term feedback, such as weekly or monthly reports, they 

expressed a preference for simpler, more straightforward visuals 

that clearly indicate daily adherence outcomes—highlighting 

"good" or "bad" days without intricate metaphors. Conversely, 

HCPs prioritized accuracy and objectivity in data presentation, 

favoring professional visualizations that offered clear, trend-

focused representations. They suggested integrating different types 

of data visualizations depending on the complexity and purpose of 

the data. For instance, line graphs for trend analysis, bar charts for 

adherence summaries, and scatter plots for exploring correlations. 

This adaptive approach would enable both patients and HCPs to 

access relevant information efficiently, optimizing both user 

experience and clinical decision-making. 

Enhanced Information Display: Participants proposed enriching 

the tree metaphor interface by incorporating visual enhancements 

to improve clarity and engagement. For instance, icons or color-

coded indicators could be used to represent varying adherence 

levels, making it easier for users to interpret their progress at a 

glance. Additionally, patients suggested adding background 

elements—like a sun or clouds—to reflect daily adherence status 

dynamically, offering a more immersive and personalized 

experience. These subtle yet meaningful enhancements were seen 

as a way to increase emotional connection to the interface, 

transforming it from a purely clinical tool into an engaging part of 

their daily routine. Participants believed that this would not only 

improve usability but also foster a stronger habit of daily 

engagement, ultimately supporting better adherence outcomes. 
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5.6 Discussion 

 

This study focused on determining the architecture and component 

design of the XIAOXI intervention system through participatory 

design workshops. Leveraging the HFE theoretical framework 

established in prior research, we engaged with 10 patients and 10 

HCPs, capturing their perspectives and experiences with inhalation 

therapy. These workshops were instrumental in ensuring that the 

system design aligned with user needs and behaviors, facilitating 

patient adherence through a user-centered approach.  

The sensor deployment strategy for the XIAOXI system is 

grounded in the Person-Task-Physical Environment framework, as 

described in Chapter 2. This multi-dimensional deployment allows 

for real-time monitoring of patient health status (Person), inhaler 

usage patterns (Task), and environmental conditions (Physical 

Environment). This holistic monitoring strategy enables a 

comprehensive understanding of adherence behaviors by capturing 

data across these three critical dimensions(M. A. Barrett et al., 2017; 

D’Arcy et al., 2014; Quinde, 2020). In contrast, existing studies 

largely focus on single-dimensional data collection, limiting the 

scope of analysis to isolated aspects of adherence. Only a limited 

body of research acknowledges the multidimensional nature of 

non-adherence, with some employing IoT systems to collect 

diverse sensor data across different dimensions(Chakraborty et al., 

2023; Hui et al., 2022; Pradeesh et al., 2022). By adopting a 

comprehensive framework, the XIAOXI system captures a richer, 

more integrated view of patient adherence, providing a robust 

platform for intervention 

In designing the XIAOXI system, we explored interface 
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preferences among patients and HCPs, specifically comparing 

metaphorical visualizations (e.g., tree metaphors) with data 

visualizations (e.g., line charts). The results indicated a distinct 

divergence in preferences: patients found metaphorical 

visualizations more engaging and relatable, while HCPs favored 

line charts for their clarity and precise representation of data trends. 

Additionally, we observed that user preferences were not static—

they shifted depending on the timeframes of the data presented. 

Patients appreciated metaphorical visualizations for daily 

adherence feedback due to their intuitive representation but leaned 

towards simpler, clearer visualizations for weekly or monthly 

summaries. This variation in preference suggests that the design of 

adherence-support systems should consider not only the user type 

(patient vs. HCP) but also the temporal context of the data being 

displayed(Damman et al., 2012; Gong & Chandra, 2016). Furthermore, 

it underscores the importance of adaptable visualization strategies 

that can meet the evolving needs of different users over varying 

timeframes(Meyer et al., 2016).  

These findings highlight the necessity for deeper exploration into 

visualization techniques that effectively convey multi-sensor data 

while catering to user-specific requirements. The integration of 

multi-dimensional data in a user-friendly manner is crucial for 

revealing nuanced patterns and relationships that inform patient 

adherence behaviors(Browne et al., 2015; De Folter et al., 2014). 

Despite advances in multi-sensor data visualization, a standardized 

evaluation framework remains absent, hindering consistent 

assessment of usability and effectiveness(S.-H. Kim, 2022; Wanderer 

et al., 2016; West et al., 2015). Future research should prioritize the 

development of robust evaluation methodologies specifically 

tailored for multi-sensor visualizations, ensuring these systems not 

only provide actionable insights but also support patient 

engagement and adherence more effectively. 
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5.7 Conclusion 

 

This study focused on the development of a sensor-based 

intervention system aimed at enhancing patient adherence to 

inhalation therapy. The design process was rooted in participatory 

design workshops involving both patients and HCPs, ensuring that 

the system's core functionalities, components, and user interfaces 

were tailored to real-world user needs. By integrating sensor 

technologies with a user-centered interface, the XIAOXI system 

bridges the gap between technical innovation and practical usability. 

This approach not only enhances real-time monitoring and 

personalized feedback but also aligns with patient preferences and 

clinical requirements, supporting a more effective and sustainable 

adherence to inhalation therapy. 
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Chapter 6 Implementation of a 

Sensor-Based System for 

Inhalation Therapy Adherence 

 

 

6.1 Introduction and Aims 

 

Building on the user-centered design principles discussed in 

previous chapters, this chapter focuses on the technical 

development and implementation of the XIAOXI sensor-based 

intervention system. Designed to support patient adherence, 

XIAOXI integrates real-time tracking, data processing, and 

personalized feedback mechanisms through a network of sensors 

that monitor inhaler usage, physiological indicators, and 

environmental conditions.  

The primary aim of this chapter is to document the technical 

development of the XIAOXI intervention system, emphasizing the 

integration of sensor technologies and the real-time processing 

capabilities that enhance adherence support. 

The specific objectives of this chapter are: 

1. To describe the technical development process, including the 

integration of sensors to monitor inhaler usage, physiological 

conditions, and environmental factors. 
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2. To detail the system architecture and how it enables real-time 

data processing and feedback for patient adherence. 

3. To explain the implementation of user feedback mechanisms 

within the system, ensuring that the functionality meets patient 

requirements. 

 

 

6.2 Research-Driven Design Foundation 

 

The development of the XIAOXI sensor-based intervention system was 

directly informed by empirical outcomes from Study 1 and Study 2, 

ensuring that its architecture, functionalities, and interaction mechanisms 

were grounded in both theoretical insights and user-centered design 

principles. 

In Study 1, the Patient Adherence to Inhalation Therapy Work System 

Model was established, identifying five core dimensions—Person, Task, 

Tool, Physical Environment, and Culture & Social—and nine key factors 

influencing adherence. These findings provided a comprehensive 

theoretical foundation for addressing adherence challenges in inhalation 

therapy. 

Building upon this theoretical groundwork, Study 2 translated these 

conceptual factors into actionable design requirements through 

participatory design workshops involving both patients and HCPs. This 

collaborative process defined the necessary system functions, determined 

which aspects required sensor integration, and identified user preferences 

for data presentation and feedback mechanisms. These research-driven 

insights shaped the structuring of XIAOXI's architecture, guiding 
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decisions related to sensor deployment, data processing workflows, and 

interactive features. 

Table 6.1 summarizes the integration of findings from Studies 1 and 2 into 

the system's design and technical implementation. This research-driven 

approach ensured that XIAOXI was developed not merely as a 

technological solution, but as a practical embodiment of validated 

theoretical constructs, tailored to the needs of both patients and clinicians. 

The system's design reflects the principles of HFE, bridging the gap 

between conceptual frameworks and practical application.  

Table 6. 1: Integration of study findings into XIAOXI system design. 
Research Phase Key Contributions Impact on System Design 

Study 1 (Chapter 4) 
Investigating Factors 

Affecting Patient 
Adherence to Inhalation 

Therapy 

• Identified 5 themes & 9 
adherence factors 

• Developed Patient 
Adherence to Inhalation 

Therapy Work System Model 

• Provided foundation for 
system architecture and 

functional scope 

Study 2 (Chapter 5) 
Participatory Design of a 

Sensor-Based Intervention 
System 

• Specified design 
requirements 

• Identified sensor 
integration needs and 
feedback preferences 

• Defined core functional 
areas to guide technical 

implementation 
• Customized sensor 

deployment and feedback 
strategies 

 

 

6.3 Overview of System Architecture 

 

The XIAOXI sensor-based intervention system was developed to 

support patient adherence to inhalation therapy, with its 

architecture informed by insights from participatory design 

workshops and grounded in HFE principles. The system integrates 

three core components—Monitoring, Knowledge & Awareness, 
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and Feedback—designed to deliver personalized, actionable 

support for patients with asthma and COPD. 

Implementation within the Tencent ecosystem facilitates multi-

level technological integration, encompassing data perception and 

collection through sensor modules, wireless transmission and 

processing via development boards and cloud services, and user 

interaction through the WeChat-based chatbot interface. This 

structure enables real-time monitoring, dynamic feedback, and 

patient engagement (see Figure 6.1) 

Additionally, custom-designed sensor casings were developed to 

ensure seamless deployment in daily patient routines. These casings 

were tailored to the specific form factors of inhalers, ensuring 

minimal disruption while maximizing data accuracy. To validate 

system stability and usability, comprehensive laboratory testing 

was conducted, evaluating sensor accuracy, data transmission 

reliability, and interface responsiveness. 

The following sections provide a detailed breakdown of the 

technical architecture and functional implementation of each 

system component, demonstrating how the design effectively 

addresses adherence challenges identified in Studies 1 and 2. 
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Figure 6. 1: System structure of XIAOXI. 

 

 

6.4 Data Perception and Collection 

 

6.4.1 Inhaler Monitoring Module 

This module is equipped with two primary sensors that work in 

tandem to monitor inhaler use and patient's physical condition: 

IMU (IM600 Model): The IMU sensor is mounted on the base of 

the inhaler to avoid interfering with the patient's use of the device, 

and is connected to a heart rate sensor, both powered by a shared 

battery (see Figure 6.2). It monitors tilt angles during inhaler use, 

detecting changes at 0.1-second intervals. To conserve power, the 

system stops data transmission if the tilt angle remains stable for 10 

seconds, minimizing redundant data and conserving battery life. 
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When movement is detected (tilt angle exceeds 10 degrees), the 

IMU activates immediately, marking inhaler use precisely.  

The IMU operates based on the Coriolis effect, where a vibrating 

element experiences a perpendicular force during rotation, known 

as the Coriolis force(Almabrouk et al., 2018): 

𝐹𝐹𝐹𝐹 = 2𝑚𝑚𝑚𝑚𝑚𝑚 

 𝐹𝐹𝐹𝐹: Coriolis force, representing the apparent force experienced 

by the vibrating element due to its motion within a rotating 

reference frame. 

 𝑚𝑚: Mass of the vibrating element, affecting the magnitude of 

the Coriolis force. 

 𝑚𝑚 : Angular velocity, indicating the rate of rotation of the 

system. 

 𝑚𝑚: Linear velocity of the vibrating element, representing the 

speed of the element along its path. 

By measuring the displacement caused by the Coriolis force, the 

sensor outputs the angular velocity, which can then be integrated 

over time to obtain the angular position: 

𝜃𝜃(𝑡𝑡) =  �  𝑚𝑚(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
 

 𝜃𝜃(𝑡𝑡): Represents the angular position (how far something has 

rotated) at time 𝑡𝑡. 

 𝑚𝑚(𝑡𝑡): Represents the angular velocity (how fast something is 

rotating) at time 𝑡𝑡. 

The IMU uses Kalman and Complementary Filters for data 

accuracy(Gui et al., 2015; F. Liu et al., 2019). The Kalman Filter 
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optimally estimates the system's state by combining predictions and 

measurements, reducing noise and improving accuracy: 

Prediction Step: 

𝑥𝑥𝑥ₖ|ₖ₋₁ =  𝐹𝐹 𝑥𝑥𝑥ₖ₋₁|ₖ₋₁ +  𝐵𝐵 𝑢𝑢ₖ 

Where： 

 𝑥𝑥𝑥ₖ|ₖ₋₁: Predicted state estimate for the current step. 

 𝐹𝐹: State transition matrix describing how the system evolves. 

 𝐵𝐵: Control input matrix. 

 𝑢𝑢ₖ: Control input applied at the current step. 

Update Step: 

𝑥𝑥𝑥ₖ|ₖ =  𝑥𝑥𝑥ₖ|ₖ₋₁ +  𝐾𝐾ₖ ( 𝑧𝑧ₖ −  𝐻𝐻 𝑥𝑥𝑥ₖ|ₖ₋₁ ) 

Where： 

 𝐾𝐾ₖ : Kalman gain, determining how much the measurement 

influences the state update. 

 𝑧𝑧ₖ: Measurement at the current step. 

 𝐻𝐻 : Measurement matrix linking the predicted state to the 

measurement. 

The Prediction Step forecasts the next state, while the Update Step 

adjusts the estimate based on sensor measurements, reducing 

uncertainty. 

The Complementary Filter is used to balance short-term stability 

from the gyroscope with long-term accuracy from the 

accelerometer: 
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𝜃𝜃 =  𝛼𝛼(𝜃𝜃₉𝑦𝑦ᵣₒ)  + (1 −  𝛼𝛼)(𝜃𝜃ₐ𝐹𝐹𝐹𝐹) 

 𝜃𝜃: Estimated angle. 

 𝛼𝛼: Filter coefficient (0 to 1), representing the weight of each 

sensor. 

 𝜃𝜃₉𝑦𝑦ᵣₒ : Angle measured by the gyroscope, offering quick 

response. 

 𝜃𝜃ₐ𝐹𝐹𝐹𝐹: Angle measured by the accelerometer, offering stability 

over time. 

The filter effectively merges the rapid responsiveness of gyroscopic 

data with the long-term reliability of accelerometer data, ensuring 

smooth and accurate measurements. 

 

Figure 6. 2: The inhaler monitoring module. 
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Heart Rate Sensor (PulseSensor): The PulseSensor is an optical 

heart rate sensor that detects heart rate by measuring blood flow 

during each heartbeat(Kemis et al., 2012). It consists of two main 

components: 

 LED (Light Emitting Diode): Emits light through the skin into 

the blood vessels. 

 Light-sensitive Element (Photodetector): Detects the amount of 

light reflected back. 

When the heart pumps blood, the volume of blood in the vessels 

changes, affecting the amount of light reflected back. These 

variations are converted into electrical signals, which are processed 

to represent heart rate. This sensor operates at 0.1-second intervals, 

capturing real-time physiological data during inhaler use—crucial 

for assessing the patient's physiological status. 

The Inter Beat Interval (IBI) is measured when the signal crosses 

50% of the wave amplitude during the rapid upward rise of each 

pulse (see Figure 6.3). 

 

Figure 6. 3: IBI calculation. 

The IBI is calculated as follows: 
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𝐼𝐼𝐵𝐵𝐼𝐼 =  𝑡𝑡ₙ −  𝑡𝑡ₙ₋₁ 

 𝑡𝑡ₙ: Time of the current peak. 

 𝑡𝑡ₙ₋₁: Time of the previous peak. 

The Beats Per Minute (BPM) is computed using the formula: 

𝐵𝐵𝐵𝐵𝐵𝐵 =  60 / 𝐼𝐼𝐵𝐵𝐼𝐼 

To ensure accuracy and reduce noise, the system averages the last 

10 IBI values. This filtering stabilizes the readings, providing more 

reliable heart rate monitoring. If the BPM exceeds 100, it is marked 

in red in the XIAOXI daily adherence report to alert users to 

potential physiological issues(Siddiqui & Morshed, 2018). 

 

6.4.2 Environmental Monitoring Module 

This module integrates multiple sensors to monitor key 

environmental factors, ensuring that patients are aware of external 

conditions that may impact their respiratory health (see Figure 6.4). 

PM2.5 Sensor (A4-CG Model): The sensor operates on the 

principle of light scattering, where the intensity of scattered light is 

used to determine particle concentrations. According to Mie 

scattering theory(Wriedt, 2012), the Particle Number Concentration 

(PNC) is calculated using the formula: 

𝑁𝑁 =  8𝜋𝜋²𝑟𝑟² (𝐼𝐼 / 𝐼𝐼₀) (𝜆𝜆² / 𝑉𝑉) ∑ [𝑖𝑖₁(𝜃𝜃)  +  𝑖𝑖₂(𝜃𝜃)]  ·  𝑛𝑛ᵣ(𝐷𝐷ᵢ)  ·  𝛥𝛥𝐷𝐷ᵢ 

 𝑁𝑁: Particle number concentration 

 𝐼𝐼: Scattered light intensity 

 𝐼𝐼₀: Incident light intensity 
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 𝜆𝜆: Wavelength of the light 

 𝑉𝑉: Air volume being analyzed 

 𝑟𝑟: Distance from particle to observation point 

 𝑖𝑖₁(𝜃𝜃) and 𝑖𝑖₂(𝜃𝜃): Scattering intensity functions at angle 𝜃𝜃 

 𝑛𝑛ᵣ(𝐷𝐷ᵢ): Normalized frequency distribution function of particle 

diameters 

 𝛥𝛥𝐷𝐷ᵢ: Width of the particle diameter interval 

The conversion between Particle Number Concentration (PNC) and 

Particle Mass Concentration (PMC) is derived from the volume and 

density of the particles: 

𝑁𝑁 =  (6𝐵𝐵) / (𝜋𝜋𝜋𝜋𝐷𝐷³) 

 𝑁𝑁: Particle number concentration 

 𝐵𝐵: Particle mass concentration 

 𝐷𝐷: Average particle diameter 

 𝜋𝜋: Particle density 

To derive the Particle Mass Concentration (PMC), the following 

formula is applied: 

𝐵𝐵 = (4𝜋𝜋³𝑟𝑟²𝜋𝜋 / 3𝜆𝜆²𝑉𝑉) (𝐼𝐼 / 𝐼𝐼₀)∑ [𝑖𝑖₁(𝜃𝜃) + 𝑖𝑖₂(𝜃𝜃)] · 𝑛𝑛ᵣ(𝐷𝐷ᵢ) ·𝐷𝐷ᵢ³ · 𝛥𝛥𝐷𝐷ᵢ 

 𝐵𝐵: Particle mass concentration 

 𝜋𝜋: Particle density 

 𝐷𝐷ᵢ: Particle diameter in each size category 

 𝛥𝛥𝐷𝐷ᵢ: Width of the particle diameter interval 
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This formula allows the sensor to convert detected scattered light 

into mass concentration, which is displayed in µg/m³. PMC 

quantifies the total mass of fine particulate matter (PM2.5) per unit 

volume of air, providing a direct measure of air quality, crucial for 

assessing its impact on human health and environmental 

conditions(Azarmi et al., 2016).  

According to China’s Ambient Air Quality Standard(W. Chen et al., 

2015), PM2.5 concentrations exceeding 75 µg/m³ are classified as 

"polluted." If the XIAOXI system detects pollution levels above 

this threshold, it will be marked in red on the daily adherence report, 

alerting users to potential environmental risks. 

Temperature and Humidity Sensor (integrated in development 

board): The temperature and humidity sensor operates by 

converting environmental conditions into electrical signals, 

leveraging capacitive elements for humidity measurement and 

resistive or thermistor-based elements for temperature 

detection(Kaewwongsri & Silanon, 2020; Sasono et al., 2019). The 

sensor outputs 16-bit raw data values (𝑆𝑆ᵣₕ for humidity and 𝑆𝑆ₜ for 

temperature), which are processed using conversion formulas: 

Humidity Measurement: The raw humidity data (𝑆𝑆ᵣₕ) is converted 

to relative humidity (RH) using the formula: 

𝑅𝑅𝐻𝐻 =  100 × (𝑆𝑆ᵣₕ / (2¹⁶ −  1)) 

Temperature Measurement: The raw temperature data (𝑆𝑆ₜ ) is 

converted into Celsius (°𝐶𝐶) using: 

𝑇𝑇[°𝐶𝐶]  =  −45 +  175 × (𝑆𝑆ₜ / (2¹⁶ −  1)) 

When the recorded temperature exceeds 40°C or the relative 

humidity surpasses 75% (Borgström et al., 2005), these conditions are 

marked in red in the XIAOXI daily adherence report to alert users 
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about potentially unsuitable environmental conditions. 

 

Figure 6. 4: The environmental monitoring module. 

 

 

6.5 Data Sending, Receiving and Processing 

 

The gyroscope and heart rate sensor transmit their data via 

Bluetooth to the Air820UG development board. In contrast, the 

PM2.5 sensor is directly connected to the board, while temperature 

and humidity are measured by onboard sensors, eliminating the 

need for external transmission. Once the development board 

captures sensor data, a remote data viewing system was developed 

to allow users to retrieve sensor information on their mobile 

devices through the WeChat platform (XIAOXI).  
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The system leverages Tencent IoT Explorer, an IoT PaaS platform 

introduced by Tencent Cloud for smart living and industrial 

applications. This platform supports multiple communication 

protocols, including WiFi, cellular, and Bluetooth, ensuring 

seamless cloud connectivity for various devices(Cui et al., 2022). 

Tencent IoT Explorer facilitates the efficient upload of sensor data 

to the cloud, enabling real-time processing and access. 

The remote sensor data viewing solution is structured around two 

key components:  

1. Communication Protocol: This protocol enables bi-directional 

interaction between the WeChat platform, the development 

board, and the cloud platform via the MQTT (Message 

Queuing Telemetry Transport) protocol. This lightweight 

protocol is ideal for real-time communication in IoT 

applications. 

2. Real-time Data Updates and Display: The Air820UG 

development board collects sensor data, which is then 

transmitted to Tencent IoT Explorer using a 4G cellular module. 

Users can query sensor data by sending specific keywords 

through XIAOXI, which retrieves real-time updates from the 

cloud and presents the data directly in the WeChat interface. 

Detailed code for the XIAOXI system deployment is provided in 

Appendix 6A. 

 

 

6.6 System Interaction and Interface Design 
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6.6.1 Weixin Dialogue Open Platform 

The Weixin Dialogue Open Platform was chosen for the 

implementation of the chatbot because it runs directly within 

WeChat, China’s leading social media application with over 1.3 

billion active users as of 2023(X. Liang et al., 2023). Leveraging this 

widely familiar interface enhances user engagement, as it allows 

seamless integration into users' daily communication routines. As a 

product of Tencent, the Weixin Dialogue Open Platform provides a 

comprehensive suite of APIs and SDKs, enabling developers to 

design and integrate chatbots directly within the WeChat ecosystem. 

This integration supports natural text interactions, facilitating 

smooth and intuitive conversational experiences. 

The platform’s robust API support allows the chatbot to access user 

data and preferences, enabling personalized interactions based on 

individual health records. This customization enhances the 

relevance and effectiveness of the chatbot’s responses. Additionally, 

the system is designed to handle high volumes of user queries 

efficiently, making it well-suited for real-time health management 

applications. 

The chatbot operates on keyword-based triggers, allowing users to 

input specific terms and receive tailored responses. These 

interactions are further enhanced by the platform’s Natural 

Language Processing (NLP) capabilities, which improve the 

accuracy and contextual understanding of user queries. Since the 

chatbot is embedded within the user's existing WeChat account, 

there is no need for additional registration or separate application 

downloads, significantly reducing barriers to adoption. 

Furthermore, the chatbot leverages Tencent’s secure cloud 

infrastructure, ensuring stable, low-latency data transmission. This 

robust backend guarantees a reliable and secure user experience, 
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critical for managing health-related data in real-time. 

 

6.6.2 Knowledge Base Design 

Through participatory design workshops, key knowledge areas 

were identified, including disease management protocols, correct 

inhaler techniques, proper storage of inhaled medications, and 

pulmonary rehabilitation guidelines. These insights informed the 

development of XIAOXI's knowledge base, which has been 

integrated into the Weixin Dialogue Open Platform.  

To ensure reliability and clinical accuracy, the content in the 

knowledge base is curated from established sources such as the 

Global Initiative for Asthma (GINA)(Bateman et al., 2008; Levy et al., 

2023; Masoli et al., 2004), the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD)(The Asia Pacific COPD 

Roundtable Group, 2005), the Guidelines for the Diagnosis and 

Management of Chronic Obstructive Pulmonary Disease in 

China(Kurmi et al., 2018; J.-S. Li, 2020), and the Inhalation 

Medication Instruction Manual(García-Cárdenas et al., 2012; Giner et 

al., 2020). Users can easily access this information by sending 

specific keywords to the chatbot interface within the Weixin 

Dialogue Open Platform. This structure guarantees that patients 

receive up-to-date and clinically validated guidance tailored to their 

condition.  

 

6.6.3 Enhanced User Interaction and Self-Assessment 

Features Design 

Based on the Weixin Dialogue Open Platform and Tencent IoT 

Explorer, XIAOXI integrates advanced chatbot functionalities, 
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allowing users to seamlessly query both knowledge and real-time 

sensor data. This integration extends XIAOXI's deployment on the 

WeChat platform, providing users with multiple interaction 

channels to access health-related information. The design includes 

a comprehensive “Knowledge” menu within the WeChat interface, 

offering visually rich and engaging content that combines text and 

images to effectively explain topics such as pulmonary 

rehabilitation, disease knowledge, and medication management for 

chronic respiratory conditions. This multimedia approach enhances 

user engagement by presenting complex medical information in a 

digestible and user-friendly format. Further details regarding the 

interface design of the 'Knowledge' menu are provided in Appendix 

6B. 

Additionally, an “Awareness” menu was developed to support self-

assessment, addressing key needs identified during participatory 

design workshops. This menu includes embedded questionnaires 

that enable users to regularly evaluate critical health areas, 

including self-efficacy, disease control, emotional experience, 

medication beliefs, device preferences, and adherence to inhalation 

therapy. These self-assessment tools empower users to actively 

monitor their health status, offering valuable feedback that can 

inform adjustments to their treatment plans. By facilitating 

continuous self-monitoring, the system not only enhances patient 

engagement but also provides essential insights for HCPs to track 

patient progress effectively. All questionnaires used within the 

“Awareness” menu are available in Appendix 6C. 

 

6.6.4 XIAOXI Structure Implementation and Interface 

Design 

XIAOXI is designed as a user-friendly adherence intervention 
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system with five core functionalities: Onboarding and Guidance, 

Real-Time Sensor Data Queries, Knowledge Delivery, User Self-

Assessments, and Feedback Provision. Each function is tailored to 

address specific challenges in maintaining treatment adherence, 

empowering users to engage actively with their care plans while 

receiving personalized, ongoing support. XIAOXI integrates 

seamlessly into users' daily routines, providing a consistent, 

informative, and intuitive experience to enhance adherence and 

overall health management. 

 

6.6.4.1 Onboarding and Guidance 

XIAOXI’s initial interaction with users is an intuitive and 

welcoming introduction that guides them through its capabilities, 

ensuring a smooth start (see Figure 6.5). Key elements of the 

onboarding process include: 

 Feature Overview: XIAOXI introduces itself as a virtual 

inhalation assistant, listing key features such as information on 

asthma and COPD, pulmonary exercises, and medication 

instructions. 

 Interactive Suggestions: Users are prompted to try specific 

keywords like “asthma symptoms” to explore the XIAOXI’s 

responses and learn about available information. This helps 

familiarize users with the types of queries they can make. 

 Data Queries: The introduction shows how users can request 

real-time data on temperature, humidity, air quality, and heart 

rate. 

 Menu Navigation: A guided menu encourages users to explore 

further features, such as “Knowledge” for educational 
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resources and “Awareness” for completing assessments and 

surveys (see Figure 6.6). 

This structured introduction ensures that users, whether 

experienced with technology or new to using chatbots, can easily 

understand and interact with XIAOXI from the very first session. 

 

Figure 6. 5: Welcoming introduction. 
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Figure 6. 6: Menu navigation ("More" contains more tests) 

 

6.6.4.2 Real-Time Sensor Data Queries 

XIAOXI enables users to retrieve real-time data from integrated 

sensors by simply sending specific text commands (see Figure 6.7). 

This feature provides immediate insights into key health and 

environmental metrics that are crucial for managing respiratory 

conditions: 

 Heart Rate Monitoring: Users can send the keyword “heart rate” 

to receive the latest recorded value. This feature is particularly 

valuable for assessing physiological responses during 

inhalation sessions. 

 Environmental Conditions: Commands like “temperature,” 

“humidity,” or “PM2.5” enable users to check current 

environmental data. 
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Figure 6. 7: Querying data. 

 

6.6.4.3 Knowledge Delivery 

The XIAOXI chatbot provides users with a comprehensive range of 

educational resources and self-management strategies tailored 

specifically to their needs and conditions (see Figure 6.8). The 

knowledge base covers critical areas of asthma and COPD 

management, ensuring users have access to reliable and actionable 

information at all times. Key categories include: 

 Inhalation Techniques: By sending the keyword “inhalation 

techniques,” users receive step-by-step guides and instructional 

content that teach the correct methods for using inhalers. 

 Inhaler Storage: Users can access information on optimal 
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storage conditions by sending the keyword “inhaler storage.” 

This feature ensures that medications remain effective by 

educating users on proper storage practices. 

 Disease Management: Users can send keywords like "asthma 

/COPD control" to receive advice on managing their condition. 

XIAOXI provides guidance on recognizing signs of 

deterioration, daily management strategies, and when to consult 

their HCP.  

 Pulmonary Rehabilitation: The users can get information about 

the breathing exercises and techniques by typing the keyword 

“pulmonary rehabilitation.” 

 Medication Awareness: To learn more about proper medication 

use, users can send the keyword “medication side effects.” 

XIAOXI addresses common misconceptions and promotes 

accurate beliefs regarding long-term inhaler use. 
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Figure 6. 8: Providing educational resources. 

In addition to sending specific keywords, users can directly access 

related information through the “Knowledge” menu option, where 

relevant text and visual content are readily available for easy 

reference.  

 

6.6.4.4 User Self-assessment 

The XIAOXI chatbot features a comprehensive suite of 

assessments designed to evaluate users’ knowledge, disease control, 

beliefs, adherence, and emotional experience.  

 Disease Knowledge Test: XIAOXI offers disease knowledge 

assessments, such as the Consumer Asthma Knowledge 

Questionnaire (CQ) and the Chronic Obstructive Pulmonary 
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Disease Knowledge Questionnaire (COPD-Q). 

 Disease Control Evaluation: To assess how well users are 

managing their condition, XIAOXI utilizes tools like the 

COPD Assessment Test (CAT) and Asthma Control Test 

(ACT).  

 Health Beliefs and Self-Efficacy: XIAOXI assesses users’ 

attitudes toward their treatment and their confidence in 

managing their health using tools like the Beliefs about 

Medicines Questionnaire (BMQ) and the General Self-Efficacy 

Scale (GSE).  

 Adherence Assessment: The Test of Adherence to Inhalers 

(TAI) helps XIAOXI evaluate how well users follow their 

prescribed inhaler schedule.  

 Usability, Preference and Satisfaction Questionnaire (UPSQ): 

XIAOXI gathers data on the usability, preference and 

satisfaction of the inhaler to ensure that the devices are 

effective to the users as they should be.  

 Emotional Experience Testing: The Emocard tool within 

XIAOXI assesses users’ daily emotional responses to inhaler 

use. Users are prompted to select an image that best represents 

their feelings about using their inhaler, capturing emotional 

barriers to proper use. 

 

6.6.4.5 Feedback Provisions  

Daily Adherence Report: The Daily Adherence Report was 

designed based on insights gathered from participatory workshops 

described in Study 2. Participants expressed a strong preference for 

visual elements that are both informative and symbolically 
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meaningful. Among the concepts explored, the image of a tree 

emerged as the central visual metaphor, symbolizing growth, 

vitality, and clarity—qualities that resonate with the objectives of a 

health adherence system. 

Tree Structure as a Central Visual Metaphor: 

 Natural Symbolism: The brown tree trunk and green leaves 

symbolize life and growth, reflecting foundational elements of 

health. This natural imagery is enhanced with visual elements 

like white clouds and a shining sun, adding warmth and 

accessibility to the design, supporting a holistic health 

approach. 

 Intuitive Organization: Each branch represents one of the five 

adherence dimensions—Person, Task, Tool, Physical 

Environment, and Culture & Society. Green leaves indicate 

normal adherence, reflecting consistent and proper inhaler 

usage, while red leaves highlight areas requiring attention, 

signaling missed doses or improper technique (see Figure 6.9). 

This intuitive color scheme allows users to quickly interpret 

their adherence status at a glance. 

 Metaphorical Depth: The leaves not only symbolize daily 

adherence outcomes but also represent the user’s overall health 

journey. This metaphor reinforces the concept that sustained 

health management is a continuous and nurturing process, 

much like the growth of a tree. 

To maintain routine monitoring and encourage consistent use, the 

Daily Adherence Report is automatically sent to users at around 10 

PM each evening. This report provides a summary of the day's 

adherence performance, with visual cues that highlight both 

achievements and areas needing improvement. This metaphorical 
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and engaging approach transforms routine feedback into a 

meaningful experience, promoting regular interaction and 

heightened awareness of therapy adherence. 

 

Figure 6. 9: Daily report interface. 

Weekly Adherence Report: The weekly report offers a 

comprehensive overview by compiling data from the entire week 

(see Figure 6.10). It highlights key trends and areas for 

improvement, automatically pushed to users via WeChat at 10 PM 

every Sunday. The report displays adherence trends over the week 

in a grid format, marking each day as either normal (green) or 

needing attention (red). This visual format helps users quickly 

identify patterns in their adherence behavior. The weekly report 

uses simple dot plots and colours to present complex data, making 

it easy for users to understand without needing to read detailed text 

explanations. 
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Figure 6. 10: Weekly report interface. 

Dynamic Messaging Based on Reports: In addition to the 

adherence reports, XIAOXI leverages the insights gained to send 

personalized messages that keep users engaged and informed: 

 Encouragement and Motivation: Based on adherence patterns, 

XIAOXI sends personalized and peer-competitive messages to 

keep users motivated (see Figure 6.11). For instance, when a 

user consistently meets their goals, the chatbot provides 

encouragement combined with peer comparison, such as, 

"You've beaten 95% of your peers— that's amazing! Let's 

continue striving for the perfect record tomorrow!" For users 

falling behind, XIAOXI offers supportive and motivating 
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prompts like, "You've made great progress—let's aim to 

improve even more tomorrow and catch up with the leaders!" 

 Reminders and Alerts: When XIAOXI detects poor adherence 

or abnormal sensor data, it sends personalized reminders or 

alerts. For example, if a user misses a dose, XIAOXI prompts 

with, "It looks like you missed a dose today—don’t forget to 

use your inhaler tonight!" If air quality is poor, XIAOXI sends 

an alert like, "The air quality doesn't seem to be good—

remember to open the windows for ventilation or use an air 

purifier." 

 Educational Content Push: If the user's self-assessment results 

from the questionnaires indicate poor outcomes, XIAOXI 

proactively provides targeted educational resources to address 

specific areas of concern (see Figure 6.12). 

 

Figure 6. 11: Motivational prompts. 
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Figure 6. 12: Educational content and health reminder. 

 

 

6.7 Physical Design of Sensor Casings 

 

6.7.1 Design Inspiration and Visual Coherence 

The visual design of the sensor casings is inspired by the color 

scheme and iconography featured in the digital interface. Green and 

brown tones are utilized to reflect natural elements, creating a 

consistent visual identity across both digital and physical 

components. A small sapling icon is incorporated into the sensor 

casing design, symbolizing growth and health. This design choice 

further connects the physical devices to the tree imagery used in the 
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adherence reports (see Figure 6.13). 

   

Figure 6. 13: Sensor casing design. 

 

6.7.2 Prototyping, Materials, and User-Centered Design 

The green monitoring unit houses the IMU and heart rate sensor, 

which are responsible for monitoring inhaler usage and 

physiological responses. The brown monitoring unit contains the 

mainboard and air quality sensors, which measure environmental 

factors such as temperature, humidity, and PM2.5 levels. Several 

iterations of 3D models were produced using ABS (Acrylonitrile 

Butadiene Styrene) polymers due to its rigidity, durability, and 

printability (see Figure 6.14). 

User comfort and intuitive use were prioritized throughout the 

design process. The green monitoring unit features a rounded, 

smooth body with a groove on its upper part, facilitating secure 

attachment to the inhaler. This design ensures that the unit fits 

tightly and does not shift during use. Its ergonomic structure 

enhances grip, provides a comfortable form factor for users of all 

ages, and allows for easy attachment and detachment. The brown 

environmental monitoring unit is designed with strategically placed 

vents to ensure optimal airflow, enabling the air sensors to 
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accurately capture environmental conditions. 

   

Figure 6. 14: 3D printed prototypes. 

 

 

6.8 Laboratory Testing 

 

Extensive laboratory testing was conducted prior to the deployment 

of the XIAOXI system to assess and fine-tune both hardware and 

software components. The testing phase aimed to confirm the 

system’s stability, effectiveness, and efficiency under different 

conditions (see Figure 6.15). 

 

Figure 6. 15: Laboratory testing. 
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6.8.1 Hardware Testing 

To ensure the sensors and monitoring devices functioned accurately 

and consistently, the following tests were performed: 

 Accuracy Tests: The heart rate sensor, gyroscope, temperature, 

humidity, and PM2.5 sensors were evaluated under controlled 

environmental conditions that simulated real-world scenarios. 

These tests verified the precision of data capture across varying 

ranges. For example, the gyroscope was tested with inhalers 

tilted at different angles, while environmental sensors were 

exposed to diverse humidity, temperature, and particulate 

matter levels to assess their responsiveness. 

 Stress and Durability Tests: Prolonged operational tests were 

conducted to evaluate battery life and sensor performance over 

extended periods. Devices were subjected to continuous 

operation to identify any degradation in accuracy or 

functionality. Stress tests also simulated rough handling and 

repeated attachment/detachment cycles to ensure the physical 

durability of the devices. 

 

6.8.2 Software Testing 

The software components underwent rigorous testing to ensure 

accurate data presentation and system performance: 

 Data Synchronization and Integrity: Tests were performed to 

evaluate the system's ability to maintain continuous data 

synchronization among the sensors, Weixin Dialogue Open 

Platform, Tencent IoT Explorer, and XIAOXI. The primary 
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focus was to ensure smooth, real-time updates with consistent 

and accurate data, preventing any delays or data loss during 

operation. 

 Chatbot Response Accuracy: The XIAOXI chatbot was tested 

to confirm its ability to correctly interpret user inputs, access 

relevant data from the knowledge base, and provide accurate 

responses promptly. 

 User Interface Testing: The user interface was thoroughly 

evaluated to ensure a seamless user experience. Tests focused 

on verifying that real-time data and adherence reports were 

displayed without delays, allowing users to access up-to-date 

information instantly. Additionally, the clarity and accuracy of 

the adherence reports were assessed to guarantee that the 

presented information was easy to understand and actionable. 

 

 

6.9 Discussion 

 

Building on insights from Study 2 (Chapter 5), the XIAOXI system 

was successfully implemented on the WeChat platform, integrating 

a suite of sensors for real-time monitoring. Through the 

deployment of sensors that track physiological conditions, inhaler 

usage, and environmental factors, the system provides users with 

timely feedback, encouraging healthier behaviors and improved 

adherence. 

A key advantage of the XIAOXI system is its integration into the 

WeChat platform via a chatbot interface, offering significant 
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benefits over traditional app-based solutions, particularly regarding 

accessibility, user engagement, and seamless integration into daily 

routines(Valtolina et al., 2020). During participatory design 

workshops, both patients and HCPs acknowledged the value of 

deploying a chatbot within a familiar platform like WeChat, as 

opposed to standalone applications that often require additional 

downloads, updates, and complex navigation. This strategy reduces 

the learning curve, enabling users to interact with the system within 

an environment they already trust and frequently use, effectively 

lowering the barrier to entry and promoting adoption. This design 

choice parallels other successful health chatbots deployed on 

widely used messaging platforms. For example, Ramjee et al. 

introduced CataractBot on WhatsApp to deliver expert-verified 

medical information to cataract patients(Ramjee et al., 2024). Both 

CataractBot and XIAOXI leverage well-established platforms to 

minimize learning costs and improve accessibility for diverse 

populations, including older adults and individuals with limited 

digital literacy(Miura et al., 2022; Ryu et al., 2020). 

Unlike static interfaces typical of traditional applications, 

XIAOXI's chatbot facilitates real-time, contextually relevant 

responses, enhancing user engagement across multiple dimensions. 

Emotional and social engagement is fostered as users experience 

personalized, timely feedback that simulates supportive interactions, 

reducing feelings of isolation and promoting consistent self-

management(De Gennaro et al., 2020; Shum et al., 2018). This 

interactive experience parallels the design of XiaoIce, a social 

chatbot developed by Zhou et al., which fosters long-term 

emotional connections with users through natural, empathetic 

conversations(Zhou et al., 2020). XiaoIce's success demonstrates that 

integrating emotional and social engagement within a chatbot 

interface can help users feel understood and supported, ultimately 

encouraging better health outcomes. Moreover, XIAOXI's 
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proactive interaction model promotes behavioral engagement by 

prompting regular inhaler use, encouraging self-monitoring, and 

supporting habit formation. This aligns with findings by Hauser-

Ulrich et al. (2020) and Huang et al. (2018), who observed that 

chatbot-based reminders effectively integrate healthy behaviors 

into daily routines, reinforcing adherence and enhancing long-term 

management of chronic conditions. 

XIAOXI employs a multi-sensor approach to monitor various 

aspects of patient health and adherence. The IMU sensor tracks 

inhaler usage and technique, ensuring proper operation during each 

use. The heart rate sensor monitors physiological conditions, 

providing real-time insights into the patient's health status. 

Additionally, environmental sensors, including temperature, 

humidity, and PM2.5 sensors, track air quality—an essential factor 

in managing chronic respiratory conditions. This comprehensive 

sensor deployment enables XIAOXI to capture multi-dimensional 

data, offering a well-rounded perspective on adherence influences. 

Although this multi-sensor strategy provides extensive monitoring 

capabilities, each individual sensor has specific limitations. For 

example, while IMU sensors are effective in detecting inhaler 

technique, they cannot fully capture the complete inhalation 

process(Jourdan et al., 2021). Similarly, heart rate sensors indicate 

physiological changes but do not measure lung function, which is 

critical for assessing respiratory health(Chuang et al., 2005). 

Addressing these limitations calls for future research into data 

fusion techniques that integrate multiple sensor inputs to improve 

the accuracy and reliability of collected data(Gravina et al., 2017).  

A relevant example is the system developed by Kalantarian et al. 

(2016), which combined smart bottle technology with a 

piezoelectric-based smart necklace to verify pill ingestion through 

neck movements during swallowing. This innovative fusion of 
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sensor data ensured both bottle access and actual medication intake 

were accurately monitored. Drawing from this approach, future 

iterations of XIAOXI could benefit from sensor fusion strategies 

that integrate complementary measurements for more robust 

evaluation. For example, combining IMU data with airflow sensors 

could enhance the accuracy of inhaler technique assessment, while 

integrating heart rate monitoring with respiratory flow sensors 

might provide deeper insights into physiological responses during 

inhalation. This focused application of sensor fusion would ensure 

a more complete and validated view of patient adherence(Akhoundi 

& Valavi, 2010). 

While the XIAOXI system has demonstrated successful deployment, 

further evaluation is required to thoroughly assess its feasibility, focusing 

on usability, acceptability, and user experience(Evans et al., 2024; Isaac et 

al., 2024; R. Steele et al., 2009). Measuring user acceptability and 

satisfaction is crucial for understanding the system's immediate impact on 

adherence and determining whether it effectively addresses user needs and 

expectations. These preliminary evaluations will serve as indicators of the 

system's potential for broader clinical application and scalability(M. 

O’Connor et al., 2018; Peterson et al., 2003). The next chapter will 

provide a comprehensive evaluation of XIAOXI's effectiveness, assessing 

its impact on adherence and clinical outcomes. This assessment will form 

the foundation for understanding how sensor-based intervention systems 

can transform inhalation therapy adherence in real-world settings, paving 

the way for future research and potential clinical adoption. 

 

 

6.10 Conclusion 
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In this study, we developed XIAOXI, a sensor-based intervention 

system designed to improve patient adherence to inhalation therapy. 

Leveraging advanced sensor technologies, the system continuously 

monitors inhaler usage, physiological indicators, and environmental 

conditions, providing real-time insights that support timely 

feedback and adherence. Integrated into the WeChat platform with 

a user-friendly chatbot, XIAOXI seamlessly embeds into users' 

daily routines, enhancing accessibility and ease of use. Through 

real-time feedback, educational resources, and self-assessment 

tools, XIAOXI empowers users to interact naturally, access sensor 

data, and receive personalized adherence guidance in an intuitive 

and engaging way. 
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Chapter 7 Evaluation and 

Classification Analysis of the 

Sensor-based Intervention System 

 

 

7.1 Introduction and Aims 

 

In the previous chapter, we completed the development of XIAOXI. 

In this chapter, we evaluate the usability, effectiveness, and the 

capability of the system to accurately classify patient adherence 

behaviors based on retrospective data analysis. First, we assess 

whether the XIAOXI system is user-friendly and supports 

consistent patient adherence by utilizing both quantitative 

assessments and qualitative feedback from interviews with HCPs 

and patients. Second, we evaluate the effectiveness of XIAOXI in 

improving inhaler adherence through a 28-day controlled 

experiment, comparing outcomes between patients using XIAOXI 

and those following standard management practices, using both 

self-reported measures (e.g., TAI questionnaire) and objective 

sensor data. Third, we apply machine learning methods to classify 

daily inhaler adherence behaviors, focusing on identifying key 

factors influencing adherence and evaluating the performance and 

accuracy of various classification models. 

As discussed in Section 2.2.6, this thesis conceptualizes 

effectiveness, safety, and usability as interrelated dimensions of 
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inhalation therapy efficacy, synthesized from the literature. 

However, this conceptual framework serves to contextualize the 

research rather than to define the empirical evaluation scope. The 

evaluation conducted in this chapter focuses specifically on the 

behavioral effectiveness of the XIAOXI system in supporting 

patient adherence to inhalation therapy. This focus on adherence-

related outcomes is distinct from clinical interpretations of 

effectiveness, safety, and usability in terms of pharmacological 

efficacy or device performance. This clarification is intended to 

prevent confusion between the broader conceptual framework and 

the specific evaluation objectives addressed in this chapter. 

The objectives of this chapter are: 

1. To evaluate the usability of the XIAOXI system from patient 

and HCP perspectives, focusing on system quality, acceptance, 

and usability. 

2. To assess the effectiveness of XIAOXI in improving adherence 

using self-reported and sensor-based data. 

3. To apply machine learning methods to classify daily inhaler 

adherence behaviors, identify key factors influencing 

adherence, and evaluate model performance. 

 

 

7.2 Usability Evaluation of XIAOXI 

 

The evaluation of XIAOXI focused on three primary areas: chatbot 

quality, technology acceptance, and system usability. These metrics 

were chosen based on Kadariya's article to provide a 
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comprehensive understanding of both the system’s effectiveness 

and the user experience(Kadariya et al., 2019). 

 

7.2.1 Evaluation Metrics 

The evaluation of XIAOXI focused on chatbot quality and 

technology acceptance, both assessed using an 11-point Likert scale 

(0-10). The chatbot quality assessment included three dimensions: 

naturalness, information delivery, and interpretability. 

Naturalness: Evaluated the fluency and clarity of XIAOXI's 

dialogues, focusing on the chatbot's ability to use simple, 

understandable language and provide natural, unambiguous 

conversations. 

Information Delivery: Assessed the accuracy and timeliness of the 

information provided, ensuring support for patient management of 

inhalation therapy. 

Interpretability: Measured the chatbot's ability to understand user 

inputs and convey relevant health data, capturing the effectiveness 

of responses based on patient-reported information. 

The adapted TAM measured the perceived usefulness, ease of use, 

and overall satisfaction with XIAOXI, with questions adapted for 

specific functionalities(Kadariya et al., 2019). System usability was 

evaluated using the SUS, a widely validated tool for measuring 

overall satisfaction(Lewis, 2018; Peres et al., 2013). The SUS consists 

of 10 items scored on a 5-point Likert scale (1 to 5), which were 

later normalized to a scale of 0 to 100, where scores above 68 

indicate above-average usability. All questionnaires are presented 

in Appendix 7A and 7B. 
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7.2.2 Methods 

This usability evaluation involved 10 patients and 5 HCPs to assess 

the XIAOXI system’s performance, usability, and clinical 

applicability. The detailed recruitment criteria and procedures are 

described in Chapter 3, Section 3.5.5.1. The demographic 

characteristics of participants are summarized in Tables 7.1 and 7.2. 

Table 7. 1: Participant demographics (HCPs). 
Demographic Count (n=5) Percentage 
Gender 
Male 2 40.0% 
Female 3 60.0% 
Age Range 
18-35 3 60.0% 
36-50 1 20.0% 
51-65 1 20.0% 
Work Experience 
3-6 2 40.0% 
7-10 3 60.0% 
>10 0 0.0% 

Table 7. 2: Participant demographics (patients). 
Demographic Count (n=10) Percentage 
Gender 
Male 5 50.00% 
Female 5 50.00% 
Age Range 
20-30 2 20.00% 
30-40 5 50.00% 
40-50 3 30.00% 
Educational Level 
Primary 0 0.00% 
Secondary 1 10.00% 
Tertiary 9 90.00% 
Disease Severity 
Mild 8 80.00% 
Moderate 2 20.00% 
Severe 0 0.00% 
Number of Comorbidities 
0 7 70.00% 
1 2 20.00% 
2 or more 1 10.00% 
Experience with Inhaler Device (Years) 
<1 3 30.00% 
1-3 6 60.00% 
>3 1 10.00% 
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The evaluation process included simulated usage scenarios based 

on the personas and scenarios developed in Study 2, where HCPs 

assessed the usability and clinical applicability of the XIAOXI 

system from a patient-centered perspective. Additionally, patients 

integrated the XIAOXI system into their daily inhalation therapy 

routines over a 28-day period, followed by structured usability 

assessments. 

Quantitative data were collected using the SUS and a System 

Quality Questionnaire. Descriptive statistical analyses were 

performed using SPSS v25 to summarize responses and compare 

perceptions between patients and HCPs. Following the quantitative 

assessment, semi-structured interviews were conducted to gather 

qualitative insights into user experience and system interaction. The 

interview protocol is given in Appendix 7C. All interviews were 

audio-recorded, transcribed verbatim, and analyzed using thematic 

analysis(Charmaz, 2006; Strauss, 1987), supported by NVivo 14. This 

mixed-methods approach provided a comprehensive understanding 

of both the functional usability and user perceptions of the XIAOXI 

system. 

 

7.2.3 Results 

7.2.3.1 Quantitative Findings 

Chatbot Quality and Technology Acceptance: The average 

scores for HCPs and patients across four key dimensions—

Naturalness, Information Delivery, Interpretability, and 

Technology Acceptance—are as follows (Figure 7.1): 

Naturalness: HCPs scored an average of 9.00 (SD = 0.33), while 

patients scored 8.83 (SD = 0.39). 
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Information Delivery: HCPs had an average score of 9.40 (SD = 

0.55), and patients scored 9.05 (SD = 0.80). 

Interpretability: HCPs scored 8.7 (SD = 0.45), while patients scored 

8.35 (SD = 0.47). 

Technology Acceptance: HCPs scored an average of 9.07 (SD = 

0.55), and patients scored 8.80 (SD = 0.57). 

 

Figure 7. 1: Comparison of chatbot quality and technology 

acceptance between patients and HCPs. 

A Mann-Whitney U test was conducted to compare the two groups 

across these dimensions. The results revealed no statistically 

significant differences between HCPs and patients in any of the 

dimensions (all p > 0.05). This suggests that both groups had 

comparable perceptions and experiences regarding the interface's 

naturalness, information delivery, interpretability, and technology 

acceptance. This suggests both groups had similarly positive 

perceptions of the system's quality. 

System Usability Scale (SUS): The SUS scores were calculated 

based on the standard SUS methodology. Each participant 

answered 10 questions on a 5-point Likert scale, with some 
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questions being positively worded and others negatively worded. 

For positively worded questions (Q1, Q3, Q5, Q7, Q9), the score 

was calculated as (score - 1). For negatively worded questions (Q2, 

Q4, Q6, Q8, Q10), the score was calculated as (5 - score). The total 

score for each participant was then multiplied by 2.5 to convert the 

score into a range of 0 to 100, where 0 represents the lowest 

possible usability and 100 represents the highest. 

Both HCPs and patients scored well above the industry-standard 

benchmark of 68 for usability. The HCP group had a mean score of 

88.00 (SD = 2.09), while the Patient group had a mean score of 

83.25 (SD = 5.41). These scores indicate a high level of satisfaction 

with the system’s design and functionality, with both groups 

finding the system highly usable. The results of the Mann-Whitney 

U test showed no statistically significant difference between HCPs 

and patients (p = 0.072). 

 

7.2.3.2 Qualitative Feedback 

User Experience and Interface: Participants highlighted 

XIAOXI's intuitive and user-friendly interface. Both HCPs and 

patients appreciated its smooth navigation and visually engaging 

design. One participant noted, “The interface is simple and 

engaging; I believe it will be easy for patients to use and they 

should enjoy it.” Patients found the tree metaphor for daily 

adherence reports and the dot plots for weekly reports visually 

appealing, easy to understand, and effective in indicating their 

performance. The natural imagery not only provided comfort but 

also enhanced privacy. As one patient mentioned, “The design is 

discreet. Even if someone glimpses my screen, they wouldn’t 

immediately know it’s related to my health, which I really 

appreciate.” 
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Chatbot Communication and User Engagement: The chatbot’s 

communication style received widespread praise, particularly for its 

natural and engaging dialogue. Participants described the 

interactions as warm and supportive. “It felt like I was having a 

real conversation, not just following a script,” remarked one 

patient. Both patients and HCPs appreciated the clarity and 

simplicity of the chatbot prompts. Additionally, the chatbot’s 

empathetic tone resonated with users, especially patients who 

valued its non-judgmental and encouraging language. 

Health Support and Educational Content: Both patients and 

HCPs found the health support and educational content provided by 

XIAOXI to be highly meaningful. HCPs acknowledged that the 

system effectively enhanced patient education and promoted better 

health awareness. Patients appreciated XIAOXI as a reliable source 

of accurate information on inhalation therapy. One patient shared, 

“Whether I wanted to learn about daily disease management or the 

correct steps for using my inhaler, XIAOXI was able to help me.” 

Sensor Technology and Data Utilization: HCPs expressed strong 

interest in the sensor technology integrated within XIAOXI, 

highlighting its potential for providing deeper insights into patient 

conditions. One HCP noted, “If we as doctors could access this 

data, it would provide a more comprehensive understanding of 

patients' conditions, allowing us to make more informed decisions 

that benefit them.” Patients also appreciated the convenience of 

accessing sensor data directly within XIAOXI, enabling them to 

easily monitor their physiological status and environmental 

conditions. This access contributed to a greater sense of security 

and control. As one patient commented, “I feel like I have a better 

understanding of my own condition.” 
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7.3 Evaluating the Effectiveness of XIAOXI 

This section evaluates the effectiveness of the XIAOXI system in 

supporting patient adherence to inhalation therapy. The study 

compared patients using XIAOXI with a control group following 

standard inhaler management practices. Questionnaires and sensor 

data were used to measure changes in patient adherence, providing 

insights into the accuracy and reliability of these methods. 

 

7.3.1 Methods 

A controlled experimental design was employed to evaluate the 

effectiveness of the XIAOXI system in enhancing patient 

adherence to inhalation therapy. Detailed descriptions of participant 

recruitment, group allocation, study procedures, and data collection 

instruments are provided in Chapter 3, Section 3.5.5.2. In summary, 

20 patients diagnosed with asthma or COPD were assigned to 

either an experimental group (n = 10), utilizing the XIAOXI system 

alongside the Symbicort Turbuhaler, or a control group (n = 10), 

following standard inhalation therapy practices. Demographic 

characteristics of both groups are presented in Tables 7.3 and 7.4. 

Table 7. 3: Participant demographics (experimental group). 
Demographic Count (n=10) Percentage 
Gender 
Male 5 50.00% 
Female 5 50.00% 
Age Range 
20-30 2 20.00% 
30-40 5 50.00% 
40-50 3 30.00% 
Educational Level 
Primary 0 0.00% 
Secondary 1 10.00% 
Tertiary 9 90.00% 
Type of Disease 
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Asthma 10 100.00% 
COPD 0 0.00% 
Disease Severity 
Mild 8 80.00% 
Moderate 2 20.00% 
Severe 0 0.00% 
Number of Comorbidities 
0 7 70.00% 
1 2 20.00% 
2 or more 1 10.00% 
Experience with Inhaler Device (Years) 
<1 3 30.00% 
1-3 6 60.00% 
>3 1 10.00% 

Table 7. 4: Participant demographics (control group). 
Demographic Count (n=10) Percentage 
Gender 
Male 6 60.00% 
Female 4 40.00% 
Age Range 
20-30 1 10.00% 
30-40 5 50.00% 
40-50 4 40.00% 
Educational Level 
Primary 1 10.00% 
Secondary 3 30.00% 
Tertiary 6 60.00% 
Type of Disease 
Asthma 7 70.00% 
COPD 3 30.00% 
Disease Severity 
Mild 8 80.00% 
Moderate 2 20.00% 
Severe 0 0.00% 
Number of Comorbidities 
0 6 60.00% 
1 2 20.00% 
2 or more 2 20.00% 
Experience with Inhaler Device (Years) 
<1 4 40.00% 
1-3 4 40.00% 
>3 2 20.00% 

Adherence outcomes were assessed using the TAI, administered to 

both the experimental and control groups before and after the 28-

day intervention period. For the experimental group, objective 

adherence data were additionally collected through XIAOXI’s 

inhaler usage monitoring, enabling precise tracking of daily inhaler 

usage. Following the intervention, semi-structured interviews were 

conducted with participants from both groups to explore their 
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experiences, perceived adherence barriers, and attitudes towards 

inhalation therapy. The interview protocol is provided in Appendix 

7D. 

Quantitative data were analyzed using SPSS v25 to compare 

adherence changes between the two groups. Qualitative data were 

examined through thematic analysis(Charmaz, 2006; Strauss, 1987) , 

facilitated by NVivo 14, to identify key themes related to adherence 

behaviors and patient perceptions. This mixed-methods approach 

allowed for a comprehensive evaluation of both objective 

adherence improvements and subjective patient experiences 

associated with the XIAOXI intervention. 

 

7.3.2 Results 

7.3.2.1 TAI Scores Comparison 

At the beginning of the study, adherence levels were categorized as: 

high adherence (50-54), moderate adherence (46-49), and low 

adherence (45 or below)(Muneswarao et al., 2021; Plaza et al., 2016).  

Experimental Group: 

 Baseline (TAI-0): The experimental group had an average TAI 

score of 48.8 (SD = 5.22). Five patients demonstrated high 

adherence, two showed moderate adherence, and three were 

categorized as having low adherence. 

 Post-intervention (TAI-28): After the 28-day intervention, the 

average TAI score increased significantly to 51.7 (SD = 2.31). 

Eight patients achieved high adherence, two maintained 

moderate adherence, and none remained in the low adherence 

category. 
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Control Group: 

 Baseline (TAI-0): The control group began with an average 

TAI score of 48.7 (SD = 3.56), consisting of five high 

adherence patients, four with moderate adherence, and one 

with low adherence. 

 Post-intervention (TAI-28): By the study's end, the average 

TAI score slightly declined to 47.9 (SD = 4.46). The number of 

high adherence patients decreased to four, while the moderate 

and low adherence categories adjusted to two and four, 

respectively, indicating a decline in adherence without the 

intervention. 

Statistical Analysis: 

 Within-Group Comparison: The Wilcoxon Signed-Rank Test 

revealed a significant improvement in TAI scores for the 

experimental group post-intervention (p = 0.018), highlighting 

the effectiveness of the intervention. In contrast, the control 

group did not exhibit a statistically significant change (p = 

0.168). 

 Between-Group Comparison: Mann-Whitney U tests showed 

no statistically significant differences at baseline (U = 46.5, p = 

0.790), confirming initial comparability between the two 

groups. However, by the end of the 28-day period, a 

statistically significant difference emerged (U = 24.0, p = 

0.045), indicating superior adherence in the experimental group. 

These results affirm that the intervention significantly improved 

adherence among participants in the experimental group compared 

to those in the control group, underscoring the effectiveness of the 

XIAOXI system. 
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7.3.2.2 Detailed Adherence Data from XIAOXI 

The XIAOXI system provides comprehensive insights into patient 

adherence by leveraging sensor data to track both inhaler usage 

frequency and the accuracy of inhalation techniques. The system’s 

gyroscope allows for real-time monitoring, focusing on three 

critical aspects: correct rotation for medication loading, 

maintaining the proper position during inhalation, and ensuring 

adequate inhalation and holding duration (Figure 7.2).  

     

(a)                                                 (b) 

Figure 7. 2: Posture of device at each motion. (a) posture at rotating the 

grip (b) posture at inhale motion. 

Evaluating Inhalation Activation and Technique via IMU: The 

XIAOXI system’s IMU tracks angle variations to evaluate 

inhalation activation and technique during the use of the Symbicort 

Turbuhaler, the medication used in this study. Figure 7.3 illustrates 

the gyrometer's axial directions within the IMU, highlighting how 

angle variations are monitored throughout inhaler usage. 

 Correct Rotation for Medication Loading: Proper inhaler usage 

requires the user to rotate the grip counterclockwise and then 
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back until a click is heard, signaling that the correct dose has 

been loaded(Basheti et al., 2005). This action generates a 

significant change in the z-axis angle, shifting from a neutral 

position to a negative value and returning to neutral upon 

completion. The IMU detects these movements to confirm 

successful dose loading. 

 Maintaining the Proper Position During Inhalation: To ensure 

optimal medication delivery, the device should be held 

horizontally during inhalation(Cain et al., 2001; Chopra et al., 

2002). The x-axis angle is monitored by the IMU, and a 

consistent reading around 90° indicates the device is being 

correctly positioned, maximizing lung deposition. 

 Ensuring Adequate Inhalation Duration: Effective inhalation 

requires both forceful breathing (typically lasting 1–2 seconds) 

and breath-holding for approximately 6 seconds, as 

recommended by the Symbicort Turbuhaler guidelines(Azouz et 

al., 2015; Basheti et al., 2014). The IMU verifies this by tracking 

the x-axis angle for stability over the required time. If the total 

inhalation time is less than 7 seconds, it is flagged as 

potentially inadequate. 

 Recording a Full Inhalation: When all three criteria—correct 

rotation, horizontal positioning, and sufficient inhalation 

duration—are detected, the event is recorded as a complete 

inhaler use. This automated detection ensures accurate tracking 

of adherence. Figure 7.4 presents a schematic representation of 

how angle values change throughout the inhalation process. 
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Figure 7. 3: Axial directions of gyrometer. 

 

 

Figure 7. 4: Schematic graph of proposed device (A - representing the 

medication loading process; B - representing the inhalation process). 

Calculating Adherence Metrics: The XIAOXI system quantifies 
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adherence data through two primary metrics: 

 Prescription Adherence: Prescription adherence is calculated as 

the ratio of the actual number of inhaler uses detected by the 

system to the total expected uses over the 28-day intervention 

period. Given the prescribed frequency of twice daily usage, 

the total expected uses amount to 56 inhalations. 

 Technique Adherence: Technique adherence is evaluated by 

assessing the number of times the participant correctly 

followed all three inhalation criteria (correct rotation, 

maintaining the proper position, and sufficient duration). This 

value is computed by dividing the number of times the 

participant successfully performed all three steps by the total 

number of inhaler uses detected. 

For the 10 participants in the experimental group, XIAOXI’s sensor 

data was used to compute these metrics across the 28-day 

intervention period (see Table 7.5). Adherence is categorized into 

three levels: good adherence (≥75%), partial adherence (50%–75%), 

and low adherence (<50%). This structured and consistent 

classification enabled clear assessment of adherence performance 

across all participants. 

Table 7. 5: The adherence data from XIAOXI. 

No 

Actual 
number of 

inhaler 
uses 

Prescription 
adherence 

Prescription 
adherence 

level 

Correctly 
technique 

times 

Technique 
adherence 

Technique 
adherence 

level 

1 52 92.86% good 51 98.08% good 
2 51 91.07% good 48 94.12% good 
3 43 76.79% good 40 93.02% good 
4 51 91.07% good 45 88.24% good 
5 45 80.36% good 44 97.78% good 
6 36 64.29% partial 33 91.67% good 
7 50 89.29% good 47 94.00% good 
8 49 87.50% good 49 100.00% good 
9 51 91.07% good 49 96.08% good 

10 37 66.07% partial 35 94.59% good 
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7.3.2.3 Qualitative Insights into Patient Adherence and Experiences 

Challenges and Difficulties in Inhaler Usage: Participants in the 

control group encountered significant challenges with proper 

inhaler techniques, largely due to the lack of external guidance or 

feedback. Many expressed uncertainty about whether they were 

using the inhaler correctly, and they had no means to confirm 

proper inhalation. As one participant noted: “I don't know if I'm 

using the inhaler correctly. My condition has been under control 

recently. I guess it's because of the inhaled medicine.” Additionally, 

forgetfulness was a common issue, particularly during busy periods 

such as working overtime or when dealing with family 

commitments. The lack of reminders or feedback mechanisms 

contributed to missed doses and inconsistent usage. 

In contrast, the experimental group, supported by the XIAOXI 

system, benefited from real-time feedback on their inhaler usage. 

XIAOXI not only provided confidence in ensuring proper 

technique but also allowed users to query the system when 

uncertain or consult instructions for clarification. Furthermore, 

reminders for missed doses were automatically sent, promoting 

consistent adherence to their medication regimen. Participants 

appreciated the adherence reports, which allowed them to track 

their progress clearly, enhancing their sense of control over their 

inhaler usage. “By checking the report every day, I can see if I'm 

doing things right. XIAOXI tells me if the air quality is good, 

whether I’ve taken both doses of my medication, and if everything’s 

on track.” This combination of real-time feedback, adherence 

tracking, and reminders simplified the inhaler usage process, 

significantly reducing the uncertainties and forgetfulness 

experienced by the control group. 
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Impact of Environment and Emotions on Adherent Behavior: 

Control group participants reported that environmental factors, 

such as air quality and weather conditions, had a noticeable impact 

on their physical well-being. Patients with asthma and COPD were 

particularly sensitive to changes in these conditions, often 

triggering discomfort and increasing their perceived need for 

inhaler usage: “My airways are very sensitive, and when the 

seasons change or the air quality is not good, I immediately want to 

cough.” Issues related to temperature and humidity also emerged, 

especially for patients using DPIs, where improper storage could 

affect medication efficacy: “I found that when the rainy season 

arrives, the medicine at the mouthpiece of the inhaler clumps 

together.”  

In contrast, participants in the experimental group benefited from 

XIAOXI's monitoring of physiological and environmental data. 

The system enabled patients to track air quality, temperature, and 

humidity levels, allowing them to anticipate discomfort and 

manage inhaler storage conditions more effectively: “I found that 

XIAOXI always reminded me that the air quality at home was not 

good around 7 pm, and I realized that it was caused by cooking 

fumes at home, so I will increase the suction power of the range 

hood and open the window when I cook now.” This proactive 

monitoring gave patients greater insight into their environment, 

empowering them to make informed adjustments to minimize risks 

and improve their health outcomes. 

Regarding emotional experiences, control group participants often 

expressed “feelings of frustration and boredom” associated with 

the repetitive nature of inhaler use. Many described the daily 

routine of using the inhaler as monotonous and tiresome, which 

sometimes led to reduced motivation to adhere to their treatment. 

Conversely, the experimental group reported a more positive 
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emotional experience with the support of XIAOXI. The system not 

only provided reminders and feedback but also helped break the 

monotony by offering motivational messages and tracking progress. 

"Honestly, I actually look forward to XIAOXI's daily report. I don’t 

really know why, but it makes my daily inhaler routine more 

interesting—kind of like having a companion along the way." This 

enhanced engagement reduced the frustration and boredom 

commonly experienced in the control group, making the daily 

inhaler routine feel more purposeful and manageable. 

Perception of Drug Side Effects and Disease Management: 

Concerns about drug side effects and limited knowledge about 

disease management were prevalent among control group 

participants. Many expressed uncertainty about their ability to 

effectively manage their condition due to a lack of reliable, 

authoritative information. Much of the information they accessed 

online was inconsistent, inaccurate, or not applicable to their 

specific circumstances. This lack of guidance left them feeling 

unsure about how best to manage their asthma or COPD. 

Traditional cultural beliefs, such as the notion that “All medicine 

has toxicity to some degree,” further fueled distrust in long-term 

inhaler use, prompting some to reduce their usage: "This inhaler 

has hormones in it, and I’ve always thought it could be bad for the 

body, so I’ve been using it on and off." 

In contrast, participants in the experimental group who used the 

XIAOXI system demonstrated a better understanding of medication 

safety and disease management. The system provided educational 

content that alleviated concerns about drug side effects and 

empowered them to use their inhalers more confidently. While the 

28-day intervention did not completely change participants' deep-

seated cultural beliefs about drug toxicity, it did have a noticeable 

impact on their behavior. Many participants reported becoming less 
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likely to reduce or skip medication without HCP approval, 

recognizing that the benefits of inhaler use outweighed perceived 

risks: "Now I get that asthma needs long-term control, so even if 

I’m not having symptoms, I’ll keep using it regularly to avoid flare-

ups." This shift in behavior, although not fully overcoming cultural 

beliefs, reflected a growing trust in the treatment and a stronger 

sense of responsibility in managing their condition with the help of 

the system. 

 

 

7.4 Machine Learning-Based Classification of 

Daily Inhaler Usage as an Adherence Behavior 

Using XIAOXI Data 

 

7.4.1 Materials and Methods 

This study aimed to develop and validate machine learning models 

to classify daily patient adherence behavior based on multi-

dimensional data collected by the XIAOXI system during a 28-day 

intervention. The classification task was defined as a binary 

problem, distinguishing between days of completed prescribed 

inhaler usage (adherent behavior) and days of incomplete or missed 

usage (non-adherent behavior). 

Input features included physiological parameters (e.g., heart rate), 

environmental conditions (e.g., temperature, humidity, PM2.5), and 

emotional states, derived from sensor readings and daily self-

reports via the Emocard questionnaire. A structured three-stage 

process was employed to ensure data integrity and optimize feature 
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representation for machine learning classification (Figure 7.5): 

1. Data Cleaning: Removal of outliers and noise from raw sensor 

and self-reported data. 

2. Data Aggregation: Transformation of cleaned data into daily 

feature sets suitable for classification. 

3. Data Classification: Implementation and evaluation of multiple 

machine learning algorithms to classify adherence behavior and 

assess model performance. 

 

Figure 7. 5: Flowchart for the classification of daily inhaler usage. 

 

7.4.1.1 Dataset 

The dataset used in this study was collected from the XIAOXI 

system. The system’s sensors recorded daily data on heart rate, 

temperature, humidity, air quality, and inhaler usage frequency. 

Additionally, patients were required to report their emotional 

experiences during inhaler use each day. In total, the dataset 

comprises 10 patients, each contributing 28 days of data across 6 

features, resulting in a total of 1,680 data points for the machine 

learning analysis. This dataset serves as the basis for classifying 
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daily inhaler adherence behaviors using machine learning methods. 

 

7.4.1.2 Data Cleaning 

Sensor data often contains outliers or erroneous readings that can 

negatively impact analysis. In this stage, heart rate, temperature, humidity, 

and PM2.5 data were cleaned by removing extreme outliers that deviated 

from expected ranges for patient environments. This study employed an 

Interquartile Range IQR-based statistical technique for anomaly detection, 

a common and effective approach in statistical analysis(Vinutha et al., 

2018). First, the first quartile (Q1) and third quartile (Q3) of the data were 

calculated to determine the interquartile range ( IQR =  Q3 −  Q1 ). 

Following standard practice, data points below 𝑄𝑄1 –  1.5 ∗  𝐼𝐼𝑄𝑄𝑅𝑅 or above 

Q3 +  1.5 ∗  IQR were identified as anomalies and subsequently removed 

to maintain data integrity and ensure analytical accuracy(Barbato et al., 

2011). The IQR-based method effectively captures data distribution and 

variability, making it well-suited for detecting anomalies across diverse 

environments(Cho et al., 2024). The cleaned dataset was then prepared for 

further aggregation. 

  

7.4.1.3 Data Aggregation 

Sensor data aggregation: In this stage, the daily sensor data was 

aggregated to generate representative features for each day. 

Specifically, the median values of heart rate, temperature, humidity, 

and PM2.5 were calculated to capture the central tendency of each 

day’s data while minimizing the influence of temporary 

fluctuations(Weisberg, 1992). For each variable 𝑋𝑋, the median was 

calculated as: 
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Median(X) = �
𝑥𝑥(𝑛𝑛+1)/2                𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑑𝑑𝑑𝑑
𝑥𝑥𝑛𝑛/2 + 𝑥𝑥(𝑛𝑛/2+1)

2
   𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛

 

where 𝑛𝑛 represents the number of data points collected throughout 

the day for that specific variable (e.g., heart rate, temperature, 

humidity, or PM2.5). 

Additionally, the number of times the patient used the inhaler each 

day was recorded as 𝑈𝑈, representing the total daily usage, with a 

maximum of two uses per day. For classification purposes, 

adherence was defined as meeting the prescribed usage of exactly 

two times per day(Abdelrahim, 2010). If the patient met this criterion 

(𝑈𝑈=2), it was labeled as 1 (adherent). If the patient used the inhaler 

fewer than twice per day (𝑈𝑈 <2), it was labeled as 0 (non-adherent), 

as shown in the formula below: 

Adherence Label = �1,     if  U = 2
0,     if  U < 2 

Emotional data aggregation: In addition to the sensor data, 

patient-reported emotional experiences were collected using the 

Emocard, which offers eight different emotional categories. To 

simplify the analysis and prepare the data for machine learning, 

these eight categories were grouped into four quadrants based on 

valence (pleasantness) and arousal levels (Desmet et al., 2016). 

Figure 7.6 provides a visual representation of these quadrants, 

illustrating how each emotional category is mapped. Each quadrant 

represents a combination of these dimensions and includes the 

following: 

 Quadrant 1: High Arousal, Positive Emotion 

Includes categories: Excited Neutral, Excited Pleasant 
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Encoded as: 1 

 Quadrant 2: High Arousal, Negative Emotion 

Includes category: Excited Unpleasant 

Encoded as: 2 

 Quadrant 3: Low Arousal, Negative Emotion 

Includes categories: Calm Unpleasant, Average Unpleasant  

Encoded as: 3 

 Quadrant 4: Low Arousal, Positive Emotion 

Includes categories: Calm Pleasant, Average Pleasant, Calm 

Neutral  

Encoded as: 4 

This encoding method consolidates the emotional data into broader 

categories, making it more manageable and suitable for machine 

learning analysis. 
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Figure 7. 6: Emotional data aggregation. 

 

7.4.1.4 Data Classification 

The classification problem in this study focuses on classifying daily 

inhaler adherence behaviors based on aggregated sensor and 

emotional data. Various machine learning algorithms were 

employed, including: (i) Logistic Regression, (ii) Support Vector 

Machine (SVM), (iii) Random Forest, (iv) Random Tree, (v) Naive 

Bayes, (vi) Decision Tree (J48), and (vii) Multiple Layer 

Perceptron (MLP).  

Logistic Regression: A linear model used for binary and multi-

class classification. It estimates probabilities using a logistic 

function and is effective for problems where the relationship 

between input features and the target is approximately linear. The 

formula for logistic regression is: 

𝐵𝐵(𝑦𝑦 = 1|𝑥𝑥)  =  1 / 1 +  𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛽𝛽₀ +  𝛽𝛽₁𝑥𝑥₁ + . . . + 𝛽𝛽ₙ𝑥𝑥ₙ)) 



224 

 

Where 𝐵𝐵(𝑦𝑦 = 1|𝑥𝑥) represents the probability that the outcome 𝑦𝑦 is 

1 given the input features 𝑥𝑥, 𝛽𝛽₀ is the intercept, and 𝛽𝛽₁,…, 𝛽𝛽ₙ are 

the coefficients associated with each input feature. 

Support Vector Machine (SVM): A supervised learning model 

that seeks to find the optimal hyperplane that maximizes the margin 

between different classes. The SVM can handle non-linear 

boundaries by using kernel functions, such as the radial basis 

function (RBF). The decision function for SVM is: 

𝑖𝑖(𝑥𝑥)  =  𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛(𝑤𝑤^𝑇𝑇 𝑥𝑥 +  𝑏𝑏) 

Where 𝑤𝑤 is the weight vector, 𝑥𝑥 is the input feature vector, and 𝑏𝑏 is 

the bias term. The sign function determines the class label. 

Random Forest: An ensemble learning method composed of 

multiple decision trees. Each tree is trained on a bootstrapped 

subset of the dataset, and the final prediction is made by majority 

voting across all trees. The formula for a Random Forest classifier 

is: 

𝑖𝑖(𝑥𝑥)  =  (1/𝑇𝑇) 𝛴𝛴 ℎₜ(𝑥𝑥) 

Where 𝑇𝑇 is the number of trees, and ℎₜ(𝑥𝑥) represents the prediction 

made by the 𝑡𝑡-th tree. 

Random Tree: The formula for a Random Tree is used to predict 

the output by summing the indicator functions of the regions 𝑅𝑅ᵢ 

where the input 𝑥𝑥 belongs: 

𝑦𝑦 =  ∑𝐼𝐼(𝑥𝑥 ∈  𝑅𝑅ᵢ) 𝑦𝑦ᵢ 

Where 𝐼𝐼(𝑥𝑥 ∈  𝑅𝑅ᵢ)  is an indicator function that checks whether the 

input 𝑥𝑥 falls into the region 𝑅𝑅ᵢ , and 𝑦𝑦ᵢ is the predicted class label 

for that region. 
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Naive Bayes: A probabilistic classifier based on Bayes' theorem 

with the assumption that features are conditionally independent 

given the class label. It is known for its simplicity and effectiveness 

in high-dimensional data, especially in cases like text classification. 

𝐵𝐵(𝑦𝑦|𝑥𝑥₁, . . . , 𝑥𝑥ₙ)  ∝  𝐵𝐵(𝑦𝑦) 𝛱𝛱 𝐵𝐵(𝑥𝑥ᵢ|𝑦𝑦) 

Where 𝐵𝐵(𝑦𝑦|𝑥𝑥₁, . . . ,𝑥𝑥ₙ)  is the posterior probability of class 𝑦𝑦 given 

the features 𝑥𝑥₁, . . . ,𝑥𝑥ₙ, 𝐵𝐵(𝑦𝑦) is the prior probability of the class, and 

𝐵𝐵(𝑥𝑥ᵢ|𝑦𝑦) is the likelihood of each feature given the class. 

Decision Tree (J48): The decision tree algorithm builds a tree 

structure where each node represents a feature and each branch 

represents a decision rule. J48, an implementation of the C4.5 

algorithm, splits nodes based on normalized information gain and 

handles both continuous and categorical data. The information gain 

in J48 is calculated using the entropy of the dataset before and after 

the split. Entropy is a measure of the randomness or impurity in the 

dataset, and it is represented as follows: 

𝐼𝐼(𝐷𝐷)  =  − ∑ 𝑒𝑒ᵢ 𝑙𝑙𝑜𝑜𝑠𝑠₂(𝑒𝑒ᵢ) 

Where 𝑒𝑒ᵢ is the proportion of instances in class 𝑖𝑖. 

Information gain is then calculated by comparing the entropy of the 

dataset before the split and the weighted entropy of the branches 

after the split. The attribute that maximizes the information gain is 

selected for splitting at each node. This recursive process continues 

until all instances are classified or a stopping criterion is met. 

Multiple Layer Perceptron (MLP): A type of feedforward 

artificial neural network consisting of input, hidden, and output 

layers. MLP uses backpropagation for learning and can model 

complex non-linear relationships in the data. 

𝑖𝑖(𝑥𝑥)  =  𝜎𝜎(𝑊𝑊₂ ∗  𝜎𝜎(𝑊𝑊₁𝑥𝑥 +  𝑏𝑏₁)  +  𝑏𝑏₂) 
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Where 𝑊𝑊₁ and 𝑊𝑊₂ are the weight matrices, 𝑏𝑏₁ and 𝑏𝑏₂ are the bias 

terms, and 𝜎𝜎 is the activation function (e.g., sigmoid or ReLU). 

The classifiers were implemented using the Weka software (version 

3.9.6) provided by the University of Waikato.  

 

7.4.2 Results 

To evaluate the classifiers, a ten-fold stratified cross-validation 

procedure was employed. Given the imbalance in the dataset, with 

187 instances of completed inhaler usage and 93 instances of 

incomplete usage, an imbalanced class handling approach was 

necessary. Imbalanced classes, which are common in real-world 

applications, can negatively impact classifier performance due to a 

tendency to favor the majority class. 

In this study, the Synthetic Minority Over-sampling Technique 

(SMOTE) was applied to address this imbalance. SMOTE is an 

over-sampling method that generates synthetic samples for the 

minority class by interpolating between existing instances. It was 

chosen over an under-sampling approach to avoid losing potentially 

useful data from the majority class. For SMOTE implementation, 

the parameter specifying the percentage of synthetic instances 

created was set to 100%, effectively doubling the number of 

minority class samples. The number of nearest neighbors used for 

generating synthetic samples was set to 5, which is the default 

parameter of the SMOTE algorithm and was not optimized in this 

study. 

The classification results demonstrated that applying SMOTE 

effectively balanced the class distribution, resulting in improved 

performance for most classifiers. Ten classifiers were evaluated 

using the selected feature set, and the confusion matrix generated 



227 

 

from the ten-fold cross-validation is presented in Table 7.6. 

Table 7. 6: Confusion matrix of different classifiers. 
Classifier Classified as a b Kappa 

LR a 178 8 0.8928 b 12 175 

SVM a 176 10 0.8392 b 20 167 

RF a 174 12 0.8713 b 12 175 

RT a 167 19 0.8284 b 13 174 

NB a 178 8 0.8713 b 16 171 

J48 a 172 14 0.8606 b 12 175 

MLP a 178 8 0.8820 b 14 173 

Additionally, the classifiers were compared based on several 

metrics, including accuracy (Accu), true positive (TP) rate, false 

positive (FP) rate, precision (PPV), F1-score (F), and the area under 

the receiver operating characteristic (ROC) curve (AUC), as 

summarized in Table 7.7. 

Table 7. 7: Evaluation of the classifiers in terms of different metrics. 

Classifie
r 

Evaluation metrics, % 
Acc

u TP FP PP
V F AU

C 

LR 94.6 94.
6 

5.
4 94.7 94.

6 98.7 

SVM 92.0 92.
0 

8.
0 92.1 92.

0 92.0 

RF 93.6 93.
6 

6.
4 93.6 93.

6 98.4 

RT 91.4 91.
4 

8.
6 91.5 91.

4 91.7 

NB 93.6 93.
6 

6.
4 93.6 93.

6 97.6 

J48 93.0 93.
0 

7.
0 93.0 93.

0 96.2 

MLP 94.1 94.
1 

5.
9 94.1 94.

1 98.1 

Based on the evaluation metrics summarized in Figure 7.7, Logistic 

Regression achieved the best overall performance for this dataset. 

Logistic Regression obtained the highest accuracy (94.6%), TP rate 

(94.6%), precision/PPV (94.7%), F-measure (94.6%), and the highest 
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AUC value (98.7%), indicating excellent classification ability. These 

results suggest that Logistic Regression is the most suitable classifier 

for predicting daily inhaler adherence in this study. 

 

Figure 7. 7: Bar diagram showing accuracy (%), AUC (%), and FP rate 

(%) of different classifiers. 

The feature selection process was conducted using Weka, with 

InfoGainAttributeEval as the attribute evaluator and Ranker as the 

search method to rank attributes by importance (see Figure 7.8). 

The evaluation was performed using the full training set, which 

allows for a comprehensive assessment of attribute importance 

across the entire dataset. This approach was chosen to capture the 

complete distribution of data, reflecting the key influencing factors 

in the observed environment. 

Results indicate that emotional experience and air quality (PM2.5) 

are the two most significant attributes influencing patients' daily 

inhaler adherence. Emotional data, encoded by grouping based on 

valence (pleasantness) and arousal levels, revealed distinct patterns 

in adherence behavior. Analyzing the distribution of inhaler usage 
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across different emotional states reveals that high-arousal positive 

emotions are associated with a high proportion of inhaler usage 

cases, while low-arousal negative emotions predominantly consist 

of non-usage cases. For low-arousal positive emotions, there is a 

balanced distribution with a slightly higher proportion of non-usage 

cases. Furthermore, Spearman correlation analysis identified a 

statistically significant positive correlation between PM2.5 levels 

and inhaler usage (Spearman’s ρ = 0.515, p < 0.001), suggesting 

that higher PM2.5 levels are moderately associated with increased 

adherence. The consistency between the InfoGain ranking and the 

Spearman correlation results supports the robustness of PM2.5 as a 

key environmental factor in influencing adherence. 

 

Figure 7. 8: Feature importance. 

 

 

7.5 Discussion 

7.5.1 Usability Evaluation of XIAOXI 

The current XIAOXI system demonstrates strong usability and 

acceptance among both patients and HCPs. The Chatbot Quality 

and Technology Acceptance evaluation showed high scores across 

key dimensions such as naturalness, information delivery, 
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interpretability, and technology acceptance, with no significant 

differences between HCPs and patients. Additionally, the SUS 

scores averaged 83.25 for patients and 88 for HCPs, both well 

above the industry standard benchmark(Kadariya et al., 2019) , 

indicating positive perceptions of the system's usability and 

experience. Users appreciated the intuitive design, clear feedback 

mechanisms, and personalized interactions. The chatbot's natural 

and empathetic communication style received particular praise, 

aligning with previous research emphasizing the importance of 

conversational agents in enhancing patient engagement(Aggarwal et 

al., 2023; Z. Chen et al., 2020; Chowdhury & Haque, 2023). 

XIAOXI's empathetic, personalized feedback effectively engages 

patients and enhances their comprehension of health data. The 

metaphorical interfaces are not only engaging and visually 

appealing but also protect user privacy through abstract imagery, 

disguising sensitive health information and addressing 

psychological needs. In our study, patients appreciated that even if 

someone glimpsed their screen, the nature of the information was 

not immediately apparent, thus preserving their privacy. This 

observation aligns with research suggesting that privacy 

management should be systematically integrated into intervention 

system designs, considering cognitive aspects (e.g., aesthetics and 

comprehensibility) as well as psychological aspects (e.g., privacy 

and comfort)(Ackerman & Mainwaring, 2005; Al Ameen et al., 2012).  

For example, Wu et al. (2021) emphasized the importance of 

privacy in telepresence interface design for older adults by 

incorporating specific features into the 'InTouch' UI. These 

privacy-enhancing elements included controls to restrict certain 

rooms from the telepresence robot, such as blocking access to 

private areas like bedrooms. Inspired by this, future iterations of 

XIAOXI could incorporate features like data anonymization, role-
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based access control, and user-adjustable privacy settings to 

provide users with more control over their information and enhance 

their overall sense of security(Ataei et al., 2018; Cavoukian, 2012). 

These features would not only safeguard user data but also align 

with individual privacy preferences, fostering greater user trust and 

adoption. 

Despite the high usability ratings from HCPs, it is important to note 

that these evaluations were based on their perception of the system 

as used by patients, not necessarily as a tool for their own clinical 

practice. Balancing the needs of both HCPs and patients is critical 

for ensuring the system's effectiveness and widespread 

adoption(Morgan et al., 2015; Pakianathan et al., 2024). HCPs 

acknowledged that XIAOXI has the potential to be integrated into 

clinical healthcare systems, allowing them to access patient data 

more effectively. However, a crucial consideration is whether 

XIAOXI can be seamlessly incorporated into existing healthcare 

infrastructures without increasing the workload of HCPs(Ye, 2021).  

Potential barriers include compatibility with current health 

information systems, data security concerns, and the risk of 

information overload, which could disrupt HCPs' decision-making 

processes(Pakianathan et al., 2024). Applying progressive 

disclosure—a design principle where only essential information is 

shown initially, with additional details available upon request—

could help minimize cognitive load for HCPs(Springer & Whittaker, 

2018). The primary goal should be to integrate XIAOXI's features 

into Electronic Health Record (EHR) systems in a manner that 

supports clinical workflows while reducing cognitive strain(Windle 

et al., 2021). Such design improvements would enable HCPs to 

access actionable insights without additional data entry burdens, 

aligning with effective clinical decision support principles 

(Hoffmann et al., 2020; Horsky et al., 2012).  
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7.5.2 Effectiveness of the XIAOXI in Enhancing Adherence 

The 28-day controlled experiment involving 20 participants—10 in 

the experimental group using XIAOXI and 10 in the control 

group—demonstrated that the XIAOXI system significantly 

improved adherence among asthma patients. This improvement 

was particularly evident in the increase in TAI scores within the 

experimental group. 

A key strength of the XIAOXI system lies in its ability to integrate 

real-time feedback with traditional adherence tracking methods 

such as the TAI questionnaire. The TAI provides a valuable 

snapshot of overall patient behavior over a set period(Muneswarao et 

al., 2021; Plaza et al., 2016), but it may overlook daily variations in 

adherence(Schoenwald & Garland, 2013; Shi et al., 2010). In contrast, 

XIAOXI enables day-to-day tracking, offering users immediate 

feedback and progress reports through its chatbot interface. This 

enhances the precision of adherence monitoring and provides 

timely interventions through reminders, effectively preventing 

lapses in medication usage. 

The combination of subjective patient-reported adherence (via TAI) 

and objective sensor-based data from XIAOXI—such as inhaler 

usage frequency and technique—creates a more comprehensive 

view of patient behavior(Linn et al., 2011; Shi et al., 2010). Notably, 

XIAOXI's ability to continuously monitor inhaler technique, 

including medication loading, inhalation angle and duration, 

represents a significant advancement over traditional clinical 

assessments, which are typically limited to specific time points 

during clinical visits. Continuous monitoring allows for the 

detection of real-world behaviors and habitual errors that may be 

missed in controlled clinical settings(Normansell et al., 2017). 
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Qualitative feedback from post-experiment interviews further 

supports the effectiveness of XIAOXI. Participants reported that 

real-time feedback and environmental monitoring not only 

enhanced their confidence in using the inhaler but also helped them 

maintain a sense of control over their treatment. The system's 

motivational support, combined with daily adherence reports, 

reduced uncertainty and added structure to their medication 

routines. Although cultural beliefs about drug toxicity were not 

entirely altered during the intervention, XIAOXI helped patients 

better understand the benefits of consistent inhaler use, thereby 

reducing the likelihood of missed doses. 

These findings suggest that while short-term interventions can 

positively influence adherence behaviors, addressing deeply 

ingrained cultural beliefs may require longer-term efforts(Shahin et 

al., 2019). Incorporating belief-related theories, such as the HBM or 

SCT, could be effective in designing future interventions that target 

these beliefs. These models emphasize modifying health-related 

behaviors by reshaping perceptions of risks, benefits, and self-

efficacy(Simon, 2013; Y. Zhang & Zhao, 2021; Y. C. Zhao et al., 2022), 

offering a theoretical basis for sustained improvements in 

adherence. Future iterations of XIAOXI could leverage these 

theoretical frameworks to drive more sustainable behavioral 

changes and deeper cultural shifts in adherence. 

 

7.5.3 Performance of Machine Learning Models in 

Classifying Daily Inhaler Usage as an Adherence Behavior 

The machine learning-based classification of daily inhaler usage—

specifically identifying whether patients fully completed their 

inhaler usage or partially/completely missed it—using retrospective 
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data collected by the XIAOXI system, provided valuable insights 

into patient adherence behaviors. In this study, daily inhaler usage 

completion was treated as a primary behavioral indicator of 

adherence, making this classification task directly relevant to 

understanding patient adherence patterns. 

Among the classifiers evaluated, Logistic Regression (LR) 

demonstrated the highest overall performance, achieving superior 

results in accuracy, true positive rate, precision, F-measure, and the 

area under the ROC curve (AUC). These findings align with 

previous studies that highlight LR's effectiveness in datasets 

characterized by relatively clear linear relationships and moderate 

dimensionality(Bae et al., 2022; Tsang et al., 2022; Xiong et al., 2023). 

The robust performance of LR in this study likely stems from its 

capability to effectively model linear relationships between 

predictor variables and binary outcomes, making it particularly 

effective for well-defined binary adherence classification tasks(Bae 

et al., 2022; Eguchi et al., 2022; Kumamaru et al., 2018). 

A key innovation in this study was the inclusion of emotional data, 

which was processed using quadrant encoding. This method 

categorized emotional experiences based on their valence 

(pleasantness) and arousal levels(Gerdes et al., 2010). Compared to 

previous adherence studies that primarily focused on demographic 

and clinical data, integrating emotional data provided novel insights 

into patient behavior, emphasizing emotional states as critical but 

previously underexplored predictors of adherence. The results 

revealed that low-arousal negative emotions (e.g., calm 

unpleasantness) were strongly correlated with incomplete or missed 

inhaler usage, suggesting that patients experiencing low levels of 

arousal may lack the motivation to maintain daily adherence 

routines. These findings are consistent with psychological theories 

linking low-arousal negative emotions to reduced action or urgency, 
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potentially leading to neglect in following prescribed 

routines(Bodenhausen, 1993; Boekaerts, 2010).  

In contrast, environmental factors, particularly PM2.5 levels, 

exhibited a positive correlation with adherence. Patients were more 

likely to follow inhaler usage guidelines when pollution levels were 

elevated, likely due to increased symptom awareness or heightened 

concern about environmental triggers. This behavior is supported 

by previous research indicating that poor air quality exacerbates 

asthma symptoms, prompting patients to use their inhalers more 

consistently as either a preventive or reactive measure(Delfino et al., 

2002; Tiotiu et al., 2020). 

These findings underscore the importance of adopting a multi-

dimensional approach to understanding daily inhaler usage as a 

specific, measurable adherence behavior. Future iterations of the 

classification model could integrate additional adherence-related 

factors identified from the theoretical framework in Study 1, such 

as patient ability, device usability, and cultural beliefs, to develop 

more holistic models that fully capture the complexities of 

inhalation adherence behaviors. For instance, patient ability could 

be evaluated through functional assessments, such as lung function 

tests or inhaler knowledge evaluations, to capture physical and 

cognitive capabilities relevant to proper inhaler usage(J. R. Lee et al., 

2021; Usmani, 2019). Furthermore, device usability could be 

assessed using patient-reported outcomes regarding ease of use, 

handling, and maintenance of inhaler devices(Dal Negro et al., 2019). 

Cultural beliefs could be quantified through surveys evaluating 

attitudes toward medication(Shahin et al., 2019). Expanding the 

dataset to include these dimensions would enable the development 

of more comprehensive and holistic classification models that 

better capture the full range of factors influencing inhaler usage 

completion. 
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Although this analysis was retrospective, classifying daily inhaler 

usage based on previously collected data, the high accuracy 

achieved underscores the potential of sensor-based monitoring 

combined with emotional data to effectively identify adherence 

risks and understand patient behavior patterns in asthma and COPD 

populations. This retrospective classification validates the 

effectiveness of machine learning algorithms, particularly Logistic 

Regression, in distinguishing between adherent and non-adherent 

behaviors. This not only provides critical insights into patient 

adherence patterns but also informs future real-time adherence 

monitoring and proactive intervention strategies. 

However, the retrospective design implies that predictive 

performance in prospective, real-world settings may differ. Future 

research should thus focus on the prospective application of these 

validated models, transitioning from retrospective analysis to real-

time detection and timely support for incomplete or missed inhaler 

usage. This transition would mark a significant step toward 

proactive health management, enabling early intervention and 

potentially reducing the risk of exacerbations and hospitalizations 

in asthma and COPD patients. 

 

 

7.6 Conclusion 

 

This chapter presented the key findings on the usability of the 

XIAOXI system, its effectiveness in supporting patient inhalation 

adherence, and the application of machine learning models for 

classifying daily inhaler usage based on retrospective data. The 
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usability evaluation demonstrated high acceptance among both 

patients and HCPs, particularly emphasizing the system's engaging 

interface design, intuitive user experience, and real-time feedback 

capabilities. These features contributed to a positive user 

experience, fostering confidence and promoting consistent 

adherence to inhalation therapy. 

The integration of sensor-based monitoring with traditional 

adherence questionnaires enabled a comprehensive evaluation of 

daily inhaler usage, providing precise identification of completed 

versus incomplete inhaler usage events. This multi-dimensional 

monitoring approach allowed for real-time assessments, 

empowering users to understand their own adherence behaviors and 

make timely adjustments. 

Among the classifiers evaluated, LR achieved the highest overall 

performance, demonstrating strong accuracy, true positive rate, 

precision, F-measure, and AUC. These results validate the potential 

of machine learning methods, particularly LR, to effectively 

distinguish between days with completed inhaler usage and days 

with incomplete or missed usage. The high classification accuracy 

highlights the feasibility of using relatively simple, interpretable 

models for adherence monitoring, aligning with the need for 

practical and understandable solutions in clinical settings. 

Future research should incorporate additional influencing factors 

identified in earlier studies—such as patient ability, device usability, 

and cultural beliefs—to enhance model comprehensiveness. 

Moreover, expanding sample sizes and conducting prospective 

validations will be crucial for transitioning from retrospective 

classification to real-time adherence monitoring, ultimately 

improving the effectiveness and scalability of intervention systems 

like XIAOXI. 
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Chapter 8 Discussion 

 

 

8.1 Introduction and Aims 

 

The overall aim of this thesis was to investigate how sensor-based 

interventions, guided by HFE principles, can enhance patient 

adherence to inhalation therapy for chronic respiratory conditions 

such as asthma and COPD. This study primarily focuses on three 

key areas: 1) understanding the HFE factors influencing patient 

adherence to inhalation therapy, 2) designing and developing a 

sensor-based intervention system, and 3) assessing the 

effectiveness of the system in supporting patient adherence, and 

classifying adherence behaviors through data-driven approaches. 

These themes are explored in turn within this discussion: 

1. Application and evaluation of the Patient Adherence to 

Inhalation Therapy Work System Model, 

2. The role of HFE in enhancing adherence to inhalation therapy, 

and 

3. The strengths and challenges of data-driven approaches to 

supporting adherence. 
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8.2 Application and Evaluation of the Patient 

Adherence to Inhalation Therapy Work System 

Model 

 

8.2.1 Framework and Application of the Patient Adherence 

to Inhalation Therapy Work System Model 

The SEIPS 2.0 model provides a comprehensive HFE framework 

for systematically understanding and optimizing patient safety and 

adherence behaviors within healthcare systems(Martinez et al., 2017; 

Werner et al., 2020). Building upon this foundation, the Patient 

Adherence to Inhalation Therapy Work System Model was 

developed to specifically address the challenges associated with 

adherence to inhalation therapy, particularly for patients with 

asthma and COPD(Aldan et al., 2022; Ayele & Tegegn, 2017; Gutiérrez 

et al., 2017; Khdour et al., 2012; Monteiro et al., 2021). While this 

model is informed by the SEIPS 2.0 framework(Holden et al., 2013), 

it incorporates adapted dimensions—Person, Task, Tool, Physical 

Environment, and Culture & Social—designed to capture the 

complex interactions influencing patient adherence behaviors in the 

context of inhalation therapy.  

The model identifies nine key factors influencing adherence, 

including patient ability, emotional experience, task type, 

frequency and flexibility of use, inhaler type and usability, daily 

environment, cultural beliefs, and social stigma. These factors 

interact to shape patients' adherence behaviors and outcomes. 

Notably, this model highlights specific adherence barriers, such as 

emotional experiences(A. Agarwal & Meyer, 2009; Bonito et al., 2013; 

De Angeli et al., 2020), environmental influences(Bamashmoos et al., 
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2018; Dong et al., 2019; Fong & Fong, 2011), and cultural 

beliefs(Andrews & Jones, 2009; Emilsson et al., 2011; Fischer et al., 

2018; Md Hatah et al., 2015), which emerged as particularly 

significant in this study. Addressing these barriers requires targeted 

interventions aimed at improving adherence by directly confronting 

emotional challenges, adapting to environmental factors, and 

countering cultural misconceptions related to inhaler use. 

The Person-Task-Physical Environment structure used in deploying 

the XIAOXI system was derived from an extensive synthesis of 

literature on sensor-based interventions for chronic respiratory 

diseases (e.g., Bowler et al., 2019; Chakraborty et al., 2023; Hasegawa et 

al., 2023; Pradeesh et al., 2022). This synthesis revealed that sensor 

data could be effectively categorized into these three dimensions: 

Person (patient behavior and physiological data), Task (inhaler 

usage and adherence patterns), and Physical Environment (external 

conditions like air quality and temperature).  

Interestingly, this structure aligns with the theoretical framework 

developed through semi-structured interviews, which similarly 

identified Person, Task, and Physical Environment as critical 

dimensions in patient adherence to inhalation therapy(Ma et al., 

2023). This alignment further underscores the model's practical 

relevance. Organizing sensor data within these dimensions allows 

for a comprehensive approach to identifying adherence challenges 

and designing tailored interventions.  

Furthermore, the model's alignment with the "Person-Task-Physical 

Environment" structure enhances its capacity not only to support 

real-time monitoring and deliver personalized interventions but also 

to evaluate their effectiveness in addressing patient-specific needs 

and improving inhalation therapy outcomes(M. A. Barrett et al., 2017; 

A. H. Y. Chan, Stewart, et al., 2015; Hesso et al., 2020). The model 

facilitates thorough evaluation by examining whether the 
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interventions lead to improvements across the core dimensions of 

the work system. By systematically assessing these dimensions pre- 

and post-intervention, the model provides a comprehensive view of 

whether the interventions have successfully mitigated identified 

barriers and enhanced overall adherence behaviors. 

 

8.2.2 Evaluation and Validation of the Patient Adherence to 

Inhalation Therapy Work System Model 

The Patient Adherence to Inhalation Therapy Work System Model 

was developed to address specific adherence challenges in the 

context of inhalation therapy for asthma and COPD patients. This 

model draws from the SEIPS 2.0 framework but extends it by 

focusing on factors that uniquely influence patient adherence. The 

implementation of the XIAOXI system provided an opportunity to 

evaluate how the model’s core dimensions—Person, Task, Tool, 

Physical Environment, and Culture & Social—were applied in 

practice and whether they effectively addressed adherence barriers. 

Person Dimension: The Person dimension in the Patient 

Adherence to Inhalation Therapy Work System Model integrates 

patient ability and emotional experience, both of which played a 

crucial role in supporting patient self-management during 

inhalation therapy. In this study, heart rate sensors were deployed 

to monitor patients' physiological conditions, providing real-time 

insights into their physical state during inhaler use. Additionally, 

patients conducted self-assessments of their disease control via 

questionnaires, enabling them to better understand and track their 

health status. The XIAOXI system also provided disease-related 

knowledge, which patients reported as valuable for improving their 

understanding of their condition.  
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Notably, patients indicated that the combination of physiological 

monitoring, self-assessment tools, and educational content gave 

them a clearer sense of control over their condition, which they 

perceived as beneficial for adherence. These findings highlight that 

tools designed to support physical and cognitive abilities are 

valuable for empowering patients in managing their disease(R. M. 

Anderson & Funnell, 2010; Bravo et al., 2015). Furthermore, the scope 

of the Person dimension could be expanded by incorporating 

additional physiological indicators, such as blood oxygen levels 

(SpO2) and lung function metrics, which are particularly relevant 

for asthma and COPD management(Dierick et al., 2022; Hale et al., 

2023; Pradeesh et al., 2022; Raji et al., 2016). Integrating these 

measures would offer patients a more comprehensive 

understanding of their physiological state, potentially enhancing 

self-management practices and improving adherence to inhalation 

therapy. 

This study highlighted the significant impact of emotional 

experience on patient adherence to inhalation therapy. A key 

contribution was the inclusion of emotional data, collected using 

the Emocard questionnaire and categorized through quadrant 

encoding based on valence (pleasantness) and arousal levels(Gerdes 

et al., 2010). The findings showed that low-arousal negative 

emotions were strongly linked to non-adherence, suggesting that 

such emotional states may reduce motivation for regular inhaler use. 

Additionally, the XIAOXI system provided encouraging feedback 

during inhaler use, which helped reduce the boredom often 

associated with the repetitive inhalation process, making patients 

feel more engaged. This emphasizes the need to integrate emotional 

considerations into intervention designs to improve 

adherence(Bukstein, 2016; Norman, 2007; Rekaya et al., 2020).  

Although the Emocard provided useful insights, future research 
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could enhance emotional monitoring by incorporating more 

advanced multimodal techniques, such as facial expression 

recognition, voice tone analysis, or physiological electrical signals 

(M. G. Calvo & Nummenmaa, 2016; Moridis & Economides, 2012; Stikic 

et al., 2014). For example, one study by Daly et al. (2015) 

demonstrated that galvanic skin response (GSR) can effectively 

measure users' emotional states, as it was used to verify the 

intended affective responses induced by an affectively driven music 

generation system. These techniques could enable real-time 

emotional assessments and dynamic adjustments to feedback, 

potentially improving engagement and adherence. 

Task Dimension: The Task Dimension encompasses two key 

components: Task Type and Frequency and Flexibility. Task Type 

focuses on inhaler technique guidance, inhaler usage monitoring, 

and reminders provided by the system to ensure proper use of the 

device. In this study, the XIAOXI system played a central role by 

delivering feedback and reminders based on monitored usage data. 

Specifically, the system captured critical steps of the inhalation 

process, such as inhaler orientation and duration of use, helping 

patients adjust their technique according to these key factors. 

The Frequency and Flexibility component is reflected in the 

system’s provision of daily and weekly adherence reports, offering 

patients a comprehensive overview of their adherence to inhalation 

therapy across all dimensions of the Patient Adherence to 

Inhalation Therapy Work System Model. These reports covered not 

only inhaler usage but also included feedback on critical factors 

such as patient ability, emotional experience, and environmental 

influences. The daily reports allowed patients to track their 

progress in real-time, identifying missed doses or deviations from 

their prescribed routine. Additionally, the system provided a 

weekly summary of adherence patterns, allowing patients to reflect 
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on longer-term trends and performance. Patients responded 

positively to these reports, noting that they helped integrate 

inhalation therapy more smoothly into their daily lives. This 

flexible, comprehensive feedback system empowered patients to 

proactively adjust their routines, addressing any barriers to 

adherence and reinforcing their self-management efforts(R. M. 

Anderson & Funnell, 2010; M. A. Barrett et al., 2017; Bravo et al., 2015; 

Cadel et al., 2021). 

However, while the system effectively monitored key aspects of 

inhaler use, the current IMU sensors did not capture the entire 

inhalation process, focusing mainly on steps such as inhaler 

orientation(Hasegawa et al., 2023). Future developments could 

enhance the Task Dimension by integrating additional sensors, such 

as flow sensors and sound sensors, to monitor the full inhalation 

process and provide more detailed feedback on technique(Dierick et 

al., 2022; O’Dwyer et al., 2016). For example, Taylor et al. (2018) 

developed an audio-based method to estimate inhalation flow 

profiles, using sensors to remotely monitor patient inhaler 

technique. This approach demonstrated high accuracy and potential 

clinical benefits for assessing inhalation parameters such as peak 

inspiratory flow and inspiratory capacity, contributing to improved 

monitoring of patient adherence to inhalation therapy. This would 

allow patients to receive more comprehensive guidance on their 

inhalation performance, potentially further improving adherence. 

Moreover, the feedback on inhaler technique provided by the 

system is not real-time. Future iterations could explore the use of 

real-time feedback mechanisms, such as audio-visual feedback, to 

guide patients during inhaler use(A. H. Y. Chan, Stewart, et al., 2015; 

O’Dwyer et al., 2016). Real-time feedback could offer immediate 

corrections, reinforcing proper inhaler usage and ensuring a more 

engaging and responsive user experience(Chakraborty et al., 2023; C.-
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Y. Huang et al., 2018; Kamei et al., 2022). Additionally, while the 

current adherence reports are patient-focused, future iterations 

could develop a customized panel for HCPs. This HCP panel could 

present adherence-related data tailored to the specific needs of 

HCPs, allowing them to monitor patient adherence more closely 

and intervene when necessary(Hill et al., 2020; Phillips et al., 2011). 

By integrating key adherence metrics and patient progress 

visualizations, this dashboard could help identify areas requiring 

additional guidance or intervention, further strengthening the 

support provided by the system(Valero-Ramon et al., 2023; J. C. Wong 

et al., 2018). 

Tool Dimension: The Tool Dimension encompasses two key 

aspects: Type of Inhalers and Usability of Inhalers. The Type of 

Inhalers refers to patient preferences for different inhaler designs, 

while Usability of Inhalers involves patients’ assessments of the 

device’s ease of use and their overall satisfaction with the therapy. 

In this study, patients were given questionnaires to self-evaluate 

their experiences with both aspects of the inhaler. While no single 

inhaler design can fully meet all patients' needs, the XIAOXI 

system provided valuable support in bridging the usability gaps 

inherent in inhalers.  

One key outcome from the effectiveness evaluation was the role 

that XIAOXI played in making the inhalation process more 

engaging and less monotonous for patients. By offering 

personalized feedback, encouraging messages, and interactive 

features, XIAOXI improved patients’ perceptions of their inhaler 

experience. Patients felt more supported and connected to their 

treatment, which mitigated some of the frustrations associated with 

the repetitive nature of inhalation therapy. This suggests that the 

usability of the intervention system—in this case, XIAOXI—can 

enhance the overall experience of inhalation therapy, even when 
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the physical design of the inhaler itself remains unchanged(Hentati 

et al., 2021; Nesvåg & McKay, 2018). XIAOXI’s interactive and 

responsive features helped to address some of the emotional and 

cognitive barriers that patients face, making the treatment more 

tolerable and even enjoyable. By creating a positive feedback loop 

that tackled both emotional and cognitive barriers, XIAOXI 

increased patients' engagement with their therapy, ultimately 

leading to higher satisfaction with the treatment process(Morrison, 

2015; Patrick et al., 2016).  

The enhanced usability of the system translated into better 

adherence, as patients were more likely to stick to their prescribed 

regimens due to the consistent support provided by XIAOXI. While 

these findings were observed within the 28-day intervention period, 

the long-term effects of XIAOXI’s usability on patient adherence 

remain an open question(Ngwatu et al., 2018; Velardo et al., 2017; 

Woods et al., 2023). It is unclear whether the system’s ability to 

enhance the inhalation experience can be sustained over extended 

periods. Further research is needed to determine whether these 

positive effects continue over time, and whether prolonged use of 

the system could lead to consistent improvements in adherence and 

patient satisfaction(Vrijens et al., 2008; Zwikker et al., 2014). 

Conducting longitudinal studies would be essential to 

understanding whether XIAOXI’s usability continues to offer 

similar benefits or whether the novelty of the system wears off, 

potentially requiring new strategies to maintain patient engagement 

and adherence. Future developments could also explore additional 

features that enhance usability, such as adaptive interfaces or 

interactive tutorials that guide patients through the inhalation 

process step by step(Fedele et al., 2018; C.-Y. Huang et al., 2018; N. Li 

et al., 2018). These enhancements could further solidify the system's 

role in supporting long-term adherence by continuously engaging 
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patients in their therapy routine. 

Physical Environment Dimension: The Physical Environment 

Dimension in the Patient Adherence to Inhalation Therapy Work 

System Model centers on daily living conditions, particularly the 

impact of temperature, humidity, and air quality on patient 

adherence. In this study, the XIAOXI system monitored these 

environmental factors in real-time, providing patients with critical 

insights into how their surroundings might influence their need for 

inhalation therapy. Machine learning analysis of the sensor data 

revealed that air quality, specifically PM2.5 levels, had a 

significant impact on adherence. Patients were more likely to use 

their inhalers when air quality worsened, demonstrating the direct 

connection between environmental conditions and symptom 

management in asthma and COPD patients(Delfino et al., 2002; 

Tiotiu et al., 2020). 

While temperature and humidity did not show a strong correlation 

with adherence in this analysis, these factors may still play an 

indirect role by affecting comfort and convenience during inhaler 

use. For instance, extreme temperatures or high humidity levels 

may reduce patients' comfort during physical activity or limit their 

willingness to go outdoors, indirectly impacting their routine and 

inhaler use(Eschenbacher et al., 1992; H. C. Lam et al., 2016). It is 

worth noting that the study was conducted during the spring season, 

which may explain the lack of significant variation in temperature 

and humidity. Future studies conducted during more extreme 

weather conditions, such as summer heat or heavy humidity, could 

provide deeper insights into how these factors might influence 

patient adherence.  

Although XIAOXI currently monitors indoor environmental factors, 

particularly within home settings, future iterations could expand its 

capabilities to include other environments where patients spend 
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significant time, such as workplaces or outdoor areas(Dales et al., 

2004; Guarnieri & Balmes, 2014). Extending the system to monitor 

outdoor environmental factors like ozone levels, pollen counts, or 

other allergens, as well as improving the accuracy of indoor 

measurements for ventilation and air pollution, would provide a 

more comprehensive understanding of how different environments 

affect adherence(W. Anderson et al., 2001; d’Amato et al., 2020). This 

broader scope of monitoring could enable the system to deliver 

more personalized and context-specific recommendations, better 

addressing environmental triggers that influence respiratory 

conditions(Darrow et al., 2012; White et al., 1994). 

Culture and Social Dimension: Under the Culture and Social 

Dimension, both Cultural Beliefs and Social Stigma play 

substantial roles in shaping patient adherence behaviors. Many 

patients in this study held traditional beliefs, such as "All medicine 

has poison to some degree," which negatively impacted their 

approach to inhaler use and overall adherence. To address these 

challenges, the XIAOXI system provided educational content 

aimed at helping patients better understand the necessity and 

benefits of consistent inhaler use. Although these deeply ingrained 

beliefs are not easily changed, the system supported patients in 

recognizing the value of regular adherence, even if complete shifts 

in mindset were not achieved during the intervention period. This 

indicates that while Cultural Beliefs remain a strong influence, 

educational tools and consistent feedback can still help mitigate 

their impact(Simon, 2013; Vaughn et al., 2009). 

However, addressing such deeply rooted beliefs requires a long-

term approach that extends beyond short-term interventions(Shura et 

al., 2011; Vaughn et al., 2009). Future research should focus on 

designing sustained educational programs and interventions that 

provide consistent, tailored guidance over extended periods(Gold & 
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McClung, 2006). This could include reinforcing positive medication 

behaviors through regular educational content, periodic check-ins 

with HCPs, and community-based initiatives aimed at gradually 

shifting traditional views(K.-J. Son et al., 2019). With ongoing 

dialogue and targeted interventions, future systems could help 

guide patients toward more health-positive beliefs, reducing the 

influence of cultural misconceptions on treatment 

adherence(Araújo-Soares et al., 2018; Brooks et al., 2019). 

In terms of Social Stigma, the XIAOXI system incorporated 

persuasive elements such as peer comparisons, self-efficacy 

assessments, and achievement recognition to counteract 

psychological barriers associated with inhaler use in public or 

perceived dependence on medication. These features boosted 

patient confidence and reduced the negative impact of social stigma, 

allowing patients to focus more on their treatment without feeling 

judged. Patients responded positively to these elements, 

highlighting the value of creating a supportive and encouraging 

environment to alleviate stigma-related barriers(De Gennaro et al., 

2020; Grossman et al., 2017; Kelders et al., 2012; Latalova et al., 2014). 

Further research could explore integrating additional persuasive 

elements into the XIAOXI system or similar platforms to enhance 

patient engagement. Techniques such as gamification, reward 

systems, or social support networks could make the treatment 

process more interactive and motivating, helping to sustain patient 

interest over time(De Simoni et al., 2021; Miller et al., 2016; Sardi et al., 

2017). In particular, social support could foster peer-based 

communities where patients share experiences, find encouragement, 

and reduce feelings of isolation(DiMatteo, 2004; Fernandes et al., 

2018). Optimizing these persuasive features to resonate with diverse 

patient populations could enable future interventions to be more 

effectively tailored to individual needs, leading to improved 
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adherence outcomes and greater patient satisfaction(Ali 

Alkhoshaiban et al., 2019; Alwashmi et al., 2021; L. J. Anderson et al., 

2020). 

 

 

8.3 The Role of HFE in Enhancing Adherence to 

Inhalation Therapy 

 

8.3.1 Integrating HFE into the Design and Development of 

Drug-Device Combination Inhalers 

HFE is essential throughout the lifecycle of DDCPs like inhalers, 

where precise and repeated user interactions are required to ensure 

proper device operation(Hegde, 2013; Leiner et al., 2015). 

Incorporating HFE principles into the design of inhalation devices 

enhances usability, reduces error, and aids patient compliance by 

lowering the cognitive load and frustration often associated with 

complex device designs(Barber et al., 2005; Holden et al., 2021). 

Patients using inhalers must perform specific actions, such as 

medication loading or inhalation, which can be particularly 

challenging for individuals managing long-term respiratory 

conditions like asthma and COPD. These patients may experience 

poor lung capacity, difficulty coordinating inhalation with the 

device, or limited hand strength or dexterity, making precise and 

consistent use of the inhaler problematic(García-Cárdenas et al., 2012; 

Giner et al., 2020; Ma et al., 2023).  

By applying HFE principles in the early stages of the design 

process, designers and researchers can identify and address 
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usability issues, ensuring that the resulting devices are more 

intuitive and meet the diverse needs of users(Leiner et al., 2015). For 

instance, Smyth et al. (2018) demonstrated that integrating HFE 

into inhaler design significantly reduces technical errors by 

simplifying device operation and improving overall patient 

adherence, which is crucial for the success of inhalation therapy. 

This user-centered approach not only improves safety and 

effectiveness but also increases the likelihood that patients use their 

inhalers correctly and consistently(Barber et al., 2005; Carayon & 

Wooldridge, 2020). 

Despite these advances, certain patient populations, particularly 

those with severe cognitive or physical impairments, may continue 

to face challenges in using inhalers effectively(H. Y. Lee et al., 2021; 

Lexmond et al., 2014). While HFE can address many usability 

concerns, some complexities in device design persist. This 

underscores the need for future inhaler designs to adopt more 

personalized approaches, potentially incorporating adaptive 

technologies or simplified mechanisms to accommodate a broader 

range of patient needs(de Boer et al., 2017; Hickey, 2013). 

Additionally, as regulatory guidelines increasingly emphasize the 

integration of HFE in medical device development—particularly 

for DDCPs—manufacturers are required to ensure that their 

devices are not only compliant but also designed with the patient 

experience in mind(Beaman & Wallace, 2009; Medicines & Healthcare 

products Regulatory Agency, 2017; Singh et al., 2023). This growing 

recognition of HFE’s role reflects its capacity to address both 

ergonomic and cognitive challenges, ultimately improving patient 

outcomes and adherence(J. Anderson et al., 2010; Carayon et al., 2006; 

Carayon & Wooldridge, 2020). 

 

8.3.2 Integrating HFE into Understanding Patient 
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Interactions with Inhalers and Digital Adherence Systems 

HFE not only informs the design of inhalers but also provides 

crucial insights into patient behavior, particularly how patients 

interact with both their devices and digital intervention systems. In 

this study, the application of HFE methodologies—specifically the 

SEIPS 2.0 model—enabled the identification of nine key factors 

influencing patient adherence. However, emotional factors—such 

as anxiety related to device noise and boredom stemming from the 

repetitive nature of inhalation therapy—were identified through the 

HFE framework as significant contributors to non-adherence, 

insights that might have been overlooked without this structured 

approach(Ma et al., 2023). These findings underscore the critical role 

of HFE in not only understanding physical and cognitive challenges 

but also recognizing the emotional dimensions that shape patient 

behavior(Reinares-Lara et al., 2019; J. Turner & Kelly, 2000). For 

example, XIAOXI’s feedback mechanisms were specifically 

designed to mitigate boredom and alleviate anxiety, making the 

inhalation process more engaging and emotionally supportive for 

patients. This user-centered design approach, grounded in HFE 

principles, contributed to a more positive experience, which in turn 

encouraged better adherence. 

Beyond patient-device interaction, HFE plays a fundamental role in 

understanding how patients engage with digital adherence systems, 

such as the XIAOXI system. During the development of XIAOXI, 

participatory workshops were instrumental in aligning the system’s 

design with the real-world needs of patients and HCPs(Abdolkhani 

et al., 2020; Z. Chen et al., 2020; Davies et al., 2020; Davis et al., 2018; 

Donetto et al., 2015). End-users actively contributed to the design of 

key features, feedback mechanisms, and overall functionality, 

ensuring that the system effectively addressed patient preferences 

and challenges. 
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To facilitate this process, Personas and Scenarios were employed 

during the workshops to identify typical patient profiles and usage 

contexts, ensuring that the system was both intuitive and relevant 

(Lopez-Lorca et al., 2014; Massanari, 2010; Nißen et al., 2022). These 

insights informed the development of features that enhanced 

usability, making the system more user-friendly and aligned with 

patients' daily routines. For future research, these workshops could 

be expanded to include a wider variety of stakeholders, such as 

family members or inhaler manufacturers, whose perspectives 

could further enhance the system’s design and usability(Lingg & 

Lütschg, 2020; Norris et al., 2017; Vogel et al., 2013). Including these 

additional stakeholders could not only optimize patient adherence 

but also contribute to a broader ecosystem of support, involving 

family care, manufacturer insights, and HCP engagement. 

Evaluating these systems using structured HFE methodologies is 

equally critical. Tools such as the SUS and the TAM questionnaires, 

alongside interview guides informed by these models, provided 

both qualitative and quantitative insights into how patients 

interacted with the XIAOXI system(Borsci et al., 2022; Holden & 

Karsh, 2010; Holmes et al., 2019). Integrating questionnaire data with 

qualitative feedback allowed for a comprehensive understanding of 

how the system supported patient adherence and identified areas for 

further refinement(Bravo et al., 2015; R. A. Calvo et al., 2023). Future 

research could benefit from employing additional HFE evaluation 

methods, such as Cognitive Task Analysis (CTA) to explore how 

patients make decisions about their therapy, and Failure Mode and 

Effects Analysis (FMEA) to identify potential points of failure 

within the system(DeRosier et al., 2002; Holden et al., 2020). 

Expanding the range of HFE tools used in the evaluation process 

would provide a deeper, more nuanced understanding of how 

digital intervention systems like XIAOXI can be improved to better 

support adherence over time. 
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8.4 The Strengths and Potential Challenges of 

Data-Driven Approaches 

 

8.4.1 Data Collection 

The effectiveness of data-driven adherence interventions relies 

heavily on the collection of complete and accurate data from 

multiple dimensions and sources(Akhoundi & Valavi, 2010; Gravina et 

al., 2017; Kadariya et al., 2019). In the XIAOXI system, the "Person-

Task-Physical Environment" framework is employed to collect data 

across different dimensions. For the Person dimension, heart rate 

data is collected to monitor patients' physiological states during 

inhalation therapy, while the Task dimension includes data on 

inhaler usage, capturing critical aspects of the inhalation process. 

The Physical Environment dimension tracks temperature, humidity, 

and air quality to assess how environmental conditions influence 

adherence. While this multi-dimensional framework has proven 

effective, there are opportunities to expand each dimension to 

enhance the comprehensiveness of data collection. For example, 

the Person dimension could be enriched with additional 

physiological indicators such as lung function and SpO2, which are 

essential for understanding patient health during inhalation 

therapy(Hale et al., 2023; Pradeesh et al., 2022; Siddiqui & Morshed, 

2018). Emotional experiences could also be measured through 

physiological electrical signals, such as Galvanic Skin Response 

(GSR) or Photoplethysmography (PPG), enabling real-time 

monitoring of emotional states(Udovičić et al., 2017). For the Task 
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dimension, integrating optical sensors could monitor inhaler 

maintenance and cleanliness by detecting residue buildup, offering 

a more comprehensive understanding of task performance(J. Wang 

& Dong, 2020). In the Physical Environment dimension, adding 

sensors for pollen or allergens could provide deeper insights into 

environmental factors affecting adherence(Hui et al., 2021).  

Beyond sensor-based data, other dimensions of the Patient 

Adherence to Inhalation Therapy Work System Model, such as the 

Tool and Culture & Social dimensions, also require data collection 

through specific types of questionnaires. For instance, the XIAOXI 

system employed usability questionnaires for the Tool dimension to 

assess patient experiences with inhaler design and ease of use. The 

Culture & Social dimension included self-efficacy assessments to 

understand how cultural beliefs and social stigma influenced 

adherence. These methods provided valuable insights into patient 

behavior and perceptions; however, limitations in sample size 

underscore the need for further research to better integrate these 

dimensions into comprehensive, data-driven classification models 

that can enhance the understanding and management of adherence 

behaviors(Koesmahargyo et al., 2020; Y.-J. Son et al., 2010; Zakeri et al., 

2022). 

Furthermore, the reliability of sensor data is paramount to effective 

adherence monitoring. Since no single sensor is flawless, data 

fusion, which involves integrating data from multiple sources, is 

crucial for improving data validity and robustness across key 

indicators(Akhoundi & Valavi, 2010; Cui et al., 2022; Gui et al., 2015). 

For instance, while the current system uses an IMU to capture 

specific steps in the inhalation process, integrating advanced 

sensors like flow sensors or sound sensors could provide a more 

comprehensive understanding. These sensors could measure 

airflow dynamics, including the rate, consistency, peak inspiratory 
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flow (PIF), and inhalation duration, helping to detect issues such as 

suboptimal speed or incomplete breaths(Dierick et al., 2022; Hale et 

al., 2023; O’Dwyer et al., 2016). Addressing these gaps could 

significantly improve the system's ability to monitor adherence 

accurately and provide actionable feedback. 

Additionally, addressing privacy and security concerns in data 

collection is crucial to ensure patient trust and willingness to 

engage with the system(Masood et al., 2018; Yi et al., 2015). 

Implementing end-to-end encryption and adhering to GDPR 

standards can demonstrate a strong commitment to data 

security(Barati et al., 2019). Furthermore, transparent communication 

about data handling practices, encryption protocols, and 

compliance with privacy regulations can alleviate concerns, thereby 

encouraging more effective data collection and system 

engagement(Motti & Caine, 2015). Ensuring robust security 

measures not only protects patient information but also strengthens 

confidence in the system, supporting long-term engagement and 

adherence. 

 

8.4.2 Data Processing 

Data processing is a critical component of data-driven adherence 

interventions, transforming raw sensor data into actionable insights. 

In the XIAOXI system, patient behavior is analyzed to generate 

timely recommendations, but future capabilities could be 

significantly enhanced with improved data handling and advanced 

computational techniques(Bhat et al., 2021). A foundational step in 

the data processing pipeline is data preprocessing, which ensures 

that raw sensor data is clean, structured, and ready for 

analysis(Abate et al., 2014; Famili et al., 1997). In this study, data 

cleaning primarily focused on removing outliers to maintain data 
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integrity. After cleaning, data aggregation was performed, where 

sensor data was summarized by calculating the daily median values 

to represent typical usage patterns(MacNeill et al., 2012). Emotional 

data, on the other hand, was processed separately by grouping it 

into four quadrants based on valence and arousal levels(Gerdes et al., 

2010). This structured approach allowed for a meaningful analysis 

of both sensor-based and emotional data, providing deeper insights 

into adherence behavior.  

Looking ahead, preprocessing could incorporate additional methods 

such as data imputation for missing values, advanced outlier 

detection techniques like clustering-based methods, and feature 

scaling to normalize sensor data, enhancing the accuracy of 

machine learning-based classification(Azar et al., 2022; Jiang et al., 

2010). Further improvements might include time-series 

decomposition, which can help identify underlying trends and 

patterns in adherence behavior, providing a clearer picture of how 

patient usage evolves over time(Wiemken et al., 2019). These 

enhancements would not only improve data quality but also support 

more robust predictive modeling for adherence monitoring. 

In terms of classification, advanced machine learning algorithms 

could further improve the predictive performance of the XIAOXI 

system. In this study, the Logistic Regression algorithm achieved 

the best results for classifying patient adherence behaviors. Its 

effectiveness is largely attributed to its ability to model clear linear 

relationships between predictor variables and binary outcomes, 

making it particularly well-suited for adherence classification 

tasks(Bae et al., 2022; Kanyongo & Ezugwu, 2023; Tsang et al., 2022). 

While Logistic Regression demonstrated strong performance, there 

remains significant potential to explore more advanced models, 

such as Recurrent Neural Networks (RNNs) and Convolutional 

Neural Networks (CNNs), which are particularly adept at handling 
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time-series analysis and recognizing complex patterns across 

multiple sensor inputs(Gu et al., 2021; Mathivanan et al., 2024). These 

models could capture intricate temporal dependencies in patient 

behavior, potentially leading to even greater classification accuracy. 

Additionally, reinforcement learning could be employed to 

adaptively personalize interventions in real time. Through deep 

reinforcement learning, the system could continuously optimize its 

recommendations based on real-world feedback, supporting long-

term adherence and responding dynamically to changes in patient 

behavior(Abdellatif et al., 2021). Furthermore, integrating ensemble 

methods such as gradient boosting machines could enhance 

classification by combining the strengths of different algorithms, 

reducing errors, and increasing model robustness(Mateo et al., 2021; 

Yin et al., 2024). These collective improvements in data processing 

and analysis could significantly advance the XIAOXI system's 

ability to support patient adherence through more precise 

monitoring and adaptive intervention strategies. 

 

8.4.3 Feedback Mechanisms 

Feedback mechanisms are a critical element of data-driven 

adherence interventions, directly engaging patients by offering 

tailored insights. In the XIAOXI system, feedback is provided 

through multiple channels, including adherence reports, reminders, 

and chatbot interactions, all designed to encourage patients to 

remain engaged with their therapy. These mechanisms help patients 

monitor their progress and foster a sense of control over their 

treatment(Ivers et al., 2012; Scott et al., 2016). 

Effective feedback presentation is crucial from a cognitive 

perspective, as patients need to comprehend and trust the data to be 
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motivated to engage actively with their treatment(Faiola et al., 2015; 

Park et al., 2022). In this study, adherence data is primarily delivered 

through infographics. However, as the complexity of the data 

increases—especially with inputs from various sensor types, time 

scales, and user demographics—it becomes necessary to explore 

more refined methods of presenting this information(Cajamarca et al., 

2020; Theis et al., 2017).  

Different dimensions of data, such as long-term versus short-term 

adherence patterns or environmental versus physiological factors, 

may require distinct presentation strategies to optimize 

comprehension and usability without increasing cognitive load(E. 

W. Anderson et al., 2011; Faiola et al., 2015). Ensuring that feedback 

remains clear and intuitive is essential so that patients are not 

overwhelmed by excessive information. While this study primarily 

utilized graphic and text-based feedback, future iterations of the 

system could explore alternative feedback modalities. For example, 

multi-sensory engagement could be enhanced by using light or 

sound alerts to convey important information intuitively(Boll et al., 

2010). Additionally, feedback mechanisms could extend beyond 

software interfaces, such as chatbots, to include hardware interfaces 

like display screens or sound alerts integrated into the sensor casing, 

providing direct prompts via the device itself(A. H. Y. Chan, Stewart, 

et al., 2015; Houghton et al., 2012; Wafaie et al., 2023). 

From a psychological and emotional perspective, the study 

integrated persuasive elements such as achievement recognition 

and peer comparison to motivate adherence(Grossman et al., 2017; 

Kelders et al., 2012). While the current system personalizes feedback 

based on patient behavior, future mechanisms could further 

leverage personalization by incorporating patients' cultural beliefs, 

communication preferences, and emotional status(De la Fuente-

Martos et al., 2018; Palumbo, 2016). Adapting feedback to match a 
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patient’s cultural context or emotional state could significantly 

enhance engagement. For instance, adjusting messages based on a 

patient's mood or motivational level would ensure that the content 

remains relevant and supportive. Drawing on behavior change 

models like the Fogg Behavior Model, feedback can be designed to 

trigger action when motivation and ability are aligned(Hamper et al., 

2016; Mukhtar et al., 2012). Additionally, to maintain long-term 

engagement, feedback strategies should evolve with patient 

progress. For patients demonstrating high adherence, feedback 

could transition towards celebrating milestones or reducing 

reminders, while those struggling might benefit from more 

motivational nudges and personalized goal-setting(Grossman et al., 

2017; Kelders et al., 2012; A. Xu et al., 2014; J. Zhang et al., 2020). Over 

time, the system could shift from relying on external motivators to 

fostering intrinsic motivation, promoting a sense of autonomy and 

mastery over their therapy(Klasnja et al., 2015; McCarthy et al., 2022). 

Privacy and security are equally critical to patients’ willingness to 

engage with the system(Al Ameen et al., 2012; Ataei et al., 2018). In 

this study, the use of metaphorical visualizations in the 

infographics was well received, as they protect patient privacy by 

making the data less immediately recognizable to others while still 

understandable to the user(Cox, 2006; Y.-N. Li et al., 2017). This 

feature reassures patients that their information remains 

confidential. Future developments could further enhance privacy by 

exploring new ways to present sensitive data in abstract or 

metaphorical forms, ensuring that only the intended users can 

easily interpret it(Abouelmehdi et al., 2018; Yang et al., 2019). 

Additionally, integrating privacy-enhancing features such as secure 

data-sharing options and anonymized reports would further 

reinforce patients’ confidence in the system’s ability to safeguard 

their data(Ali et al., 2023; Cripps & Standing, 2012; Holm et al., 2021). 

This focus on privacy, combined with intuitive and personalized 
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feedback, has the potential to significantly enhance patient 

adherence by building trust and engagement with the intervention 

system. 

 

 

8.5 Conclusion 

 

This chapter discussed the application and evaluation of the Patient 

Adherence to Inhalation Therapy Work System Model through the 

XIAOXI system, highlighting how the dimensions of Person, Task, 

Tool, Physical Environment, and Culture & Social influence patient 

adherence. Analysis of sensor data and Emocard assessments using 

machine learning identified PM2.5 levels and emotional states as 

key predictors, underscoring the need to address environmental and 

emotional barriers in intervention design.  

The integration of HFE principles enhanced usability and patient 

engagement, with participatory design ensuring alignment with 

patient needs. Data-driven feedback mechanisms provided 

personalized adherence insights, while metaphorical visualizations 

protected privacy without sacrificing clarity. These design choices 

promoted trust and engagement, reinforcing the importance of 

intuitive and secure data representation.  

Future research should focus on expanding multimodal monitoring 

to capture more comprehensive physiological and environmental 

data, alongside longitudinal studies to understand long-term 

adherence patterns. Strengthening privacy measures and exploring 

adaptive feedback technologies could further enhance patient 

support. These improvements would build on the current findings 
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to optimize adherence and therapeutic outcomes in chronic 

respiratory disease management. 
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Chapter 9 Conclusion 

 

 

9.1 Introduction and Aims 

 

Adherence to inhalation therapy is of utmost importance for the 

effective management of chronic respiratory disorders such as 

asthma and COPD, significantly impacting long-term health 

outcomes. Despite this, adherence rates remain suboptimal due to 

several challenges, including device usability, environmental 

factors, and emotional barriers. This research aimed to address 

these barriers by integrating HFE principles with sensor-based 

interventions to develop more effective strategies for improving 

adherence. By adopting a multidisciplinary approach—combining 

real-time sensor monitoring and HFE design principles—this study 

identified key factors influencing patient adherence and developed 

innovative, personalized interventions. The research emphasized 

the importance of tailoring interventions to patient-specific needs, 

enabling timely support and fostering a deeper understanding of 

patient adherence behavior. In this chapter, the research findings 

are synthesized, the central research questions of this thesis are 

addressed, and the main contributions and areas for future research 

are outlined. 
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9.2 Contribution to Knowledge 

 

This research makes substantial contributions across four key areas: 

theoretical, methodological, technological, and practical. At the 

core of these contributions is the advancement of theoretical 

understanding through the adaptation and extension of the SEIPS 

2.0 framework. By developing the Patient Adherence to Inhalation 

Therapy Work System Model, this study provides a context-

specific theoretical foundation that systematically captures the 

multifactorial factors influencing patient adherence in inhalation 

therapy, with a particular focus on asthma and COPD management. 

The following sections demonstrate how each research question 

contributed to these four areas, emphasizing how theoretical 

insights were not only developed but also operationalized and 

validated through iterative design, system implementation, and 

real-world evaluation. This integrated approach underscores the 

dynamic interplay between theory and practice, ensuring that the 

proposed framework contributes both to academic knowledge and 

to practical solutions in digital health interventions. 

 

9.2.1 HFE Factors Influencing Patient Adherence to 

Inhalation Therapy 

RQ1. What are the key factors influencing patient adherence to 

inhalation therapy? 

Study 1 (Chapter 4) explored the HFE dimensions impacting 

patient adherence to inhalation therapy. Through semi-structured 

interviews with asthma and COPD patients, as well as HCPs, this 
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study identified specific factors shaping adherence behaviors, 

providing critical insights to inform the design of effective, patient-

centered interventions. The analysis revealed nine key factors, 

categorized within five core domains adapted from the SEIPS 2.0 

model: Person, Task, Tool, Physical Environment, and Culture & 

Social. These domains comprehensively capture the multifaceted 

influences on patient adherence, including patient abilities, 

emotional experiences, task type, frequency and flexibility of use, 

inhaler type and usability, daily environment, cultural beliefs, and 

social stigma. 

By applying a systems-based perspective through SEIPS 2.0, this 

study advanced theoretical understanding of adherence behaviors 

within the context of inhalation therapy. Notably, the research 

extended the original framework by explicitly integrating emotional, 

environmental, and cultural factors—dimensions often 

underrepresented in existing adherence models(Ma et al., 2023). This 

led to the development of the Patient Adherence to Inhalation 

Therapy Work System Model, a context-specific theoretical 

framework that offers a holistic lens for analyzing adherence 

challenges in chronic respiratory care. This adapted model 

contributes to theory by demonstrating how HFE principles can be 

tailored to address the complexities of DDCPs, providing a 

replicable structure for future research across similar healthcare 

contexts. It emphasizes that effective adherence interventions must 

move beyond technical considerations to encompass behavioral, 

environmental, and socio-cultural dimensions. 

Building on this theoretical foundation, the study also offers 

practical guidance for designing personalized interventions. By 

addressing emotional experiences, environmental constraints, and 

culture-based beliefs, these interventions can deliver 

comprehensive, patient-centered support to enhance adherence in 
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real-world settings. This approach underscores the necessity of 

considering HFE-driven design principles to reduce barriers and 

improve patient engagement in inhalation therapy. 

Detailed results from this study have been published in: 

Ma, J., Sun, X., Wang, X., Liu, B., & Shi, K. (2023). Factors 

Affecting Patient Adherence to Inhalation Therapy: An Application 

of SEIPS Model 2.0. Patient preference and adherence, 17, 531–

545.  

 

9.2.2 Design of Sensor-Based Interventions to Support 

Patient Adherence to Inhalation Therapy 

RQ2: How can sensor-based interventions be designed to support 

patient adherence to inhalation therapy? 

Studies 2 (Chapter 5) and 3 (Chapter 6) presented a systematic, theory-

driven process for designing and developing a sensor-based intervention 

system aimed at improving patient adherence to inhalation therapy. 

Guided by the Patient Adherence to Inhalation Therapy Work System 

Model, derived from SEIPS 2.0, this process translated conceptual 

insights into practical system functionalities through participatory 

workshops and iterative development. 

The core system functions: The first phase of the participatory workshop 

process was crucial in conceptualizing the core functions of the sensor-

based intervention system. Using Personas and Scenarios, key user 

archetypes and typical use cases were identified. This phase was grounded 

in the Patient Adherence to Inhalation Therapy Work System Model, 

developed in Study 1, which provided a structured framework for 

addressing adherence across five dimensions: Person, Task, Tool, 

Physical Environment, and Culture & Social. By considering the nine 
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identified factors influencing adherence, this phase ensured that the 

system's design would directly meet the real-world needs and preferences 

of patients and HCPs. It also laid the foundation for subsequent 

development stages, resulting in a user-centered system that can be easily 

integrated into patients’ daily routines to enhance adherence to therapy. 

System Components and Sensor Deployment: The second step built 

upon these initial insights, emphasizing the development of a robust 

system architecture specifically designed for sensor-based data capture. 

Using the Person-Task-Physical Environment framework detailed in 

Chapter 2, sensor deployment strategically targeted three critical 

dimensions: physiological states (Person), inhaler usage patterns (Task), 

and environmental factors (Physical Environment). This structured 

deployment ensured comprehensive monitoring of adherence-related 

metrics. The architecture was systematically organized into three primary 

components—Monitoring, Knowledge & Awareness, and Feedback—

collectively embodying a holistic approach informed by theoretical 

principles. Monitoring facilitated real-time tracking across different 

dimensions, Knowledge & Awareness provided personalized educational 

content and self-assessment tools, and Feedback delivered timely, 

personalized reminders, adherence reports, and motivational messaging. 

This comprehensive design ensured that the final intervention addressed 

diverse patient needs, promoting effective and sustained inhalation 

therapy adherence. 

Interface Design Preferences: The final phase of the participatory 

workshops focused on refining the system’s interface based on direct 

feedback from patients and HCPs. Patients expressed a strong preference 

for intuitive visual metaphors, such as the tree infographic, which 

facilitated daily feedback and enhanced engagement. Meanwhile, HCPs 

valued detailed yet clear data presentations, recognizing the importance of 

simplicity and usability in encouraging patient adherence. Based on these 

insights, minor modifications were implemented to enhance visual clarity 
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and simplify long-term feedback reports. These adjustments underscored 

the importance of theory-informed, patient-centered design principles, 

minimizing cognitive load and maximizing usability. 

Architecture and Solution Design: Following the participatory 

workshops, the XIAOXI sensor-based intervention system was fully 

developed, integrating advanced sensor technologies with user-centered 

design principles. The finalized system featured heart rate sensors, IMUs, 

temperature, humidity, and PM2.5 sensors, providing real-time 

monitoring of physiological and environmental conditions. Additionally, 

rigorous laboratory testing and practical sensor casing designs ensured 

durability and seamless integration into daily routines. Deployed via the 

WeChat platform with an intuitive chatbot interface, XIAOXI provided 

real-time feedback, educational resources, and self-assessment tools, 

significantly enhancing patient interaction and user experience. 

Theoretical and Practical Significance of XIAOXI System: In addition 

to its practical functionality, the XIAOXI system embodies core academic 

contributions by operationalizing the Patient Adherence to Inhalation 

Therapy Work System Model and applying HFE principles. It serves as 

both a tangible validation of the theoretical and methodological 

frameworks developed in this study and as a transferable prototype for 

future sensor-based interventions. XIAOXI exemplifies how structured 

adherence factors and user-centered design principles can be effectively 

translated into a practical, functional intervention model, suitable for 

broader applications within inhalation therapy and other DDCP contexts. 

Detailed results from the system design process have been published in: 

Ma, J., Sun, X. (2024) Designing an IoT-based intervention system for 

supporting patient adherence to inhalation therapy. IET Conference 

Proceedings, 2024(18), 8–14. 

Additionally, the “Person-Task-Physical Environment” framework, 
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detailed in Chapter 2 and developed through a comprehensive literature 

review on sensor-based interventions for patient adherence to inhalation 

therapy, has been published in: 

Ma, J., Sun, X., & Liu, B. (2024). A Review of Sensor-Based 

Interventions for Supporting Patient Adherence to Inhalation Therapy. 

Patient Preference and Adherence, 18, 2397–2413. 

 

9.2.3 The Impact of Sensor-Based Interventions on Patient 

Adherence to Inhalation Therapy 

RQ3: How can sensor-based interventions impact patient 

adherence to inhalation therapy? 

Study 4 (Chapter 7) provided a comprehensive evaluation of how 

the XIAOXI system impacted patient adherence to inhalation 

therapy, focusing on both usability and effectiveness from a user-

centered perspective, while also applying advanced analytical 

methods to deepen understanding of adherence behaviors. 

System Usability and Effectiveness: The XIAOXI system, 

grounded in HFE principles and the Patient Adherence to 

Inhalation Therapy Work System Model, was designed to deliver 

real-time monitoring and personalized support for patients with 

asthma and COPD. Usability evaluations demonstrated high 

satisfaction among both patients and HCPs, reflecting the success 

of the system’s user-centered design. Patients reported that the 

intuitive interface and personalized feedback enhanced their 

confidence and understanding of inhaler usage, while HCPs 

highlighted its practicality in supporting consistent adherence. The 

system's effectiveness was further validated through improvements 

in adherence metrics, particularly TAI scores, where patients using 

XIAOXI outperformed those following conventional care. This 
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phase contributes methodologically by demonstrating how an 

integrated, multi-perspective evaluation—combining usability, 

acceptance, and effectiveness—can be applied to assess digital 

health interventions in real-world settings. It also reinforces the 

practical contribution by providing evidence that a theory-informed, 

sensor-based system can meaningfully enhance adherence 

outcomes in chronic respiratory care. 

Machine Learning and Adherence Classification: A key 

methodological innovation of this research was the application of 

machine learning algorithms to retrospectively analyze sensor-

generated environmental data and patient-reported emotional states. 

Using models such as Logistic Regression, the study successfully 

classified daily inhaler adherence behaviors and identified key 

factors associated with non-adherence, particularly PM2.5 levels 

and emotional states. While this classification capability has not yet 

been embedded into the live system, the findings highlight the 

potential for integrating adaptive analytics into future iterations of 

XIAOXI, enabling more proactive and personalized interventions. 

This aspect of the study advances both methodological and 

technological contributions by illustrating how data-driven 

techniques can complement HFE-based system design, offering 

scalable solutions for dynamic adherence monitoring and behavior 

classification. 

By combining a theory-informed design, rigorous evaluation 

methods, and advanced data analytics, this research demonstrates 

how sensor-based interventions can positively impact patient 

adherence to inhalation therapy. The findings not only validate the 

practical effectiveness of the XIAOXI system but also contribute to 

a broader theoretical understanding of how multifactorial 

influences—captured through the Patient Adherence to Inhalation 

Therapy Work System Model—can be systematically 
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operationalized and evaluated in real-world healthcare contexts. 

Furthermore, the application of machine learning illustrates how 

data-driven classification techniques can enhance HFE-based 

intervention design. These contributions position XIAOXI as both 

a functional intervention and a scalable reference model for future 

digital health solutions targeting adherence in chronic disease 

management, effectively bridging theory, methodology, technology, 

and clinical practice. 

 

 

9.3 Limitations of the Research Undertaken 

 

This study provides important insights into how sensor-based 

interventions can support patient adherence to inhalation therapy. 

However, several limitations should be acknowledged. 

First, while the study incorporated physiological data (heart rate), 

environmental data (PM2.5 levels, temperature, and humidity), 

inhaler usage data (angle variations), and daily patient-reported 

emotional experiences, these measures do not capture all potential 

influences on adherence. Critical factors such as self-efficacy and 

health beliefs—though recognized as important—were not 

collected on a daily basis, nor were they integrated into the 

classification models. This limits the comprehensiveness of the 

analysis in understanding the full spectrum of factors affecting 

adherence behavior, potentially overlooking dimensions that 

influence patient engagement and consistency.  

Second, all participants were recruited from a single hospital in 

Ningbo, Zhejiang Province, China. This concentrated geographic 
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focus may limit the generalizability of the findings, particularly for 

broader populations, including those from different cultural 

backgrounds or healthcare settings. Cultural differences, healthcare 

accessibility, and socioeconomic factors are known to impact 

adherence behaviors, and these contextual elements were not fully 

accounted for in this study(Eh et al., 2016; Vaughn et al., 2009). 

Consequently, the results should be interpreted with caution when 

considering more diverse patient populations or international 

healthcare contexts. 

Third, the evaluation of the XIAOXI system's effectiveness was 

conducted over a 28-day period with a relatively small sample size. 

Although the findings indicated positive impacts on adherence, the 

short duration restricts the ability to assess long-term adherence 

behaviors and the sustainability of intervention effects. Adherence 

is inherently dynamic and evolves over time, suggesting that 

longer-term studies are necessary to validate the findings and 

evaluate the system's long-term efficacy(Gold & McClung, 2006; 

Sabaté, 2003). Moreover, the small sample size may have impacted 

the statistical power of the results, potentially limiting the 

robustness of the conclusions, particularly in the context of 

machine learning analysis(Tsang et al., 2022; X.-W. Wu et al., 2020). 

Addressing these limitations in future research could enhance the 

understanding of adherence behaviors and strengthen the evidence 

supporting sensor-based interventions for chronic respiratory 

diseases. 

 

 

9.4 Reliability and Validity 
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This research addressed issues of reliability and validity through 

several key strategies. To ensure the reliability of the findings, 

triangulation was employed(Thurmond, 2001). By utilizing both 

qualitative and quantitative methods—such as combining interview 

data with questionnaire responses—the study validated its results 

through multiple data sources(Zohrabi, 2013). For instance, patient-

reported adherence levels from questionnaires were cross-verified 

with data collected from sensor-based monitoring systems, 

enhancing the overall credibility of the findings and ensuring they 

reflect real-world patient behaviors. 

In addition to triangulation, standardized data collection methods 

were consistently applied across all phases of the research. This 

study utilized a variety of well-established tools, including 

structured interviews and validated questionnaires such as the SUS, 

the TAM, the Emocard, and the TAI measures(Lewis, 2018; 

Muneswarao et al., 2021; Van De Hei et al., 2022; Zenk et al., 2008). 

These methods are widely recognized in HFE and healthcare 

research, ensuring a rigorous approach to data collection. Where 

necessary, slight adjustments were made to align the tools with the 

cultural context of participants, enhancing both the accuracy and 

relevance of the collected data(King et al., 2004; Md Hatah et al., 

2015). 

The research also referenced existing literature to substantiate its 

findings. For example, the challenges identified in patient 

adherence to inhalation therapy were consistent with findings from 

previous studies(Aldan et al., 2022; Bhattacharyya & S Sogali, 2018). 

This alignment between the study’s findings and the established 

body of literature further supports the robustness of the conclusions 

drawn. 
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To enhance the validity of the findings, user validation was 

incorporated throughout the research process. Participants were not 

only involved as subjects but also contributed as informants and co-

designers during the participatory workshops(Abdolkhani et al., 2020; 

Donetto et al., 2015). Their feedback was sought regularly, allowing 

them to verify the accuracy of the system's design and 

implementation. This iterative communication with end-users 

ensured that the interpretations made by researchers accurately 

reflected the experiences and needs of the participants(Baxter et al., 

2015; Slattery et al., 2020). 

Additionally, pilot testing of the XIAOXI system was conducted in 

a laboratory setting prior to the full-scale experiment(Borsci et al., 

2022; Pronovost et al., 2003). Both the software and hardware 

components of the system were tested to confirm that all 

functionalities—such as data collection, real-time monitoring, and 

feedback mechanisms—worked as intended. This step ensured the 

reliability of the tools used during the full experiment and 

minimized the likelihood of technical issues affecting data 

integrity(Soori, 2024). 

 

 

9.5 Future Research 

 

9.5.1 Expanding Sample Diversity and Study Duration 

Future research should aim to broaden participant diversity and 

extend study duration to better capture the long-term impact of 

sensor-based interventions on adherence to inhalation therapy. 
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Although this study employed a robust mixed-methods approach, 

further methodological innovation is needed to systematically 

understand adherence behavior across a wider range of populations, 

timeframes, and medication types. 

One of the primary limitations of this study is its relatively small 

sample size, which may affect the robustness and generalizability 

of the findings. This research focused on participants from 

southeastern China, where cultural beliefs—such as the traditional 

perspective that "all medicines have toxicity to some degree"—

notably influenced adherence behavior. Expanding the sample size 

and incorporating participants from diverse regions and cultural 

contexts, including Western countries and varying socio-economic 

backgrounds, would provide a more comprehensive understanding 

of adherence behaviors across populations. Such diversity would 

enable researchers to assess the impact of cultural and regional 

factors on adherence, offering valuable insights for designing 

interventions that are effective across different settings. 

Additionally, the current study exclusively targeted patients using 

the Symbicort Turbuhaler for inhalation therapy. While this 

focused approach allowed for in-depth analysis of adherence to a 

specific medication, future research should consider broadening the 

scope to include other inhaler types and medications. Adapting the 

XIAOXI intervention system for different inhaler devices would 

allow researchers to evaluate whether the system's benefits extend 

to other forms of inhalation therapy. This expansion would provide 

important insights into the system's scalability and versatility, 

enhancing its utility as a comprehensive tool for supporting 

adherence across various inhalation medications. 

Furthermore, although this study focused on patients with asthma 

and COPD—the most common indications for inhalation therapy—
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inhaled medications are also widely used for managing other 

respiratory diseases such as cystic fibrosis and pulmonary 

infections(Hoo et al., 2016; Maselli et al., 2017). Future research 

should include patients receiving inhalation therapy for a broader 

range of conditions to better assess the generalizability and 

adaptability of sensor-based adherence interventions. Expanding 

the disease scope would provide a deeper understanding of the 

challenges and needs associated with inhalation therapy across 

diverse clinical contexts. 

Finally, adherence to inhalation therapy, particularly for chronic 

conditions like asthma and COPD, involves long-term behavior 

change(Cambach et al., 1999; De Geest & Sabaté, 2003; Van De Hei et 

al., 2023; Velardo et al., 2017). The 28-day study period in this 

research may not have fully captured the dynamics of patient 

adherence. Longer-term studies spanning several months or even 

years are needed to observe how the sustained use of sensor-based 

interventions affects long-term adherence. This would enable 

researchers to assess whether the initial improvements observed 

with the XIAOXI system are maintained over time and to identify 

emerging factors that influence adherence in the long run. 

 

9.5.2 Expanding Data Dimensions and Machine Learning 

for Adherence Classification and Future Prediction 

The integration of sensor-based technologies in this research 

demonstrated significant potential for enhancing patient adherence 

to inhalation therapy. While this study focused primarily on 

classifying adherence behaviors using retrospective data, future 

research could extend these foundations to develop predictive 

models capable of forecasting patient adherence in real-time 

scenarios. Achieving this requires expanding the dimensions of 
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sensor data collection and employing more advanced data analysis 

techniques to improve the precision and efficacy of intervention 

strategies. 

This study leveraged the Person-Task-Physical Environment 

framework, focusing on specific metrics such as physiological 

monitoring (heart rate), environmental conditions (temperature, 

humidity, and PM2.5), and patient interactions with inhalation 

devices (angle variations during usage). However, the full potential 

of this framework can be further realized by expanding data 

collection across all five dimensions of the proposed Patient 

Adherence to Inhalation Therapy Work System Model(Ma et al., 

2023). A broader range of dimensions and metrics would not only 

enhance the comprehensiveness of adherence analysis but also 

support the transition from classification to predictive capabilities, 

enabling proactive and personalized interventions in real-world 

settings.  

Furthermore, data collected from a single type of sensor may be 

inherently limited, as each sensor has its unique strengths and 

weaknesses(Akhoundi & Valavi, 2010; Cui et al., 2022; Gui et al., 2015). 

To address these limitations, employing data fusion—integrating 

data from multiple sensors to cross-reference and validate inputs—

could significantly improve the reliability of adherence monitoring. 

This fusion approach would enhance the robustness of the collected 

data, setting a strong foundation for developing predictive models 

capable of identifying adherence risks before they result in missed 

treatments. 

In addition to sensor data, the XIAOXI chatbot serves as a valuable 

channel for collecting adherence-related information(Brandtzaeg & 

Følstad, 2017; Zumstein & Hundertmark, 2017). The built-in 

questionnaires and patient interactions provide a rich source of 

behavioral data, which, when combined with sensor inputs, could 
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further enhance the accuracy of adherence classification. As larger 

datasets become available, these interactions could be leveraged to 

develop predictive models capable of anticipating non-adherent 

behaviors, allowing for timely interventions. 

While this study utilized machine learning algorithms via Weka to 

classify adherence-related data, future research should explore 

more advanced algorithms, such as deep learning and 

reinforcement learning, which are well-suited for handling large-

scale, complex datasets(Abdellatif et al., 2021; Gu et al., 2021). These 

techniques can capture intricate patterns within multi-dimensional 

data, facilitating not only more precise classification but also real-

time prediction of adherence risks. Moreover, adaptive learning 

systems that continuously improve as more data is accumulated 

could significantly enhance the long-term effectiveness of 

adherence monitoring and intervention strategies(Finkelstein & Jeong, 

2017; Gilbert et al., 2021). These advancements could enable the 

XIAOXI system to move beyond retrospective analysis, evolving 

into a dynamic, predictive intervention platform that proactively 

supports patients in maintaining adherence to inhalation therapy. 

 

9.5.3 Enhancing the User Experience of Digital Health 

Interventions 

Future research should focus on optimizing feedback mechanisms 

and enhancing patient engagement, particularly within sensor-based 

intervention systems for inhalation therapy. Although the current 

study successfully integrated personalized feedback through visual 

and text-based methods, there remains considerable potential to 

further refine these mechanisms to accommodate a broader range of 

user needs, contexts, and emotional experiences. 
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Effective feedback is highly dependent on how data is presented to 

patients. Future research should investigate optimal methods for 

delivering information across different data types (e.g., real-time vs. 

longitudinal trends), various time frames (e.g., daily, weekly, 

monthly), and diverse user groups (e.g., patients vs. HCPs, elderly 

vs. younger users)(De Folter et al., 2014; Faiola et al., 2015; N. Li et al., 

2018; Pandey et al., 2014). Achieving a balance between providing 

comprehensive insights and avoiding cognitive overload is crucial. 

Information must remain engaging and accessible while still 

delivering meaningful insights. Beyond cognitive needs, future 

studies should also explore emotional aspects of feedback, such as 

addressing privacy concerns through metaphorical representations 

that make data less immediately interpretable to others while 

remaining actionable to the user(Abouelmehdi et al., 2018; Ackerman 

& Mainwaring, 2005; Alkhariji et al., 2022). Visual designs that reduce 

patients' anxiety about public data exposure, especially in shared 

family environments or social settings, should also be examined. 

While this study incorporated some persuasive elements like 

motivational messages and peer competition, there is substantial 

room for expanding these strategies to improve long-term 

engagement. Techniques such as gamification, loss aversion, and 

social support have proven effective in other chronic disease 

management contexts (e.g., diabetes, heart disease) but remain 

underexplored in inhalation therapy adherence(A. K. Agarwal et al., 

2021; Fortunato et al., 2019; L. Xu et al., 2022). Future research should 

focus on developing standardized methodologies to evaluate how 

such elements impact adherence, specifically within the context of 

inhalation therapy. Additionally, incorporating feedback loops 

where patients can track their adherence against personalized goals 

or benchmarks could further boost engagement. Empirical testing is 

needed to confirm the efficacy of these enhanced strategies. 
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Currently, feedback in the XIAOXI system relies primarily on text 

and visual representations delivered through a chatbot interface. 

While this approach has proven effective for personalized support, 

future iterations could further enhance user engagement by 

integrating multisensory feedback, such as audio prompts, 

vibrations, or light indicators, to make the system more accessible 

and reduce cognitive load for specific user groups(Devaram, 2020; 

Riener et al., 2017; S. Xu et al., 2020). For example, voice-based 

interactions may be particularly beneficial for patients with reading 

difficulties or visual impairments(Pradhan et al., 2018). These natural 

communication methods could minimize user friction and create a 

more seamless, intuitive experience. Furthermore, auditory or 

tactile feedback could provide real-time notifications for inhaler 

usage, reinforcing adherence without overwhelming users with 

excessive visual data(Sigrist et al., 2013). 

 

 

9.6 Conclusion 

The primary conclusion of this thesis is that sensor-based 

interventions, when guided by HFE principles, can significantly 

enhance patient adherence to inhalation therapy, particularly among 

individuals with asthma and COPD. Through real-time monitoring, 

tailored interventions, and chatbot-based interactions, the XIAOXI 

system effectively supported patient engagement and improved 

adherence behaviors. 

The integration of a chatbot interface proved particularly impactful, 

providing timely, personalized feedback that enhanced the 

accessibility and usability of the intervention. Meanwhile, sensor-

based technologies offered a holistic view of adherence behaviors, 
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capturing inhaler usage patterns, environmental influences, and 

physiological data. The application of machine learning techniques 

enabled effective classification of adherence behaviors, illustrating 

the potential of data-driven methods to monitor and distinguish 

between different adherence patterns. 

Despite these advances, challenges remain. Enhancing data 

visualization, further personalizing intervention strategies, and 

ensuring long-term reliability and scalability are critical areas for 

future development. Addressing these aspects will be crucial to 

promote broader clinical adoption, particularly in chronic 

respiratory disease management. 

As digital health technologies become increasingly integrated into 

healthcare, designing systems that support long-term monitoring, 

ensure secure data management, and foster sustained patient 

engagement will be essential. Future improvements should 

prioritize adaptive feedback mechanisms that dynamically adjust to 

individual patient needs. Sensor-based interventions hold 

substantial potential to transform chronic disease management and 

improve patient outcomes through continuous innovation and 

refinement. 
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Appendix 4A: Interview Protocol for Identifying 

Factors Influencing Adherence to Inhalation 

Therapy 

Patient Interview Protocol 

A. Introductory Questions 

1.Tell me about your understanding/beliefs of inhalation therapy. 

2.How long have you been undergoing inhalation therapy? How do you 

feel about it?  

B. SEIPS Elements Questions 

Person(s): 

1.Can you recall a time when someone (including yourself) made it easier 

for you to adhere to inhalation therapy? 

2.Can you recall a time when someone (including yourself) made it more 

difficult for you to adhere to inhalation therapy? 

Tasks: 

1.Could you please describe your usual process for conducting inhalation 

therapy? 

2.Is there anything in this process that makes adhering to inhalation 

therapy easier? 

3.Is there anything in this process that makes adhering to inhalation 

therapy more difficult? 

Tools and Technology: 

1.How has the tool(device)/technology assisted you in adhering to 



366 

 

inhalation therapy? 

2.How has the tool(device)/technology hindered your ability to adhere to 

inhalation therapy? 

Environment: 

1.What factors in your surrounding environment (e g. home, work etc.) 

make it easier for you to adhere to inhalation therapy? 

2.What factors in your surrounding environment (e g. home, work etc.) 

make it more difficult for you to adhere to inhalation therapy? 

Organization: 

1.Would you be able to describe a time in which the organization (e g. the 

system, the society, etc.) helped you adhere to inhalation therapy? 

2.Would you be able to describe a time in which the organization (e g. the 

system, the society, etc.) hindered you adhere to inhalation therapy? 

Do you have anything you’d like to add before we end? (Special 

experience? Advice for inhaler design?) 

 

HCP Interview Protocol 

A. Introductory Questions 

1.Please tell me what you do in inhalation therapy. 

2.What method(s) do you use to assess if patients are adhering to their 

inhalation therapy? 

B. SEIPS Elements Questions 

Person(s): 
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1.Who do you think can help your patient more easily adhere to inhalation 

therapy？ 

2.Who do you think will prevent your patient from adhering to inhalation 

therapy?  

Tasks: 

1.Have you ever trained/educated your patients on how to use inhalation 

devices?  

If yes 

a. Could you please describe the usual process for training/educating 

patient using their inhaler device?  

b. Is there anything in this process that makes your patient adhering to 

inhalation therapy easier? 

c. Is there anything in this process that makes your patient adhering to 

inhalation therapy more difficult?  

Tools and Technology: 

1.Can you describe any tools/technology that can make it easier for your 

patients to adhere to inhalation therapy? 

2.Can you describe any tools/technology that can make it more difficult 

for your patients to adhere to inhalation therapy?  

Environment: 

1.What factors in your patient's surrounding environment do you think 

make it easier for them to adhere to inhalation therapy? 

2.What factors in your patient's surrounding environment do you think 

make it more difficult for them to adhere to inhalation therapy?  
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Organization: 

1.In your opinion, what kind of organization (e g. the system, the society, 

etc.) could make it easier for patients to adhere to inhalation therapy? 

2.In your opinion, what kind of organization (e g. the system, the society, 

etc.) could make it more difficult for patients to adhere to inhalation 

therapy?  

Do you have anything you’d like to add before we end? (Special 

experience? Advice for inhaler design? Adherence interventions?) 
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Appendix 5A: Adapted TAM Questionnaire 

Please select the response that best reflects your opinion on each 

statement. If you have any additional thoughts or feedback regarding the 

question, feel free to write them in the space provided below each 

statement. 

Perceived Usefulness (PU) Strongly  
Agree     Neutral     Strongly  

Disagree 

1. "Using this interface helps me 
understand patient adherence data 
effectively." 

10 9 8 7 6 5 4 3 2 1 0 

2. "This interface provides 
valuable insights into patient 
adherence." 

10 9 8 7 6 5 4 3 2 1 0 

3. "The data on this interface 
supports my decision-making 
about adherence." 

10 9 8 7 6 5 4 3 2 1 0 

Comments: 

 

Perceived Ease of Use (PEOU) Strongly  
Agree     Neutral     Strongly  

Disagree 
 

1. "The design of this interface 
makes it easy to interpret 
adherence data." 

10 9 8 7 6 5 4 3 2 1 0  

2. "I find this interface 
straightforward to navigate." 10 9 8 7 6 5 4 3 2 1 0  

3. "This interface presents 
adherence data in a clear and 
accessible format." 

10 9 8 7 6 5 4 3 2 1 0  

Comments: 
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Attitude Toward Using (ATU) Strongly  
Agree     Neutral     Strongly  

Disagree 
 

1. "I feel positive about using this 
interface to review adherence 
data." 

10 9 8 7 6 5 4 3 2 1 0  

2. "Viewing adherence data on this 
interface is a pleasant experience." 10 9 8 7 6 5 4 3 2 1 0  

3. "I am satisfied with the way this 
interface displays adherence data." 10 9 8 7 6 5 4 3 2 1 0  

Comments: 

 

 

Behavioral Intention to Use (BI) Strongly  
Agree     Neutral     Strongly  

Disagree 
 

1. "I plan to use this interface 
regularly to check adherence data." 10 9 8 7 6 5 4 3 2 1 0  

2. "I would recommend this 
interface to others for monitoring 
adherence." 

10 9 8 7 6 5 4 3 2 1 0  

3. "I am likely to rely on this 
interface for tracking adherence." 10 9 8 7 6 5 4 3 2 1 0  

Comments: 
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Appendix 6A: XIAOXI System Deployment 

Code 

 

Figure 1: Data structure definition for integration with Tencent Cloud. 
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Figure 2: Database structure and service code. 
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Figure 3: WeChat and chatbot integration. 
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Figure 4: WeChat integration API. 
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Appendix 6B: Interface Design of the 

“Knowledge” Menu 

 

Figure 5: Inhaled medication storage methods. 
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Figure 6: How to use inhaled medication. 
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Figure 7: Disease management tips. 
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Figure 8: Lung function exercise methods. 
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Figure 9: Clarify the misconception. 
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Appendix 6C: Questionnaires in the XIAOXI 

System 

6C-1: Sample Disease Knowledge Test 

Please read each statement carefully and select whether you believe it to 

be true or false based on your current knowledge. 
12-ITEM CONSUMER ASTHMA KNOWLEDGE 
QUESTIONNAIRE (CQ)  TRUE FALSE 

1. You can become addicted to asthma medications if you use them all the 
time.      

2. An asthma action plan can prevent hospitalizations due to asthma.      
3. When you know that you are going to be exposed to something that 
triggers your asthma, you should take the recommended medication just 
before exposure.  

    

4. When you know that you are going to be exposed to something that 
triggers your asthma, you should wait until you develop symptoms before 
taking medication. 

    

5. Side effects are less likely with inhaled medications than with tablets.     
6. With preventer medications, it does not matter if some doses are missed 
or if you go on and off them.     

7. If you get a cold or flu, you should increase your asthma medications.      
8. Some medications can trigger asthma attacks.      
9. You should use ‘‘preventer medication’’ when you have an asthma 
attack.      

10. Going from a cold to hot environment can trigger asthma, but going 
from a hot to cold environment does not trigger asthma.     

11. Parents should give ‘‘reliever medication’’ to a child as soon as they 
recognize the first sign of asthma.     

12. Blue puffer (Ventolin), Brown puffer (Flixotide) and Green puffer 
(Serevent) are called ‘‘preventer medications,’’ so they should be used 
everyday although you are well.  
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Chronic Obstructive Pulmonary Disease Knowledge 
Questionnaire (COPD-Q) TRUE FALSE 

People with COPD should get a pneumonia shot.     
Using oxygen at home can help people with COPD live longer.     
COPD medicines keep the disease from getting worse.     
COPD can be prevented.     
People can stop taking their long-acting breathing medications 
(inhalers) when their COPD symptoms get better.     

People with COPD often have a cough that won’t go away.     
Stopping smoking will keep COPD from getting worse.     
Cigarette smoking or secondhand smoke causes most COPD.     
People with COPD may feel short of breath.     
The medicine albuterol (inhaler) can be used anytime you are short 
of breath.     

People with COPD should have a flu shot every year.     
People should only use their COPD inhalers (medicines) when 
they can’t breathe.     

COPD can be reversed.     
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6C-2: Sample Disease Control Evaluation Questionnaire 

The following questions are designed to assess the impact of your 

respiratory condition on your daily life and your level of symptom control 

over the past few weeks. For each statement, please select the response 

that best reflects your experience. 
ACT Questionnaire 

Question Frequency 

In the past 4 weeks, how 
often did your asthma 
prevent you from getting 
as much done at work, 
school, or home? 

Always Often Sometimes Rarely Never 

During the past 4 weeks, 
how often have you had 
shortness of breath? 

Always Often Sometimes Rarely Never 

During the past 4 weeks, 
how often did your 
asthma symptoms wake 
you up at night or earlier 
than usual in the 
morning? 

Always Often Sometimes Rarely Never 

During the past 4 weeks, 
how often have you used 
your rescue inhaler or 
nebulizer medication? 

Always Often Sometimes Rarely Never 

How would you rate 
your asthma control 
during the past 4 weeks? 

Not 
controlled 
at all 

Poorly 
controlled 

Somewhat 
controlled 

Well 
controlled 

Completely 
controlled 
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CAT Questionnaire 

Question Frequency 

Cough Never Rarely Sometimes Often Very often Always 

Phlegm None Very little Some Moderate Quite a bit Full 

Chest 
tightness No tightness Slight Moderate Tight Very tight Extremely 

tight 

Breathless Not 
breathless 

Slightly 
breathless 

Moderately 
breathless Breathless Very 

breathless 
Extremely 
breathless 

Activities 

Not limited 
(doing any 
activities at 
home) 

Slight Moderate Limited Very 

Extremely 
limited (doing 
any activities 
at home) 

Confidence 

Very 
confident 
 (leaving my 
home despite 
my lung 
condition) 

Fairly 
confident Moderate Slightly 

confident 
Low 
confidence 

Not confident 
(leaving my 
home despite 
my lung 
condition) 

Sleep Very good 
sleep 

Good 
sleep 

Average 
sleep Fair sleep Poor sleep No sleep 

Energy High energy Fair 
energy 

Moderate 
energy 

Low 
energy 

Very low 
energy No energy 

 

 

 

 



384 

 

6C-3: Sample Health Beliefs and Self-Efficacy Questionnaire 

The following statements are designed to assess your beliefs about 

medicines. For each statement, please indicate the extent of your 

agreement, using a scale from 1 to 5, where 1 means 'Strongly Disagree' 

and 5 means 'Strongly Agree.' Your responses will help us understand 

your perspectives on medication. 

The Beliefs about Medicines Questionnaire (BMQ) Strongly  
Agree 

   Strongly  
Disagree 

BMQ-Specific  

Without my medicines I would be very ill  5 4 3 2 1 
My life would be impossible without my medicines  5 4 3 2 1 
My health, at present, depends on my medicines 5 4 3 2 1 
My health in the future will depend on my medicines 5 4 3 2 1 
My medicines protect me from becoming worse 5 4 3 2 1 
I sometimes worry about becoming too dependent on my 
medicines 5 4 3 2 1 

My medicines disrupt my life 5 4 3 2 1 
My medicines are a mystery to me  5 4 3 2 1 
Having to take medicines worries me  5 4 3 2 1 
I sometimes worry about long-term effects of my medicines 5 4 3 2 1 
These medicines give me unpleasant side effects  5 4 3 2 1 
BMQ-General  

Medicines do more harm than good 5 4 3 2 1 
All medicines are poisons 5 4 3 2 1 
Most medicines are addictive  5 4 3 2 1 

People who take medicines should stop their treatment for a 
while every now and again  5 4 3 2 1 

Natural remedies are safer than medicines 5 4 3 2 1 
Doctors use too many medicines 5 4 3 2 1 
If doctors had more time with patients they would prescribe 
fewer medicines 5 4 3 2 1 

Doctors place too much trust on medicines 5 4 3 2 1 
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The following statements are intended to assess your beliefs in your 

ability to handle various situations effectively. Please select the option 

that best describes how true each statement is for you. 

General Self-Efficacy Scale (GSE) 
1. I can always manage to solve 
difficult problems if I try hard 
enough. 

Not at all true Hardly true Moderately true Exactly true 

2. If someone opposes me, I can 
find the means and ways to get 
what I want. 

Not at all true Hardly true Moderately true Exactly true 

3. It is easy for me to stick to my 
aims and accomplish my goals. Not at all true Hardly true Moderately true Exactly true 

4. I am confident that I could deal 
efficiently with unexpected 
events. 

Not at all true Hardly true Moderately true Exactly true 

5. Thanks to my resourcefulness, I 
know how to handle unforeseen 
situations. 

Not at all true Hardly true Moderately true Exactly true 

6. I can solve most problems if I 
invest the necessary effort. Not at all true Hardly true Moderately true Exactly true 

7. I can remain calm when facing 
difficulties because I can rely on 
my coping abilities. 

Not at all true Hardly true Moderately true Exactly true 

8. When I am confronted with a 
problem, I can usually find several 
solutions. 

Not at all true Hardly true Moderately true Exactly true 

9. If I am in trouble, I can usually 
think of a solution. Not at all true Hardly true Moderately true Exactly true 

10. I can usually handle whatever 
comes my way. Not at all true Hardly true Moderately true Exactly true 
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6C-4: Sample Adherence Assessment Questionnaire 

The following questions aim to assess your adherence to inhaler use. 

Please select the response that best reflects your actual experience with 

using your inhaler. 

Test of the Adherence to Inhalers (TAI) Questionnaire 
Patient domain: questions, responses 

1. During the last 7 days, how many times 
did you forget to take your usual inhalers? All 

More 
than 
half  

Approximat
ely a half  

Less 
than half  None 

2. Do you forget to take inhalers? Always  Mostly  Sometimes Rarely Never 
3. When you feel good about your illness, 
do you stop taking your inhalers? Always  Mostly  Sometimes Rarely Never 

4. When you are on vacation or weekend, 
do you stop taking your inhalers? Always  Mostly  Sometimes Rarely Never 

5. When you are nervous or sad, do you 
stop taking your inhalers? Always  Mostly  Sometimes Rarely Never 

6. Do you stop taking your inhalers because 
of fear of side effects? Always  Mostly  Sometimes Rarely Never 

7. Do you stop taking your inhalers because 
of considering they are useless to treat your 
condition? 

Always  Mostly  Sometimes Rarely Never 

8. Do you take fewer inhalations than those 
prescribed by your doctor? Always  Mostly  Sometimes Rarely Never 

9. Do you stop taking your inhalers because 
you believe they interfere with your 
everyday or working life? 

Always  Mostly  Sometimes Rarely Never 

10. Do you stop taking your inhalers 
because you have difficulties to pay them? Always  Mostly  Sometimes Rarely Never 

Health care professional domain: questions, responses 
11. Does the patient remember the 
prescribed regimen (dose and frequency)? 
(checking the medical record) 

Yes No 
 

12. The technique of using the evaluated 
inhaler device by the patient is* (checking 
the inhalation technique) 

With 
critical 
mistakes 

Without critical mistakes  
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6C-5: Sample Usability, Preference, and Satisfaction Questionnaire 

The following questions are designed to assess your experience with the 

usability, your preferences, and your satisfaction with the system. Please 

choose the response that best reflects your overall experience. 

Usability, Preference, and Satisfaction Questionnaire 

Usability assessment Strongly  
Agree 

    Strongly  
Disagree 

1. I found it was easy to 
understand how to use the 
inhaler. 

6 5 4 3 2 1 

2. I found it was easy to 
operate the inhaler. 6 5 4 3 2 1 

3. I found it was easy for me to 
remember how to use the 
inhaler 

6 5 4 3 2 1 

Preference assessment Strongly  
Agree 

    Strongly  
Disagree 

1. How do you like the device? 6 5 4 3 2 1 
2. How does it feel to hold the 
device? 6 5 4 3 2 1 

3. How do you like the shape 
and colour of the device? 6 5 4 3 2 1 

4. How comfortable is the 
device to carry？ 6 5 4 3 2 1 

5. How easy is it to open the 
device and prepare it for 
inhalation? 

6 5 4 3 2 1 

6. How do you like the comfort 
of the mouthpiece of the 
device? 

6 5 4 3 2 1 

7. Was it easy or difficult to 
inhale long and deeply with the 
device? 

6 5 4 3 2 1 

8. How did you like the 
inhalation manoeuvre with this 
device? 

6 5 4 3 2 1 

9. I can easily see whether I 
inhaled correctly with this 
device. 

6 5 4 3 2 1 

10. I can easily see how much 
medication remains in the 
device. 

6 5 4 3 2 1 

11. The device be used quickly 
in cases of emergency, if 
necessary. 

6 5 4 3 2 1 

12. How did you like overall 
handling the device? 
(preparation, handling, 
inhalation manoeuvre, storage, 
cleaning) 

6 5 4 3 2 1 

 

 



388 

 

Satisfaction assessment Strongly  
Agree 

   Strongly  
Disagree 

1. Was it easy to keep the 
inhaler clean? 5 4 3 2 1 

2. After you have used the 
inhaler, do you have the 
feeling that you used it 
correctly? 

5 4 3 2 1 

3. Overall, considering your 
responses to the previous 
questions, were you satisfied 
with the inhaler? 

5 4 3 2 1 
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6C-6: Sample Emotional Experience Test 

The following images represent different emotional expressions. Please 

review each option and select the one that best matches your current 

emotional state. 

Emocard 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 6 7 8  
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Appendix 7A: System Quality Questionnaire 

The following questions are designed to assess the quality of the XIAOXI 

system. Please select the response that best reflects your experience with 

XIAOXI. 

Metrics Questions Strongly  
Agree          Strongly  

Disagree 

Naturalness 

XIAOXI uses simple 
and understandable 
vocabulary. 

10 9 8 7 6 5 4 3 2 1 0 

XIAOXI dialogues 
were unambiguous. 10 9 8 7 6 5 4 3 2 1 0 

XIAOXI dialogues 
were natural. 10 9 8 7 6 5 4 3 2 1 0 

Information 
delivery 

XIAOXI provides 
me/the patient with the 
right information at 
the right time. 

10 9 8 7 6 5 4 3 2 1 0 

Information provided 
by XIAOXI helps 
me/the patient manage 
my/their disease 
better. 

10 9 8 7 6 5 4 3 2 1 0 

Interpretability 

XIAOXI properly 
understood what I/the 
patient intended to say 
during the 
conversation. 

10 9 8 7 6 5 4 3 2 1 0 

I/the patient will be 
able to express 
my/their current 
asthma/COPD 
condition and 
medication usage 
accurately during the 
conversation. 

10 9 8 7 6 5 4 3 2 1 0 

Technology 
acceptance 

The information that 
XIAOXI aims to 
collect through the 
conversation 
adequately conveys 
my/the patient’s 
condition. 

10 9 8 7 6 5 4 3 2 1 0 

I recommend that 
XIAOXI monitor and 
manage my/the 
patient’s daily 
condition. 

10 9 8 7 6 5 4 3 2 1 0 

Overall, I am very 
satisfied with 
XIAOXI. 

10 9 8 7 6 5 4 3 2 1 0 
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Appendix 7B: System Usability Scale 

Questionnaire 

The following questions aim to evaluate the usability of the XIAOXI 

system. Please select the response that best reflects your level of 

agreement with each statement. 

Questions Strongly  
Agree 

   Strongly  
Disagree 

I think that I would like to use XIAOXI frequently. 5 4 3 2 1 
I found the system unnecessarily complex. 5 4 3 2 1 
I thought XIAOXI was easy to use. 5 4 3 2 1 
I think that I would need the support of a technical 
person to be able to use XIAOXI. 5 4 3 2 1 

I found the various functions in XIAOXI were well 
integrated. 5 4 3 2 1 

I thought there was too much inconsistency in 
XIAOXI. 5 4 3 2 1 

I would imagine that most people would learn to 
use XIAOXI very quickly. 5 4 3 2 1 

I found XIAOXI very cumbersome to use. 5 4 3 2 1 
I felt very confident using XIAOXI. 5 4 3 2 1 
I needed to learn a lot of things before I could get 
going with XIAOXI. 5 4 3 2 1 
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Appendix 7C: Interview Protocol for Qualitative 

Feedback on XIAOXI Usability 

1. Opening Questions: 

 Can you describe your overall experience using the XIAOXI system? 

 What were your initial impressions when you first interacted with the 

system? 

2. System Quality Feedback: 

 How would you describe the system’s reliability and stability during 

your use? 

 Did you encounter any technical issues or challenges? If so, could 

you elaborate? 

 How well do you think the system performs its intended functions? 

3. Usability Feedback: 

 How easy or difficult did you find it to navigate and use the system? 

 Were there any specific features or tasks that you found particularly 

intuitive or confusing? 

 Did the system layout and interface meet your expectations for ease 

of use? 

4. User Experience and Satisfaction: 

 How satisfied are you with your experience using XIAOXI? 

 What aspects of the system did you find most and least helpful? 

 Would you recommend the system to others? Why or why not? 
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5. Specific Comparison Questions (for HCPs and Patients): 

 For HCPs: How do you think the XIAOXI system impacts your 

patients' ability to manage their condition? 

 For Patients: How did the system support your understanding and 

management of your condition? 

6. Open Feedback: 

 Is there anything else you would like to add about your experience 

with the XIAOXI system? 

 Do you have any suggestions for improvements or features you 

would like to see added? 
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Appendix 7D: Interview Protocol for Qualitative 

Feedback on XIAOXI Effectiveness 

Protocol Structure by Dimension (Experimental Group): 

1. Person Dimension: 

 How has XIAOXI influenced your personal management of your 

condition? 

 Did you feel that the system supported your individual health goals 

and needs? 

 Were there any emotional or psychological impacts from using the 

system? 

2. Task Dimension: 

 How did XIAOXI affect your daily routines related to inhaler usage 

or treatment adherence? 

 Did the system make completing necessary tasks easier or more 

challenging? 

 How effectively did XIAOXI provide task-specific guidance or 

support? 

3. Tool Dimension: 

 What aspects of the XIAOXI system’s tools (e.g., interface, chatbot, 

feedback mechanisms) did you find most effective? 

 Were there any tool features that stood out as particularly useful or 

lacking? 

 Did the system’s features align well with your expectations for 

usability and functionality? 
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4. Physical Environment Dimension: 

 Did the physical context (e.g., where and how you used XIAOXI) 

affect its effectiveness? 

 Did you face any difficulties using the system in specific 

environments? 

 How did XIAOXI help you monitor and respond to environmental 

conditions that affect your condition? 

5. Culture and Social Dimension: 

 Did XIAOXI help address any cultural beliefs or attitudes you held 

about your treatment? 

 Did the system help you navigate any social pressures or norms 

related to managing your condition? 

 

Protocol Structure by Dimension (Control Group): 

1. Person Dimension: 

 What challenges did you face in managing your condition personally? 

 Did you feel adequately supported in meeting your health goals and 

needs? 

 How did your emotional and psychological state affect your 

adherence to treatment? 

2. Task Dimension: 

 What difficulties did you encounter in your daily routines related to 

inhaler usage or treatment adherence? 

 Were there any specific tasks you found particularly hard to complete? 
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3. Tool Dimension: 

 What tools or resources (e.g., apps, reminders, physical tools) did you 

use to support your adherence? 

 Did you feel that you lacked any tool that could have helped improve 

your treatment adherence? 

4. Physical Environment Dimension: 

 How did your physical environment impact your ability to manage 

your condition? 

 Were there specific places or situations where it was harder to follow 

your treatment plan? 

5. Culture and Social Dimension: 

 How did social interactions (e.g., family, peers, HCPs) influence your 

adherence to treatment? 

 Did cultural beliefs or social norms impact your management of your 

condition? 
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