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Abstract

In recent decades, dynamic real-time task dispatching has emerged as an

essential area of study within the context of modern logistics and global

supply chain development. Challenges associated with response timeliness,

uncertainties, and solution generalization of this problem have gradually

emerged among various real-life cases. This thesis focuses on the truck

task dispatching optimization problem under the background of marine

container terminals - the pivots of ocean transportation. Proceeding from

the practical application angle, several key bottlenecks of the examined

problem in a container terminal are addressed, and several corresponding

solutions are provided.

At the earlier stage of this research, a Real2Sim simulation framework

is developed, which reproduced the most concerned details and logic of

a real-world container terminal. Mechanisms that help to close the per-

formance gap between reality and simulation are designed, which makes

the obtained solutions as practical as possible. In the first primary re-

search work, a spatial attention-based deep reinforcement learning (DRL)

approach is applied to the examined problem. The DRL method verifies

its effective performance and demonstrates the capability to properly cope

with the multi-scenario issue. In this stage, the feasibility of DRL-based

methods to solve online optimization problems is confirmed, and a solid
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foundation is set up for the subsequent research work.

The examined problem is extended to a multi-objective optimization (MOO)

version in the second stage of the research. Recently, demand for dynamic

MOO is fast-emerging due to severe market competition and ever-growing

requirements for customization and agility in business services. However,

most of the existing evolutionary-based MOO approaches generate a fi-

nite set of trade-off solutions, which usually cannot efficiently obtain the

most desired preference. To tackle such an issue, a preference-agile multi-

objective optimization (PAMOO) methodology is proposed to permit users

to dynamically adjust and interactively assign preferences. To achieve this,

a novel uniform network is designed that could properly handle arbitrary

user preferences. Benefit from such an attribute, a preference calibration

method is then developed to further enhance the policy set quality.

For complex real-world optimization problems, it is costly for the DRL

agent to learn a sophisticated policy from scratch, and the techniques to

accelerate the training process are practical for real-life applications. This

thesis explores the mechanisms to tackle such issues by introducing prior

expert knowledge. For the single-objective case, an expert network-assisted

dispatching model is designed, which has shown great convergence efficiency

and the ability to handle high-level uncertainties. Following the similar

principle, a policy fusion approach is proposed for the MOO problem, which

reduces the training cost and demonstrates its potential to solve complex

real-life optimization problems.
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Chapter 1

Introduction

This chapter mainly focuses on the background of PhD research, including

the introduction of Ningbo-Zhoushan port, Meishan terminal, the layout,

and the major components in a container terminal. This research selects

container truck task dispatching as the examined problem because it is of-

ten considered as the primary focus in a container terminal, as it provides

crucial synergy between the sea-side operations and yard-side activities,

and hence can greatly affect the terminal throughput and quay crane uti-

lization. Moreover, its sensitivity towards the various scenarios and uncer-

tainties further increases the challenges of the examined problems.

A taxonomy of truck dispatching optimization problems based on several

classification factors is given in this chapter. The purpose of doing so is

to provide multifaceted aspects of the examined problem and make the

readers better comprehend the scope, practical aims, and challenges of

this work. Finally, the main works and yielded outcomes during the PhD

career, which also include some preparatory and branch-line works, are

briefly introduced. The main contributions and the structure of this thesis

1



1.1. RESEARCH BACKGROUND

are listed at the end of this chapter.

1.1 Research Background

1.1.1 Ningbo Zhoushan Port

Ocean shipping is becoming the major transportation mode for global trade

as maritime transportation has increased rapidly. More than 70% of the

global trade by value is carried by sea, and the maritime freight trans-

port will maintain a sustainable growth in several decades in the future,

according to the estimation (Forum, 2021). Ningbo-Zhoushan port is one

of the most valuable ports in China and plays a crucial part in China’s

international business and economic development. In 2023, the container

throughput of Ningbo-Zhoushan port reached 35.3 million TEU (twenty-

foot equivalent unit), ranking third in the world, and the cargo throughput

reached 132.4 million tons, maintaining the world’s first place for 15 consec-

utive years. The port consists of several port areas, which are usually called

container terminals and are located on the coastlines beside Ningbo and

Zhoushan, Zhejiang province. The Figure 1.1 (Wang et al., 2024) indicates

the distribution of several main container terminals of Ningbo-Zhoushan

port. Each terminal takes charge of its own specific trade business or

shipping lines according to its position and geological conditions. Several

research studies in this thesis are conducted against the background of

the Meishan terminal. A detailed components and logic inside a container

terminal is introduced in the section 1.1.2.

2



1.1. RESEARCH BACKGROUND

Figure 1.1: Distribution of main container terminals of Ningbo-Zhoushan
port.

1.1.2 Overview of a Container Terminal

Container terminals are considered as the transportation hubs of global

trade, which mainly use containers as the standard carriers. The advan-

tages of the container transportation also lie in such standardization and

the customized system based on the container shape. There are several

main components in a container terminal, such as berth, quay crane, trans-

porter, storage yard, and gate. The photographs of these container terminal

components are shown in Figure 1.2.

Quay crane is the specialized equipment that is used for loading and unload-

ing operations for the container vessels. Specifically, it transfers containers

between vessels and transporters besides the vessels. According to the op-

erational logic and business of a container terminal, the work efficiency of

3



1.1. RESEARCH BACKGROUND

(a) Quay crane (b) Yard crane

(c) Berth (d) Yard

(e) Gate

Figure 1.2: Several components of a container terminal.

the quay cranes basically decides the productivity bottleneck of the entire

container terminal, since a higher quay crane utilization could reduce the

vessel’s berthing time. Quay cranes are considered as the most impor-

tant equipment in a container terminal since they are expensive, and the

operational cost is high. For such reasons, the utilization of quay cranes

is required to be maintained at a certain level. Therefore, almost all the

operations scheduling of a container terminal is conducted to maintain or

4



1.1. RESEARCH BACKGROUND

increase the operational efficiency of quay cranes as much as possible.

Berth is the area beside the coastline of a container terminal that is used for

vessels’ docking. Usually, a berth is required to be allocated and equipped

with several quay cranes at the time of a vessel’s arrival. With the de-

velopment of the container industry, the berths that could accommodate

larger tonnage vessels are the crucial resources and core competitiveness of

a container terminal. The utilization of berths also reflects the busyness

degree of a container terminal and is affected by the uncertain arrival time

of vessels, weather conditions, and terminal daily operations management.

Therefore, the scheduling and optimization for berth utilization also attract

numerous academic studies.

Yards are used for storing the containers temporarily and are considered as

buffer areas for loading to vessels or unloading from vessels. Yard is one of

the most important resources in a container terminal. The Fig 1.3 presents

the basic structure of a single yard, where a unique location of a container

could be described by a quadruple < yard, bay, row, tier >. According to

different types of business and containers, the yard could be further divided

into a standard container yard, a clearance yard, a frozen container yard,

a dangerous cargo yard, or an empty container yard. The management

of yards includes re-arranging the positions of each container during the

off-pick time, allocating the yard area or locations inside a yard for the

gate-in or gate-out containers, and scheduling the yard cranes, which are

important research directions of container terminal yard management.

The yard crane is the equipment that is located at each yard and aims

at transferring the containers between transporters and the storage yards.

Usually, the yard crane’s movement is based on tires or rails in a yard

5



1.1. RESEARCH BACKGROUND

area. Similar to the quay cranes, the scheduling of the yard cranes also

greatly affects the operation flow of the containers, thus becoming one of

the factors that limit the throughput of the container terminal.

Yard Crane

rows (X) 

tiers (Z) 

Figure 1.3: Container Location in a Yard

Transporter indicates either a manned truck or a driverless vehicle (in-

troduced in section 1.2.1) and is in charge of transporting the containers

horizontally in a container terminal. It is usually called a container truck in

general. The container trucks are also divided into inner trucks and outer

trucks. Inner trucks mainly focus on the transportation jobs inside the ter-

minal area and belong to the container terminal. Outer trucks take charge

of delivering the containers between container terminals and outside ar-

eas, which belong to customer companies. The scheduling of the container

trucks is the primary operation for the container terminal optimizations

since the trucks’ operations connect several different types of equipment.

6



1.1. RESEARCH BACKGROUND

The gate is the boundary of a container terminal and is the entrance of

the outer trucks that pick up and deliver the container from outside. It is

also used for checking and recording during the container gate-in and gate-

out process. With the increasing informative and intelligent level of the

container terminals, the gate is becoming the hub of container information

and bridges the close connections between customs, container companies,

ship companies, and container terminal companies.

Generally, berth and quay cranes consist the seaside. Storage yard and gate

area comprise the landside. The gate partitions the inside and outside of a

container terminal. The transport area is considered as the intersection of

the seaside and landside. The horizontal layout of the container terminal

is described in Figure 1.4.

Berth

Quay Crane

Ship Transporter

Yard 
Crane

Yard Gate Outer Truck

Seaside Landside Outside

Figure 1.4: The horizontal layout of a container terminal

All these components in a container terminal are closely connected in the

terminal’s daily operations and management. Comprehension of the logic

and effects of these equipment helps to better understand the various op-

timization problems in a container terminal. As the pivots among the

international ocean logistics, container terminals are faced with the bur-

den of increasing cargo throughput and are expected to cope with volatile
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and dynamic situations to achieve high productivity. Studies of the con-

tainer terminal management science and the corresponding optimization

problems are fostering the modernization and intelligence degree of ports

progressively. Some typical optimization problems in a container terminal

are presented in the next section.

1.2 A Taxonomy of the Examined Problem

The section makes a taxonomy of the truck dispatching problem in con-

tainer terminals based on the exploration in real-world cases and the re-

viewed papers. The purpose of doing so is to make the examined prob-

lem more comprehensive and thorough. Unlike the classical optimization

problem, such as the vehicle routing problem (VRP), which has standard

naming and strict mathematical definition for each variant problem, the

examined problem is a real-life practical optimization problem that usually

lacks a standard form and varies from case to case. According to the pre-

vious investigation, the examined problem could be classified through the

following factors.

1.2.1 Schedulable Vehicle

The first classification factor of the examined problem is the target object

in the dispatching process. In this thesis and my published papers, such a

problem is called truck dispatching. In other reviewed papers, the schedu-

lable vehicles could have other choices, which are summarized as follows.

The corresponding photographs of these vehicles are shown in Figure 1.5.

8



1.2. A TAXONOMY OF THE EXAMINED PROBLEM

1. Truck is the simplest and common schedulable vehicle. The truck

in this thesis indicates the container terminal’s inner piloted trucks.

One characteristic of such a vehicle is that some details of the imple-

mentation of a task may be decided by the driver, such as choosing

a specific driving route, whereas a driverless vehicle usually follows a

pre-arranged route.

2. Automatic Guided Vehicle (AGV) is usually used in automated

warehouses and manufacturing factories. AGV has been introduced

to automated container terminals in recent decades (Fazlollahtabar

and Saidi-Mehrabad, 2015; Zhong et al., 2020; Xing et al., 2023;

Drungilas et al., 2023; Rashidi and Tsang, 2011; Xiaolong and Jiawei,

2016; Zhang et al., 2021). Its largest characteristic is the driverless

property, and each route and task assignment is centrally controlled.

Such vehicles are suitable for a highly automated and intelligent port.

3. Straddle carrier is used for transferring empty containers in a con-

tainer terminal (Royset et al., 2009; Zehendner et al., 2015; Dkhil

et al., 2018; Cai et al., 2012; Soriguera et al., 2007). Its job logic has

little difference from truck and AGV because it only works between

quay cranes and empty container yards.

4. Automated Lifting Vehicle (ALV) is another vehicle that trans-

fers containers between sea-side and yard-side, which is also used in

automated container terminal (Nguyen and Kim, 2009; Gupta et al.,

2017; Sadeghian et al., 2014; Bae et al., 2011; Roy and de Koster,

2018). Unlike other vehicles, whose loading or unloading container

operations are executed by cranes but ALV could lift the container

from a buffer area (on the ground near the QC or YC).

5. Automated Intelligent Vehicle (AIV) or intelligent autonomous
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vehicle (IAV) is similar to the AGV. The advantage of them is a cer-

tain degree of self-decision ability. Apart from moving autonomously

by pre-defined paths, they could also react to various obstacles com-

pared with AGVs (Zaghdoud et al., 2012; Nguyen et al., 2018; Zagh-

doud et al., 2013).

(a) Truck (b) AGV

(c) Straddle carrier (d) ALV

(e) AIV

Figure 1.5: Various types of schedulable vehicles for transferring containers
in a terminal.
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1.2.2 Optimization Objectives

Several objectives are concerned in the container terminal truck dispatching

problem. First of all, quay crane utilization is the most common objective

to be maximized in this problem since quay cranes are the most valuable

equipment in a port. Increasing their utilization could shorten the vessels’

berthing time, which has a great influence on the business benefit of a

port. The variants of this objective that are related to quay crane utiliza-

tion, such as QC idle time, average makespan, or total makespan are also

adopted in some other research. Another common objective is the (empty)

traveling distance of the transporters because plenty of container termi-

nal managements start to consider the energy consumption and carbon

emission (Mansouri et al., 2015). Barely researches optimize this objective

individually, and it usually exists in the multi-objective optimization field

(Kim et al., 2013; Homayouni and Tang, 2013; Hu et al., 2019; Dkhil et al.,

2017; Liu et al., 2016). Some other research also considers some objectives

like equipment (QC or YC) moving distance or outer truck waiting time.

1.2.3 Dispatching and Scheduling

Dispatching and scheduling are both expressions of methods to allocate

container transporting jobs to vehicles. The difference lies in the infor-

mation needed to carry out the allocation. For scheduling problems, a

predictive job sequence, both with the arrival times of jobs, is required to

carry out a scheduling (Zhicheng et al., 2014). Accordingly, it outputs a

schedule plan - when and which job to take for every vehicle. Dispatching

usually indicates a real-time decision-making process where the dispatch-

ing of tasks only relies on the state information at some specific time step.

11
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The expression dispatching and scheduling usually also indicates online and

offline optimization.

1.2.4 Vehicle Trigger and Job Trigger

Container truck dispatching can be initiated by either a vehicle or a job. For

vehicle-initiated dispatching, the vehicle starts to execute a new task only

when it has just finished its previous tasks. For job-initiated dispatching,

any available task at any time could be dispatched to any truck, even if

the truck has not finished its current job. Most research focuses on the

vehicle-initiated dispatching problem because it is easy to implement. The

job-initiated dispatching is more complex because the action space is larger,

and it allows decision-makers to plan for longer-term horizons.

1.2.5 Simulation and Mathematical Modeling

There are two methods that could implement the truck dispatching op-

timization: simulation and mathematical modeling. For the simulation

approach, the process of truck dispatching is implemented based on the

support of some simulation tools or building the simulation from scratch

by programming (Angeloudis and Bell, 2011). Such methods are usually

laborious and time-consuming to build the experiment environment, but

can achieve flexible modification of the logic and could be applied to the

online optimization problem. For the mathematical modeling approach,

the advantage is the ability to achieve an optimal solution compared with

the simulation approach. However, such a method could only optimize of-

fline optimization problems, and the time for obtaining an optimal solution
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is usually considerable.

1.3 Main Work in PhD Career

This section introduces the main work of my PhD research and the rel-

evant contributions. My main research topic focuses on the online con-

tainer truck task dispatching problem in marine container terminals. Some

other branch-line research topics, such as port-related forecasting problems

and reinforcement learning-based approaches for combinatorial optimiza-

tion problems, are also involved in my PhD career.

The early stage of the research is devoted to the investigation of the business

logic and operations of the container terminal, including the review of the

container terminal optimization papers and on-the-spot investigation of

a real container terminal in Ningbo. One of my research works [2] that

utilizes a decomposition-ensemble methodology to solve a container daily

gate-in(out) forecasting problem is yielded during this period.

Based on the foundation and comprehension of the container terminal in

the early stage, a simulation environment of the Ningbo-Zhoushan port

Meishan terminal, which is our research target is developed. In this pro-

cess, I strive to reproduce the details and logic of the real-world container

terminal, especially the factors that may have an influence on the exam-

ined problem, such as stochastic service time and traffic congestion. The

simulation becomes the platform for algorithm training and strategy eval-

uation. In addition, the simulation model also contributes to a digital twin

program of Ningbo Daxie Container Terminal Co., Ltd, and the research

[1] which proposed a novel and pioneering methodology deep reinforcement
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learning hyper-heuristic (DRL-HH) framework.

In the meantime, the learning-based (basically reinforcement learning) com-

binatorial optimization approaches are becoming a popular research topic.

Abundant research about RL and COPs is reviewed and studied at this

time. This work directly contributes to a survey paper that discusses how

machine learning assists to solve vehicle routing problem [3], together with

my supervisor and other team members. The comprehension and expe-

rience of DRL-HH methodology [1] also contribute to the work [6] that

uses a similar approach to solve the curse of action space dimensionality

of multi-agent reinforcement learning. The idea that utilizing RL-related

approaches to solve COPs contributes to another research work [4], which

is the seminal work to introduce the RL method for the jigsaw puzzle prob-

lem.

The first main research work basically focuses on the study of the online

truck task dispatching problem, and the objective is to maximize the QC

utilization. Generally, the RL method is adopted, and the algorithm is

trained on the simulation model, which is developed at an earlier stage.

The overall methodology of this research is similar to the previous work

[1], but the performance is improved by modifying the reward signals and

avoiding the invalid action space. This work basically demonstrates the

feasibility of the RL as a methodology for the examined problem and is a

milestone in my main research timeline. The output of this study has been

published as a journal paper [5].

The second main research extends the existing methodology to solve a

multi-objective optimization (MOO) problem where another objective, truck

empty distance, is taken into consideration. What’s more, the traditional

14



1.3. MAIN WORK IN PHD CAREER

multi-objective optimization methods like MOEA/D (Zhang and Li, 2007)

and NSGA-II (Deb et al., 2002) only generate finite solutions and are usu-

ally unable to evenly explore the approximated Pareto front. The proposed

method in this work helps to alleviate such drawbacks. This contribution

is achieved by designing a customized network structure for MOO, and the

feature crossing operator is verified as a key element to make this method

work. This could be meaningful research in practice, which uses RL to solve

a real-world complex multi-objective optimization problem, especially when

the user preference of the objectives is required to be adjusted dynamically

(Roijers et al., 2013). This work is already finished as a journal paper under

review.

Finally, the mechanisms to accelerate the training are designed by intro-

ducing the prior expert knowledge to enhance the RL agent, and such con-

sideration is a vital issue that goes through the entire PhD research. For

the first single-objective problem, a two-stage approach that leverages im-

itation learning and a novel expert network-assisted structure is designed.

For the subsequent MOO problem, a methodology called policy fusion is

proposed, which makes the features extracted by a single objective policy

help to augment the MOO agent. The related work is reported in the

papers [5].

The publications during the PhD career are listed below:

[1] Zhang, Y., Bai, R., Qu, R., Tu, C., and Jin, J. (2022a). A deep reinforce-

ment learning based hyper-heuristic for combinatorial optimisation with

uncertainties. European Journal of Operational Research, 300(2):418–427.

[2] Jin, J., Ma, M., Jin, H., Cui, T., and Bai, R. (2023). Container terminal

daily gate in and gate out forecasting using machine learning methods.
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Transport Policy, 132:163–174.

[3] Bai, R., Chen, X., Chen, Z.-L., Cui, T., Gong, S., He, W., Jiang, X.,

Jin, H., Jin, J., Kendall, G., et al. (2023). Analytics and machine learning

in vehicle routing research. International Journal of Production Research,

61:4–30.

[4] Song, X., Jin, J., Yao, C., Wang, S., Ren, J., and Bai, R. (2023).

Siamese-discriminant deep reinforcement learning for solving jigsaw puz-

zles with large eroded gaps. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 37, pages 2303–2311.

[5] Jin, J., Cui, T., Bai, R., and Qu, R. (2024). Container port truck

dispatching optimization using real2sim based deep reinforcement learning.

European Journal of Operational Research, 315(1):161–175.

[6] Cui, T., Yang, X., Jia, F., Jin, J., Ye, Y., and Bai, R. (2024b). Mobile

robot sequential decision making using a deep reinforcement learning hyper-

heuristic approach. Expert Systems with Applications, 257:124959.

1.4 Contributions of the Thesis

The main work of the PhD is summarized above, among which the container

truck dispatching is the main research topic. The contributions of this

thesis are concluded as below.

• A high fidelity simulation model of a real container terminal is devel-

oped, and a Real2Sim framework is proposed that helps to close the

gap of policy performance between reality and simulation.
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• The feasibility and effectiveness of the RL-based approach are ver-

ified through the single objective container truck task dispatching

problem. Some modifications are adopted that help to improve the

previous work (Zhang et al., 2022a) and result in significant perfor-

mance gains.

• A methodology that uses RL to solve a real-life MOO problem is

proposed. Such approaches only use a uniform model to handle arbi-

trary objective preferences and allow users to dynamically adjust the

preference weights.

• Two mechanisms that help to accelerate the training of RL agents

by introducing prior expert knowledge for both single and multi-

objective optimization problems are designed.

1.5 Overview of the Thesis

The remaining of the thesis is constructed as follows.

• Chapter 2: Literature Review

This chapter provides a thorough review of the research that is rel-

evant to our research topics and techniques, including container ter-

minal combinatorial optimization problems, the current methodolo-

gies for the examined container truck task dispatching problem, ap-

proaches that utilize reinforcement learning algorithms, methodolo-

gies of multi-objective optimization, and researches that adopt simu-

lation techniques.

• Chapter 3: Online Container Truck Task Dispatching Prob-
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lem

The examined problem is introduced in detail in this chapter. The

entire process and logic of the container truck dispatching are de-

scribed. The main challenges of the problem and research motivations

are discussed. Finally, a mathematical formulation of the examined

problem is given, and simulation development to achieve the logic of

the problem is introduced.

• Chapter 4: Methodology for Single-Objective Dispatching

The basic methodology to utilize the reinforcement learning approach

to solve the examined problem is reported in this chapter. The

contents also include the Markov decision process (MDP) modeling,

problem instance and scenario design, and some improvements that

enhance the previous work.

• Chapter 5: Methodology for Multi-Objective Dispatching

The examined problem is extended to a version of multi-objective

optimization in this chapter. A proposed methodology called prefer-

ence agile multi-objective optimization (PAMOO) is proposed. The

experimental results demonstrated its performance on solution qual-

ity, generalization, and sample efficiency.

• Chapter 6: Mechanisms for Prior Expert Knowledge Aug-

mentation

To accelerate the training process and avoid the agent learning from

scratch when faced with the challenges of multi-scenarios and multi-

objective cases, two mechanisms that introduce prior expert knowl-

edge to augment the agent dispatching policies, namely, the expert

network assisted dispatching model and policy fusion approach, both

for single and multi-objective optimization cases are proposed.
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• Chapter 7: Conclusion and Future Work

This chapter concludes and deeply deciphers the main works and

contributions of the thesis. The practical significance of the proposed

methodologies towards reality is discussed. Some limitations of the

work and several potential improvement directions are also provided.
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Chapter 2

Literature Review

This chapter covers the research related to the works and research direc-

tions in this thesis. Firstly, the common solutions to tackle the afore-

mentioned container terminal-related optimization problems are studied.

These approaches provide the reference value when considering the exam-

ined problem and selecting the benchmark methods. For the examined

truck dispatching problem, the common solutions are classified into heuris-

tic approach, meta-heuristic, hyper-heuristic, and offline methods. These

methods reveal the challenges of the examined problem and indicate some

concerns when designing the relevant solutions, such as feature engineer-

ing. Consequently, a review section about reinforcement learning is given

since it is the main methodology of this thesis. This section focuses on

the theoretical foundations, classical RL algorithms, the recent progress

of utilizing RL to solve some traditional optimization problems, and re-

search that uses RL to solve truck dispatching-related problems. The next

section introduces the methodology of multi-objective optimization since

MOO is one of the research directions in this thesis. This section mainly

introduces the traditional MOO approaches that are based on evolutionary
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computation, research about MOO of container terminal operations, and

multi-objective reinforcement learning. Finally, the research that adopts

simulation-based methods is reviewed. Different approaches for developing

the container terminal simulation are concluded. A special concept - digital

twin, along with its achievements in recent years, is briefly introduced.

2.1 Container Terminal-Related Optimiza-

tion Problems

Over several decades, a series of port-related optimization problems and

operations are defined such as quay crane or yard crane scheduling, truck

task dispatching, berth allocation, and container storage assignment (Carlo

et al., 2014), where most of them are characterized with NP-hard nature

(Vacca et al., 2007; Kim and Lee, 2015). Optimizations of these opera-

tions and problems could help to improve the utilization ratio of related

equipment, shorten the vessels’ duration in the berth, thus gaining more

business competitiveness for a container terminal. In reality, more cus-

tomized port-related optimization problems are also concerned according

to different taxonomies (Weerasinghe et al., 2024). The study of these prob-

lems and relevant solutions could help to better comprehend the challenges

and underlying logic of the examined truck dispatching problem.

In this section, berth allocation, yard crane scheduling, and container relo-

cation problems are reviewed. All these port-related optimization problems

could make interactions to the truck dispatching problem more or less, thus

increasing the degree of dynamics and uncertainties of this problem. For

example, the container space allocation could determine containers’ birth-
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places and destinations in the process of truck dispatching. The yard crane

scheduling and container relocation operation happen at the intermediate

segment of a truck transportation task, which affects the completion time

of this task. Berth allocation and quay crane scheduling occur at the sea-

side of a container terminal, which is directly related to the quay cranes,

thus influencing the utilization of the quay cranes, which is one of the ob-

jectives of the truck dispatching problem. The truck task dispatching is

the examined problem in this research, and a more detailed review is given

in the following sections.

2.1.1 Berth Allocation Problem

Once vessels approach a container terminal, adequate space slots need to

be allocated for the vessels to handle subsequent loading and unloading of

containers. Such a process is called berth allocation in the literature. The

allocation policy could also affect the efficiency of trucks and quay cranes.

To model such a problem, a common way is to discretize the berth space

and time into integer berth sections and time units. Each vessel needs at

least one berth section and a planned time horizon to finish the loading

and unloading operations. The Figure 2.1 presents an example of a berth

allocation plan for four vessels, where vessel 1 requires three berth sections

and ten hours for the berthing, and the gray cell indicates the idle berth

sections for a time period.

A general formulation of the berth allocation problem is presented as fol-

lows. Some defined variables are presented in the Table 2.1. The relative

positions of vessel rectangles depicted in Figure 2.1 are defined by the ex-

pressions (2.1) and (2.2).
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Figure 2.1: An example of a berth allocation plan.

Variables Description
pi The processing time of vessel i.

li
The length of vessel i which is measured

by the required berth sections.
ai Arrival time of vessel i.
di Departure time of vessel i.
si The operation start time of vessel i.

Table 2.1: Variables of berth allocation problem formulation.

αij =


1, Vessel rectangle i locates at the left of

the vessel rectangle j with no overlap

0, otherwise

(2.1)

βij =


1, Vessel rectangle i locates below the

vessel rectangle j with no overlap

0, otherwise

(2.2)
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The mathematical formulation of the berth allocation problem could be

presented as below.

min
S∑

i=1

(di − ai) (2.3)

s.t

pi ≥ 1 ∀i (2.4)

li ≥ 1 ∀i (2.5)

αij + αji + βij + βji ≥ 1 ∀i, j (2.6)

αij + αji ≤ 1 ∀i, j (2.7)

βij + βji ≤ 1 ∀i, j (2.8)

si + pi = di ∀i (2.9)

The optimization objective is to minimize the vessel’s duration of stay

at the container terminal, including the waiting time and operation time
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in order to make vessels leave the terminal faster, which is depicted by

Expression (2.3). Constraints (2.4) and (2.5) indicate each vessel takes

at least one single time and berth section unit. Expression (2.6), (2.7)

and (2.8) guarantee any two vessel rectangles have no overlapped area,

which means no vessels could share the same berth sections at a same

time in another word. Equation (2.9) indicates that a vessel is require to

leave the container terminal immediately once it finish its all loading and

unloading operations. Such a formulation approach is the basis of the berth

allocation problems. Some other variants are considered in the literature.

For example, the berth location could be discrete or continuous, and other

optimization objectives are minimizing the total waiting time of vessels

or the total make-span of the handling time (Imai et al., 2001; Guan and

Cheung, 2004).

At the early stage of the berth allocation study, cases are considered when

all vessels are available for the berth allocation (Imai et al., 1997), which

makes it a planning problem. The study of berth allocation usually focuses

on the dynamic version in recent decades, where the arrival time sequence of

vessels is unknown while the vessel’s handling time could be known, some-

how estimated, or affected by quay crane assignment operations (Rodrigues

and Agra, 2022; Dragović et al., 2024). Most of the research interests focus

on the uncertainties of the vessel handling time (Guo et al., 2021; Agra and

Rodrigues, 2022), service priorities (Imai et al., 2003), continuity attribute

of berth area (Lim, 1998; Cordeau et al., 2005), and multi-port berth al-

location (Martin-Iradi et al., 2022). In reality, the vessel’s handling time

relies on the number of quay cranes associated with the vessel. Therefore, a

large number of researchers also study the integrated berth allocation and

quay crane assignment since these two problems are closely related (Park

and Kim, 2003; Meisel and Bierwirth, 2006; Imai et al., 2008; Meisel and
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Bierwirth, 2009).

2.1.2 Yard Crane Scheduling Problem

At any time, there may be several trucks queuing in a yard, waiting for the

yard crane to load or unload containers for the arriving trucks. The yard

crane scheduling problem is to decide the yard crane service sequence for

several queuing trucks. The Figure 2.2 shows a case when five trucks with

their corresponding transportation tasks are queuing in this yard block,

and the yard crane needs to choose the next truck to serve. Usually, the

yard crane scheduling is conducted under the concerns about factors like

crane moving distance, urgency level of each task, and subsequent status.

The common objective is to minimize the total waiting time of trucks or

maximize the quay crane utilization as an auxiliary policy. According to

some empirical studies, the policy of yard cranes scheduling exerts sensitive

effects on the truck dispatching optimization, thus affecting the quay crane

utilization.

The formulation of a static version of the yard crane scheduling is provided

here, where the arrival times of trucks are assumed to be known in advance.

Let ai be the truck arrival time of job i and ai ≤ ai+1. The number of jobs

in the yard block is n. The pi is the processing time of the job i, which

includes the yard operation and possible container relocation process. The

bi is the bay index of the job i. Let l be the length of a bay and v be the

constant speed of trucks in the yard area. Assume ei is the end time that the

yard crane completes the processing of job i. The sequential order relations

between two jobs are defined by Equation (2.10). Then the problem could

be formulated as follows.
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Figure 2.2: An indication of yard crane scheduling problem

Xij =


1, if job j is served right after job j

0, otherwise

(2.10)

min
n∑

i=1

(ei − pi − ai) (2.11)

s.t

ei ≥ ai + pi ∀i (2.12)

Xij(ej − ei) = Xij(
|bi − bj|l

v
+ pj) ∀i, j (2.13)
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n∑
j=1

Xij = 1 ∀i ∈ [1, n− 1] (2.14)

n∑
i=1

Xij = 1 ∀j ∈ [2, n] (2.15)

The objective (2.11) aims at minimizing the total job waiting time. Con-

straint (2.12) gives the relations about the job completion time, crane pro-

cessing time, and truck arrival time. Constraint (2.13) describes the time

interval between two successive jobs. Constraint (2.14) and (2.15) ensures

Xij describes a legal crane service sequence. The decision space lies in Xij,

which could affect the ei in the objective indirectly.

The yard crane scheduling is indeed a type of one-machine scheduling prob-

lem (Vallada et al., 2023). The coming trucks are the arriving jobs at ran-

dom time steps, and the yard crane could be considered as the machine.

Once the machine finishes one job, the scheduler would allocate one of

the queuing jobs to the machine or do nothing. The aims of yard crane

scheduling are usually to reduce the waiting time of transporters or the

operation time of the yard crane. In some scenarios, especially for cases

where external trucks are involved, the due times of containers to be re-

trieved need to be guaranteed. In other cases, crane scheduling serves as an

auxiliary decision-making process that collaborates with other operations,

such as truck dispatching or routing. One stream of the solutions relies on

the known job sequence or predictive arrival time of trucks (Li et al., 2009;

Guo et al., 2011; Chang et al., 2011). Some other researchers treat this

process as a real-time decision problem, and reinforcement learning should

be considered as a suitable method (Aydin and Öztemel, 2000; Kim et al.,
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2003; Fotuhi et al., 2013). The yard crane scheduling could also cooperate

with container relocation operations (Galle et al., 2018), AGV scheduling

(Zhang et al., 2024), and container space allocation operation (Yang et al.,

2022).

2.1.3 Container Relocation Problem

The container relocation problem (CRP) happens at the time when a target

container to be retrieved is located under other containers. Retrieving

the target container requires removing any containers on top of the target

container. Figure 2.3 indicates the process of container relocation in a

single yard bay, where containers 4 and 5 need to be removed in advance

before the fetching of the target container 3.
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Figure 2.3: Indication of a container relocation process

With the frequency of relocation operations increasing, the operational

efficiency of a yard would decrease rapidly. The container relocation is to

decide a proper position for the relocated container during the container

retrieval process. A better relocation strategy could reduce the number

of relocation operations to increase the efficiency of the yard. Figure 2.4

shows several relocation paths for containers c1, c2, and c3 according to

various strategies, which cause a different number of relocation operations
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r. The relocating strategy could also be divided into one bay relocation,

multiple bay relocation, and relocation with consideration of attributes of

containers (Zheng, 2018).
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Figure 2.4: Indication of container relocation paths
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The simplest version of the container relocation problem is static, assum-

ing all the containers are retrieved in a prescribed order. The objective

is to minimize the total container relocation moves. Such a problem is

firstly studied by Kim and Hong (2006). Usually, the static CRP could

be solved by mathematical modeling-based such as integer programming

(Wan et al., 2009) and column generation (Zehendner and Feillet, 2012).

However, the real-life container relocation process always happens along

with the new containers’ arrival, which makes this problem become dy-

namic container relocation problem (DCRP). The common methods for

DCRP are heuristic approaches (Zhu et al., 2012; Hakan Akyüz and Lee,

2014; Expósito-Izquierdo et al., 2014). Some researchers also consider the

cross-bay relocation operations where the objective in such a setting is the

total operation time (Lee and Lee, 2010).

RL-based approach is also used to solve the dynamic container relocation

problem (DCRP) (Bucur and Hungerländer, 2017). The author defined the

state as the current container bay configuration and the sequence of the

arrival and departure containers. The action is defined as a bay column

either for stacking an arrival container or for the relocated position for the

container blocking the current retrieved container. The reward was set

minus a scalar for every relocation move and zero for other legal moves to

minimize the total relocation moves. The reinforcement learning model and

problem-specific heuristic are used to guide the Monte Carlo Tree Search

to generate the best moving sequence.

Container pre-marshalling is another important operation during the off-

peak time of the container terminal, which aims at making the container

retrieval procedure quicker by re-ordering the containers beforehand. Hot-

tung et al. (2020) proposed deep learning assisted heuristic tree search to
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solve the container pre-marshalling problem. A tree search procedure is

modeled for the problem. The node in the search tree is defined as the

configuration of containers at the same bay, and the solution is considered

as the path from the root to one of the feasible leaf nodes. A branching

network for choosing the branch to explore and a bounding network for

predicting the cost of completing the current solution are used to guide the

tree search procedure.

2.2 Traditional Methods of the Examined

Problem

2.2.1 Heuristic Approaches

The heuristic approach is the most widely used methodology and is easy

to implement for such decision problems. The first heuristic method is

called dedicated dispatching, which is the simplest approach and is still

used by many real-world container terminals. Dedicated dispatching makes

all trucks organized as different groups, and each group of trucks only

executes tasks that are dedicated to one particular quay crane or ship.

Such a method is effortless to develop and deploy in reality. However,

many studies have proved that a dedicated dispatching policy causes a

high empty driving ratio and is infeasible for an automatic and intelligent

container terminal (Tao and Qiu, 2015; Le-Anh et al., 2004; Grunow et al.,

2007).

The most common heuristics consider some attributes, such as distance,

estimated time, or QC queue length as priority factors when allocating a
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task to a specific truck. These features are dynamically changed during

the entire process. Koo (2013) discussed the superiors and inferiors of

vehicle-trigger and task-trigger dispatching modes.

Dulebenets (2016) explored five simple dispatching rules, namely, First

Available, Round Robin, Random Vehicle, Shortest Distance, and Shortest

Queue, which means as the names suggest. A comprehensive evaluation

of these rules is implemented and tests different quay crane performance

indicators. Such dispatching rules are designed by prioritizing the task

assignment and are computationally efficient. However, these methods fail

to achieve competitive performance because of their greedy attributes and

are usually served as baselines in most research. Some commonly used

priority factors in the explored papers are summarized in Table 2.2.

Symbol Priority Factor
RD No priority, random dispatch
SD Shortest Distance
RR Round Robin
SC Shortest QC Queue
HU Highest QC Urgent Level
HD Highest Demand
LS Lowest Supply

Table 2.2: Priority Factors.

Chen et al. (2016) proposed a manually crafted dispatching rule that based

on supply-and-demand mechanism of QC, where supply is defined as an

estimated number of truck that could able to reach the specific QC in a

fix-size time window and the demand is defined as the estimated number of

container that the QC need to operate in this time window. Such a heuristic

considers spatial and temporal factors and is proven to outperform the

existing dispatching method that is used in Ningbo Port Meshan Container

Terminal.
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2.2.2 Meta-heuristic Algorithms

One stream of the operations research community is dedicated to auto-

matically search or generate a problem solution, which is called heuristic

search or meta-heuristic. Solution has to be encoded as an evolvable rep-

resentation (usually a vector in genetic algorithm and a decision tree in

genetic programming) and is iteratively refined during the evolving process

(Osman and Kelly, 1997; Voß, 2000). Genetic programming (GP) has ad-

vantages in obtaining real-time decision heuristics. It encodes individual

chromosomes as representations that are able to yield decisions (usually

tree structures) and makes the individuals evolve with similar operators

of genetic algorithms such as crossover, mutation, and reproduction (Koza

and Poli, 2005; Koza, 1994). Chen et al. (2020b) proposed a data-driven

GP heuristic that could obtain a decision-making policy for the online truck

dispatching problem. The experiments demonstrated that GP GP-based

method could learn some hidden factors during the evolving process and

outperformed manually handcrafted heuristic approaches.

2.2.3 Hyper-heuristic Algorithms

It is worth noting that the hyper-heuristic framework stood out in the oper-

ations research community in the past two decades. Unlike meta-heuristic

that operates directly on specific solutions, hyper-heuristic operates on the

heuristic space, which makes it capable of handling cross-domain optimiza-

tion (Pillay and Qu, 2018). In other words, the hyper-heuristic framework

uses heuristics to choose or generate low-level heuristics (see Figure 2.5).

The hyper-heuristic framework has achieved great success in various tra-

ditional CO problems (Soria-Alcaraz et al., 2014; Rahimian et al., 2017;
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Ahmed et al., 2019) and shows its potential for real-world complex on-

line optimization problems. In the work of Chen et al. (2016), a genetic

algorithm-based hyper-heuristic framework for truck dispatching is pro-

posed. Three low-level heuristics are designed, specifically, short distance

first, highest unbalanced task amount first, and highest urgent level first

dispatching. Chen et al. (2022) proposed a double-layer genetic program-

ming hyper-heuristic to cope with the challenges of multi-scenario issues of

seaport truck dispatching by designing logical and arithmetical layers in a

GP individual to handle the scenarios and decisions simultaneously.

Figure 2.5: Indication of the hyper-heuristic framework.

2.2.4 Offline Optimization Methods

The method described above aims at solving the online optimization of

truck dispatching. Such problems could also be solved in an offline manner

by meta-heuristics or exact algorithms. Thus, the solution becomes a long-

term dispatching sequence planning. For exact algorithms, the problem
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needs to be precisely formulated as a mathematical model that includes an

objective function and a set of constraints. The exact method usually relies

on the divide-and-conquer strategy, such as branch-and-bound, which guar-

antees optimality but is computationally infeasible for large-scale problems.

Approximations could somehow alleviate such an issue by making the algo-

rithm finish in polynomial time, but at the expense of losing the guarantee

of optimality (Bengio et al., 2021). Cao et al. (2010) focused on integrat-

ing yard truck and yard crane scheduling. A mixed integer programming

(MIP) model is formulated for a mathematical solver. Two decomposi-

tion methodologies, namely, the general Benders’ cut-based method and

the combinatorial Benders’ cut-based method to reduce the computational

cost. Lu and Jeng (2006) modeled the yard truck dispatching policy as a

min-max nonlinear integer programming model. The method is also com-

bined with the heuristic approach for better performance. The experiment

shows its competitiveness against some existing dispatching rules.

Genetic algorithm (GA) is a suitable way for offline scheduling because

a dispatching plan could be easily encoded as a decision sequence, which

serves as the chromosome vector in the genetic algorithm framework. Lee

et al. (2010) used a hybrid genetic algorithm and minimum cost flow net-

work model to minimize the makespan at the quay side. The ready times

for tasks are encoded as chromosomes in GA, and the minimum cost flow

is used to determine the prime movers of the task sequence. The result

shows its performance against the local search-based method. Cao et al.

(2008) focused on combining the truck dispatching problem and the con-

tainer storage allocation problem. The objective is to balance the travel

time and queuing time of each container in yards. A GA-based approach

and a greedy heuristic are designed to solve the problem. The result shows

its ability to obtain optimal solutions in small-sized instances. Bose et al.
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(2000) used a double cycle mode dedicated dispatching heuristic where the

trucks repeat the loading and unloading task cycle for one quay crane to

reduce the deadhead rate. A genetic algorithm is then introduced to im-

plement dynamic dispatching. The result shows that GA based dynamic

dispatching outperforms the dedicated dispatching method. Kim and Bae

(2004) proposed a look-ahead dispatching policy that took the QC’s future

task information into consideration to reduce the QC operation delay. The

problem was formulated as an MIP model, and a heuristic algorithm was

designed to solve it within a reasonable computational time. Vis et al.

(2005) considered this problem from another point of view, where all avail-

able delivery tasks were forced to be finished in a time window, and the

objective was to minimize the amount of deployed vehicles. To tackle the

truck dispatching problem with meta-heuristic, a solution (dispatching se-

quence) needs to be encoded as an evolvable representation, which can be

iteratively improved during the evolving process. Other similar researches

that use meta-heuristic for truck dispatching in container terminal could be

found in (He et al., 2013; Nishimura et al., 2005; Choi et al., 2011; Skinner

et al., 2013; Luo et al., 2016; Niu et al., 2014; Luo and Wu, 2015). Hybrid

approaches of these methods also show significant research interests (Chen

et al., 2013; Hsu et al., 2021; He et al., 2015). There is abundant literature

for the offline version of the examined problem. However, offline optimiza-

tion aims at planning a long-term dispatching sequence for a static problem

instance rather than a real-time decision-making problem, which makes it

difficult to be generalized to different cases with uncertainties.
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2.3 Reinforcement Learning

This section briefly introduces the development of reinforcement learning

(RL) nowadays and its progress in operational research. Since our main

approach for the examined problem is based on the RL method, research

about the optimization of truck dispatching-related problems using RL

approaches is also included.

2.3.1 Foundations of Reinforcement Learning Algo-

rithms

Reinforcement learning solves the sequential decision-making problems which

are formalized as the Markov Decision Process (MDP), where the state in

the next time step is only decided by the current state and is independent of

the previous states (Bellman, 1957). The agent (decision maker) optimizes

its policy by choosing the proper action at each time step based on the

state by interacting with the environment to maximize the expectation of

accumulated rewards in the future (Sutton et al., 1998). The interactions

between agent and environment are shown in the Figure 2.6.

Agent

Environment

action 
𝑨𝒕

state 
𝑺𝒕

𝑺𝒕+𝟏

reward 
𝑹𝒕

𝑹𝒕+𝟏

Figure 2.6: Agent-Environment Interaction
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The theoretical foundations of reinforcement learning are based on the Bell-

man equations (Bellman, 1966), which reveal the relations among different

state values and state-action values. It is the basic group of equations that

is used to solve RL tasks. The Bellman equations could be solved by dy-

namic programming approaches (Howard, 1960) through a decomposition

methodology view. The algorithms of dynamic programming could be fur-

ther divided into policy iteration and value iteration (Sutton et al., 1998).

However, dynamic programming requires the precondition that the prob-

ability of each state transition in an environment is known, which is also

called model-based methods. In most of the real-world problems, the tran-

sition probabilities among states cannot be calculated or are unavailable.

The model-free approaches are required in such cases, and one of the most

typical algorithms is the Monte-Carlo (MC) method (Hammersley, 2013),

which is an unbiased estimation of value functions. Another important

model-free method is the temporal-difference (TD) method (Sutton, 1988),

which could learn from incomplete trajectories by leveraging the idea of

bootstrapping (Mooney et al., 1993).

Notably, the on-policy and off-policy refer to two different RL training

paradigms. The on-policy means the policy for data sampling and policy

for updating is the same, and off-policy indicates the opposite. Based on

such attributes, the TD method could be further classified into SARSA

(Sutton, 1988), the on-policy TD, and Q-learning (Watkins and Dayan,

1992), the off-policy TD.

Both the MC and TD find the optimal policy by estimating state-action

values, which are called value-based methods. Another family of RL al-

gorithms directly optimizes the policy itself and is called the policy-based

method. A policy is defined as the mapping from state to probability
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distribution of corresponding actions. The optimal policy is obtained by

optimizing the parameters of the policy through policy gradient techniques

such as the Reinforce algorithm (Williams, 1992). A common methodol-

ogy that adopts both value-based and policy-based methods is called the

actor-critic framework (Konda and Tsitsiklis, 1999).

Deep reinforcement learning (DRL) refers to the RL methods that are

combined with deep learning techniques. With the development of deep

learning, several milestone deep neural networks such as the convolutional

neural network (CNN) (LeCun et al., 1998) and recurrent neural network

(RNN) (Hochreiter, 1997) have been proposed and continuously promote

the reinforcement learning field. The mapping from state to state-action

values or the probability of actions could be implemented by a deep neural

network when using DRL methods. Such manners could solve the issue

of high-dimensional and continuous state or action space. In addition, the

DRL also makes the policy possess the attribute of generalization.

One outstanding DRL method is deep-Q-network (DQN) (Mnih et al.,

2015), which is an off-policy Q-learning method based on deep neural net-

works. DQN also adopts several mechanisms, such as experience replay

and target network. Consequently, several special mechanisms and variants

that improved the performance of DQN are proposed such as double DQN

(Van Hasselt et al., 2016), prioritized experience replay (Schaul, 2015), du-

eling network architecture (Wang et al., 2016), multi-step learning (Hester

et al., 2018), distributional Q-learning (Bellemare et al., 2017) and the

combinations of these mechanisms (Hessel et al., 2018). The policy-based

methods of DRL, such as asynchronous actor critic (A3C) (Mnih, 2016),

trust region policy optimization (TRPO) (Schulman, 2015), and proximal

policy optimization (PPO) (Schulman et al., 2017) have become the main-
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stream of traditional DRL approaches.

DRL has achieved remarkable successes in the sequential decision-making

field to date (Wang et al., 2022; Landers and Doryab, 2023). It has drawn

much research attention since the publication of the milestone works (Silver

et al., 2016, 2017; Mnih et al., 2015). Video games are the most commonly

used environments for verifying the ability of RL at early stage of its de-

velopment (Vinyals et al., 2019) and more competitive results has been

achieved in various research areas, including robotics (Liu et al., 2021),

natural language processing (Wang et al., 2021), computer vision (Tuan

et al., 2021; Sun et al., 2021), autonomous driving (Talpaert et al., 2019;

Milz et al., 2018; Li et al., 2020a), recommendation systems (Zheng et al.,

2018; Chen et al., 2019a), and finance (Cui et al., 2023, 2024; Liu et al.,

2020a, 2021b). Notably, its applications in game theory (Silver et al., 2017)

and nuclear fusion control (Degrave et al., 2022) even expand the knowledge

boundary of humankind.

2.3.2 Reinforcement Learning for Canonical Combi-

natorial Optimization Problems

Combinatorial optimization (CO) is the key point for numerous important

applications such as engineering, transportation, finance, and management

science. It has continuously attracted enormous attention from all kinds of

research communities for over a century. CO aims at finding a combina-

tion of the decision variables from a finite set that optimizes the objective

function while satisfying various constraints, where the objective function

is usually a value function to be maximized or a loss function to be min-

imized. The decision space is usually high-dimensional and large-scale,

41



2.3. REINFORCEMENT LEARNING

moreover, the NP-hard nature of most of the CO problems further makes

it impossible to enumerate decision variables in a feasible time. Classical

approaches for the CO problem could be divided into the exact method,

approximation method, and heuristic method (Gutin and Punnen, 2006).

An exact method relies on the divide-and-conquer strategy, such as the

branch-and-bound strategy, which guarantees optimality but is computa-

tionally infeasible for large-scale problems. The approximation method

cannot guarantee the optimal solution, but it could finish in polynomial

time. The heuristic method is the most widely used approach for CO

problems. Even though such approaches lack theoretical support, they are

often able to find near-optimal solutions at a relatively fast speed. How-

ever, most of such methods heavily rely on the problem-specific heuristics

painstakingly developed by domain experts.

With the advances in sequence-to-sequence learning framework (Sutskever

et al., 2014) and the rise of computing power in recent decades, using neural

network models for CO problems has been revisited Vinyals et al. (2015).

The idea is to use high-quality solutions of the problems as labels and to

train a neural network that can construct a solution directly from the prob-

lem specification in a supervised manner. However, such approaches are

undesirable, especially for NP-hard CO problems, because getting high-

quality labels is always expensive and even infeasible for some practical

problems. It has been demonstrated that the generalization ability of su-

pervised learning neural networks for CO problems is poor even when the

optimal labels are provided (Bello et al., 2017). Bello et al. (2017) is a

pioneering work that used a learning-based approach to solve CO problems

and achieve competitive results by introducing deep reinforcement learn-

ing techniques. Specifically, negative tour length is chosen as the reward

signal, and the network structure is similar to (Vinyals et al., 2015). Al-
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though the computational cost of training is enormous, the results have

shown near-optimal performance on TSP instances with up to 100 nodes

and optimal solutions on KnapSack instances with up to 200 items. Such

an idea is a milestone and makes an inception that utilizing DRL to solve

CO problems.

Attention mechanism (Vaswani et al., 2017) has also been explored as the

key elements of the network for CO problems (Deudon et al., 2018; Nazari

et al., 2018; Kool et al., 2018), which further improve the work (Bello

et al., 2017). Deudon et al. (2018) also utilized principal component anal-

ysis (PCA) to exploit spatial invariance of the input and batch normal-

ization techniques (Ioffe and Szegedy, 2015) to improve network training.

The result showed that such a method, combined with the 2-opt heuristic

(Croes, 1958), which is an effective classic heuristic for solving TSP, could

outperform the benchmark methods. Nazari et al. (2018) addressed the

invariant issue of the policy network and Kool et al. (2018) made further

improvement by leveraging the transformer architecture (Vaswani et al.,

2017).

Most of the combinatorial optimization problems can be formulated by

graphs. For example, the TSP is to find a minimal cost Hamilton circle over

an undirected graph. Khalil et al. (2017) is the first study that deployed

a learning-based method on graph structure data to solve combinatorial

optimization problems. A graph embedding method called Structure2Vec

(S2V) is proposed for graph representation. The basic idea of S2V is to

represent a node’s feature in a graph by aggregating the feature informa-

tion of its neighbors. A vector containing the information of the graph

topology could be obtained after repeating several steps of such a process.

The output of the S2V is linked to a deep-Q-network for refining a given
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solution perturbatively. The author tested this method on the minimum

vertex cover, maximum cut, and traveling salesman problem. The result

is better than traditional heuristic methods and shows great generalization

performance.

Instead of learning a constructive heuristic that generates the solutions

directly, da Costa et al. (2020) focused on improvement (or perturbative)

heuristics that could refine a given solution iteratively until reaching a

near-optimal solution. In his work, a method that could learn a policy to

generate the 2-opt heuristic for TSP is proposed. Moreover, the author

modified the initial pointing mechanism, which makes it easy to extend to

k-opt operations.

Inspired by the large neighborhood search (LNS) algorithm for vehicle rout-

ing problems (Shaw, 1998), where the destroy operator removes a subset

node of the current solution and the repair operator is used to generate

a permutation of the selected elements and insert them back, Gao et al.

(2020) proposed a method to learn the local search heuristics. Motivated

by the graph attention network (GAT) mechanism (Veličković et al., 2018)

which is an effective method to represent the graph topology by propagat-

ing the neighbor node information through the attention mechanism, the

author proposed a modified version called Element-wise GAT with Edge-

embedding (EGATE) which not only consider the information of nodes but

also the arc between the nodes. The method is evaluated by CVRP and

CVRPTW problems, and both outperform the classic hand-crafted heuris-

tics and neural combinatorial optimization approach for VRP. Also, the

method can tackle large-scale instances (over 400 nodes).

Chen et al. (2020a) is also motivated by the LNS algorithm (Shaw, 1998)
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and proposed a similar method called dynamic particle removal (DPR) us-

ing Hierarchical Recurrent Graph Convolutional Network (HRGCN). The

degree (size and the allocation of the sub-nodes) of the destroy operator

is dynamically determined. The HRGCN can be aware of spatial (graph

topology) and temporal (embedding in previous iterations) context infor-

mation. The CVRPTW instances with up to 800 nodes are used to test

the performance of the approach method, the results showed that the DPR

outperforms the initial LNS heuristics.

Another LNS-based algorithm proposed by Hottung and Tierney (2020)

is called neural large neighborhood search (NLNS), which used a similar

destroy-repair framework. The method was specifically adapted to support

parallel computing, which is one of the contributions of this method. Such

an attribute could support two patterns: batch search, which solves a set

of instances simultaneously, and the single instance search, which solves

only one instance concurrently. The method is demonstrated by the ca-

pacitated vehicle routing problem (CVRP) and the split delivery vehicle

routing problem (SDVRP). The result showed that such a method outper-

forms the classic LNS and heuristic methods, and the performance is close

to the state-of-the-art method.

NeuRewriter (Chen and Tian, 2019) is another effective proposed approach

for iteratively refining a given solution. However, in the NeuRewriter frame-

work, two policies (region select policy and rule select policy) need to be

learned, which makes the training process a little bit cumbersome. To

tackle this problem, Wu et al. (2021) integrated two policy networks into

one by modifying the network structure. Specifically, the author adopted

compatibility computation in the model to generate a probability matrix

where one of its elements specifies the two nodes to be swapped. To capture
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the node position information, sinusoidal positional encoding is introduced

to the embedding layer. Moreover, the mechanisms of skip connection (He

et al., 2016) are adopted in the model. The result shown by this method

outperformed the NeuRewriter.

Similarly, Lu et al. (2019) proposed an iterative improvement method called

“Learn to Improve (L2I)” that generates a solution perturbatively. It is

noteworthy that such a method outperformed LKH3 (Helsgaun, 2017), the

state-of-the-art method of capacitated vehicle routing problems (CVRP).

This method firstly designs two classes of operations, namely, improve-

ment operators and perturbation operators, which are used to improve and

destroy part of the solution respectively. The network serves as a con-

troller that selects the corresponding heuristics. The effect of historical

actions is also taken into consideration in the model. This approach could

be considered as a reinforcement learning-based hyper-heuristic, but it is

not explicitly pointed out in the paper. The L2I model outperformed the

SOTA method on CVRP, which is an impressive result. Basically, most of

the perturbative methods outperformed the constructive methods in this

field because of their local search nature. However, a higher time cost is

required to obtain a high-quality solution compared with the constructive

methods. The extremely high searching time issue of work (Lu et al., 2019)

has been pointed out in successive research.

Generally, most of the models that are trained on small-size problem in-

stances fail to maintain their performance while evaluating the large-size

instances. Training on large instances seems to be a solution, but it brings

a higher computational cost for both training and generating data. More-

over, reinforcement learning training usually converges at a quite low speed.

Learning-based methods with high training time and low generalization
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performance would lose competitiveness compared to traditional heuristic

methods.

2.3.3 Reinforcement Learning for Truck Dispatching-

Related Optimization Problems

The RL-related approaches for the optimization problems in a container

terminal have been explored in recent years (Grafelmann et al., 2023).

Zeng et al. (2011) made an early exploration that uses RL to solve the inte-

grated yard crane scheduling and truck dispatching problems in a container

terminal. Two agents of both problems act autonomously to optimize cor-

responding operations. The experimental results show that the RL method

could outperform any heuristic approaches. However, the limitation is low

generalization ability because of the lack of using deep neural networks to

fit the Q value. The research interests for the container truck dispatching

based on RL include leveraging the novel network structure (Chen et al.,

2021), improving the agent training paradigm (Zhang et al., 2023a), multi-

agent reinforcement learning (Hu et al., 2023; Che et al., 2024; Zhou et al.,

2024), and RL-assisted evolutionary computation (Chen et al., 2024).

Hyper-heuristic is a kind of methodology that incorporates expert knowl-

edge, which avoids the algorithm search solutions from scratch. The hyper-

heuristic and RL complement each other’s advantages since RL could help

to learn the mapping relation between input states and the correspond-

ing low-level heuristics. Zhang et al. (2022a) explored such a mechanism

and proposed a deep reinforcement learning-based hyper-heuristic (DRL-

HH) framework for combinatorial optimization problems. The proposed

method is verified on the 2D bin-packing problem and the truck dispatch-
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ing problem in a container terminal, and the uncertainty factors in reality

are fully considered. Ten low-level heuristics are designed based on some

quay crane-related priority factors. The network is trained by a double

deep Q network framework (Van Hasselt et al., 2016). At each dispatching

step, the RL agent is invoked to select a low-level heuristic, and the heuris-

tic will output a specific action (which task to assign). This research is

a novel attempt to combine the advantages of reinforcement learning and

hyper-heuristic. The competitive performance of the proposed framework

is experimentally proven on both a traditional combinatorial optimization

problem and a real-world complex optimization problem.

The container truck dispatching problem could be considered as a full-

truckload version of the dynamic pickup and delivery problem (DPDP).

RL-related methodologies are also investigated from this scope, such as

innovating attention blocks in a neural network (Li et al., 2021), multi-agent

reinforcement learning (Zong et al., 2022), and hierarchical reinforcement

learning (Ma et al., 2021). The RL-based methods for the food delivery

problem (Jahanshahi et al., 2022) and the taxi dispatching problem (Liang

et al., 2021; Liu et al., 2020b; Qin et al., 2020) are also investigated since

they could be derived from the original version of DPDP when satisfying

some constraints, such as time windows of customers. According to the

taxonomy of truck dispatching problems, food delivery and taxi dispatching

problems belong to the job-trigger category. In addition, RL could also be

utilized in other industrial fields such as surface mining, which has similar

logic to the container truck dispatching problem (Afrapoli et al., 2019;

de Carvalho and Dimitrakopoulos, 2021).

48



2.4. MULTI-OBJECTIVE OPTIMIZATION

2.4 Multi-Objective Optimization

Multi-objective optimization (MOO) has become a crucial topic in the

scope of operational research or container terminal operation (Ehrgott and

Gandibleux, 2003; Tian et al., 2021). Unlike a single-objective problem,

which only one optimal solution is required, MOO aims at exploring a set

of solutions with different trade-offs among the objectives. It’s common to

use Pareto dominance to describe the relation of any two solutions in this

set. A solution is said to be Pareto optimal if there is no other solution

that could dominate it. The set of all possible Pareto optimal solutions is

defined as the Pareto set, and the visualization of the Pareto set on the

objective space is called the Pareto front. To find the exact Pareto set

is extremely challenging in the MOO field since obtaining a single Pareto

optimal solution is quite difficult. Therefore, most of the existing MOO

methods are developed to find an approximated Pareto set within a feasi-

ble computational time. MOO is significantly concerned among container

terminal management since different equipment and problems are involved.

The methods towards MOO problems in the container terminal are to find

a high-quality approximated Pareto set for different preferences of decision-

makers.

In this section, research about traditional MOO methodologies, RL-related

approaches for MOO, and MOO problems in container terminals are intro-

duced.
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2.4.1 Traditional Multi-Objective Optimization Al-

gorithms

NSGA-II (Deb et al., 2002) is one of the most exemplary approaches dur-

ing the development of MOO, which is based on the idea of the genetic

algorithm (GA). GA starts with an initial population that contains a set of

solutions. New populations are generated by conducting genetic operators

among parent populations, and elite individuals are retained at each evolv-

ing iteration. The fitness of individuals is improved by repeating such a

process. For single-objective problems, the fitness is usually defined as the

optimization objective value. In NSGA-II, the fitness is evaluated by the

non-domination rank and crowding distance. Specifically, the fitness of an

individual is better if it is dominated by fewer individuals and has a higher

crowding distance towards its neighboring individuals. NSGA-II has high

computational efficiency for its non-dominant sorting and maintains great

diversity of the solution set. It has been considered as a solid work of the

MOO field and a classical MOO baseline algorithm.

Most MOO problems require tremendous search effort even in the case

that only one single preference is involved. Therefore, heuristic such as lo-

cal search operator (Johnson, 1990) are introduced to evolutionary MOO.

Pareto local search (PLS) (Paquete et al., 2004) and multi-objective ge-

netic local search (MOGLS) (Jaszkiewicz, 2002a; Ishibuchi and Murata,

1998; Jaszkiewicz, 2002b) are proposed based on a local search mechanism,

which simultaneously optimizes several sub-problems with the correspond-

ing weighted scalar objectives. Such a method is considered as a simple

and intuitive methodology, which is defined as a decomposition mechanism

in successive literature. Decomposition approaches convert MOO to sev-

eral single-objective optimization problems through scalarization functions
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(such as weighted-Tchebycheff or weighted sum functions), then sophis-

ticated approaches for single-objective optimization could be adopted for

them separately.

MOEA/D (Zhang and Li, 2007) is another representative algorithm in

MOO community. Unlike NSGA-II, which evaluates individuals by their

non-dominant relations and crowding distance, MOEA/D calculates the

fitness by aggregating objectives to a scalar value. The key idea of the

MOEA/D is to decompose a MOO problem into several scalar-valued sub-

problems and optimize these single-objective problems in a single run.

These sub-problems are defined by different weight vectors. In each it-

eration, the information of neighborhood sub-problems is used to update

the current individual. Similar to the traditional GA, new individuals could

be generated by genetic operators such as crossover or mutation. Such a

method is considered as a collaborative mechanism that helps to explore

the search space more effectively. It is proven that MOEA/D possesses

a lower computational complexity than MOGLS and NSGA-II. There are

also a series of its variants (Ke et al., 2013; Wang et al., 2015; Zhang et al.,

2009) that leveraged the idea of decomposition and collaborative mecha-

nism during the evolution process.

Many-objective optimization problems indicate the cases where more than

two objectives are involved, which also verifies the suitability for using

a decomposition-based framework (Ishibuchi et al., 2014). Hybrid ap-

proaches that comprised both dominance-based and decomposition-based

mechanisms are also investigated (Li et al., 2014). Hyper-heuristic (Burke

et al., 2013), which is introduced above, could also serve as an option for

MOO problems (Maashi et al., 2014, 2015). Notably, some learning-based

methods have also flourished for tackling MOO problems (Lin et al., 2022;
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Zhang et al., 2022b; Li et al., 2020b; Wu et al., 2019) along with the success

of neural combinatorial optimization (Bello et al., 2017). However, most

of these approaches only focus on canonical problems such as the multi-

objective traveling salesman problem (MOTSP) (Lust and Teghem, 2010)

or the multi-objective vehicle routing problem (MOVRP) (Jozefowiez et al.,

2008), which lack effort for the cases in real-world applications.

2.4.2 Multi-Objective Optimization in Container Ter-

minals

Multi-objective versions of truck dispatching in container terminals are

widely investigated since multiple equipment, such as quay cranes, yard

cranes, and trucks are involved in this process, and each equipment has its

indicators that are concerned. For our examined problem, QC utilization

and truck empty travel distance are considered. Objectives in MOO usu-

ally have a strong trade-off property. Choe et al. (2016) proposed an online

preference learning approach for truck dispatching of container terminals.

A neural network serves as a dispatching policy that outputs the pairwise

preference degrees between trucks and tasks. Kim et al. (2013) adopted a

noisy multi-objective evolutionary algorithm where an accumulative sam-

pling mechanism is used to alleviate the influence of several environment

uncertainties, thus strengthening the model’s adaptiveness to variant sce-

narios. Homayouni and Tang (2013) raised the multi-objective coordinated

scheduling problems between trucks and quay cranes. A modified genetic

algorithm is adopted, and computational feasibility towards the optimal

scheduling solution is analyzed in this work. Hu et al. (2019) consid-

ered a bunch of containers as the minimal operational unit and applied

a heuristic-adaptive genetic algorithm to minimize task completion time
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and the truck’s empty traveling distance. Other container terminal-related

integrated MOO problems have also been investigated, such as integrated

vehicle scheduling and container storage allocation (Dkhil et al., 2017), in-

tegrated QC assignment and berth allocation (Prayogo et al., 2022), jointly

berth-yard allocation (Liu et al., 2016), and bi-objective berth allocation

problem (Zhen and Chang, 2012).

2.4.3 Multi-Objective Reinforcement Learning

Multiple objectives are required for most of the real-world decision-making

applications, implicitly or explicitly (Roijers et al., 2013). Multi-objective

reinforcement learning (MORL) is a special direction in the RL commu-

nity to handle diversified objectives. There are two main classifications

of MORL, namely single-policy and multi-policy algorithms, depending on

whether there is only one preference weight to be considered. In cases of

single-policy, a concrete preference over objectives is given, and hence the

problem is converted to a single-objective optimization problem. The re-

search concern is usually about exploring suitable scalarization functions

for specific problems (Vamplew et al., 2008). Multi-policy algorithms are

dedicated to approximate the Pareto front by generating a set of policies.

Multi-policy approaches could be further classified into outer loop methods

and inner loop methods (Hayes et al., 2022). Similar to the decomposition

mechanisms in MOO (Zhang and Li, 2007), outer loop methods obtain the

policy set by solving several single-objective problems separately, and the

simplest way to conduct outer loop methods is to repeatedly run a sin-

gle policy algorithm several times with different preference weights (Parisi

et al., 2014).
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Outer loop methods aim at exploring training paradigms which can accel-

erate the learning process, such as reusing parameters of neural network

(Li et al., 2020b; Zhang et al., 2022b) or learn to initialize the network

parameters to make it adapt to various preferences faster (Chen et al.,

2019b). In contrast, inner loop methods focus on producing multiple poli-

cies directly in a single run, such as weight-conditioned network (Abels

et al., 2019), multi-objective fitted Q-iteration (MOFQI) (Castelletti et al.,

2011), and Pareto Q-learning (Van Moffaert and Nowé, 2014; Ruiz-Montiel

et al., 2017).

2.5 Simulation Methods

In this section, some simulation-based research is discussed. The target of

the simulation is still focused on the operations and logic in a container

terminal. Then the concept of digital twin, which is highly relevant to

solving real-world CO problems is introduced.

2.5.1 Container Terminal Simulation Approaches

Simulation is an effective approach to model the real-world decision-making

processes. For CO problems in a container terminal, a simulation approach

is suitable for the operations that are sensitive to the dynamic behavior of

equipment and could alleviate the complexity of mathematical modeling. A

great number of researchers have utilized various simulation approaches for

different container terminal operations (Angeloudis and Bell, 2011). Yun

and Choi (1999) used SIMPLE++, an object-oriented simulation tool, to

develop a container terminal analysis system. Legato and Mazza (2001)
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used the Visual SLAM language for discrete event simulation of a berth

planning procedure to test some resource allocation problems. Bielli et al.

(2006) developed a distributed discrete event-based simulator with Java to

model the decision support system in a port. The real-world data are also

used to calibrate and validate the simulator. Bin et al. (2008) simulated the

truck dispatching process using the AnyLogic software. The blackboard

system and the message communication mechanism are used in a multi-

agent collaborative system. Yangl et al. (2018) also used the AnyLogic

software to simulate the AGV dispatching process in the container terminal

to develop the optimization algorithm.

2.5.2 Digital Twin

The digital twin is a kind of mapping from an actual system to its virtual

or digital representation (Tao et al., 2022). A physical entity, a virtual en-

tity, and their relations formed a complete digital twin. The objective is to

establish a precise, general, and real-time connection between the virtual

and real world, thus to offer a simulation environment for the optimization

algorithms, product designs, and extreme condition analysis. In this way,

a digital twin can describe, diagnose, predict, and optimize the real enti-

ties. The concept of the digital twin was first proposed by Grieves (2005)

and applied to product life cycle management. The theory of digital twin

has been developed for over a decade and has created a great number of

successful real-world applications such as supply chain, intelligent manu-

facturing, intelligent medical diagnosis, and intelligent city (Lin-Yao et al.,

2019). One of the great achievements is the City Brain, the first batch

of digital twin cities created by Alibaba Group (Zhang et al., 2019). The

model is used to conduct research like automatic accident alerting, traffic
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light optimization, and traffic flow forecasting. The digital twin technique

should be effective and vital for supporting real-world combinatorial opti-

mization problems. Some studies also utilize digital twin techniques in the

container terminal optimization (Gao et al., 2023; Zhang et al., 2023b).

2.6 Summary

According to the investigation about these related topics, it is believed

that deep reinforcement learning approaches should be suitable to solve the

examined online container truck task dispatching optimization problem for

the following reasons.

• Traditional rule-based approaches are vulnerable to some uncertain

factors such as traffic congestion, layout changes, and equipment

breakdown. Well-developed rules (especially for the solutions that

are generated from mathematical models) always fail to be feasible

on instances with unseen uncertainties. When new uncertainties are

considered, reinforcement learning-based methods only need to build

uncertainties in the simulation environment and extend the state fea-

ture design rather than rebuild new heuristics or low-level heuristics

to consider such effects, because the heuristic generation is automated

during the RL training.

• Reinforcement learning agent generates the decision-making policies

by deep neural networks, which could make it obtain high gener-

alization to different cases compared with heuristic searching-based

methods. This could be explained by the theory of the generalization

ability of deep neural networks (Neyshabur et al., 2017). Such an at-
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tribute makes RL-based approaches suitable for online optimization

that requires decisions to be made in real-time.

• The objective is always deterministic in the combinatorial optimiza-

tion problem realm. Such an objective is an important indicator for

designing a reward mechanism that guides the direction for updat-

ing the network in reinforcement learning algorithms. In contrast,

reward design is hard for some traditional RL application fields like

video games because most of their ultimate purposes are oversimpli-

fied (win or lose). Reward shaping is always required in such cases,

and tuning reward mechanisms in the RL algorithm is painstaking

and time-consuming.

• State feature engineering is easier compared with heuristic searching

approaches. In RL design, different raw state features or even noise

information could be included to construct the state as the input

of the network. It benefits from the automatic feature engineering

ability of deep neural networks, which handles or filters different state

components in the training process. In contrast, noise or insensitive

information always reduces the performance of heuristic searching

models or makes them fail to converge at the worst, since agents

of heuristic searching methods have no intention to select or filter

different feature components, and they heavily rely on manual feature

engineering.

• Reinforcement learning-based approaches have potential for multi-

tasking and integrated optimization in container terminal-related prob-

lems. Such a realm belongs to real-world optimization and man-

agement problems with more complex logic and higher-level uncer-

tainties. With techniques like hierarchical reinforcement learning

and multi-agent reinforcement learning, RL-based approaches are ex-
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pected to become a universal framework for container terminal in-

tegrated optimization. Since research about RL in the context of

container terminals is quite limited, our work could be considered as

a trial and set up a solid foundation for this direction.
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Chapter 3

Online Container Truck Task

Dispatching Problem

This chapter focuses on the description of the proposed online container

truck task dispatching problem. Firstly, the process of truck dispatching

in a real-world container terminal environment is introduced in detail, in-

cluding the specific task instructions and several constraints that are set

up by the real-life business. The optimization objectives and the main con-

cerns when building the solution to the examined problem are discussed.

Based on the comprehension and the investigation of this problem, the

main challenges and the research aims are reported. Then, a mathematical

formulation of the truck dispatching problem is given, where the cause of

the objective value is analyzed. Finally, the development of the simulation

environment is introduced, including how the relevant uncertainties, such

as traffic congestion, are achieved. Moreover, the concept of Real2Sim in

this thesis is also described.
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3.1 Container Truck Dispatching Process

This section introduces the concrete operational progress of the examined

problem in detail. As briefly introduced in chapter 2, truck dispatching is

a dynamic matching between container trucks and transportation tasks. A

simplified layout of a container terminal is shown in Figure 3.1. The red

arrows represent the truck moving directions allowed at different areas. In

this case, each vessel is equipped with 2 loading QCs and 2 unloading QCs.
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Load QCs Unload QCs Load QCs Unload QCs
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Berth 1 Berth 2

Truck

Yard RoadBay Yard Crane
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Quay Crane

: Truck moving direction

: Container moving direction at QCs

Figure 3.1: A cut-out example of the container terminal layout.

In a container terminal, quay cranes (QCs) and yard cranes (YCs) are two

types of closely related equipment in the truck dispatching process. Trucks

are responsible for transferring containers either from QCs to YCs or from

YCs to QCs, which indicates unloading or loading containers, respectively.

The truck’s traveling route needs to follow the traffic directions of one-way

roads in the container terminal.

Except for the YC and QC, a task is also related to the source and target

bay locations. The specific definition of a transportation task in this study
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Id Source Destination Type Source Bay Destination Bay
1 QC6 32 DISCHARGE 15 12
2 5 QC2 LOAD 20 23

Table 3.1: An example of task instructions.

is indicated by Table 3.1. It contains a unique task ID, the source loca-

tion, the source bay, the destination location, the destination bay, and the

task type. For task 1, the source container at bay 15 dedicated to QC6 is

about to transfer to yard 32 at bay 12. The source or destination location

is either QC or YC. Task type, which is denoted by the terms LOAD and

DISCHARGE in container terminal literature, indicates loading to the ves-

sel or unloading from the vessel, respectively. There are two kinds of QC,

namely loading and unloading QC, where loading QCs only serve LOAD

tasks and unloading QCs only serve DISCHARGE tasks. The source and

destination bay are the stopping places for the truck and cranes besides

the yard or vessel. The container loading or unloading operations are only

executed when the trucks and the crane both reach the target bay. Gener-

ally, the process of executing a task that is assigned to a truck is described

as below:

1. Drive to the source bay at the source location.

2. Wait in the queue until the container is loaded to the truck by the

crane.

3. Drive to the destination bay at the destination location.

4. Wait in the queue until the container is unloaded from the truck by

the crane.

5. Start to execute a new task or return to the park (depot).
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The Figure 3.2 describes a specific transportation task that is introduced

above from a spatial perspective, where the task is to fetch a container

from QC1 and deliver it to Yard B. The red and blue line indicates the

empty and loaded traveling path respectively.

Q
C
1

Q
C
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Q
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idle truck

Yard A

Yard B

First 
Operating 
Location

Second 
Operating 
Location

Figure 3.2: Indication of a container truck transportation task.

This study focuses on the vehicle trigger version of the examined problem

as described in 1.2.4, which means the decision-making happens at the

time step when some truck becomes idle (just finishes its previous task).In

addition, a truck only executes and carries one single task at the same time.

In a container terminal, tasks are organized as lists that belong to each

QC. In another work, each QC maintains a list of tasks that are related

to it. Once a task of a specific QC is dispatched, it needs to be removed

from the QC’s task list. When a truck finishes its previous task, the central

scheduler needs to select a new task and assign it to this idle truck. Such

a decision is required to be made within a short period (basically a few

seconds). Usually, only the first task in each QC’s task list is available to
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be selected at some time according to the operational constraints of the

container terminal. For instance, if there are n QCs with their non-empty

task list, this means the central scheduler has n options for the current

truck dispatching decision. In addition, some container terminal operation-

related rules set up constraints for the examined problem. For example,

the QC operation constraint requires all the QCs to serve the trucks in

their task dispatching order, which indicates that sometimes trucks with

later dispatched tasks are required to wait in their QC queue if trucks with

earlier dispatched tasks do not reach this QC.

QC make-span is defined as the total time that the QC takes to finish all

its assigned tasks. In the single objective version of the examined appli-

cation, the objective is to minimize the summation of all QC’s idle time

in their QC make-span, since minimizing such objective helps to improve

the QC utilization, and thus to increase the throughput of the entire con-

tainer terminal by shortening the berthing time of vessels. Defining the

objective as such better reflects this purpose. Consequently, this objective

is formulated based on the perspective of QC operation flow that is pre-

sented in Figure 3.3, where T q
1 , T

q
2 , T

q
3 , T

q
4 are the starting times that quay

crane q starts to operate the containers of different tasks. Oq
1, O

q
2, O

q
3, O

q
4

are their corresponding operating duration, which are indicated by the grey

cells. Each QC has two kinds of states, namely, operating and idle. The

QC operation flow presents the repeated process in which a QC’s state

switches between these two states. In multi-objective cases, the truck’s

empty traveling distance is taken into consideration.
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Figure 3.3: An example of QC operation flow.

3.2 Challenges and Motivation

Existing studies for container truck dispatching problems have already

taken large efforts on model-driven approaches, which first formulate the

target problem by mathematical models, and then adopt various optimiza-

tion algorithms to obtain the (optimal) solutions (Weerasinghe et al., 2024).

There are several mature methodologies for these model-driven COPs.

The exact algorithms, usually based on the Branch-and-Bound framework

(Tomazella and Nagano, 2020), make full use of the structures of the con-

straints and objective functions to partition the solution space while ensur-

ing optimality. These approaches could obtain the optimal solution, but

at the expense of prohibitive searching cost for large problem instances

caused by the exponential time complexity. Alternatively, approximation

algorithms, such as heuristic approach, heuristic search, or hyper-heuristic,

fail to guarantee the optimality but can generate high-quality solutions in

an acceptable computational time (Silver, 2004).

Even though the approximation algorithms are suitable for some classical

COPs, once the problem configuration changes slightly, the obtained solu-

tions need to be revised or re-optimized. To adopt the approximation al-

gorithms in a new problem configuration is an open challenge derived from

the No Free Lunch (NFL) theorem (Wolpert and Macready, 1997). One

main issue of the model-driven method is that it usually concerns determin-
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istic variants of the problem, where some strong assumptions are required

in the model. Since these assumptions are usually incompatible with the

practical scenarios, as a result, the solutions obtained by a model-driven

approach may be infeasible to deploy in real-world applications because of

the high-level uncertainties (Manikas et al., 2020).

Taking our examined problem as an example, the uncertainty factors come

from several aspects, such as the service time of QC or YC operations, the

moving speed of equipment, and the degree of yard congestion (Lu and

Le, 2014; Liu et al., 2021a). Traditional model-driven methods are usu-

ally vulnerable to these uncertainties. The solutions generated in such an

offline manner may confront the disturbance caused by these uncertain-

ties in a non-deterministic environment, thus producing the performance

drop of the solution, which is accumulative through the entire decision-

making process and eventually makes the solution infeasible (Zhang et al.,

2022a). As the approach that solves optimization problems with uncer-

tainties, stochastic programming can partially alleviate such issues (Birge

and Louveaux, 2011), but it often leads to extremely complex models that

tend to be intractable and ineffective for most practical problems.

Apart from the uncertainties and dynamic factors, the optimizations in

a real-world container terminal can be far more complex. Take various

container terminal operations as an example, several closely related sub-

problems are always jointly considered, including quay crane scheduling,

berth allocation, yard crane scheduling, container space allocation, and

finally the truck task dispatching. Any single operation can influence oth-

ers, and yet the joint optimization of these sub-problems is more difficult

(Kizilay et al., 2020). Therefore, when focusing on one of these problems

individually, other sub-problems become another kind of uncertainty. For
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example, the estimation of truck queuing time in a yard, which could be

considered as a reference factor for truck dispatching decisions, is affected

by the concrete yard crane dispatching policy. What’s more, random situ-

ations such as general disruptions may occur (Rodrigues and Agra, 2022).

These factors may place a burden on obtaining high-quality solutions for

some common approaches.

Apart from the dynamic and uncertainty factors above, the real-life con-

tainer terminal authorities may be faced with trade-off purposes in their

daily management. For instance, equipment such as quay cranes needs to

be made best used as effectively as possible during the peak time, thus

to shorten the vessels’ operation make-span. During spare time, other

operational costs such as energy consumption, labor cost, and equipment

maintenance need more consideration. In addition, situations in reality are

not always these two extreme cases but fall into the intermediate states.

Therefore, it is required that the trade-off purposes should be dynamically

concerted at different preference levels, which raises more challenges to the

management methodology. From another perspective, such trade-off pur-

poses could also be considered as an uncertainty about user preferences.

In the multi-objective version of the examined problem, the truck empty

distance (as depicted by the red line in Figure 3.2) is taken into consid-

eration. More specifically, the average empty traveling distance per task

is designed as the second objective to be minimized. Minimizing the QC

idle time is considered as a primary focus for a truck dispatching strat-

egy in a container terminal because the throughput productivity of a port

heavily relies on how continually QCs execute loading and unloading opera-

tions, which is directly related to the port companies’ economic benefit and

business competitiveness. Reduction of truck empty travel distance could
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also save operational costs by decreasing fuel consumption and equipment

maintenance costs. Although its profit is inferior to minimizing the QC idle

time, minimizing the empty travel distance is also related to reducing the

carbon emission and air pollution, which has already drawn considerable

concerns by society and governments (Mansouri et al., 2015).

To tackle the multi-objective truck dispatching problem, existing methods

aim at seeking a set of Pareto optimal policies, where no policy can outweigh

in all objectives. Solving time for approximating the Pareto optimal set

would exponentially increase compared with optimizing a single objective

policy, since the user preference over different objectives is usually unknown

in most cases (Roijers et al., 2013). The algorithms that are extensively

adopted are based on multi-objective evolutionary computation, which are

able to obtain a set of non-dominant solutions in a single run through

evolving a population of candidate solutions. Two well-known approaches

for MOO problems are MOEA/D (Zhang and Li, 2007) and NSGA-II (Deb

et al., 2002). Numerous MOO algorithm variants are based on these two

algorithms (Ke et al., 2013; Li et al., 2014; Wang et al., 2015). However,

most of these mature approaches for MOO are designed for canonical CO

problems, which cannot satisfy the special requirements of the examined

truck dispatching problem. Another drawback of the evolutionary MOO

approaches is revealed by their finite number of solutions. More specifically,

the quality and diversity of the solution set could only be guaranteed by an

adequate population size and insufferable long-term evolving generation.

Otherwise, users may fail to choose the most suitable policy for a specific

scenario.

To sum up, considering the aforementioned challenges of the examined

problem, our designed methodology is required to be robust to various
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uncertainties. What’s more, the algorithm should give a specific decision

in a short response time since it is a real-time decision-making optimization

problem. For the MOO version problem, the obtained solution set should

possess enough policy diversity, which guarantees that the most proper

preference weight for users is available. Therefore, a deep reinforcement

learning-based methodology is proposed for the examined problem. In this

process, the real-life complexities and uncertainties are fully concerned.

For MOO dispatching problem, a novel methodology called preference agile

multi-objective optimization (PAMOO) is designed that make the model

use a uniform and custom-designed neural network to generate dispatching

decision with arbitrary preferred trade-offs rather than generate a finite set

of dispatching policies and allows users to dynamically decide the trade-

off according to real-time situation and interactive adjust preference easily.

Finally, mechanisms that introduce the prior expert knowledge to augment

the model, which help to accelerate the agent training, are explored for

both single and multi-objective optimizations.

3.3 Mathematical Formulation

As described above, quay cranes (QCs) and yard cranes (YCs) are two

most representative equipment in a container terminal. A standard trans-

portation task can be defined by its first and second operating nodes and

its index in the corresponding QC task list. A task can be either from QC

to YC (import containers) or from YC to QC (export containers). Upon

the arrival of a vessel, the set of containers to be loaded and unloaded

can be determined in advance, and a fixed number of QCs are assigned

to service the vessel. Each QC is attached to a list of tasks that need to
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be dispatched and transported in a predefined sequence. The dispatching

process is repeatedly triggered by a task request from an idle truck. The

automated dispatch module (i.e., dispatch algorithm) firstly evaluates all

candidate tasks available at the active QCs and assigns the most suitable

task to the target truck, and then the truck will visit the first and second

nodes of the assigned task to complete the transportation. A waiting time

is imposed if there are other preceding trucks at any node because both

QCs and YCs can only handle unit tasks each time. Upon completion of the

task, the truck becomes idle again and triggers a new request until all tasks

are completed. Truck dispatching requires careful consideration to avoid

interruptions of QC operations (QC waiting for the incoming trucks). A

bi-objective formulation that simultaneously minimizes both the total idle

time of QCs and the total truck empty travel distance is adopted in this sec-

tion. The objective functions and relative constraints are achieved through

the simulation that is introduced in the next section.

For the convenience of reading, the notations used in this section are sum-

marized and classified in Table 3.2. The problem is mathematically formu-

lated as follows. Denote Q and Y the set of QCs and YCs of the container

terminal and d the parking lot of the truck fleet (i.e., depot), d /∈ Q∪Y . All

trucks are initialized in the depot at the beginning of the simulation. Let

N = Q∪Y ∪{d}. The term working instruction refers to a unit-sized trans-

portation task that each truck can maximally handle at any time. The set

of all tasks is denoted as U . W q indicates the task list of qth QC, W q ⊆ U

and wq
i refers to the ith task in W q, wq

i ∈ W q. Let f q
i and sqi be the first

and second operating locations of the task wq
i and f q

i , s
q
i ∈ Q ∪ Y . Denote

V the truck fleet, |Q| ≤ |V | ≤ |U |, and each truck v is involved in the

dispatching process. The term Oq
i and Lq

i indicates the QC’s operation du-

ration and truck waiting time in the QC queue for task wq
i , O

q
i > 0, Lq

i ≥ 0.
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Notation Description
Given Information

Q The set of quay cranes
Y The set of yard cranes
N The set of all positions in a container terminal
U The set of all transportation tasks
W q The task list of qth quay crane
wq

i The ith task of qth quay crane
f q
i The first operation location of task wq

i

sqi The second operation location of task wq
i

V The set of all dispatchable trucks
δ(x, y) The distance between location x and y, x, y ∈ N
Tinit The start time of the simulation.

Decision Variables

α(wq
i , v)

A binary variable to indicate whether
task wq

i is assigned to truck v or not.
Auxiliary and Internal Variables

Oq
i The quay crane operation time of task wq

i

Lq
i Truck waiting time in the QC queue for task wq

i

Dq
i The time step when task wq

i is dispatched
T q
i The time duration the task wq

i takes to arrive its QC
τ(x, y) The travel time between location x and y, x, y ∈ N
β(t, v) The location of truck v at time step t
λ(wq

i ) The yard crane service time of task wq
i

ϕ(wq
i ) The loading or unloading type of task wq

i

z(wq
i , w

q′

i′ )
The variable to indicate whether task wq

i and wq′

i′ are
executed by the same truck in a consecutive order.

Tend The end time of the simulation.
Objectives

Function (3.5) Total QC idle time
Function (3.6) Total truck empty traveling distance

Constraints
Constraint (3.7) Distance between any two locations is positive
Constraint (3.8) Traveling time between any two locations is positive
Constraint (3.9) Each task in U is dispatched to only one truck

Constraint (3.10)
The first task in each QC task list is dispatched
at the beginning of the simulation

Constraint (3.11)
Tasks in each QC list are required to be dispatched
in a pre-defined order

Constraint (3.12)
Each QC is required to operate tasks in the same
order when they are dispatched

Constraint (3.13)
It defines the waiting time of truck in QC queue
when the quay crane is busy

Constraint (3.14)
It ensures the QC operates a the task immediately
at the arrival of the truck when the QC is idle

Constraint (3.15) It guarantees trucks execute tasks continuously

Table 3.2: Notations used in the problem formulation.
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Denote Dq
i the time step when task wq

i is dispatched. Tinit is the start time

of the simulation and Tend refers to the end time once all the task in U

are finished. Several functions that help to model some details during the

truck dispatching process are established as below. The functions τ(x, y)

and δ(x, y) are used to query the travel time and distance from location

x to y separately, where x, y ∈ N . Expression β(t, v) return the current

position of the truck v at time step t and β(t, v) = d if t = Tinit. The

formula λ(wq
i ) calculates the yard crane service time (including waiting in

the yard queue) for a given task wq
i .

Equation 3.1 decides if a specific task wq
i is assigned to truck v.

α(wq
i , v) =


1, wq

i is assigned to v

0, otherwise

(3.1)

Expression (3.2) indicates the loading or unloading type of a given task wq
i .

ϕ(wq
i ) =


1, wq

i is loading task

0, otherwise

(3.2)

Expression (3.3) indicates that the tasks wq
i and wq′

i′ are executed by the

same truck in a consecutive order.

z(wq
i , w

q′

i′ ) =


1, wq

i and wq′

i′ are executed by the same

truck in a consecutive order

0, otherwise

(3.3)
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Let T q
i (3.4) compute the time duration that a truck takes to arrive at the

QC in task wq
i .

T q
i = [τ(f q

i , s
q
i ) + λ(wq

i )]ϕ(wq
i ) +

∑
v∈V

τ(β(Dq
i , v), f q

i )α(wq
i , v) (3.4)

Formally, we can have the following problem formulation:

min

|Q|∑
q=1

|W q |∑
i=2

max(Dq
i + T q

i −Dq
i−1 − T q

i−1 − Lq
i−1 −Oq

i−1, 0) +

|Q|∑
q=1

T q
1 (3.5)

min

|Q|∑
q=1

|W q |∑
i=1

∑
v∈V

δ(β(Dq
i , v), f q

i )α(wq
i , v) (3.6)

s.t

δ(x, y) > 0 ∀x ̸= y, x, y ∈ N (3.7)

τ(x, y) > 0 ∀x ̸= y, x, y ∈ N (3.8)

∑
v∈V

α(wq
i , v) = 1 ∀wq

i ∈ U (3.9)

Dq
1 = Tinit ∀q ∈ [1, |Q|] (3.10)
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Dq
i ≥ Dq

i−1 ∀q ∈ [1, |Q|] (3.11)

Dq
i + T q

i + Lq
i ≥ Dq

i−1 + T q
i−1 + Lq

i−q + Oq
i−1 ∀q ∈ [1, |Q|] (3.12)

Lq
i = Dq

i−1 + T q
i−1 + Lq

i−q + Oq
i−1 −Dq

i − T q
i

if Dq
i + T q

i < Dq
i−1 + T q

i−1 + Lq
i−q + Oq

i−1

(3.13)

Lq
i = 0 if Dq

i + T q
i ≥ Dq

i−1 + T q
i−1 + Lq

i−q + Oq
i−1

(3.14)

Dq
iα(wq

i , v) = z(wq
i , w

q′

i′ )(D
q
i +T q

i +Lq
i +Oq

i ) ∀v ∈ V ∀wq
i , w

q′

i′ ∈ U (3.15)
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Figure 3.4: An example that truck with task wq
i arrives at QC after prior

task’s completion. The QC idle duration is caused in this case.

The objective function (3.5) is the total QC idle time to be minimized.

There are some special time steps during a task’s duration, and the rela-
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Figure 3.5: An example that truck with task wq
i arrives at QC before prior

task’s completion. The truck queuing duration is caused in this case.

tive positions of these time steps in a timeline between two adjacent tasks

are used to represent the objective, which is further illustrated in detail

according to Figure 3.4 and 3.5. Function (3.6) is the second objective,

the total truck empty travel distance to be minimized. Expressions (3.7)

and (3.8) indicate that the traveling distance and time are positive for any

two different nodes in N . Equation (3.9) guarantees each task in U is

dispatched to exactly one truck. Equation (3.10) limits the first task of

each QC to be dispatched at the beginning of the simulation. Constraint

(3.11) restricts each task to be dispatched in a pre-defined order. Expres-

sion (3.12) makes sure that each QC must operate tasks in the exact same

order as dispatching, and a task starts to be operated by QC only when its

prior task is completed. Equation (3.13) computes the time that a truck

with task wq
i needs to wait in the target QC queue when it arrives at the

target QC before the completion of the previous task wq
i−1. Equation (3.14)

ensures that QC operates the task wq
i immediately if the truck arrives after

the completion of the prior task wq
i−1 (no queuing duration). Constraint

(3.15) guarantees each truck executes tasks continuously.

Notably, the locations of the nodes in Q ∪ Y are non-stationary because

of the movements of both QC and YC. Hence, the function δ(x, y) for any

nodes is variant and real-time computed. Due to the stochastic service

time of cranes, Oq
i is also a variable that includes the uncertainty factors
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in real container terminals. Furthermore, the terms Lq
i and λ(wq

i ) are also

unpredictable because of the high uncertainty level of the environment and

could only be confirmed after the occurrence of the related events. Most

of the research neglects these details, which makes the examined problem

more challenging and distinct from their works.

Notably, the proposed formulation of the examined problem is completely

self-defined and dedicated to the specific structure of the container truck

task dispatching problem. Basically, the examined problem is similar to

the problems in (Chen et al., 2016; Zhang et al., 2022a; Chen et al., 2022).

Rather than those mathematical programming models that could be di-

rectly used for computing the solutions, our proposed problem formulation

is only treated as a detailed specification of the examined problem and the

instructions for building the simulation, since the proposed methodology is

not a model-driven solution.

3.4 Development of Simulation

The implementation of the container terminal simulation is introduced in

this section. The simulation system is a full-scale environment for the

Ningbo-Zhoushan port MeiShan terminal. The details like road distance,

import or export yard distribution, and moving speed of the QC and YC

follow the details in the real-world cases. The environment is implemented

through a discrete event simulation (DES) approach where the agent (con-

tainer, trucks) in the environment repeatedly travels through a pre-defined

event sequence. For example, a container’s life cycle is initiated in an oper-

ational location (vessel or yard), waiting to be transferred by a truck, and

then exits from the event sequence. A truck’s logic flow is to repeatedly
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transfer containers from the first operational location to the second loca-

tion until all the tasks in a single instance are finished. Such a simulation

process is built by AnyLogic software, and the discrete-event logic flow is

described by the Figure 3.6.

Figure 3.6: Container terminal simulation logic.

The major principle of implementing a discrete event simulation (DES)

could be represented by a timeline which contains all events about to hap-

pen in a simulation run. When an event happens, it may cause more events

that will happen at some times in the future. For example, dispatching a

task to a truck will cause the event of loading and unloading operations of

cranes in the future. The newly generated events will be inserted into this

timeline in real time. The simulation time moves forward by jumping from

event to event. The events are the key factors that change the state of the

system, such as the QC queue length or truck state. When all event hap-

pens, the simulation result is computed spontaneously (system end state).

The Fig 3.7 illustrates the basic principle of DES that is introduced above.

Time 
…

Event 1 Event 2 Event 3

Event n Event m

time step forward

insert

Figure 3.7: Illustration of discrete event simulation
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The implemented simulation could support at most 7 vessel berths, 28 QCs,

and 110 yards at the same time. Such a setting depends on the implemen-

tation stage of the simulation, and increasing the upper bounds requires

further engineering work. These settings are adequate to simulate a real-

world container terminal and could support users in generating abundant

problem instances with different configurations, such as total task number,

truck number, QC number, and yard distribution. Our research used differ-

ent instance configurations for training and testing, which are introduced

in section 4.4.

AnyLogic provides 2d and 3d views of visualizations for users to better

and conveniently observe and analyze the implemented simulation. Figure

3.8 presents a screenshot of the 2d view for the simulation system. There

are also some user-defined dynamic indicators for each berth, such as QC

utilization, queuing trucks, and remaining task number, which in order to

better observe the environment at a specific time step. The simulation tries

to reproduce details in real-world scenarios, such as the truck queuing at

berth or yard operations, as much as possible. Figure 3.9 presents several

screenshots of various components in the simulation environment.

Figure 3.8: 2D View of the Simulation System.
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(a) Container Terminal (b) Berth

(c) Yard (d) Intersection

Figure 3.9: Screenshots of different components in container terminal sim-
ulation.

The Figure 3.10 indicates the framework hierarchy of the simulation model

through an engineering development perspective. The components, like

truck, road, container, crane, and ship at the bottom, are built-in units

in the AnyLogic software. Then the components of a port, such as berth,

yard, road network, and truck fleet, could be implemented through the

combination of these basic built-in units. According to the data monitor-

ing in the simulation process, the user could be able to make decisions for

different equipment such as trucks, QCs, and YCs. In this thesis, trucks

are the target schedulable agents. Some interfaces for other operation poli-

cies are reserved, such as container relocation, container space allocation,

and yard crane scheduling. The specific policy for these operations could

be specified by the user to initialize the simulation execution. The entire

simulation process could be encapsulated into a Java package. A socket

communication mechanism is built for data transmission between the pro-

cesses of the simulation environment and the training algorithm.
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The framework is convenient for training the reinforcement learning agent.

With the help of this simulation environment and framework, the problem

scenarios and instance configurations could be conveniently designed. It

set up a solid foundation for algorithm training and related experiments.

The proposed methodology that makes the reinforcement learning agent

flexible adapts to different scenarios. The result demonstrates the great

performance and generalization ability against the benchmark algorithms

and the heuristic approach.

Figure 3.10: Container Terminal Simulation Framework.

The parameter settings and the implementation of some uncertainties of

the simulation are introduced here. The purpose of doing so is to reproduce

the high-fidelity details of reality as much as possible. The environment

simulates the full life cycle of the examined truck dispatching process, to-

gether with other relevant operations such as quay crane scheduling or

container relocation, and the uncertain factors are also taken into consid-

eration. Considering real-world cases, it is not reasonable to treat truck

speed as constant even if it is traveling on an empty road. The truck’s
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traveling speed varies all the time and is affected by its states, such as load

weight or traffic congestion. In this developed simulation environment, the

truck’s traveling speed on the road is defined as a random distribution.

Similarly, the service time of the quay cranes or yard cranes is also de-

fined as given distributions in consideration of that the crane loading and

unloading operations are executed manually and the proficiency variation

exists.

The yard congestion degree is considered as another uncertainty factor.

Usually, a three-lane road is shared by two neighboring yards in yard block

areas. The middle lane is reserved for trucks traveling through, the other

two lanes are used for trucks’ temporary docking and waiting for the crane

services. Under specific cases, this three-lane road is quite congested be-

cause of the truck collision avoidance. Therefore, the truck’s speed is set

inversely proportional to the number of trucks on this road when it en-

ters this three-lane road. Some specific simulation parameters are given in

Table 3.3.

Some uncertainty factors that are introduced above are formulated here.

Denote Cv
t as the traveling speed of truck v at time step t and gy,y

′

t as the

total number of trucks in the queues of two adjacent yards y and y′ that

share a three-lane road at time step t. Equations (3.16) and (3.17) are

truck load state indicators at time step t that affect truck traveling speed.

β(v, t) =


1, v is on-load state at time step t

0, v is empty-load state at time step t

(3.16)
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ϕ(v, t) =


1, v is on its target yard road of the

current task at time step t

0, otherwise

(3.17)

Equation (3.18) represents the truck speed in different areas of the container

terminal, in kilometers per hour.

Cv
t =



c1 ∼ f1, β(v, t) = 1, ϕ(v, t) = 0

c2 ∼ f2, β(v, t) = 0, ϕ(v, t) = 0

10, gy,y
′

t > 10, ϕ(v, t) = 1

30 − 2gy,y
′

t , 1 ≤ gy,y
′

t ≤ 10, ϕ(v, t) = 1

(3.18)

where c1 and c2 are sampled from their probability distributions for truck

speed with empty or loaded state, f1 and f2, respectively. f1 and f2 are

obtained through analysis from the container terminal operation in reality.

Table 3.3: Simulation Parameters.

Parameters Name Value Range (unit)
Loaded Truck Speed at Road [30, 40] (km/h)
Empty Truck Speed at Road [40, 50] (km/h)

Truck Speed at Yard [10, 30] (km/h)
Crane Bridge Speed [0.5, 1.5] (m/s)
Crane Trolley Speed [1.0, 2.0] (m/s)
Crane Hoist Speed [2.0, 3.0] (m/s)

To evaluate the accuracy of the implemented simulation, two kinds of test-

ing approaches, namely, unit testing and integrated testing, are provided.

The unit testing is to ensure that each low-level component in the simula-

tion environment is able to represent the real-world entities. Some testing

cases include the traveling time between two fixed locations, the moving
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time of the quay cranes or yard cranes, and the service time of the cranes

to handle containers. The real value of this time could be obtained through

the investigation of a real-world container terminal, such as analysis of the

business data and time measurement of relevant recorded videos. The unit

testing is used to confirm some low-level simulation parameters, such as

equipment speeds. The integrated testing is to guarantee that the results

(objective values or some interval variables) of the entire simulation pro-

cess are able to match the real-world scenarios. The integrated testing

is achieved by generating the problem instances where all tasks and the

dispatching policy completely follow real-world scenarios according to the

historical data. The result gap between the simulation and real-world case

is used to adjust the simulation logic and is guaranteed to be limited within

an acceptance level.

Based on previous work, a Real2Sim framework is developed with the aim

of model training environment for the container terminal. In general, train-

ing a policy directly in a real-world environment is infeasible and unsafe.

However, based on the efforts made for the simulation, events that occur in

reality could be accelerated. Abundant aspects of the real-world container

terminal daily operations, such as physical entities, operational logic, and

various uncertainty factors, are modeled (see Figure 3.11). To this end, a

high-fidelity and effective training environment that is customized for the

examined truck dispatching optimization problem is implemented. What’s

more, some representative scenarios are concluded and utilized to configure

the problem instances and initialize the simulation in the training process

based on the historical data analysis in the real container terminal. In

addition, a sophisticated heuristic policy, which is verified in reality, is con-

sidered as a kind of prior expert knowledge and is used to augment the

reinforcement learning agent (described in Sec 6). Therefore, the devel-
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oped training environment has made full use of the entities, logic, scenar-

ios, historical data, and human experience in real container terminals, and

thus, the practical application potential of a well-trained agent through

this Real2Sim framework is promoted.
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Figure 3.11: The Real2Sim framework of the proposed reinforcement learn-
ing environment.
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Chapter 4

Methodology for

Single-Objective Dispatching

This chapter focuses on the implementation of the methodology for the

single-objective container truck task dispatching problem. As the first

stage of the research in this thesis, this chapter only considers the sin-

gle objective of quay crane idle time, which decides the utilization of quay

cranes. Firstly, the definition of the Markov decision process (MDP) and

how the examined truck dispatching problem is formulated as an MDP

is introduced. Several improvements, such as the network structure and

learning scheme, are implemented to make the RL algorithm better cus-

tomized to the examined problem. In this work, the agent’s adaptation to

the multi-scenarios and the real-world uncertainties is the main concern,

and the experimental results of the performance towards such issues are

analyzed. In addition, several business insights that are yielded from such

methodology are discussed in the end.
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4.1 Truck Dispatching Problem as an MDP

Reinforcement Learning (RL) is one branch of the machine learning com-

munity. The RL agent (decision-maker) is trained through interactions

with the environment (problem) in a trial-and-error manner. Basically, the

agent’s actions are obtained by a parameterized policy, which is usually rep-

resented by a deep neural network, then it executes the given action and

receives the feedback (numerical rewards) from the environment. Repeat-

ing such a process, the policy of the agent could be improved eventually.

RL aims at solving sequential decision-making problems which need to

be formalized as the Markov Decision Process (MDP) (Sutton and Barto,

1998).

Generally, an MDP is represented by a tuple M = (S,A,R, P, γ), where

S indicates the state set. A represents the set of available actions that

could be selected by the RL agent. R is the set of immediate rewards.

The expression r(s, a) denotes the specific reward obtained after executing

the action a at state s and transferring to state s. P stands for the state

transition probability, which can be represented as P (s′|s, a), indicating

the probability of transition from state s to state s′ after executing action

a. γ ∈ [0, 1] is called the decay factor that is used to balance the current

and future return.

The purpose of an RL agent acting in an MDP is to generate a policy πθ

that could make decisions a on specific state s, which is a mapping between

states and available actions in another word. Solving MDP is equivalent

to exploring an optimal policy that maximizes the future discounted accu-

mulated rewards.
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A finite MDP with a discrete time step is adopted to formulate the exam-

ined truck task dispatching problem. The interval between two adjacent

time steps is dynamic and relies on the time step that a certain truck just

finishes its previous task (i.e. becomes available for dispatching). The

details of our formulation are as follows:

4.1.1 State

When a truck just finishes its previous task, a new task will be decided by

the dispatcher (RL agent). The observation at this time step is based on

the information related to the target truck and each task (the first task of

each quay crane). The following information is defined as the state of the

MDP model at time step t. The state design fully considers the spatial and

temporal features by investigating the examined problem in depth through

the implemented Real2Sim system.

• REt : The number of remain task of each quay crane.

• DQt : The distance between the target truck and each quay crane.

• DFt : The distance between the target truck and the first operation

location of each task. (For loading tasks, the first operation location

is a QC. For unloading tasks, the first location is a YC).

• DSt : The traveling distance of the second task of each QC. If there’s

no second task remaining, this feature is set to zero.

• TWt : The number of trucks that are currently working for each QC.

• THt : The number of trucks which is currently heading to each QC.

• QLt : The queue length of each QC.
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• QYt : The queue length of YCs that are dedicated to the first task

of each QC.

• TY : The type of each QC (loading or unloading), which is repre-

sented by one-hot codes.

Denote Q′
t the set of indices of active QCs (the remaining tasks exist) at

time step t, which is dynamic in an episode. The shape of TY is |Q′
t|×2 and

the shapes of other 8 features are all |Q′
t|×1. Therefore, the state st at time

step t for the target truck v is defined as a |Q′
t|×10 matrix where each row of

the matrix is denoted as [REq
t , DQq

t , DF q
t , DSq

t , TW
q
t , TH

q
t ,QLq

t , QY q
t , TY

q],

q ∈ Q′
t.

4.1.2 Actions

Based on a given state st, the action space at time step t for the target

truck v is defined as at = {q | REq
t > 0, q ∈ Q′

t}, where q is the index of

the selected active QC. Once q is chosen, the first remaining task of qth QC

is assigned to truck v. Notably, the action space at each time step t is not

a constant size since the task list could be completed at some time step t.

4.1.3 Reward

In this work, reward design is similar to the principle in the work of Zhang

et al. (2022a), which associates QC idle time to each task. The reward

related to QC idle time is set to be −T q
1 for task wq

1 and −max(Dq
i + T q

i −

Dq
i−1 − T q

i−1 − Lq
i−1 − Oq

i−1, 0) for the remaining tasks (i > 1), which are

the components of the objective function 3.5. Since this is a minimization
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4.1. TRUCK DISPATCHING PROBLEM AS AN MDP

problem, negative signs are added to each term. It is noted that the result-

ing QC idle time −T q
1 or −max(Dq

i + T q
i −Dq

i−1 − T q
i−1 − Lq

i−1 − Oq
i−1, 0)

are not immediate signals in an episode. Therefore, the reward for each

action is computed retrospectively at the end of the episode. For a tradi-

tional RL task (usually the video game), there’ a high-level purpose such as

surviving or winning the game. These high-level purposes usually cannot

be described by mathematical language, and achieving them heavily relies

on the reward design. There are always issues when the reward design is

thoughtless. For example, it is intuitive that setting some small bonus to

guide the agent is reasonable, but sometimes the agent may be myopic to

these bonuses and ignore the final large reward. In an optimization task,

the high-level purpose is to optimize an objective function that is quantifi-

able. Therefore, it provides a simple way to design the reward, which is to

set the reward equivalent to the optimization objective. Such designing is

straightforward and makes the training more stable. Actually, the mecha-

nism like reward shaping is also implemented in this project, but the result

is not as good as the proposed reward design since too many over-designed

extra bonuses sometimes mislead the optimization direction.

4.1.4 State Transition

The state transition between st and st+1 is governed by the function: st+1 =

F (st, at, ut). The transition relies on the action at and uncertainties ut of

the environment. In this work, the transitions for DQt,DFt,DSt,TWt,

THt,QLt,QYt could be affected by ut which is introduced in section 3.3

and 3.4. For example, the operation time of each YC and QC is fluctuat-

ing, and the traveling speeds of trucks are also not constant, these factors

result in the non-deterministic state transitions. Each component of ut is
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implemented in the simulation. There are also some features whose state

transition is deterministic, such as the transitions for REt are directly de-

termined by the agent’s specific action. In this work, the state transition

between two time steps is automatically executed by the simulation envi-

ronment. The Figure 4.1 explains the state transitions of the examined

problem, where the total time step H equals to the total number of tasks

in an episode.

𝒕𝟏

Time

Truck 3 …

…

Truck 26 Truck 89 Truck 7 Truck 52 Truck 11

𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝑯

Figure 4.1: An example of the state transitions of the truck dispatching
problem.

4.2 Network Structure

The policy network in this work is depicted in Figure 4.2. Given the state

described in section 4.1.1, the policy network takes these feature vectors of

each QC as the inputs and then outputs a probability distribution which

represents the indices of QCs (their first task) to be selected. Firstly,

the feature vectors of each QC are fed into a three-layer long short-term

memory (LSTM). Next, the hidden states of each LSTM step are fed into

an attention layer. Lastly, a probability distribution of actions is obtained

after a softmax layer.

Since the number of active QCs is changing in an episode, the policy net-

work treats state vectors as a dynamic set with spatially connected elements

(target truck, QCs, tasks, etc.). The spatial-temporal connection between

the target truck and each candidate QC is embedded into the state design,
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Figure 4.2: Network Structure of the Policy Network.
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which is introduced in section 4.1.1. The input data follows the increasing

order of QC indexes, which is also the fixed positions in the container ter-

minal (from west to east). Once the task list in a QC is all dispatched, the

feature vector of such QC will be eliminated from the input. The purpose

of adopting the LSTM layer is to make the network capable of handling

the dynamic size of the input candidate QC.

The bidirectional structure ensures the model’s awareness of the informa-

tion of the entire QC sequence at each step. With the help of the attention

layer, the network can focus on some specific QCs. For example, if a QC

is about to be idle soon, the network may focus on such QC since the idle

time of the QC may occur, which gives an impact on the objective value.

Moreover, the capability for handling input sequences with different sizes

enhances the competitiveness in general scenarios towards structures like a

fully connected network. A classic attention mechanism is adopted in this

model, which follows the work of Bahdanau et al. (2014).

Actually, the proposed network is quite a classic structure that was once

used at the early stage of the natural language processing (NLP) field. The

data structure of the examined truck dispatching problem is similar to the

NLP since the QC feature vectors in the input sequence are more like the

word embeddings in a sentence. This is also the motivation for choosing

such a network structure at the early stage of this research.

4.3 Algorithms

Model-free RL aims at obtaining a decision-making policy through a trial-

and-error manner by interacting with the environment (Nachum et al.,
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2017). In general, model-free RL can be classified into two categories:

value-based and policy-based methods. Compared with value-based meth-

ods, a policy-based approach directly optimizes the policy (network) that

explicitly maps states to the probability distribution of actions in the train-

ing process. For complex problems, a policy-based method shows more

competitiveness since it can handle the exploration/exploitation trade-offs

by training a stochastic policy. In this work, a standard policy-based

method, namely, Proximal Policy Optimization (PPO) (Schulman et al.,

2017) (see Algorithm 1) is adopted to tackle the examined dispatching

problem.

A widely used variant of policy-based methods is called policy gradient

with baseline, where a baseline value is used to decrease the variance of

gradient estimation while keeping the bias unchanged. An effective baseline

design could make the training process more stable, thus accelerating the

agent convergence. Usually, such a mechanism is based on the actor-critic

framework, which requires training two networks simultaneously. In this

work, to simplify such a mechanism, a shared baseline is adopted, which is

defined by b = R̄
N

where N is the number of episodes within an iteration

and R̄ is the total return. As introduced in section 4.1.3, the instant reward

rt is unavailable at time step t and is computed at the end of the episode.

Recalling the reward design, dispatching a truck to an idle QC would result

in a small instant reward. Consequently, the agent is inclined to choose the

QC with long queue length rather than the QC with high urgent level,

thus, misleading the optimization direction and even running counter to

the ultimate purpose. To tackle such an issue, the policy network is trained

with a sparse reward manner. The advantage function for each state-action

pair is defined as Rn − b, where Rn is the sum of rewards collected in an

episode. As a result, the advantage function better reflects the quality of
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the actions and maintains the gradient updating direction the same as the

optimization purpose.

Algorithm 1: PPO for truck dispatching optimization

Input: number of iterations I, steps per episode T , collect N
episodes per iteration, update M times per iteration,
clipping rate ϵ

Initialize: a differentiable truck dispatch policy parameterization
π(a|s, θold);
θ = θold;
for i=1 : I do

R̄ = 0;
Randomly select a problem instance Bi;
for n=1 : N do

Collect an episode s0, a0, r1, ..., sT−1, aT−1, rT from Bi,
following π(·|·, θ);

Assign each rt(at−1, st−1) based on the reward design,
∀t ∈ [1, T ];

Rn =
∑T

j=1 rj;

R̄ = R̄ + Rn ;

end

b = R̄
N

;
Compute advantage function
Aθ(snt , a

n
t ) = Rn − b,∀t ∈ [1, T ],∀n ∈ [1, N ];

for m=1 : M do
Compute probability ratios
PRn

t (θ) =
π(ant |snt ,θ)

π(ant |snt ,θold)
,∀t ∈ [1, T ],∀n ∈ [1, N ];

Aθ(snt , a
n
t ) =

min[PRn
t (θ)Aθ(snt , a

n
t ), clip(PRn

t (θ), 1− ϵ, 1 + ϵ)Aθ(snt , a
n
t )];

∇L = 1
NT

∑N
n=1

∑T
t=1 Aθ(snt , a

n
t )∇ logPθ(a

n
t |snt );

θ = Adam(∇L, θ);

end
θold = θ

end

Specifically, the number of iterations I is set to 2000, which ensures the

policy will converge. The number of collections per iteration N is 10, which

is adequate to estimate the baseline b. M is set to 10, which is an empirical

value. clipping rate ϵ is 0.2, which is a common value for PPO settings.

Steps per episode T equals the number of tasks in a problem instance. Ac-

cording to the problem instance design, T equals 400 or 800, which will
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be introduced in Section 4.4. The optimizer is chosen as the classic Adam

(Kingma and Ba, 2014). The algorithm is implemented by Python and

Pytorch. The GPU used in the following experiments is a single NVIDIA

A100. Each iteration takes about one minute in such an algorithm set-

ting. According to the training process, the policy will sometimes fluctuate

sharply but always converge and outperform the benchmark methods.

4.4 Problem Instance and Scenario Design

A set of problem instances with various configurations is designed for RL

agent training and testing. In this work, a configuration is defined as a

kind of dispatching scenario with specific truck fleet sizes, number of tasks,

number of QCs, container storage mode, and yard distribution. Each con-

figuration contains infinite problem instances with different random seeds,

which makes the result of an instance reproducible. The configurations are

designed based on the scenarios in the real-world container terminal oper-

ation environment. In the environment, each vessel is equipped with two

loading and two unloading QCs. 60, 80, and 100 are chosen as the number

of trucks in the designed problem configuration. Such settings are decided

by fully considering the optimization space issue since too many or too few

trucks may lead to obvious optimal policies and hence leave no room for

optimization. Two stacking modes are defined: mixed stacking means the

loading or unloading containers are allowed to share the same yard, while

separated stacking indicates the opposite. Two types of yard distribution

are designed as well: centralized shows that the loading or unloading con-

tainers are stored in no more than two yards, while distributed allows

to store in more than two yards. The concrete configurations for training
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instances are presented in Table 4.1. Notably, one configuration represents

a family of problem instances with similar initial conditions caused by un-

certainties in the environment. A static problem instance could be created

by a fixed configuration and a random seed.

Table 4.1: Training Instance Configurations.

Name
Configuration Items

Number of Tasks # of Trucks # of QCs Stack Mode Yard Distribution
Config 1 400 70 16 Mixed Centralized
Config 2 400 60 16 Mixed Distributed
Config 3 800 80 16 Mixed Centralized
Config 4 800 80 20 Separated Distributed
Config 5 400 70 20 Separated Centralized
Config 6 400 60 20 Separated Distributed

4.5 Benchmarks

A manually crafted heuristic (Chen et al., 2016) is selected as one of the

benchmarks for the examined problem. A dispatching rule, which is ob-

tained by genetic programming (GP) (Chen et al., 2020b) is also used as

another benchmark since GP is a widely used approach for online opti-

mization problems. The proposed method in this work is also compared

with another RL-based approach, deep reinforcement learning-based hyper-

heuristic (DRL-HH) (Zhang et al., 2022a) since it is a novel and competitive

approach for decision-making optimization. For the sake of fairness, both

GP and DRL-HH are trained through the same simulation environment

and the same problem instances. Besides these three methods, several com-

monly considered heuristic dispatching rules (Tao and Qiu, 2015; Nguyen

and Kim, 2012; Chen et al., 2022), which are based on various priority

factors, are also included in the comparison of this work. All benchmark

details are presented in Table 4.2.

96



4.6. EXPERIMENTS AND RESULT ANALYSIS

Table 4.2: Benchmark Algorithms for Comparison.

Name Description

Random Dispatch Dispatch the task randomly.

Dedicated Dispatch
Each QC is only served
by fixed group of trucks.

Shortest Queue Length
Dispatch the task with

the shortest QC queue length.

Most Task Remain
Dispatch the task with

the most QC task remaining.

Shortest Distance
Dispatch the task with

the shortest traveling distance.

Most Urgent
Dispatch the task with

minimum current QC supply.

Genetic Programming
Dispatching rules generated by
genetic programming approach.

Manual Heuristic
A sophisticated heuristic

used in real port.

DRL-HH
Policies trained by DRL-based

hyper-heuristic approach.

4.6 Experiments and Result Analysis

4.6.1 Comparative Results with Benchmarks

In the training and testing process, instances of 6 different configurations

that are introduced in Table 4.1 are used simultaneously. The metric of

evaluation is the summation of each QC’s total idle periods (in seconds).

Since the randomness factors exist in the environment, the result of the

same configuration may vary even if the dispatching policy is fixed. There-

fore, for each test configuration, the result is based on the average value

of 100 runs with different initial random seeds. The numeric comparison

results are presented in Table 4.3. The standard deviations of the proposed

DRL method for these six configurations are 1463, 955, 1560, 1869, 971,

and 1284, which demonstrates that the results in Table 4.3 are stable.
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The results indicate the proposed DRL approach could outperform all other

9 benchmark methods for these six configurations. Six simple dispatch-

ing rules, Random Dispatch, Dedicated Dispatch, Shortest Queue Length,

Most Task Remain, Shortest Distance, and Most Urgent, fail to obtain

competitive results since most of them greedily consider only one single

prioritized factor, which cannot evaluate the state as a whole. Dedicated

Dispatch could cause a large empty traveling distance, as introduced in

chapter 2.2. Intuitively, queue length should be equivalent to the urgency

level of the QC. However, the performance of the Shortest Queue Length

heuristic is far worse than Most Urgent, since the urgency level of QC

should depend on the supply in a period, which is also closely related to

the task distance. It is obvious that most of the simple heuristic rules are

even worth than Random Dispatch, which is caused by their greedy nature.

Manual heuristic outperforms these six simple dispatching heuristics be-

cause it fully considers the spatial-temporal related observations, and the

supply-demand mechanism better reflects the urgency level of QCs. Dis-

patching rules obtained by the genetic programming (GP) method further

improve the results of a manually designed heuristic due to its ability to

construct a sophisticated dispatching rule based on all combinations of the

observed states and repeatedly refine the policy in an evolutionary man-

ner. DRL-HH slightly outperformed GP-based methods since DRL-HH

introduced prior expert knowledge, and its RL agent aims at learning the

scheduling of several low-level, properly designed heuristics, which further

enhance the ability of the method. Although DRL-HH demonstrated its

competitive performance, its ability may still heavily rely on the perfor-

mance of low-level heuristics. In addition, the action space of DRL-HH

is too restrictive since these low-level heuristics usually fail to cover the

entire available action space, which may cause the model to miss out on
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some promising solution regions that deserve to be explored. In contrast,

our proposed method is more effective since it can directly search for spe-

cific actions. In general, our proposed DRL approach achieved a significant

improvement (5.46%) towards DRL-HH. For the subsequent experiments,

the manual heuristic (Chen et al., 2016), GP-based approach (Chen et al.,

2020b), and DRL-HH (Zhang et al., 2022a) are selected as three represen-

tative benchmarks for further experiments.

4.6.2 Generalization Performance of Proposed DRL

Approach

To demonstrate the generalization performance of our proposed DRL ap-

proach, several customized instances with various configurations are de-

signed for testing in this experiment. These instances are more abundant,

and most of them are unavailable during the training process. The design

of testing configurations follows the controlled variables principle. In an-

other word, if one of the variables (number of trucks, tasks, QCs, stacking

mode, and yard distribution) changes, the others keep the same. All other

configurations are derived from the base configuration (Config 2: 60 trucks,

400 tasks, 16 QCs, mixed storage, and distributed yard). The results are

reported in Table 4.4.

Similarly, our proposed DRL-based method outperforms the benchmarks,

manually designed heuristic, GP, and DRL-HH approaches in all testing

configurations. The results demonstrated the generalization performance

of the proposed DRL approach to handle various real-world scenarios.

Several phenomena through experimental results deserve discussion. Over-
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4.6. EXPERIMENTS AND RESULT ANALYSIS

all, the results of the dispatching algorithms heavily rely on the truck-QC

ratio. A higher truck-QC ratio makes QC’s operation more continuous,

thus reducing the QC idle time. Such a phenomenon is confirmed by the

positive correlation between QC number and the objective value, and the

negative correlation between truck number and the objective value, respec-

tively. Except for objective value, the improvements over the benchmarks

are also negatively correlated to truck numbers. This is caused by the opti-

mization space issue. The examined truck dispatching problem is sensitive

to the number of trucks and a high truck-QC ratio over limits the space

for improvement of the proposed approach.

The improvement ratio of the proposed method over benchmarks drops

significantly from the configuration of 800 tasks to 1200 tasks. This should

be illustrated from the perspective of the QC operation logic. The QC idle

time is reduced by keeping all QCs as busy as possible by dispatching the

proper tasks to trucks. However, configurations with more task lists are

vulnerable to a relatively poor dispatching policy. For example, unreason-

able decisions are more likely to be made in such a configuration, therefore,

the idle time caused by such decisions could be accumulated. Such a case

is also one of the experiments where the performance of DRL-HH is closest

to our method, and DRL-HH presents fairly robustness towards changing

of task number.

The improvement ratio in mixed and separated storage mode configurations

is basically the same. The objective value in mixed storage is significantly

higher than the separate storage mode, since relatively high yard congestion

levels and more container relocation operations tend to occur in cases of

mixed storage mode. Our method performed better in cases of distributed

yards than in cases of centralized yards in terms of both improvement and

102



4.6. EXPERIMENTS AND RESULT ANALYSIS

objective value, which could be explained by the same reason.

To further verify the generalization ability of our proposed DRL-based

method, a dispatching policy is trained only by the base configuration (Con-

fig 2: 60 trucks, 400 tasks, 16 QCs, mixed storage, and distributed yard)

and is tested by a series of unseen configurations. The results demonstrate

that the policy trained by one single configuration is able to be generalized

to these unseen problem configurations while maintaining fair performance.

DRL-HH is excluded in this experiment since its input size is fixed, which

makes it unable to handle instances with various QC numbers.

Table 4.5 reports the generalization performance of the proposed DRL

method and GP in comparison with the benchmark. The benchmark in

Table 4.5 represents the work (Chen et al., 2016). Overall, the policy

trained by the base configuration outperformed both GP and the bench-

mark method in all unseen test configurations. It is obvious that our

method shows slighter over-fitting effects towards GP. This benefits from

the practical state design, which makes the RL agent sensitive to environ-

mental changes in the unseen configurations, and also benefits from the

design of the network structure, which could cope with various QC num-

bers.

Several key factors of truck dispatching policy are revealed in the state

feature design. Features like the number of trucks working for each QC,

the number of trucks heading to each QC, and the queue length of each QC

indicate the QC’s urgency level of truck supply in a future period. Features

like the truck traveling distance to QC could estimate the traveling time for

trucks to reach target QCs. QC type is considered as crucial information

since the supply forms for loading and unloading QC vary a lot. Target
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4.6. EXPERIMENTS AND RESULT ANALYSIS

yard queue length could be used to infer yard congestion level at some time

steps. The second task’s QC-yard distance exposes some key information

about QC’s future tasks, which affects the sensitivity to truck supply of

QCs. The ability of the network structure to handle various QC numbers

also helps the RL agent get rid of the influence of inactive QCs (the empty

QCs).

4.6.3 Comparative Results with Offline Solution

We selected one fixed instance (instance with fixed random seed) for each

configuration and solved them in an offline manner. In this case, the result

could be reproducible for a fixed dispatching decision sequence. Conse-

quently, the problem of each configuration could be considered as a static

problem instance. Therefore, the high-quality solutions could be obtained

with the help of local search-based heuristics. The purpose of doing so

is to further explore the gap in the solutions obtained by our proposed

DRL approach towards their estimated upper bounds. In this experiment,

a multi-start local search heuristic with a two-element swap operator is

adopted to solve static problems. The optimization time for each instance

is set to 72 hours. The results obtained in such a way are viewed as the

upper bounds of each specific instance. The result is reported in Table 4.6

Table 4.6: Comparative results of the proposed method with estimated
upper bound (measured by QC idle time in seconds)

.

Estimated Upper Bound Our Method Gap(%)

Instance 1 25832 27714 7.29%
Instance 2 19932 21140 6.06%
Instance 3 34241 36930 7.85%
Instance 4 39895 42125 5.59%
Instance 5 22839 24940 9.2%
Instance 6 24221 26428 9.11%
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Basically, the average gap between the solutions obtained by our proposed

DRL approach and the estimated upper bounds is around 7.38%. The

results further demonstrate the competitiveness and potential of our pro-

posed approach.

4.6.4 Managerial Insights

Except for the competitiveness and adaptiveness performance of the pro-

posed approach in multi-scenario cases, several useful insights for the con-

tainer terminal operational management are also revealed in these experi-

ments. Firstly, it is recognized that the optimization space is highly related

to this study. The concept of optimization space could be intuitively defined

as the improvement of any sophisticated dispatching algorithms compared

with a base dispatching policy (such as the percentage in Tables 4.4 and

4.5). For a given QC number, if a great number of trucks are deployed, the

optimization space is tiny since each QC is over-supplied, and the perfor-

mance of any dispatching policies would be close to random dispatching.

On the contrary, if the truck numbers are too few, dispatching policies are

easier to have a great improvement ratio, but the objective value (QC idle

time) would be worse because the trucks are not adequate. Therefore, the

Truck-QC ratio could be viewed as a sensible indicator since it not only

affects QC utilization but also limits the optimization space for dispatching

algorithms.

Our experiments empirically proved that for a given QC number, fewer

trucks decrease the objective value but make a larger optimization space.

Ideally, an acceptable objective threshold should be set, and some opti-

mization space is supposed to be left for the dispatching policy to play
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4.6. EXPERIMENTS AND RESULT ANALYSIS

a role in it. In this manner, the operational cost could be saved by less

truck deployment while still maintaining the QC utilization. Also, fewer

trucks help to alleviate the traffic congestion issue. The optimal truck-QC

ratio for each configuration setting or concrete problem instance should

be dynamic, and there is an underlying mapping between it and different

scenarios. For the base configuration setting in section 4.6.2, this ratio is

empirically confirmed within the range [4.5, 5.2], which achieved a rela-

tively fair QC utilization level while maintaining an adequate optimization

space for the RL agent.

Moreover, it is detected that the performance of the dispatching policy is

sensitive to some spatial-related factors of containers. According to the

experimental results, the stack mode shows little impact on policy per-

formance since there is no outer-truck disturbance. Distributed yard mode

offered more optimization space for the dispatching policy than the central-

ized yard mode. Except for the configuration settings, the relative locations

of the involved yards and task sharing schemes among QCs for the same

vessels are also crucial. This is related to the container storage space alloca-

tion problem, which is also a widely concerned COP in container terminals.

In this work, these spatial-related factors are partially embedded into the

configuration design for training and testing of the RL agent. Actually,

the configuration design could be viewed as another decision-making prob-

lem and also affects the target objective. Therefore, the container terminal

operation efficiency could also be facilitated by a sophisticated design of

configuration, together with a fine-tuned RL dispatching policy.

The quay crane or truck deployment could be viewed as an important de-

cision for container terminal management. Figures 4.3 and 4.4 display the

generalization performance of the proposed DRL method compared with
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Figure 4.3: The performance of the proposed method trained on the sin-
gle configuration in comparison with the benchmark under different QC
amounts.
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Figure 4.4: The performance of the proposed method trained on the sin-
gle configuration in comparison with the benchmark under different truck
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the benchmark on two metrics, total idle time (left Y-axis) and average

makespan per QC (right Y-axis). Total idle time is the exact objective of

the examined problem, and makespan indicates the time duration the QC

takes to execute all its tasks. In experiments with different QC numbers

(Figure 4.3), it could be found that a lower QC number makes a better ob-

jective (idle time) on both methods, since it increases the truck-QC ratio.

However, the average QC makespan is worse because of more tasks per QC.

Therefore, trade-offs between idle time and makespan of QCs are encoun-

tered when deciding the number of QCs to be deployed. In experiments

with various truck numbers (Figure 4.4), more truck deployments make a

reduction for both metrics at the expense of operational cost (deployment

of trucks, fuel, labour cost, etc.).

This experiment further indicates several trade-offs among various equip-

ment deployments. It is always strategic to balance cost and efficiency

in daily port operational management. Our proposed methodology, along

with the developed simulation system, is able to conduct exploration for

various optimal equipment deployment strategies under diverse scenarios,

which provides reliable conclusions for terminal authorities to schedule dif-

ferent resources, thus promoting the entire container terminal’s efficiency.

4.7 Summary

In this work, we proposed a methodology that utilizes a deep reinforcement

learning technique to solve a container truck task dispatching optimization

problem in the real-world maritime container terminal. The truck dispatch-

ing process is considered as a sequential decision-making problem, and the

corresponding MDP for the examined problem is formulated. Several im-
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provements of the methodology implementation towards our previous work

(Zhang et al., 2022a) are made. Firstly, the design of the state considers

more spatial-temporal related features which better reflects the emergency

level of quay cranes and is sensitive to the changing of problem configu-

rations. Secondly, the action space covers the entire decision space that

avoids the reachability problem discussed in the work of DRL-HH. More-

over, the sparse reward mechanism is adopted in the training process that

fixes the myopic and misleading problem of the RL agent, which are dis-

cussed in Section 4.1.3 and 4.3. Finally, it has taken great efforts to design

a tailor-made neural network structure that makes it more compatible with

this examined problem. The network leverages LSTM and attention mech-

anisms in order to mask the invalid actions and adapts to the scenarios

with various QC numbers.

In the process of building the problem instances, several real-world factors

that could distinguish different scenarios have been taken into account.

Also, we fully considered various types of uncertainties that stem from the

real-world port operations in the training environment. These efforts make

the DRL-generated policy more practical and robust to multi-scenario is-

sues. Significant performance gains have been achieved towards DRL-HH,

GP, and heuristic approaches. Apart from the crosswise contrast results,

our proposed DRL approach also shows the competitiveness of the adap-

tiveness and generalization ability in relevant experiments. In addition, by

analyzing the quantitative results, several insights that are practical and

could promote the container terminal management are given.

Overall, our methodology is data-driven and barely relies on any exogenous

forecasts. It respects the dynamic and uncertain nature of the examined

problem. Furthermore, such a method is able to provide reliable references
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for container terminal authorities to better arrange relevant resources under

various operation scenarios.
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Chapter 5

Methodology for

Multi-Objective Dispatching

The chapter extends the previous truck dispatching problem to a multi-

objective version. In this work, both the idle time of quay cranes and the

truck empty traveling distance are considered. A novel methodology called

preference agile multi-objective optimization (PAMOO) is proposed. The

method aims at obtaining a uniform dispatching policy that could be able

to handle arbitrary preferences among the objectives.

The extended problem is formulated as a multi-objective Markov decision

process (MOMDP), and the inner-loop multi-objective reinforcement learn-

ing is utilized to design the methodology. A customized neural network for

MOO is designed for the examined problem. Consequently, the obtained

MOO policy set could be considered as the policies with arbitrary prefer-

ence requirements that properly satisfy the diversity of the MOO concerns.

Benefited by the generalization attributes of the proposed method, a pref-

erence calibration method is proposed that is able to further enhance the
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quality of the approximated Pareto front.

5.1 Preference Agile Multi-Objective Opti-

mization

This section briefly introduces the framework of the proposed preference

agile multi-objective optimization (PAMOO) and its advantages towards

the real-world complex online decision-making problems. Such method-

ology aims at only using one single uniform dispatching model to handle

arbitrary preference weights among different objectives while satisfying the

special requirements of the examined container truck task dispatching prob-

lem, such as short response time, robustness to uncertainties, and diversity

of the trade-off policies for users’ selection. The proposed method is still

based on deep reinforcement learning techniques. Specifically, the RL agent

takes a concrete preference weight as one of the inputs and then outputs

the proper dispatching decision based on this weight. Because of the gener-

alization ability of deep neural networks, the RL agent, once fully trained,

is able to generate any dispatching decisions based on arbitrary preference

weights. Benefit from such advantages, the proposed method also allows

users to dynamically adjust the preference weight, thus, to revise their

purposes. A special preference calibration method is also proposed which

could be used to further refine a given policy set on both policy quality

and diversity.

Figure 5.1 illustrates the mechanism of the proposed method. Accord-

ing to the left part of Figure 5.1, at time step t, one of the idle trucks

needs to be dispatched a new task (dedicated to different QCs). There
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are three choices, QC1, QC2, and QC3, with incremental queue lengths

and decremental empty travel distances (indicated by three red lines in

the left figure). Dispatching decisions could be made by the dispatcher

network according to the current state (information of each QC) and a set

of user preferences p1, p2, and p3. Three corresponding Pareto optimal

policies, which lead to selecting QC1, QC2, and QC3 by their probability

distributions, are generated by the model, which maps to the points at

the approximated Pareto front indicated by the right figure. π(a|st, p1)

and π(a|st, p3) are policies that prefer minimizing QC idle time and truck

empty travel distance separately, and π(a|st, p2) is a utopia policy that

balances both objectives (p2 is a preference like (0.5,0.5)).

5.2 Truck Dispatching Problem as an MOMDP

The examined container truck task dispatching process could be formu-

lated as a Markov decision process (MDP). Recall the MDP formulation,

a single objective MDP is described by the tuple (S,A,R, P, γ), which

is introduced in section 4.1. The RL agent aims at maximizing the ac-

cumulated discounted reward at each time step t, which is denoted as

Gt =
∑T

k=0 γ
kRt+k+1, where T is the total time step. When γ approaches 1,

the agent treats immediate rewards and the possible rewards in the future

equally, while prioritizing myopic decisions if γ is close to 0.

For a given state s, the state-value function V π(s) indicates the expectation

of accumulated discounted reward in the future following policy π, which

is defined by Equation (5.1). A state-independent value function V π is

defined by Equation (5.2), which evaluates a given policy π.
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V π(s) = E(Gt|St = s) (5.1)

V π = Es(V
π(s)) (5.2)

The purpose of the RL agent is to find a policy π(a|s, θ), where the θ is

the parameters of the policy, that could map the possible state vectors s to

proper actions a in order to maximize Es(V
π(s)). As usual in policy-based

RL methods, the policy π(a|s, θ) is defined as a deep neural network with

parameters θ. The θ is learned during considerable interactions with the

environment.

The multi-objective reinforcement learning (MORL) could be formulated as

a multi-objective Markov decision process (MOMDP), which is denoted as a

tuple (S,A,R, P, γ). Compared with the single objective MDP, the reward

function R(s, a, s′) is a vector r ∈ Rd, where d is the number of objectives.

Rather than a scalar reward in a single objective MDP, the vector-valued

reward r indicates the immediate reward signals for all objectives at some

time step t. Therefore, V π denotes the state-independent value function

vector of a given policy π in the case of MOMDP, and V π
i is the ith objective.

To evaluate a policy π in MOMDP, several concepts about multi-objective

RL (Hayes et al., 2022) are introduced and defined as follows.

Definition 1 (Pareto Dominance) A policy π is said to Pareto domi-

nate another policy π′ (π ≻ π′) if and only if π’s value vector is at least as

high π′’s in all objectives and is strictly higher in at least one objective, i.e.

π ≻ π′ ⇔ ∀i, V π
i ≥ V π′

i ∧ ∃i, V π
i > V π′

i
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Definition 2 (Pareto Optimality) A policy π is said to Pareto optimal

if there is no policy π′ such that π′ ≻ π.

Definition 3 (Pareto Set) A Pareto set is defined as the set of all pos-

sible Pareto optimal policies.

Definition 4 (Pareto Front) A Pareto front is the visualization of the

Pareto set in the objective space.

In the field of multi-objective optimization, the examined objectives are

usually conflicting, therefore, MORL aims to learn a set of Pareto optimal

policies rather than to obtain a policy that generates an optimal solution

with one single objective.

A common approach of MORL is to convert multi-objectives to single ob-

jective by using scalarization functions (also called utility functions in liter-

ature) g(p,o), where p is the given preference weight among different objec-

tives which satisfies
∑|p|

i=1 pi = 1 and o is the vector of the specific objective

values. For example, the Weighted-Sum aggregation gws(p,o) = pTo is the

most commonly used scalarisation function. In this project, the Weighted-

Tchebycheff aggregation is adopted and defined by (5.3), where the z∗i is the

ideal value that satisfies z∗i < min(oi). The reason for using it is the ability

to find any Pareto optimal policies with an adequate number of preference

weights. It is proved that any Pareto optimal solution could be converted

to an optimal solution of Equation (5.3) with a specific preference p (Choo

and Atkins, 1983).

gwt(p,o) = max
1≤i≤d

{pi|oi − z∗i |} (5.3)
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As mentioned in section 2.4, our methodology belongs to a multi-policy in-

ner loop RL, which aims to obtain a set of Pareto optimal policies πw(a|s, θ)

for any given preference weight vector w in a single run. To achieve this,

the preference weight is considered as a special part of the state s and a uni-

form policy is defined as π(a|s,w, θ). A well-trained agent must make the

most suitable action based on any combinations of s and w that minimize

the scalarization objective g(w,o).

5.3 Network Structure

Similar to most of the RL approaches, the truck dispatch policy π(a|s, θ) is

approximated by a customized deep neural network with parameters θ. The

structure of the policy network used in this research is depicted in Fig. 5.2.

It can be seen that the proposed network takes both the raw observation

of the state features described above and the user preference weight vector

as the inputs and then outputs the action probability distribution across

all candidate actions available for this given preference.

Firstly, the raw observations are fed into a feed forward layer to generate a

128-dimensional feature vector for each QC. Then, a multi-head attention

block (following the same structure in (Vaswani et al., 2017)) is adopted to

generate neighborhood-aware QC feature vectors. Then, each QC vector

is combined with the preference vector generated by the preference em-

bedding layer (a two-layer fully connected block) by taking the preference

weights as the input. After this process, the QC feature vectors that in-

corporate preference information go through a feed forward layer to map

each QC vector to a scalar, and together with a softmax layer to generate

a probability distribution.
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Unlike most other multi-objective reinforcement learning research studies,

our method does not consider the preference as a homogeneous feature com-

ponent in the agent’s observation but deals with user-defined preference and

state observations separately in the network. The preference information

is merged into the QC vectors through Hadamard product, which is a kind

of feature crossing operation, where the feature crossing is a common op-

eration in recommendation system related networks. The reason for doing

so is to make sure the preference weights play a more prominent role, such

that the dispatching policies are sufficiently sensitive to various preference

vectors. If the preference weights are concatenated to the raw state obser-

vations, based on our initial experiments, the network tends to ignore this

part in the training, or is insensitive to the changes of preferences, which

must be prevented. In contrast, Hadamard product operation transforms

the QC feature vectors integrally and significantly. Furthermore, such an

operation could also selectively highlight some parts in a QC feature vec-

tor since the agent may focus on different features when faced with various

preference weights.

Apart from the capability to handle multi-objective preference weights, the

network treats the inputs as a dynamic set of QC feature vectors. When

a QC’s task list becomes empty, the feature vector of this QC needs to

be eliminated from the input so that the corresponding QC is excluded

from the candidate actions. This issue is the same as that introduced in

Section 4.2. The multi-head attention block is used to leverage this thanks

to its abilities to properly handle the variable input length and its great

perception performance of different parts of the features.

Generally, this proposed network structure is motivated by some common

methodologies of natural language processing, recommendation systems,
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and the works of single-objective optimization in Chapter 4.

Linear Linear Linear
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each QC
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Heads

Feed Forward
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…
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Embedding

× × × ×

Feed Forward

…

QC2 QC3 QCn

Softmax

…

Action
Probability

…

User Preference

Figure 5.2: The network structure of preference-agile online truck dis-
patcher.

5.4 Algorithms

The well-known proximal policy optimization (PPO) (Schulman et al.,

2017) is adopted to train the dispatching agent. PPO has demonstrated

its superior performance on convergence and sample efficiency due to the

mechanism of reusing the sampling data. The general process of the PPO

is basically the same as the PPO used in Section 4.3 except for some details

related to MOO mechanisms.

Denote sk0, a
k
0, r

k
1 , ..., s

k
H−1, a

k
H−1, r

k
H a trajectory of the agent’s exploration

in the kth episode in training and K is the total number of episodes used

in training. rk
t indicates the reward vector for all objectives at time step t

of episode k, and H is the total steps in an episode, which equals the total

number of tasks of the episode. The total scalar reward with preference

121



5.4. ALGORITHMS

weight p is defined by Equation (5.4) based on the Weighted-Tchebycheff

scalarization function.

Rk =
H∑
t=1

gwt(p,o)t (5.4)

where gwt(p,o)t is a weighted-Tchebycheff function (see Equation (5.3))

at time step t. To enhance the stability of the training process, a shared

baseline is used to compute the advantage function value for each skt , a
k
t

pair as follows:

A(skt , a
k
t ) = Rk − 1

K

K∑
k=1

Rk (5.5)

The probability ratio is defined by Equation (5.6), where the θold are the

policy network parameters before updating.

Rationt (θ) =
π(akt |skt , θ)

π(akt |skt , θold)
(5.6)

PPO optimized a surrogate objective with a clipped probability ratio. A

clipped advantage function is defined by Equation (5.7), where ϵ is a hyper-

parameter (0 < ϵ < 1).

Aclip(skt , a
k
t ) =min[Ratiokt (θ)A(skt , a

k
t ), clip(Ratiokt (θ), 1 − ϵ, 1 + ϵ)A(skt , a

k
t )]

(5.7)

Each update of the policy network parameters uses a sampled mini-batch
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of data (skt , a
k
t ) pairs and their advantage function values with batch size

B. Each update optimizes the policy with the same preference weight p.

The estimated gradient of PPO loss for a particular preference weight is

indicated by Equation (5.8). The entire training process is presented by the

Algorithm 2. In each iteration, preference weight p is selected randomly,

and each preference will gain adequate learning after enough number of it-

erations. Also, p could also be selected in order in each generation, and the

result is basically the same according to the experiment implementation.

∇L =
1

KH

K∑
k=1

H∑
t=1

Aclip(skt , a
k
t )∇ logPθ(a

k
t |skt ,p) (5.8)

Algorithm 2: PPO for preference-agile multi-objective optimiza-
tion
Input: number of iteration K, collect N episodes per iteration,

steps per episode T , M epochs per iteration, clipping rate
ϵ, batch size B(B < NT ), preference set P

Initialize: a differentiable truck dispatch policy parameterization
π(a|s,p, θ);
for i=1 : K do

Randomly select a preference weight p from P ;
for n=1 : N do

Collect an episode s0, a0, r1, ..., sT−1, aT−1, rT , following
π(·|·,p, θ);

Compute each rt(at−1, st−1) based on the reward design,
∀t ∈ [1, T ];

Compute Rn for preference p based on Equation 5.4;

end
Compute A(snt , a

n
t ) through Equation 5.5,

∀t ∈ [0, T − 1], ∀n ∈ [1, N ];
Compute PPO loss L with clipping rate ϵ, optimize the
parameters θ with M epochs and batch size B

end

Benefiting from the generalization ability of deep neural networks, a well-

trained dispatching policy is able to make proper dispatching decisions
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Figure 5.3: Interpretation of the preference calibration method.
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under arbitrary (including unseen) preferences. Intuitively, a set of evenly

distributed preference weights would be used to generate an even and dense

Pareto front. However, for numerous real-world applications, evenly dis-

tributed preferences always fail to generate a regular shape of the approx-

imate Pareto front. To tackle such an issue, we proposed a heuristic ap-

proach to calibrate the preference weights based on the relative locations

of a set of policies in the objective space. The idea of the preference cal-

ibration method is illustrated in Figure 5.3, where a set of non-dominant

policies (indicated by red points) generated by even distributed preferences

are given. Suppose a policy with preference (0.5, 0.5) which should ideally

locate at the direction vector of (0.5, 0.5) (indicated by red dashed line),

but the actual location drifts off to some extent. Therefore, this prefer-

ence needs to be adjusted to make the new policy (a possible policy is π2

with preference p2, which is indicated by green points) locate in the cor-

rect direction. Firstly, two policies π1 and π3 with preferences p1 and p3,

which are closest to the target direction (0.5, 0.5) are selected. The area

between π1(p1) and π3(p3) is considered as the neighborhood of the target

direction (0.5, 0.5). The ratio of the angles αt and αc is computed. Then,

the calibrated preference p2 could be obtained by Equation (5.9).

p2 = p1 +
αt

αc

(p3 − p1) (5.9)

This calibration method estimates the preference adjustment based on the

change of the angles of two policies located in the neighborhood area of

a particular direction. This preference calibration method could make the

entire Pareto front more even, thus improving the quality of the approxi-

mated Pareto set policies as a whole.
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5.5 Problem Instances

Each of the instances used in this study consists of 28 QCs, 100 yards,

and 700 tasks. The number of trucks varies between different instances,

and the impact of this variation shall be analyzed shortly. Yard blocks for

import and export containers are fixed. In order to enhance the degree of

mutual exclusiveness of the two objectives, the import and export yards are

both evenly distributed among the entire container terminal based on some

initial investigation. Due to the dynamic nature and the high-level uncer-

tainties in the environment, the same dispatching policy cannot guarantee

the same results in terms of the two objectives, but it fluctuates within a

range instead. Therefore, the ith objective of a policy V π is evaluated by

C times average implemented by π, which is shown in Eq. (5.10).

V π
i =

1

C

C∑
n=1

H∑
t=1

rnt,(i) (5.10)

C is set to 128 in this work. That is, in the testing stage, 128 problem in-

stances (instances generated with fixed random seeds, which could ensure a

reproducible result for the same dispatching policy) are used for evaluation.

5.6 Evaluation Metrics

The hypervolume (HV) is selected as the performance indicator to measure

each method. A reference policy whose value V ref is dominated by all

other non-dominated policies is first needed. For bi-objective optimization,

HV measures the space area covered by the non-dominated policies and
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reference policy over the policy value space. Fig. 5.4 illustrates the HV

indicator, where the π1, π2, π3, π4 indicate the non-dominated policies, πref

is the reference policy, and the size of the grey area is the value of HV. HV

is a common indicator to evaluate multi-objective optimization methods.

Generally, a higher HV value implies a better non-dominated policy set

as a whole, which indicates better algorithm performance. In the field of

multi-objective optimization, HV is the most commonly used indicator.

𝝅𝒓𝒆𝒇
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𝝅𝟒
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π)

O
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e
 2

 (
𝑽
𝟐π
)

Figure 5.4: Hypervolume indicator.

Apart from the HV, the sparsity is also adopted for the evaluation. The

sparsity of a given policy set S with m objectives is defined by Eq. (5.11),

where S̃j(i) is the ith objective value in a partial ordering of these policies

sorted by the jth objective. Sparsity evaluates the degree of uniformity of

a policy set. A lower sparsity value indicates a more even distribution of
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policies spread among the entire approximate Pareto front. When evalu-

ating, HV is considered as the primary focus, and when values of HV are

similar, the policy set with lower sparsity is preferred. Sparsity is another

important measurement of MOO policy set (Roijers et al., 2013).

Sparsity(S) =
1

|S| − 1

m∑
j=1

|S|−1∑
i=1

(S̃j(i) − S̃j(i + 1))2 (5.11)

Due to the difference in the measurement units of different objectives, the

value scale of an objective may vary a lot from the other, which would cause

bias for evaluating the Pareto front. To eliminate such effect, both objective

values are scaled to range of [0, 1] by using min-max normalization which is

defined by Eq. (5.12), where x is some objective value of a policy and X is

the set of objective values generated by all methods to be compared. When

computing HV, the value of reference policy V ref is naturally selected as

[1, 1]. Therefore, the HV became a value in the range of [0, 1].

z =
x−min(X)

max(X) −min(X)
(5.12)

5.7 Benchmarks

To demonstrate the performance of the proposed methodology, two evo-

lutionary algorithms, namely, multi-objective genetic programming (GP)

based on paradigms of NSGA-II (Deb et al., 2002) and MOEA/D (Zhang

and Li, 2007) are implemented respectively. The reason for choosing these

two benchmarks is that they are two quite classic algorithms in the field of

multi-objective optimization, and most of the other new proposed methods
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are either derived from one of these two or combine the mechanisms of

these two methods.

Traditionally, both NSGA-II and MOEA/D solve the deterministic prob-

lems whose solutions could be encoded as fixed-length chromosome vectors

(routes, plans, etc) and the operators of genetic algorithm could be adopted

during the evolution. Since the examined problem is an online one, the so-

lutions in this work must be a dispatching rule, with which a dispatching

decision can be generated. Therefore, both benchmark algorithms are im-

plemented by us. In our proposed method, such a rule is the actor network,

while in the GP benchmark algorithms, we make it an arithmetic tree (Chen

et al., 2020b) to rank different candidate actions. For both algorithms, the

population size is set to 1000. The maximum generation is set to 500, 1000,

2000, respectively, in the corresponding experiments. The probabilities for

both crossover and mutation operators are settled at 50% after some initial

trials. For the multi-objective related mechanisms, we followed the original

works of NSGA-II (Deb et al., 2002) and MOEA/D (Zhang and Li, 2007).

5.8 Experiments and Result Analysis

5.8.1 Comparative Results with Benchmarks

Table 5.1 summarizes the comparative results between the proposed PAMOO

method with two main-stream MOO methods. The performance of HV and

sparsity (united by 10−4) are presented. The gap is measured against the

algorithm with the highest HV. For evolutionary algorithms, results after

500, 1000, and 2000 generations of evolution are reported. For PAMOO,
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results of 11, 51, and 101 numbers of evenly distributed preferences are

selected as the corresponding comparison. Each preference is evaluated

by running 128 times to guarantee the robustness. According to the nu-

merical results, PAMOO with 101 preset preference vectors outperforms

the other two methods on both HV and sparsity. Overall, the best results

(2000 generations) of the two evolutionary algorithms have an average gap

of 9.74% towards our method (with 101 preferences) in terms of HV. The

performance of NSGA-II and MOEA/D are comparable with each other in

general. The HV of MOEA/D is slightly higher than NSGA-II, while the

sparsity of NSGA-II is better than MOEA/D. PAMOO with much fewer

preferences (11 and 51) have average gaps of 0.88% and 0.41% respectively,

which demonstrates the excellent ability of the proposed method in that

even a smaller number of preset preferences can approximate the Pareto

Frontier very well.

The visualization of the obtained approximated Pareto frontiers is pre-

sented in Fig. 5.5. It can be seen that the approximate Pareto frontiers

obtained by our method could completely cover those by two evolutionary

algorithms. In cases of 2000 generations, merely a few policies generated

by evolutionary algorithms are close or at the same level as our method

(see Figure 5.5 (c) and (i)). Such outstanding results demonstrate the great

potential of RL-based methods for online MOO problems. Compared to

evolutionary algorithms, RL seems to have a better perception of the dy-

namics of the environment. This is probably due to the power of the deep

neural network, which can better handle high-dimensional features and

their temporal and spatial relationships, while genetic programming-based

methods are constrained by the limited set of arithmetic operators, which

make far less use of feature data.
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Apart from HV, the proposed PAMOO method also shows significant per-

formance gains in terms of smoothness and spread of the Pareto frontiers.

The Pareto frontiers by the two evolutionary algorithms usually have large

gaps (See Figure 5.5 (d),(e), and (f)). A closer investigation reveals that

a likely reason for this is the lack of effective fine-tuning mechanisms to

accurately respond to small changes in preferences. Usually, a policy pre-

sented by a tree-based structure leads to large changes in its dispatching

logic when modified by genetic operators (crossover, mutation). Such char-

acteristics make the policies tend to be the same for similar preferences,

thus forming the non-continuous intervals among the Pareto frontiers. In

contrast, our method could still make the correct perception even though

the preference is slightly changed because the preference embedding layer

maps the preference to a longer feature vector (128 dimensions, same as the

QC feature vector), which is adequate to discriminate similar preferences

and influence the neural network. That is the reason why our method could

generate much more continuous and even Pareto fronts compared with the

benchmarks. In addition, the problem of ”equivalent trees” (different trees

have the same arithmetic logic) also exists for evolutionary algorithms and

makes considerable policies overlap or gather in the objective space, which

further worsens the discontinuity of the Pareto front.

5.8.2 Performance of Generalization

We also conducted PAMOO’s generalization experiment by using merely

11 guidance preferences on instances with 120 trucks for training. The re-

sults are evaluated against the PAMOO with 101 preferences. The agent

yields 40 non-dominated policies out of 101 input preferences. Figure 5.6

visualizes the approximated Pareto front. The numerical results of poli-
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Figure 5.5: Approximate Pareto front obtained by our method and bench-
marks on instances of different number of trucks.
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Figure 5.6: Pareto frontiers generated by the proposed method trained by
a small number of preferences.
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cies with training and unseen preferences are reported in Table 5.2 and

5.3 separately. The numerical results of the approximated Pareto front by

these two groups of preferences are presented in Table 5.4. According to

these results, the generalized policies could fill up the intervals among the

policies with training preferences over the objective space, and all policies

approximate a relatively dense Pareto front. Like most of the machine

learning approaches, less training samples (preferences in this case) lead

to certain degrees of performance drops. The agent is able to generate 11

non-dominant policies out of 11 input preferences if the evaluating prefer-

ences are the same as the training instances, but when 90 unseen evaluating

instances are added, the policy can only generate 29 more non-dominated

policies. Such a problem could be alleviated by taking more preferences

into the training process and increasing the network size. However, the

generalized non-dominated policies also help to enhance the approximated

Pareto front. According to the Table 5.4, with the contributions of the

generalized policies, the approximated Pareto front obtained a significant

improvement on HV. In general, the generalization performance is crucial

for the proposed methodology as it makes it possible for the agent to dis-

patch under arbitrary preferences and allows users to interactively adjust

the preferences in real-world cases.

5.8.3 Comparative Results with Outer-Loop Method

We compare the performance of PAMMO with an outer loop method.

As introduced in the literature, the outer loop methods consider multi-

objective optimization problems as several single-objective optimization

problems with different preferences. In other words, an outer loop method

needs to train separate dispatching policies for different preferences. In this
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Table 5.2: Numerical Result of Policies with Training Preferences.

Preferences
QC Idle Time

(min/QC)
Empty Travel Distance

(m/task)
(1.0, 0.0) 13.04 799.11
(0.9, 0.1) 13.21 759.0
(0.8, 0.2) 13.26 703.38
(0.7, 0.3) 13.69 657.03
(0.6, 0.4) 14.6 612.71
(0.5, 0.5) 15.97 599.77
(0.4, 0.6) 17.09 554.33
(0.3, 0.7) 18.34 544.31
(0.2, 0.8) 19.19 519.52
(0.1, 0.9) 20.23 509.42
(0.0, 1.0) 21.06 500.34

experiment, the same network structure, except for the eliminated prefer-

ence embedding layer, is used for training single-objective policies. Since

training a single policy from scratch is time-consuming, only 11 policies are

trained separately for comparison in this experiment. Figure 5.7 shows the

approximated Pareto frontiers on 11 evenly distributed preference weights.

According to the Table 5.6, the outer loop method generates comparative

Pareto frontiers towards PAMOO in terms of HV (0.786 and 0.784, respec-

tively). The gap is merely 0.25%. Bear in mind that our proposed PAMOO

method only uses a single uniform model. However, the outer loop method

has to be trained separately for different preferences which is extremely

time costly.

Visually, the approximated Pareto front obtained by the outer loop method

covers a broader space. This property is further analyzed by numerical re-

sults of each preference, which are presented in Table 5.5. In extreme cases

(preferences of (1.0, 0.0) or (0.0, 1.0)), the examined problem degenerates

into a single-objective problem, and the outer loop method shows better

performance. Numerically, the outer loop method achieved the ranges of

15.08 min/QC and 393.86 m/task for both objectives, while PAMOO ob-
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Table 5.3: Numerical Result of Policies with Unseen Preferences.

Preferences
QC Idle Time

(min/QC)
Empty Travel Distance

(m/task)
(0.98, 0.02) 12.96 786.7
(0.97, 0.03) 12.91 789.99
(0.93, 0.07) 12.97 768.88
(0.88, 0.12) 13.05 735.47
(0.85, 0.15) 13.06 730.95
(0.81, 0.19) 13.1 699.9
(0.78, 0.22) 13.3 690.91
(0.76, 0.24) 13.37 682.41
(0.74, 0.26) 13.48 674.0
(0.73, 0.27) 13.62 667.91
(0.72, 0.28) 13.63 664.25
(0.71, 0.29) 13.75 662.92
(0.69, 0.31) 13.83 650.1
(0.68, 0.32) 14.02 645.41
(0.66, 0.34) 14.07 635.84
(0.65, 0.35) 14.18 630.01
(0.64, 0.36) 14.31 629.93
(0.63, 0.37) 14.39 620.12
(0.59, 0.41) 14.82 617.27
(0.58, 0.42) 14.88 616.81
(0.57, 0.43) 15.1 605.57
(0.56, 0.44) 15.16 604.39
(0.54, 0.46) 15.44 594.21
(0.52, 0.48) 15.45 586.91
(0.47, 0.53) 16.15 579.58
(0.44, 0.56) 16.58 570.03
(0.42, 0.58) 16.88 564.3
(0.39, 0.61) 17.12 559.48
(0.38, 0.62) 17.23 556.08
(0.36, 0.64) 17.73 552.08
(0.35, 0.65) 17.79 541.08
(0.32, 0.68) 18.18 540.98
(0.31, 0.69) 18.22 539.52
(0.27, 0.73) 18.52 525.59
(0.25, 0.75) 18.6 524.07
(0.22, 0.78) 18.85 523.49
(0.21, 0.79) 19.0 521.48
(0.16, 0.84) 19.45 513.79
(0.09, 0.91) 20.27 507.28
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Table 5.4: Comparison of approximated Pareto fronts obtained by various
groups of preferences.

Methods HV |Sols| Sparsity (10−4) Gap(%)
Training preferences 0.701 11 256.68 6.53%

Generalized preferences 0.748 39 22.99 0.27%
All preferences 0.75 40 24.81 0%
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QC Idle Time
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Figure 5.7: Pareto frontiers generated by PAMOO and outer loop method
on the instance of 120 trucks.
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tained the ranges of 8.02 min/QC and 298.77 m/task respectively, having

the gaps of 46.8% and 24.1%. In general, in extreme cases, one of the ob-

jectives is further optimized to a small degree at the expense of a dramatic

performance drop for the other objective.

Another advantage of the proposed methodology is the higher sample effi-

ciency compared with the outer loop method and evolutionary algorithms.

A sample indicates one single run for a particular problem instance and is

equivalent to an episode in the RL training process. The Figure 5.8 shows

the total number of samples (episodes) that are required for these algo-

rithms along with the increase of HV. For both evolutionary algorithms,

their population sizes are large, and numerous samples are required to

evaluate the fitness of individuals reliably and avoid over-fitting and per-

formance drop for testing. For RL-based approaches, our proposed method

requires less than half of the episodes compared with the outer loop method.

This is probably because the features extracted by the network at different

preferences are correlated, and hence learning is transferred across differ-

ent preferences. For example, the dispatching policy under preferences of

(0.5, 0.5) must be somehow similar to the policies under preferences of

(0.4, 0.6) or (0.6, 0.4). Therefore, when the network is trained for prefer-

ence (0.5, 0.5), it is also partially trained for the preferences (0.4, 0.6) and

(0.6, 0.4). More precisely, it is believed that when the network is trained

for one particular preference, it is actually trained for all other possible

preferences simultaneously to some extent. This also explains why our

proposed method can produce solutions at preferences that are not seen in

the training.
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Table 5.6: Comparison of approximated Pareto fronts obtained by PAMOO
and outer loop method.

Methods HV |Sols| Sparsity (10−4) Gap(%)
PAMOO 0.784 11 113.19 0.25%

Outer Loop Method 0.786 10 365.92 0%
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Figure 5.8: Sample efficiency of inner-loop (PAMOO) and outer-loop meth-
ods compared with NSGA-II and MOEA-D.
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5.8.4 Result of Preference Calibrations

The experiment of preference calibration is conducted on instances with

80, 100, and 120 trucks. The specific adjusting method based on a set of

existing Pareto policies is described in section 5.4. Firstly, a set of Pareto

policies is generated by a list of evenly distributed preferences. Then, each

preference is adjusted by using the aforementioned preference calibration

method based on the relative locations of these policies in the objective

space. Table 5.7 shows the PAMOO results with and without calibrations.

In our experiments, the number of preferences is set to different values (11,

21, and 51) to evaluate the trends of the performance gains through sam-

pling. It can be seen that, at the same number of preferences, PAMOO

with calibration achieves better HV scores than PAMOO without calibra-

tion. It is axiomatic that more preferences contribute to higher HV as

well. When the number of training preferences reaches 51, PAMOO with

calibration obtains the best results among all.

According to the numerical result, PAMOO with preference calibration can

improve the results between 0.4% and 1.79%. Calibration gives smaller

improvements when the number of preferences is relatively large, since the

optimization space for adjusting preferences is quite limited. Despite little

improvement for HV, calibration is still valuable for the improvement on

sparsity since the preference calibration makes the Pareto frontier more

even.

The reason why there’s a space for improving HV by using the preference

calibration method is that the approximated Pareto front is not evenly

explored by evenly distributed preferences. For the examined truck dis-

patching problem, the direct reason for leading to an uneven and irregular
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Pareto front is non-equivalent sensitivities to the same degree of preference

change for both objectives. According to our investigation, the objective

QC idle time’s responses are not implicit when its preference weight is high.

Such an issue is also verified by Table 5.5. For PAMOO, QC idle time only

changes 0.65 along with the preference changing from (1.0, 0.0) to (0.7,

0.3), but when the preference weight for it is low (from (0.3, 0.7) to (0.0,

1.0)), the objective range is 2.72. For the outer loop method, these two

values are 0.23 and 10.37, where the issue is more serious.

The basic reason that causes such an effect may be underlying and related

to many factors of problem instances or the environment. For example, the

number of trucks, task distribution among QCs, and the relative locations

of import-export yards, all of these factors could lead to the effect that

optimizing one of the objectives is harder, thus causing the final approxi-

mated Pareto front to be uneven. It is interesting to conduct a systematic

sensitivity analysis of these factors and the connection between these fac-

tors in the problem environment, and the uneven degree of the final Pareto

front is worth investigating.

In addition to the examined truck dispatching problem, for most of the

real-world multi-objective optimization, the evenly distributed preferences

usually do not have a straightforward connection to a regular and dense

Pareto front. Increasing the number of preferences at the evaluation stage

may alleviate such issues to some extent, but will lead to unrealistic compu-

tational cost. Not to mention some evolutionary approaches that require

re-training (re-run) the entire algorithms to gain more Pareto solutions

and are not allowed any preference adjustment after the training process.

By contrast, our proposed methodology shows significant advantages for its

flexibility to generate different numbers of trade-off policies under arbitrary

143



5.8. EXPERIMENTS AND RESULT ANALYSIS

T
ab

le
5.

7:
C

om
p

ar
is

on
R

es
u

lt
b

et
w

ee
n

E
ve

n
an

d
A

d
ju

st
ed

P
re

fe
re

n
ce

s.

M
et

h
o
d

80
T

ru
ck

s
10

0
T

ru
ck

s
12

0
T

ru
ck

s
H

V
S

p
ar

si
ty

G
ap

(%
)

H
V

S
p

ar
si

ty
G

ap
(%

)
H

V
S

p
ar

si
ty

G
ap

(%
)

E
ve

n
ly

P
re

fe
re

n
ce

s
(1

1
P

re
f.

)
0.

68
4

25
3.

03
5.

79
%

0.
67

6
26

0.
71

7.
02

%
0.

67
9

26
7.

98
7.

24
%

E
ve

n
ly

P
re

fe
re

n
ce

s
(2

1
P

re
f.

)
0.

70
9

64
.4

8
2.

34
%

0.
70

5
66

.1
4

3.
03

%
0.

70
9

68
.9

1
3.

14
%

E
ve

n
ly

P
re

fe
re

n
ce

s
(5

1
P

re
f.

)
0.

72
3

11
.4

2
0.

41
%

0.
72

1
11

.8
0.

83
%

0.
72

4
11

.0
6

1.
09

%
A

d
ju

st
ed

P
re

fe
re

n
ce

s
(1

1
P

re
f.

)
0.

69
4

24
0.

93
4.

41
%

0.
68

3
24

0.
13

6.
05

%
0.

68
5

24
1.

41
6.

42
%

A
d

ju
st

ed
P

re
fe

re
n

ce
s

(2
1

P
re

f.
)

0.
71

6
58

.2
9

1.
38

%
0.

71
8

60
.5

5
1.

24
%

0.
71

9
60

.9
1.

78
%

A
d

ju
st

ed
P

re
fe

re
n

ce
s

(5
1

P
re

f.
)

0.
72

6
10

.2
8

0.
0%

0.
72

7
10

.2
9

0.
0%

0.
73

2
10

.0
7

0.
0%

144



5.9. SUMMARY

preferences to approximate dense and even Pareto fronts and could further

improve the Pareto front quality by adopting the preference calibration

method.

5.9 Summary

In this work, we proposed a novel methodology for the multi-objective ver-

sion container truck task dispatching problem in marine container termi-

nals. The examined problem is solved by formulating it as a multi-objective

Markov decision process (MOMDP) and introducing multi-objective deep

reinforcement learning approaches. Benefited by the innovative network

structure design, which adopts feature crossing operation to combine pref-

erence and state information, users are able to make online decisions under

arbitrary trade-off preferences. Polices could be generated rapidly to ex-

plore the entire Pareto front.

Following the principles of traditional evolutionary multi-objective algo-

rithms, the genetic programming-based NSGA-II and MOEA/D are devel-

oped to benchmark our proposed method. The comparative experiments

towards the benchmarks demonstrated that our proposed method could

outperform the benchmarks on solution quality, diversity, and sample effi-

ciency.

In addition, the experiment also shows that the policy trained with only

a small number of preferences could still generalize to other, more unseen

preference cases and span a relatively dense and smooth approximated

Pareto front. Based on these attributes of the methodology, a preference

calibration method is proposed, which could rearrange the policy set to
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obtain a more even approximated Pareto front by adjusting the prefer-

ences. By adopting the preference calibration method, the effect caused by

unequal sensitivities towards different objectives could be eliminated to a

large extent, thus further improving the quality of the approximated Pareto

front.
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Chapter 6

Mechanisms for Prior Expert

Knowledge Augmentation

Based on the implementations of the previous research work, the issue

of training efficiency has emerged. For the single-objective dispatching

problem, the proposed method is faced with the issue of multi-scenarios

which require the policy to be versatile to adapt to various cases. As

for the MOO problem, an inner-loop method needs enough data samples

of various preferences for an agent to generalize to unseen cases. In both

cases, enough data records are needed in the training process to cover these

various complex situations, which require numerous interactions with the

environment. Therefore, the methods that utilize the pre-trained blocks are

visited. Such methodology could be considered as an approach to introduce

prior expert knowledge. Following such an idea, we proposed the expert

network-assisted dispatching model and policy fusion approach, both for

single and multi-objective optimization, which could alleviate the training

efficiency issues to a large extent.
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6.1 Motivations of Prior Expert Knowledge

This section briefly introduces the purpose and motivation of introducing

the mechanisms of prior expert knowledge augmentation. For complex real-

life decision-making problems, great effort may be taken for the RL agent

to learn a sophisticated policy from scratch. Also, the hardship of train-

ing may boost along with the increasing state or action spaces. Therefore,

mechanisms of domain expert knowledge are leveraged to alleviate such

issues. Deep reinforcement learning-based hyper-heuristic (DRL-HH) ap-

proach (Zhang et al., 2022a) is one of the most typical methodologies.

Specifically, the action space is not all the available dispatching tasks but a

series of pre-designed low-level heuristics as mentioned in section 2.3. The

overall framework of DRL-HH is described in Figure 6.1, where the RL

agent selects the heuristic 1 as the action and then the heuristic outputs

the specific task 3 in this case. By this means, the RL agent starts to be

trained from a human-dispatching level because each heuristic is fine-tuned

and the agent could still perform well even randomly selects actions. In

addition, the DRL-HH accelerates the agent’s subsequent learning process

by reducing the action space, thus making it easy to learn a high-quality

mapping between states and specific tasks. Indeed, the methodology of

DRL-HH is significant, especially for real-world applications, because the

performance of the agent could be enhanced by repeatedly introducing the

newly designed dispatching heuristic based on practical experience, even

though there’s no breakthrough at the algorithmic level.

Despite the performance and practical effect of DRL-HH, such methodology

still has its bottlenecks. First of all, the performance of DRL-HH highly

relies on these low-level heuristics because it is hard to be improved by

subsequent training with a poor-quality low-level heuristic. In other words,
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RL Agent

select

Low-level 
Heuristics

Heuristic 1

Heuristic 2

Heuristic n

…

output

Specific 
Tasks

Task 1

…

Task 2

Task 3

Task n

Simulation 
Environment

Figure 6.1: The illustration of deep reinforcement learning hyper-heuristic
framework.

such an approach is limited by expert knowledge by introducing the expert

knowledge. The second bottleneck is called the reachability issue. It means

the decisions yielded by low-level heuristics usually cannot cover the entire

decision space (space of all available tasks), which is illustrated by Figure

6.2. Ideally, each specific decision (task) should be reached by at least one

low-level heuristic, but such an attribute is hard to achieve. Otherwise,

the decision space is reduced at each decision-making step, and the policy

obtained through such a manner is a lower or upper bound theoretically.

Heuristic 
Space

Heuristic 1

Heuristic 2

Heuristic 3

Entire Decision Space

Task 3

Task 4

Task 2

Task 1 Heuristics 
Covered 

Space

Figure 6.2: An example that explains the reachability issue of hyper-
heuristics methodology.
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The idea of introducing the domain knowledge has been widely explored

in deep learning community. One of the classic approaches is to use pre-

trained blocks in deep neural networks (Qiu et al., 2020). Pre-trained model

indicates the network model that trained by large datasets of generic task

in advance and the learned features could be transferred to other domain-

specific tasks. The general concept of pre-trained model is to utilize large-

scale datasets to initiate (a part of) parameters of the network then adopt

the model to other tasks by fine-tuning or transfer learning. Several repre-

sentative applications of pre-trained models include bidirectional encoder

representation of transformer (BERT) (Kenton and Toutanova, 2019) and

object detection techniques (YOLO: you only look once) (Redmon, 2016).

However, most of these works focus on natural language processing (NLP)

or computer vision (CV) domains, and research that studies the utilization

of pre-trained models in the field of operations research is quite limited.

Following such an idea, a pre-trained block obtained through imitation

learning is introduced to solve the examined truck dispatching problem

in this work. The purpose of this methodology is to maintain the aug-

mentation of the prior expert knowledge in the model but avoid these two

drawbacks of DRL-HH that are introduced above.

In the case of multi-objective optimization of the examined dispatching

problem, training time is boosted even for one single scenario since the

agent actually learn all the cases with different preference weights. Consid-

ering the multi-scenarios issue in MOO problem could be more challenging.

Therefore, the idea of prior expert knowledge augmentation is also intro-

duced to the MOO field. In this work, the polices that trained through

single objective optimization environment are treated as expert knowledge.

These two mechanisms for both single and multi-objective cases are de-

scribed in the following sections.
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6.2 Imitation Learning

In the case of approximating decisions, Imitation Learning (IL) is often

used to learn a policy from demonstrations of expert behaviors (Bengio

et al., 2021). In IL, the agent is not trained to maximize the reward, but to

blindly mimic the expert through learning a mapping between observations

and actions. Researchers have tried to combine IL with DRL to reduce the

exploration costs of the agents (Silver et al., 2016). In this work, we also

adopt IL in our framework in order to speed up the convergence of the RL

agent and obtain some basic prior knowledge of the examined problem.

The parameters of the expert network are learned through a simple on-

policy iterative supervised learning algorithm (as shown in Algorithm 3)

where the expert policy is provided by a heuristic dispatching rule (Chen

et al., 2016). Such a heuristic dispatching policy is scenario-independent

and insensitive to environment uncertainties and thus should be suitable

as prior knowledge for an RL agent. The loss is defined by the difference

between the expert network output and the label (decision of the manual

heuristic). For example, for a given state observation at some time step t,

a manual heuristic would provide a unique answer for which task to select

for this state (input). The expert network with the same structure in 4.2

outputs a probability distribution of the actions. Then the cross entropy

between the network output (probability distribution) and the label (one-

hot vector form) could be computed through the Function (6.1). The loss

could be used to update the expert network parameters by backpropagation

accordingly. In each iteration of imitation learning, the problem instance

is randomly selected. Random selection makes the expert network cover

more problem scenarios, thus making the embeddings extracted from the

expert network more informative. The imitation mechanism could make
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the agent converge to the heuristic level in a relatively short time period

and consequently make the RL training process more stable. The detailed

experimental results are presented in section 6.5.1 and 6.5.2 .

cross entropy(a,p) = −
∑
i

ai log pi (6.1)

Algorithm 3: Imitation learning for truck dispatching optimiza-
tion
Input: number of iterations I, steps per episode T
Initialize: a differentiable truck dispatch policy with random
parameterization π(a|s, θ);
for i=1 : I do

Randomly select a problem instance Bi;
Collect an episode s0, p0, s1, p1, . . . , sT , pT from Bi, where pt is
probability distribution of the network output and st is the
state representation, at time step t, following π(·|·, θ);

Collect the actions a0, a1, . . . , aT of each state s0, s1, . . . , sT
accordingly based on heuristic dispatching rule using one-hot
representation;

Calculate the loss as: L =
∑T

t=0 cross entropy(at, pt);
Update expert network parameters as: θ = Adam(∇L, θ);

end

6.3 Expert Network Assisted Dispatching Model

The policy network used in this work is depicted in Figure 6.3. Similar to

the network described in section 4.2, given the state vector described in

section 4.1.1, the policy network takes the QC features as the inputs and

then outputs a list of probability distributions of the available actions.

Generally, the proposed network structure consists of an expert network

and a cross-scenario network. The expert net is used for providing ad-

ditional prior knowledge by extracting a feature vector for each QC, and
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the cross-scenario net is used as the actor for the RL agent so that the

probability distribution of actions is computed. For the expert network,

the feature vectors of each QC are first fed into a three-layer bi-directional

long short-term memory (LSTM). Next, the hidden states of each LSTM

step are fed into a feed forward layer to generate a 512-dimensional feature

vector for each QC, namely HExpert. The HExpert represents the knowledge

of an expert dispatching policy, and it will be further fed into the cross-

scenario network. The gate in the cross-scenario network is a two-layer

fully connected block that takes the same input states and outputs a ten-

sor with the same shape as HExpert. The other parts of the cross-scenario

network adopt the same structure as the expert network before the con-

catenation layer. After the concatenation is done, a new feature vector

consisting of the information for both HExpert and HTarget is generated.

Then, an attention layer which has a similar structure to the self-attention

block in Vaswani et al. (2017) is adopted and it maps the feature vector of

each QC to a scalar. Finally, a softmax layer is used to generate the action

probability distribution.

Similar to the network described in 4.2, such proposed network also treats

the state vector of each QC as a dynamic set with spatial-temporal features.

The spatial information of both truck and QCs is embedded in the state

design (see section 4.1.1). The input data follows the fixed order based on

QC’s position in the terminal (same direction as the roads besides QCs).

The use of LSTM is to make the network model capable of handling the

dynamic size of the candidate QC. Once a QC finishes all of its tasks, it

will be eliminated from the QC set. The bidirectional structure of LSTM

ensures the information of the entire QC sequence is fully propagated at

each step and thus capable of capturing some hidden features, such as one-

way roads at the seaside. The gate component controls the information
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Figure 6.3: The expert network and cross-scenario network structure.
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flow of the expert knowledge based on raw observation. With the help

of the attention layer, each extracted QC feature vector is aware of the

entire sequence of information, and the multi-head attention mechanism

allows the agent to selectively focus on different parts of HConcat. Thus,

the agent can decide ”how much” it may refer to the expert knowledge.

Moreover, the capability of handling different lengths of input makes our

model more competitive in general scenarios compared with the traditional

structure like the fully connected network, since it would be impractical

to train all possible problem instances with different input sizes separately.

In addition, our proposed neural network structure could easily deal with

invalid agent action (once a QC has dispatched all its tasks and becomes

empty) by removing that QC from the input list.

The training process of the proposed expert network-assisted dispatching

model is divided into two stages. In the first stage, the expert network

is trained through imitation learning with the expert policy (Chen et al.,

2016). Notably, to train the expert network, an extra fully-connected layer

and a softmax layer are required to make it output a probability distribu-

tion, and these two layers are dropped after imitation learning to make it

output embeddings. In the second stage, the network is trained through

reinforcement learning. In this stage, only the parameters of the cross-

scenario network are updated in training, and the expert network is fixed.

Apart from the mechanism of expert network augmentation, other training

details such as MDP modeling, algorithm, and hyper-parameters are all

kept the same as described in chapter 4.
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6.4 Policy Fusion

Following the similar idea that leverages the pre-trained blocks in the dis-

patching model, a prior expert knowledge augmentation mechanism is pro-

posed for the MOO version of the examined truck dispatching problem.

Such an approach treats well-trained policies for single objective optimiza-

tion as expert knowledge. In this work, it is assumed that an MOO policy

could benefit from the features extracted from the single objective policy

and effectively adapt to the MOO case by the fusion of these features.

Specifically, two single-objective optimization models for minimizing QC

idle time and truck empty traveling distance separately are trained in ad-

vance. Then the QC features are extracted by these two network models

in the same way as the expert network in section 6.3. The extracted QC

features form the new fusional features as the inputs of the network for

RL agent training, whose structure is similar to 5.3. Such a policy fusion

process is indicated by Figure 6.4, where the main learner and preference

embedding blocks are trained as the RL agent, and two single-objective

policies serve as the expert networks. In general, the agent of the policy

fusion model learns an MOO policy with the combined single objective

QC features and the given preference weights. Indeed, the single objective

policy in this framework could also be considered as a special feature en-

gineering approach that transfers the raw observation to the kind of QC

features that could be better exploited to train an MOO policy.

Similar to the methodology in section 6.3, the training process is divided

to two stages. In the first stage, two networks that aim at minimizing two

objectives respectively are trained. These two networks are trained through

reinforcement learning, which is the same as the process in chapter 4. In the

second stage, the network is also trained through reinforcement learning,
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whose process and settings are the same as the methodology introduced

in chapter 5. In this stage, only the parameters of the main learner and

preference are updated during the training, while the parameters of the

two single-objective policy blocks are fixed. The embeddings of two single-

objective features are combined through concatenation. The information

of preference and single-objective fusional features is combined through

Hadamard product operation which is similar to PAMOO. Other settings

and algorithms of training in this stage are the same as described in chapter

5. The proposed policy fusion approach obtained a significant improvement

on the acceleration of the MOO policy training, and the results are reported

in section 6.5.4.

Raw Observations

Main Learner 

Single Objective 
Policy 1

Single Objective 
Policy 2

Preference 
Embedding

Preference

Policy Under Given Preference

Single Objective 
Features

Figure 6.4: Illustration of policy fusion framework.
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6.5 Experiments and Result Analysis

6.5.1 Result of Imitation Learning

Imitation learning is the approach that is used for extracting the prior

expert knowledge representation in this work, which has been introduced

in section 6.2. The policy in Chen et al. (2016) is selected as the expert

behaviors for the imitation learning. The imitation learning in this work

could be considered as a standard supervised learning of a classification

problem. The tables 6.1 and 6.2 present the result of the imitation learn-

ing on both the training and testing sets respectively. The row of heuristic

policy and imitated policy reports the result in terms of the objective val-

ues, gap shows the performance distance towards the heuristic policy, and

Acc indicates the result of accuracy in the perspective of a classification

problem.

The result is also based on the six different problem configurations that are

designed in section 4.4. According to the results of imitation learning on

both the training and testing sets, the agent is able to reproduce the expert

behaviors on various problem configurations. The performance of the imi-

tated policy is extremely close to the target heuristic approach, and there’s

no obvious overfitting occurrence in each case. Therefore, the network

trained through such an imitation learning manner could be considered as

the expert behavior, and the concrete expert knowledge is represented by

the output vectors of the middle layer of the imitation network. For each

state input, there is a knowledge representation (vectors) that indicates

the information of the expert policy’s decision logic when faced with this

state input. One particular reason for choosing this heuristic as the expert
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policy is its robustness towards changing scenarios and ability to maintain

comparable performance on each problem configuration.

6.5.2 Comparative Results of the Proposed DRL Ap-

proach with and without Imitation Learning

An ablation study is conducted to demonstrate the effectiveness of our

proposed network structure in terms of both performance and speed of

convergence. The evaluation metric and problem instance design follow

the same settings in chapter 4. Table 6.3 shows the performance of our

method with and without the expert network. For the agent without the

expert network, a single cross-scenario network without the gate compo-

nent is adopted (See Figure 4.2 for details). As we can see, compared with

the single cross-scenario network, the agent with the expert network has

better performance in most cases except Config 4. Using a single network

to obtain a uniform policy for different scenarios (parameterized environ-

ments) can be problematic. A certain policy that works well for some

particular scenarios may perform badly in others (e.g., Config 3) due to

possible overfitting. Our approach alleviates such defects by incorporating

prior knowledge into the RL agent. The results are more balanced among

different environment configurations since the expert network is trained by

scenario-insensitive data through imitation learning.

Figure 6.5 shows the convergent performance of the agent without the

expert network, where the lines of random and heuristic are two dispatching

policies that provide reference lines for the RL agent’s convergence curve.

Each step point represents the average score of all configurations (10 testing

episodes for each). At the initial stages, the dispatching policy is even worse
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than the random dispatching policy. After around 500 iterations, the DRL

policy starts to outperform the benchmark heuristic method and achieves

a better score steadily. In contrast, as can be found in Figure 6.6, the agent

with the expert network converges rapidly at early stages and achieves the

heuristic level after only 100 iterations. Benefit from the prior knowledge

incorporated into the network, the agent uses only 650 iterations to obtain

a better score than that of the agent without the expert network.

Table 6.3: The performance of the proposed method in comparison with
or without the expert net.

Configuration
Heuristic Method

(Benchmark)
Obj value / Imp (%) against benchmark

Without With

Config 1 29470 27714 6.0% 26854 8.9 %
Config 2 24586 21140 14.0% 20856 15.2 %
Config 3 38915 36930 5.1% 35374 9.1 %
Config 4 48199 42125 12.6 % 42299 12.2%
Config 5 26693 24940 6.6% 24314 8.9 %
Config 6 31051 26428 14.9% 26142 15.8 %

0 250 500 750 1000 1250 1500 1750 2000
iteration

65000

60000

55000

50000

45000

40000

35000

30000

re
wa

rd

Convergence Curve

RL method
random
heuristic

Figure 6.5: The convergence performance of the proposed method in com-
parison with the manual heuristic.
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Figure 6.6: The convergence performance of the proposed method in com-
parison with the manual heuristic using Imitation Learning.

6.5.3 Comparative Results on various Uncertainties

Apart from the unseen problem instances, the proposed DRL method also

shows robustness to unknown uncertainties. As introduced earlier, truck

speed at different areas and crane operation time are the uncertain factors

for the examined problem. In the training environment, crane operation

times are non-deterministic, which follows the same setting of Zhang et al.

(2022a) while the truck speed is assumed to be constant. In the testing

environment, the truck speed is treated as an unknown uncertainty for

the RL agent. The trained models for DRL-HH, GP, and our method

are evaluated in the testing environment with unknown uncertainty. The

comparison results against the manual heuristic can be found in Table 6.4.

It can be seen that DRL-HH is not competitive and fails to outperform
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Table 6.4: The performance of the proposed method in comparison with
the manual heuristic and a DRL-HH method under unknown uncertainties.

Configuration
Heuristic Method

(Benchmark)
Obj value / Imp (%) against benchmark

GP DRL-HH Ours

Config 1 30469 30135 1.1% 30286 0.6% 29372 3.6%
Config 2 25869 24698 4.5% 25222 2.5% 23670 8.5%
Config 3 40268 39587 1.7% 41114 -2.1% 39140 2.8%
Config 4 50121 48352 3.5% 49169 1.9% 46261 7.7%
Config 5 28169 27332 3.0% 28338 -0.6% 26817 4.8%
Config 6 32118 31585 1.7 % 31411 2.2% 30769 4.2%

heuristic solutions in some cases. It is not surprising, as the unseen truck

speed uncertainty at the yard side may further aggravate the yard con-

gestion effect, and the low-level heuristics used for DRL-HH may limit its

exploration ability. Nonetheless, the proposed DRL method still shows

its great robustness to unknown uncertainties and outperforms the other

methods in all testing instances. Since uncertainties cannot be enumerated

and included in the training environment, the experimental results demon-

strate that our proposed method has the potential to be deployed in the

real-world port operation environment.

6.5.4 Result of Policy Fusion

The experiment settings in this section are basically the same as the de-

scription in chapter 5. Table 6.5 presents the convergence results of the

original MOO truck dispatching policy and the policy fusion dispatching

approach for cases with various truck numbers. The policy fusion is trained

through the features extracted from the single objective policies, which fol-

low the mechanism in section 6.4. Each single objective policy (network)

is trained in the same way as described in chapter 4. The Original MOO

policy in Table 6.5 indicates the methods that are trained as the way in

chapter 5. Several iteration steps are selected as the intermediate status
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to observe the convergence performance of the proposed method and the

benchmark. Specifically, the hyper volume (HV) results in iterations 5, 10,

20, 50, 100, and 200 of both methods are reported. Obviously, the pol-

icy fusion approach converges much more rapidly than the original MOO

policy. It starts from a performance level that the original MOO policies

take about 100 iterations to achieve. Basically, it skipped the early stage

that the MOO policy used to ”warm up” the initial training process, which

benefits from the prior expert knowledge incorporation of single-objective

policies. Moreover, the original MOO policies are not well-trained within

200 iterations, while the policy fusion models have already outperformed

the original MOO policies and achieved the optimal performance.

Table 6.5: Convergent results between original MOO approach and policy
fusion method.

Methods
Iterations

5 10 20 50 100 200
80 Trucks

Original MOO Policy 0.084 0.353 0.553 0.692 0.832 0.897
Policy Fusion 0.753 0.832 0.881 0.902 0.927 0.933

100 Trucks
Original MOO Policy 0.046 0.129 0.302 0.491 0.672 0.753

Policy Fusion 0.694 0.759 0.832 0.897 0.923 0.952
120 Trucks

Original MOO Policy 0.067 0.297 0.586 0.741 0.791 0.877
Policy Fusion 0.701 0.821 0.916 0.948 0.957 0.961

The Figure 6.7 shows the approximate Pareto front obtained by the pro-

posed policy fusion and original MOO approach, both with 11 evenly dis-

tributed preferences. In this experiment, both policies are fully trained with

adequate iterations of updates. Visually, the approximate Pareto front of

both methods is comparable and relatively even and regular. The result

demonstrated the feasibility of a multi-objective truck dispatching policy

obtained by the features extracted from single-objective policies.
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The Table 6.6 and 6.7 report the specific numerical result of non-dominant

policies and approximated Pareto front in Fig 6.7 respectively. Overall,

both the original MOO approach (PAMOO) and policy fusion approach

generate 11 non-dominant policies out of their 11 preference inputs. The

hyper volumes (HV) of the policy fusion and original MOO approaches

are 0.74 and 0.786 respectively. The policy fusion maintains a 5.85% gap

towards the original MOO method. The advantage of the policy fusion

lies in its convergence efficiency at the expense of a quality drop in the

obtained policy set. The HV of policy fusion is not as good as PAMOO

may because it only uses the extracted feature embeddings, while lacking

original observation information. Notably, the magnitude relation of HV is

only meaningful in one single comparative experiment because the min-max

scalars in each comparison are different.

A particular phenomenon is distinct in this experiment. Although the

overall HV performance of policy fusion is inferior to the original MOO

method, the result of two extreme cases (preference with (1.0, 0.0) and

(0.0, 1.0)) shows more competitiveness. If the QC idle time and the empty

travel time are considered individually, the policy fusion method both ob-

tained better results. The features that the policy fusion model takes as

input are obtained through extreme cases by single objective policies, which

makes the fusion model tend to gain more ready-made information when

the input preference weights are closer to the extreme cases. In contrast,

the fusion policies with middle preference weights (like (0.5, 0.5)) are rel-

atively poor compared with the others because more effort is required for

the agent to learn how to merge the information from two kinds of extreme

cases to achieve particular trade-off purposes. These experimental results

also provide more insights that not only the policies for single objectives

are important. More information with some typical combinations of pref-
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erence weights is promising to further promote the policy fusion model’s

performance.
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Figure 6.7: Pareto frontiers generated by original MOO method and pro-
posed policy fusion method on instance of 120 trucks.

6.6 Summary

This section provides two mechanisms that introduce the prior expert

knowledge to augment the dispatching policies for both single and multi-

objective optimization of the examined problem. The purpose of doing

so is to avoid the agent being trained from scratch, thus improving the

convergence speed of the agents. Moreover, as another methodology that
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Table 6.7: Comparison of approximated Pareto fronts obtained by original
MOO method (PAMOO) and policy fusion method.

Methods HV |Sols| Sparsity (10−4) Gap(%)
Policy Fusion Method 0.74 11 248.69 5.85%
Original MOO Method 0.786 11 163.56 0%

utilizes the domain expert knowledge, hyper-heuristic still maintains some

drawbacks such as the performance upper bound limited by the perfor-

mance of low-level heuristics and the reachability problem. Compared with

the DRL-HH method in (Zhang et al., 2022a), our proposed mechanisms

provide another way to avoid these drawbacks. Specifically, an expert net-

work is trained through an imitation learning manner guided by a fine-

tuned manual heuristic policy (Chen et al., 2016) as the expert behavior.

Consequently, the output of such an expert network is considered as the

representation of the prior expert knowledge and serves as referenced in-

formation for the agent during the process of RL training. By this means,

the RL agent not only exploits information of expert behavior but also

maintains an adequate exploration space for the agent to play a role and

avoid reducing the decision space. We first experimentally prove that the

manual heuristic policy (Chen et al., 2016) is a suitable approach to serve

as the expert behavior, and our imitation network is able to reproduce the

dispatching logic of the expert policy. Then, an expert network-assisted

dispatching model is proposed for the RL training. The experimental re-

sults demonstrate its performance on faster and more stable convergence

and a degree of robustness towards the unknown uncertainties.

Following a similar practice, such a mechanism is also extended to the

multi-objective version of the examined dispatching problem. In the MOO

domain, the original dispatching model is formulated as a uniform dis-

patching policy that takes the state and particular preference weight as

input and gives the dispatching decision based on arbitrary objective pref-
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erence. However, such a method requires the agent to learn all policies

based on different preferences simultaneously. Even for one single scenario,

the MOO problem takes several times’ training cost compared with the

single objective version. Therefore, the single objective dispatching poli-

cies are considered as the appropriate expert polices to generate expert

knowledge. Based on such concerns, we proposed the methodology ”policy

fusion” which takes the features extracted from each single objective dis-

patching model as input and rapidly generalizes to an MOO dispatching

policy. The experimental result shows that the proposed policy fusion ap-

proach gains an order of magnitude improvement in the convergence speed.

Generally, the prior expert knowledge augmentation mechanisms show ad-

vantages in terms of convergence speed, robustness, and performance gain.
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Chapter 7

Conclusion and Future Work

This section concludes the main works in this thesis as a whole and deeply

deciphers the contributions to the fields and some potential areas of im-

provement. The thesis starts from a real-life truck dispatching optimization

problem in a marine container terminal, which is always considered as a

primary focus in port daily operational management since it not only con-

nects several different operation optimizations but also greatly affects the

utilization of port equipment. The truck dispatching optimization then

be considered as a sequential decision-making process and formulated as a

Markov decision process to make it solvable by traditional reinforcement

learning approaches. Several improvements, such as a more sophisticated

feature design, a sparse reward mechanism, and the special network struc-

ture that masks the invalid actions, further enhance the dispatching policy

towards the benchmarks. Furthermore, such a problem is extended to the

multi-objective optimization version. A tailor-made network is designed

that properly merges the information of both raw observation and prefer-

ence weight, which makes it a uniform dispatching policy that could give de-

cisions under arbitrary user preferences. Finally, two mechanisms, namely,
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imitation learning-assisted expert network and policy fusion method that

introduce the prior expert knowledge to augment the dispatching model for

both single and multi-objective optimization of the examined problem are

proposed. Significant performance gains have been obtained in terms of

convergence speed, stability of training, and robustness towards uncertain-

ties. Some key points among these works that deserve further discussion

and are being highlighted are introduced in the remaining part of the sec-

tion.

7.1 Conclusion

In this section, the main contributions of the proposed methodologies are

deeply analyzed and concluded. The practicability of the proposed Real2Sim

framework is first introduced. Then, a new paradigm for the MOO field

is formed, which benefits from the attributes of the proposed PAMOO

methodology. Finally, the significance of the methodologies that introduce

the prior expert knowledge augmentation and the advantages it brings to

the operations research fields are discussed.

7.1.1 Practicability of the Real2Sim Framework

In this thesis, the developed Real2Sim framework is the platform for the

subsequent experiments and discoveries, which serve as the cornerstone of

our contributions. Generally, this Real2Sim framework has the following

advantages in practice.
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• Real2Sim provides a safe and controllable training environment. To

train and verify policies in the simulation environment could reduce

the risk in the real-world environment, such as damage of equipment

and economic loss. Also, it avoids the cost of collecting data in the

real-world environment, which is sometimes even infeasible. In a sim-

ulation environment, rich problem scenarios and experimental condi-

tions are easier to design and implement, which helps to construct

versatile dispatching policies.

• The proposed Real2Sim framework reduces the gap between the real-

world and experimental environment. Real2Sim aims to properly

reproduce the details and logic of the examined container truck dis-

patching process and formulate them in the digital simulation. To

achieve such a purpose, we deeply investigate the physical compo-

nents, operation logic, and various types of uncertainties in a real

container terminal, which are used as the ingredients for implement-

ing the simulation. Moreover, historical data of the container termi-

nal is fully used for generating the related problem scenarios.

• A policy obtained from the proposed Real2Sim platform tends to

maintain its performance in reality as much as possible. Also, a fine-

tuned manual heuristic dispatching method, whose performance is

verified in reality, is selected as the expert policy to extract the prior

knowledge to augment the RL dispatching model. By such means,

the trained policy is guided by the operations logic, historical data,

scenarios, and human experiment from the real container terminal,

which guarantees the practical performance of the policy in reality to

the greatest extent.

To sum up, the proposed Real2Sim framework shows more practicality
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towards the traditional methods and is purely based on the mathematical

model. It also has the potential to be the infrastructure for the digital and

intelligent development of some related real-world industries.

7.1.2 New Paradigm for Online Multi-objective Op-

timization and Application

In the work of MOO, a learning approach that could generate a single

uniform dispatching policy that gives decisions under arbitrary user pref-

erences is proposed. The proposed methodology provides a creative way

for real-world multi-objective online optimization. It satisfies the short

response time of online decision making, has the ability to overcome the

uncertainties in the environment, and also provides adequate and diverse

trade-off policies for users. Online decision-making management could be

promoted in terms of both priori and posteriori views of multi-objective

optimization. For priori view, a user is aware of the expected trade-off and

the possible outcomes for a particular real-world circumstance. However,

users are sometimes only aware of the specific trade-off purpose but cannot

confirm the exact numerical preference weight. Therefore, the result may

somehow bias the user’s expectation. By adopting our methodology, users

are able to repeatedly fine-tune their decisions (preference weights) in real-

time until the ideal performance is reached. Such a manner is called the in-

teractive scheme for obtaining the most desired solutions in the MOO field.

Traditional MOO methods are required to solve another single-objective

optimization problem based on the new weights from scratch once the user

adjusts the preference. In contrast, our proposed method is able to generate

the policy of the new preference weight without re-running the algorithm

by interactively obtaining the target solution for the user.
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In posteriori cases, users have no expected preference but are required to

provide a set of Pareto optimal solutions for selection. Thanks to the

generalization of our proposed methodology, the model could yield various

numbers of policies by refining the preference weights. Moreover, by using

the preference calibration method, a high-quality Pareto front could be

provided. To the best of our knowledge, there is no similar preference

calibration method for MOO that could adjust the solution set as a whole

to obtain a more even and smooth Pareto front. To sum up, for both priori

and posteriori views, our proposed method provides new paradigms for the

online MOO and the ways to obtain the solutions for users.

7.1.3 Significance of Prior Expert Knowledge Aug-

mentation

Prior expert knowledge augmentation is the topic that goes through the

entire PhD research career. For the single objective truck dispatching prob-

lem, an expert network-assisted dispatching policy generated by leveraging

imitation learning is designed. Such a mechanism could also be further ex-

tended to the combination of knowledge of several experts that dedicated to

different typical scenarios, which could further enhance the agent’s adapt-

ability for more problem cases. For the MOO version of the examined

problem, a methodology called policy fusion, which follows a similar idea

is proposed. The prior expert knowledge augmentation for MOO problems

could be promoted to the field of many-objective optimization. The time

cost for training would be exponentially boosted along with the objective

number increased, while our proposed policy fusion could maintain the time

complexity at an acceptable level since it obtained an order of magnitude

on the convergence speed. Therefore, it is promising that the proposed
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policy fusion approach could obtain more performance gains in the cases

of many objectives.

The overall purpose of the pre-trained model is to make the agent grasp

some general knowledge (indicating the expert heuristic dispatching method

and single objective optimization ability in this thesis) before learning the

policy of the examined problems. Apart from the utilities that avoid some

drawbacks of hyper-heuristic approaches and the acceleration effect for the

agent training, the greatest significance lies in leveraging the methodolo-

gies of pre-trained models, which are already maturing techniques in deep

learning fields. From this perspective, this work bridges a connection be-

tween online optimization and the traditional deep learning fields. Some

powerful methodologies in natural language processing (NLP) or computer

vision (CV) domains could also be adopted as prior expert knowledge aug-

mentation approaches for online optimization problems.

7.2 Limitations and Future Work

The methodology for single-objective dispatching could be further improved

in several ways. Firstly, the state design in the MDP modeling of this work

is over-simplified, where most state features are statistical information that

cannot fully describe the entire system. Take the feature vector THt (total

amount of trucks heading to each QC) as one example, it only includes the

truck number for each QC but ignores the specific status of each truck, such

as accurate positions and specific tasks being executed. Actually, the state

in the MDP, with simple feature engineering, only takes up a small pro-

portion of the conditions of the entire container terminal. One promising

way to tackle such issues is to model the state by a graph neural network

176



7.2. LIMITATIONS AND FUTURE WORK

(GNN), where all information about trucks, tasks, and QCs, such as the

accurate locations and moving directions of trucks and cranes is included.

Such an approach could maximize the end-to-end feature extraction poten-

tial of deep neural networks (Wu et al., 2020). We are quite confident that

more performance gain could be obtained by adopting GNN.

Secondly, the proposed state design rarely takes the considerations about

the constraints of the problem into account. In this work, QCs are con-

strained to execute tasks in order, which sometimes can cause QC’s waiting

even if there are already trucks in the queue. According to our investiga-

tion, such constraints would cause considerable amount of QC idle time

even with a well-trained dispatching policy deployed. Few studies focus on

improving RL agent’s constraint awareness for COPs in the literature, and

it should be a promising future direction.

Apart from some potential improvements for the target truck dispatch-

ing problem, there are several variants or modifications for the examined

problem that may further reduce the quay crane idle time or bring more

beneficial insights into container terminal management. The yard crane

is another important component that can affect the objective value of the

examined problem. In this work, the yard crane schedule simply follows

“first come first serve” policy. However, there is still some space to reduce

the total QC idle time by finding a more sophisticated yard crane schedul-

ing policy. Moreover, the integration of truck dispatching and yard crane

scheduling optimization can be a potential future direction of this work.

The proposed MOO methodology could also be extended in several ways.

Firstly, as described above, each objective has a different degree of sensi-

tivity with respect to preference changes, which leads to an uneven and
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irregular Pareto front. The factors that influence the objectives’ sensitiv-

ity both in problem instance settings and in the environment should be

investigated and such effects may also have benefits to the reward design

in return. Secondly, more objectives could be taken into consideration.

Along with the increase of the objective number, the combinations of pref-

erence weights would explode, which makes higher requirements for the

convergence efficiency and generalization performance of the proposed algo-

rithms. The corresponding method could be further improved by adopting

more advanced network structures or further leveraging the policy fusion

techniques. Finally, as a promising generic online multi-objective optimiza-

tion scheme, it is expected to be promoted to more general combinatorial

optimization problems, such as online job shop scheduling or online bin

packing, to further demonstrate its extensive applicability.
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Van Moffaert, K. and Nowé, A. (2014). Multi-objective reinforcement learn-

ing using sets of pareto dominating policies. The Journal of Machine

Learning Research, 15(1):3483–3512.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser,  L., and Polosukhin, I. (2017). Attention is all you

need. In Advances in neural information processing systems, pages

5998–6008.
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204



Y. (2018). Graph attention networks. In International Conference on

Learning Representations.

Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A.,

Chung, J., Choi, D., Powell, R., Ewalds, T., Georgiev, P., Oh, J.,

Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T.,

Agapiou, J., Jaderberg, M., and Silver, D. (2019). Grandmaster level

in StarCraft II using multi-agent reinforcement learning. Nature, 575.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In

Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., ed-

itors, Advances in Neural Information Processing Systems, volume 28.

Curran Associates, Inc.

Vis, I. F., de Koster, R. M. B., and Savelsbergh, M. W. (2005). Mini-

mum vehicle fleet size under time-window constraints at a container

terminal. Transportation science, 39(2):249–260.

Voß, S. (2000). Meta-heuristics: The state of the art. In Workshop on

Local Search for Planning and Scheduling, pages 1–23. Springer.

Wan, Y.-w., Liu, J., and Tsai, P.-C. (2009). The assignment of storage

locations to containers for a container stack. Naval Research Logistics

(NRL), 56(8):699–713.

Wang, C., Wang, P., Qin, T., Wang, C., Kumar, S., Guan, X., Liu, J., and

Chang, K. (2021). SocialSift: Target query discovery on online social

media with deep reinforcement learning. IEEE Trans. Neural Netw.

Learn. Syst. (TNNLS), pages 1–15.

Wang, J., Liu, K., Yuan, Z., Yang, X., and Wu, X. (2024). Simulation

modeling of super-large ships traffic: Insights from Ningbo-Zhoushan

205



Port for coastal port management. Simulation Modelling Practice and

Theory, page 103039.

Wang, X., Wang, S., Liang, X., Zhao, D., Huang, J., Xu, X., Dai, B.,

and Miao, Q. (2022). Deep reinforcement learning: A survey. IEEE

Transactions on Neural Networks and Learning Systems, 35(4):5064–

5078.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N.

(2016). Dueling network architectures for deep reinforcement learn-

ing. In International conference on machine learning, pages 1995–2003.

PMLR.

Wang, Z., Zhang, Q., Zhou, A., Gong, M., and Jiao, L. (2015). Adaptive re-

placement strategies for MOEA/D. IEEE transactions on cybernetics,

46(2):474–486.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8:279–

292.

Weerasinghe, B. A., Perera, H. N., and Bai, X. (2024). Optimizing con-

tainer terminal operations: a systematic review of operations research

applications. Maritime Economics & Logistics, 26(2):307–341.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning, 8:229–256.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82.

Wu, H., Wang, J., and Zhang, Z. (2019). MODRL/D-AM: Multiobjective

deep reinforcement learning algorithm using decomposition and atten-

tion model for multiobjective optimization. In International Sympo-

206



sium on Intelligence Computation and Applications, pages 575–589.

Springer.

Wu, Y., Song, W., Cao, Z., Zhang, J., and Lim, A. (2021). Learning im-

provement heuristics for solving routing problems. IEEE transactions

on neural networks and learning systems, 33(9):5057–5069.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020).

A comprehensive survey on graph neural networks. IEEE transactions

on neural networks and learning systems, 32(1):4–24.

Xiaolong, H. and Jiawei, F. (2016). Analysis of AGV dispatching and

configuration simulation of automated container terminals. Journal of

Chongqing Jiaotong University (Natural Science), 35(5):151.

Xing, Z., Liu, H., Wang, T., Chew, E. P., Lee, L. H., and Tan, K. C.

(2023). Integrated automated guided vehicle dispatching and equip-

ment scheduling with speed optimization. Transportation Research

Part E: Logistics and Transportation Review, 169:102993.

Yang, X., Hu, H., Jin, J., and Luo, N. (2022). Joint optimization of space

allocation and yard crane deployment in container terminal under un-

certain demand. Computers & Industrial Engineering, 172:108425.

Yangl, Z., Li, C., and Zhao, Q. (2018). Dynamic time estimation based

AGV dispatching algorithm in automated container terminal. In 2018

37th Chinese Control Conference (CCC), pages 7868–7873. IEEE.

Yun, W. Y. and Choi, Y. S. (1999). A simulation model for container-

terminal operation analysis using an object-oriented approach. Inter-

national Journal of Production Economics, 59(1-3):221–230.

Zaghdoud, R., Collart-Dutilleul, S., Ghedira, K., Mesghouni, K., and Zidi,

K. (2013). A multi-objective approach for assignment containers to

207



AIVs in a container terminal. In 2013 IEEE International Conference

on Systems, Man, and Cybernetics, pages 2460–2466. IEEE.

Zaghdoud, R., Mesghouni, K., Dutilleul, S. C., Zidi, K., and Ghedira, K.

(2012). Optimization problem of assignment containers to AIVs in a

container terminal. IFAC Proceedings Volumes, 45(24):274–279.

Zehendner, E. and Feillet, D. (2012). Column generation for the container

relocation problem. In International Material Handling Research Col-

loquium (IMHRC 2012), pages to–be.

Zehendner, E., Rodriguez-Verjan, G., Absi, N., Dauzère-Pérès, S., and

Feillet, D. (2015). Optimized allocation of straddle carriers to reduce

overall delays at multimodal container terminals. Flexible Services and

Manufacturing Journal, 27:300–330.

Zeng, Q., Yang, Z., and Hu, X. (2011). A method integrating simula-

tion and reinforcement learning for operation scheduling in container

terminals. Transport, 26(4):383–393.

Zhang, J., Hua, X.-S., Huang, J., Shen, X., Chen, J., Zhou, Q., Fu, Z., and

Zhao, Y. (2019). City brain: practice of large-scale artificial intelli-

gence in the real world. IET Smart Cities, 1(1):28–37.

Zhang, Q., Hu, W., Duan, J., and Qin, J. (2021). Cooperative scheduling

of AGV and ASC in automation container terminal relay operation

mode. Mathematical Problems in Engineering, 2021:1–18.

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary

algorithm based on decomposition. IEEE Transactions on evolutionary

computation, 11(6):712–731.

Zhang, Q., Liu, W., Tsang, E., and Virginas, B. (2009). Expensive mul-

208



tiobjective optimization by MOEA/D with gaussian process model.

IEEE Transactions on Evolutionary Computation, 14(3):456–474.

Zhang, X., Li, H., and Sheu, J.-B. (2024). Integrated scheduling optimiza-

tion of AGV and double yard cranes in automated container terminals.

Transportation Research Part B: Methodological, 179:102871.

Zhang, X., Xiong, G., Ai, Y., Liu, K., and Chen, L. (2023a). Vehicle

dynamic dispatching using curriculum-driven reinforcement learning.

Mechanical Systems and Signal Processing, 204:110698.

Zhang, Y., Bai, R., Qu, R., Tu, C., and Jin, J. (2022a). A deep rein-

forcement learning based hyper-heuristic for combinatorial optimisa-

tion with uncertainties. European Journal of Operational Research,

300(2):418–427.

Zhang, Y., Bao, X., Zhang, L., Chen, L., Tang, X., Zhang, Z., and Zheng,

Y. (2023b). Digital twin enhanced reinforcement learning for inte-

grated scheduling in automated container terminals. In 2023 IEEE

19th International Conference on Automation Science and Engineer-

ing (CASE), pages 1–6. IEEE.

Zhang, Z., Wu, Z., Zhang, H., and Wang, J. (2022b). Meta-learning-based

deep reinforcement learning for multiobjective optimization problems.

IEEE Transactions on Neural Networks and Learning Systems.

Zhen, L. and Chang, D.-F. (2012). A bi-objective model for robust berth

allocation scheduling. Computers & Industrial Engineering, 63(1):262–

273.

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., and

Li, Z. (2018). DRN: A deep reinforcement learning framework for

209



news recommendation. In Proceedings of the 2018 world wide web

conference, pages 167–176.

Zheng, S. (2018). Research on Model and Algorithm of Container Retrieval

Operations in Terminal Yards - Based on Relocation Paths Optimiza-

tion. PhD thesis, South China University of Technology.

Zhicheng, B., Weijian, M., Xiaoming, Y., Ning, Z., and Chao, M. (2014).

Modified hungarian algorithm for real-time ALV dispatching problem

in huge container terminals. Journal of Networks, 9(1):123.

Zhong, M., Yang, Y., Sun, S., Zhou, Y., Postolache, O., and Ge, Y.-E.

(2020). Priority-based speed control strategy for automated guided

vehicle path planning in automated container terminals. Transactions

of the Institute of Measurement and Control, 42(16):3079–3090.

Zhou, C., Stephen, A., Tan, K. C., Chew, E. P., and Lee, L. H. (2024).

Multiagent q-learning approach for the recharging scheduling of elec-

tric automated guided vehicles in container terminals. Transportation

Science.

Zhu, W., Qin, H., Lim, A., and Zhang, H. (2012). Iterative deepening A*

algorithms for the container relocation problem. IEEE Transactions

on Automation Science and Engineering, 9(4):710–722.

Zong, Z., Zheng, M., Li, Y., and Jin, D. (2022). Mapdp: Cooperative

multi-agent reinforcement learning to solve pickup and delivery prob-

lems. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 36, pages 9980–9988.

210


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Research Background
	Ningbo Zhoushan Port
	Overview of a Container Terminal

	A Taxonomy of the Examined Problem
	Schedulable Vehicle
	Optimization Objectives
	Dispatching and Scheduling
	Vehicle Trigger and Job Trigger
	Simulation and Mathematical Modeling

	Main Work in PhD Career
	Contributions of the Thesis
	Overview of the Thesis

	Literature Review
	Container Terminal-Related Optimization Problems
	Berth Allocation Problem
	Yard Crane Scheduling Problem
	Container Relocation Problem

	Traditional Methods of the Examined Problem
	Heuristic Approaches
	Meta-heuristic Algorithms
	Hyper-heuristic Algorithms
	Offline Optimization Methods

	Reinforcement Learning
	Foundations of Reinforcement Learning Algorithms
	Reinforcement Learning for Canonical Combinatorial Optimization Problems 
	Reinforcement Learning for Truck Dispatching-Related Optimization Problems

	Multi-Objective Optimization
	Traditional Multi-Objective Optimization Algorithms
	Multi-Objective Optimization in Container Terminals
	Multi-Objective Reinforcement Learning

	Simulation Methods
	Container Terminal Simulation Approaches
	Digital Twin

	Summary

	Online Container Truck Task Dispatching Problem
	Container Truck Dispatching Process
	Challenges and Motivation
	Mathematical Formulation
	Development of Simulation

	Methodology for Single-Objective Dispatching
	Truck Dispatching Problem as an MDP
	State
	Actions
	Reward
	State Transition

	Network Structure
	Algorithms
	Problem Instance and Scenario Design
	Benchmarks
	Experiments and Result Analysis
	Comparative Results with Benchmarks
	Generalization Performance of Proposed DRL Approach
	Comparative Results with Offline Solution
	Managerial Insights

	Summary

	Methodology for Multi-Objective Dispatching
	Preference Agile Multi-Objective Optimization
	Truck Dispatching Problem as an MOMDP
	Network Structure
	Algorithms
	Problem Instances
	Evaluation Metrics
	Benchmarks
	Experiments and Result Analysis
	Comparative Results with Benchmarks
	Performance of Generalization
	Comparative Results with Outer-Loop Method
	Result of Preference Calibrations

	Summary

	Mechanisms for Prior Expert Knowledge Augmentation
	Motivations of Prior Expert Knowledge
	Imitation Learning
	Expert Network Assisted Dispatching Model
	Policy Fusion
	Experiments and Result Analysis
	Result of Imitation Learning
	Comparative Results of the Proposed DRL Approach with and without Imitation Learning
	Comparative Results on various Uncertainties
	Result of Policy Fusion

	Summary

	Conclusion and Future Work
	Conclusion
	Practicability of the Real2Sim Framework
	New Paradigm for Online Multi-objective Optimization and Application
	Significance of Prior Expert Knowledge Augmentation

	Limitations and Future Work

	Bibliography

