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Abstract

Data-driven genetic programming (GP) has proven highly effective
in solving combinatorial optimization problems under dynamic
and uncertain environments. A central challenge lies in fast fit-
ness evaluations on large training datasets, especially for complex
real-world problems involving time-consuming simulations. Surro-
gate models, like phenotypic characterization (PC)-based K-nearest
neighbors (KNN), have been applied to reduce computational cost.
However, the PC-based similarity measure is confined to behavioral
characteristics, overlooking genotypic differences, which can limit
surrogate quality and impair performance. To address these issues,
this paper proposes a pheno-geno unified surrogate GP algorithm,
PGU-SGP, integrating phenotypic and genotypic characterization
(GC) to enhance surrogate sample selection and fitness prediction.
A novel unified similarity metric combining PC and GC distances
is proposed, along with an effective and efficient GC representa-
tion. Experimental results of a real-life vehicle scheduling problem
demonstrate that PGU-SGP reduces training time by approximately
76% while achieving comparable performance to traditional GP.
With the same training time, PGU-SGP significantly outperforms
traditional GP and the state-of-the-art algorithm on most datasets.
Additionally, PGU-SGP shows faster convergence and improved
surrogate quality by maintaining accurate fitness rankings and
appropriate selection pressure, further validating its effectiveness.
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1 Introduction

Global maritime transportation has experienced substantial growth
in recent years and is projected to sustain this upward trend in the
future [27]. This growth drives increasing throughput demands at
container terminals. However, geographical limitations and finite
resources constrain terminal expansion and equipment upgrades,
making it challenging to meet rising demands. Consequently, en-
hancing the efficiency of container terminals has become a critical
and popular real-world problem. To achieve this goal, optimizing
the utilization of key resources such as quay cranes (QCs), yard
cranes (YCs), and trucks is imperative. Among these resources,
trucks play a crucial role as they facilitate container transport, ef-
fectively linking operations between the seaside and yard areas
[4]. As a result, Container Terminal Truck Scheduling (CTTS) has
emerged as a vital problem in real-life container terminal manage-
ment, significantly influencing overall operational efficiency.

In the early stages, binding trucks to specific QCs was commonly
adopted. Under dynamic events and uncertainties, manual rule ad-
justments were widely used but often led to sub-optimal solutions
as better decisions were overlooked due to limited exploration [25].
Various approaches have been proposed, including mixed-integer
programming [23], min-max nonlinear integer programming [21],
greedy algorithms [7], and genetic algorithms [8]. These offline
optimization methods achieved competitive results in reducing ship
dock times, minimizing empty-truck travel, and improving truck
utilization. However, such methods perform poorly in practical
scenarios where operations are inherently stochastic and uncertain
[1, 14, 26]. Therefore, addressing real-life CTTS as an online opti-
mization problem and solving it dynamically is more appropriate.

Genetic Programming (GP) [20], a hyper-heuristic approach [3]
known for its flexibility and interpretability, has been successfully
applied to real-world combinatorial optimization problems (COPs),
such as evolving heuristics for dynamic flexible job shop scheduling
(DFJSS) [11, 28] and CTTS [4, 6]. However, GP’s evaluation stage of-
ten involves complex and time-consuming simulations, limiting its
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ability. To address this, surrogate models have been introduced as
simplified approximations of complex evaluations, enabling faster
fitness assessments and enhancing GP’s capability to solve complex
COPs [15, 18]. Numerous surrogate models have been explored,
including K-Nearest-Neighbor (KNN) [11, 28], Kriging [9], Support
Vector Machines (SVM) [10], and Neural Networks (NN) [17], etc.
Among these, KNN stands out as a simple, efficient, and effective
model for fitness prediction in GP. Specifically, phenotypic charac-
terization (PC) is used to measure individual similarities and assist
in surrogate sample selection and fitness prediction [28].

However, PC alone is insufficient to capture individual unique-
ness, as evidenced by cases in which individuals with distinct fitness
values share identical PC. This limitation primarily stems from lim-
ited decision situations considered during PC calculation, which
fails to represent all possible scenarios in real-life problems. While
increasing decision situations could help, it would also significantly
increase computational overhead. Moreover, as PC only captures
individuals’ phenotypic or behavioral characteristics, it inherently
overlooks genotypic information. Consequently, samples extracted
based sorely on PC may fail to sufficiently cover the genotypic
space. Additionally, fitness predictions based on phenotypic simi-
larities also face challenges when genetically dissimilar individuals
exhibit similar PC. These issues can compromise surrogate model
quality and negatively impact algorithm performance.

To address the issues above, this paper proposes a pheno-geno
unified surrogate Genetic Programming (PGU-SGP) algorithm. The
major contributions of this paper are:

e We propose a novel unified distance-based surrogate model
for efficient fitness evaluations in data-driven GP. Rather
than relying solely on the phenotypic or behavioral informa-
tion of GP individuals, the algorithm leverages both pheno-
typic and genotypic characterizations for surrogate sample
selection and fitness prediction. This unified metric improves
surrogate quality by maintaining accurate fitness rankings
and appropriate selection pressure, ensuring reliable and
effective performance in the evolutionary process.

o We design an effective and efficient representation method
for the genotypic characterization (GC) of GP individuals,
considering the frequency of individual nodes to reflect the
distribution of genetic materials. This method can be effec-
tively combined with PC to provide a more comprehensive
representation of individual similarity than PC alone.

o Our proposed algorithm achieves comparable performance
to traditional GP with the same number of generations while
reducing training time by approximately 76%. With the same
training time, PGU-SGP significantly outperforms traditional
GP and the state-of-the-art algorithm on most datasets.

2 Background

2.1 Dynamic Container Terminal Truck
Scheduling (DCTTS)

As illustrated in Figure 1, a typical container terminal consists of
three primary operational areas: the Berth Area, the Yard Area, and
the Entry-Exit Area. The Berth Area is where ships dock to load and
unload containers, facilitated by quay cranes (QCs) that transfer
containers between ships and trucks. The Yard Area serves as a
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Figure 1: The layout of a typical container terminal.

central storage hub for temporarily housing containers before fur-
ther transportation. This area comprises rows of container blocks
with multiple stacks, where yard cranes (YCs) handle the move-
ment of containers between trucks and blocks. The Entry-Exit Area
manages truck flow entering and exiting the terminal, connecting
the terminal to external transportation networks. These areas are
interconnected by road networks that guide trucks in transporting
containers under strict operational regulations.

The objective of Dynamic Container Terminal Truck Scheduling
(DCTTS) is to maximize container throughput, typically measured
in twenty-foot equivalent units per hour (TEUs/h). The formulation
of the DCTTS problem follows [6].

2.2 Genetic Programming for DCTTS

Genetic Programming (GP) [20], a subset of Evolutionary Compu-
tation, is a powerful framework for evolving rules/heuristics as a
solution builder for complex optimization problems [4-6, 12, 13, 28].
This paper employs tree-based GP, an effective method for evolving
heuristics in DCTTS, offering notable advantages such as flexibility
and interpretability. In this context, individuals act as dispatching
heuristics during the dynamic scheduling process. When a truck be-
comes idle, these heuristics compute utility scores for all candidate
options, facilitating the selection of the best task to operate.

Figure 2 shows an example of a GP individual with tree represen-
tation, encoding a priority function max(ALT, AUT) + RTN/CTN.
The variables ALT, AUT, RTN, and CTN represent real-time oper-
ational features dynamically extracted during the DCTTS process.
Detailed definitions of these features are provided in Table 3.

The flowchart of the traditional GP algorithm is depicted in
Figure 3. The algorithm begins with initializing a population of
individuals. Each individual is evaluated based on problem-specific
criteria to obtain fitness values, which reflect their effectiveness
in solving the problem. In DCTTS, this involves repeatedly run-
ning time-consuming simulations on multiple instances, which are
necessary to capture complex constraints and uncertainties of the
environment. If the termination condition is satisfied (e.g., reach-
ing the maximum number of generations), the best individual is
returned. Otherwise, a new population is generated using operators
such as crossover, mutation, reproduction, and elitism based on
strategically selected parents, and the loop continues.



A Pheno-Geno Unified Surrogate GP For Real-life CTTS

1
Evolve
New Population

Initialization

Crossover
‘ Mutation
Reproduction
@ 0 Elitism

Output
@ @ @ @ Best Individual Parent Selection

Figure 2: An example of Figure 3: The flowchart of the tra-
GP individual for DCTTS. ditional GP algorithm.

2.3 Phenotypic Characterization Based
Surrogate Genetic Programming

The phenotypic characterization (PC) is a numerical vector that
captures an individual’s behavior in different decision situations
[11]. Phenotypic distance (PD) is often defined by the Euclidean
distance between the PCs of individuals, indicating their behavioral
similarities. Individuals with lower PDs tend to have similar fitness
values. Table 1 illustrates the calculation of a sample PC for an
individual. For simplicity, only 3 decision situations are sampled,
each with 3 candidate tasks. Each decision situation i is defined by
a unique set of tasks for dispatching. Reference scores and ranks
are obtained from historical simulations using the reference rule.
With reference scores and ranks, the behavior of a specific rule (GP
individual) can be characterized by comparing its scores and ranks
against the reference rule. The reference ranking of the best task
selected by the specific rule becomes the value of each PC element
PC;. For instance, in the first situation, since Tj ranks 1 according
to the specific rule and the corresponding rank by the reference
rule is also 1, PC; is assigned a value of 1. Similarly, PC; is 3, and
PCs is 2. Therefore, the sample PC for an individual is [1, 3, 2].

With PC, the numerical representation of individuals facilitates
the effective use of surrogate models, as demonstrated by numerous
studies [11, 28]. Table 2 provides an example of PC applied in KNN
surrogates for fitness prediction. The example contains 4 decision
situations in PC and 3 samples in the surrogate. Each sample, de-
noted as S;, has a corresponding PC PC(i) and fitness value F(i).
The fitness prediction process starts by calculating the PC for the
individual, represented as PC(ind). The Euclidean distance between
the PC of each sample and the individual is computed as

PD(i,ind) = ||PC(i) — PC(ind)|| (1)

Finally, the individual’s fitness, F(ind), is assigned the fitness value
of the sample with the smallest PD. In this example, the distance
between ind and Sy is 2.236, the smallest. Thus, F(ind) = 0.483.
PC is also employed to assist in surrogate sample selection, sig-
nificantly improving training efficiency by limiting complex sim-
ulations only to selected samples [28]. Despite these advantages,
PC-based surrogate models present notable limitations. One pri-
mary issue is that PC alone fails to fully capture the uniqueness of
individuals. This shortcoming becomes evident when individuals
with different fitness values exhibit identical PCs. The root of this
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limitation lies in the restricted number of decision situations con-
sidered during PC calculation, which inadequately represents the
full range of scenarios encountered in real simulations. Although
increasing the number of decision situations could enhance ac-
curacy, doing so introduces substantial computational overhead,
undermining the efficiency gains that PC aims to provide.
Moreover, PC reflects only the phenotypic or behavioral charac-
teristics of individuals, overlooking their genotypic characteristics.
As a result, surrogate samples selected based on PC may lack geno-
typic diversity, potentially excluding valuable genetic material. This
lack of diversity renders the samples less representative, limiting
their ability to adequately cover the search space. Additionally, re-
lying solely on phenotypic similarities for fitness prediction poses
challenges, particularly when individuals with distinct genetic com-
positions share the same PC. These issues can degrade the quality
of surrogate models and hinder overall algorithm performance.
To address these challenges, this paper proposes a pheno-geno
unified surrogate GP algorithm, applied to the DCTTS problem.

Table 1: An example of calculating the phenotypic character-
ization of a sample individual in DCTTS.

Decision Rank(Score) by Rank(Score) by

Situation Task Reference Rule  Specific Rule PCi
T, 1(256) 1(178.9)
1 T, 3(200101) 3(230.4) 1
T 2(310) 2(184.7)
T 3(262) 1(121.0)
2 5 1(90) 2(168.0) 3
T 2(256) 3(182.6)
T 1(131) 2(141.0)
3 s 2(384) 1(128.5) 2
To  3(200580) 3(187.7)

Table 2: An example of using PC in KNN surrogate for fitness
prediction.

PC(ind) S; F(i) PC(i)  PD(iind) F(ind)
Sy -0.296 [2,1,1,4] 3.162

[1,232] S, 0.483 [1312] 2.236 0.483
S3 0124 [4323] 3.464

3 Pheno-Geno Unified Surrogate Genetic
Programming

3.1 Overview of the Proposed Algorithm

The flowchart of the proposed algorithm is illustrated in Figure 4.
After population initialization, the evaluation phase in traditional
GP is replaced by three key stages: individuals clustering, individuals
sampling and grouping, and fitness calculation and estimation.
During the individuals clustering stage, individuals are clustered
based on phenotypic and genotypic similarities. In the individuals
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Figure 4: The flowchart of the proposed algorithm.

sampling and grouping stage, representative individuals are selected
from the clusters to form the evaluation group, while the remaining
individuals constitute the estimation group. The fitness calculation
and estimation stage involves evaluating individuals in the evalua-
tion group through simulations, updating the surrogate model, and
predicting the fitness of individuals in the estimation group.

Once all individuals have been assigned fitness values, the algo-
rithm checks whether the termination condition is met. If satisfied,
the best-evolved dispatching heuristic is output. Otherwise, the al-
gorithm proceeds to the standard GP evolutionary process. Notably,
the elitism operator retains only individuals with evaluated fitness
values, thereby minimizing errors from surrogate estimations and
ensuring the preservation of the most reliable solutions.

Below are more detailed explanations of these three stages.

3.1.1 Individuals Clustering. After the generation of a new popula-
tion, either through initialization or evolution, both the phenotypic
characterization (PC) and genotypic characterization (GC) of each
individual are computed. For every individual pair, the phenotypic
distance (PD) and genotypic distance (GD) are calculated, normal-
ized, and then unified into a single metric using a weighted com-
bination, resulting in a pheno-geno unified (PGU) distance. Using
this method, a PGU distance matrix is constructed, capturing the
pairwise similarities between all individuals in the population.
Based on this matrix, individuals are clustered according to a
predefined threshold d: individual pairs whose PGU distance falls
below § are grouped into the same cluster. A hierarchical cluster-
ing algorithm with complete linkage is employed for this purpose.
Hierarchical clustering is a well-established unsupervised machine
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learning technique that organizes similar data points into clusters
based on their pairwise similarity [19].

By the end of this process, the population is divided into multiple
clusters, each containing individuals that are similar in terms of
the proposed unified distance metric PGU. This clustering step is
crucial for ensuring that representative individuals from diverse
regions of the search space can be identified later.

3.1.2 Individuals Sampling and Grouping. In this stage, a repre-
sentative individual is selected from each cluster to represent all
individuals within that cluster. The representative is chosen based
on proximity to the cluster center, specifically the individual with
the minimal average PGU distance to all other individuals in the
cluster. If multiple individuals meet this criterion, the one with
the smallest tree size is selected. This approach guarantees that
the selected individuals effectively represent their clusters while
maintaining simplicity, interpretability, and generality.

Once the representative individuals are identified, the population
is divided into two groups: the evaluation group and the estimation
group. The evaluation group consists of all representative individu-
als, ensuring they undergo direct fitness evaluation to update the
surrogate model accurately. The remaining individuals form the
estimation group, with their fitness predicted using the surrogate
model. This structured grouping balances computational efficiency
with surrogate model accuracy, reducing the need for exhaustive
evaluations while preserving diversity.

3.1.3 Fitness Calculation and Estimation. In this stage, all individ-
uals in the evaluation group first undergo time-consuming simu-
lations to obtain their true fitness values. These evaluated individ-
uals are then used to update the surrogate model. In this paper,
a K-Nearest Neighbors (KNN) surrogate model is employed for
a trade-off between efficiency and effectiveness, with K set to 1
following [11]. The surrogate is implemented as a list containing
samples, initially empty. After evaluating new individuals, they are
directly appended to the list as samples. Later in the same process
of this stage, if the surrogate sample list is not empty, the PGU
distances between new individuals and all existing samples in the
surrogate are calculated to identify the closest match. If the PGU
distance between an evaluated individual and the closest sample in
the surrogate falls below the threshold 6, indicating high similarity,
the existing sample is removed, and newly evaluated individuals
are appended to the surrogate sample list. This dynamic update
process preserves diversity among surrogate samples, ensuring the
model remains representative of the broader population. To control
computational overhead, a static limit of 500 is imposed on the
surrogate’s size, which is equivalent to the population size. If this
limit is exceeded, samples from earlier generations are removed,
prioritizing the retention of more recent, relevant samples. This
approach reduces computational costs and mitigates the risk of
errors arising from outdated samples.

For individuals in the estimation group, fitness is predicted using
the updated surrogate. PGU distances between each individual
and surrogate samples are calculated to find the closest match,
and the fitness of this nearest sample is assigned to the individual.
Notably, individuals with existing true fitness values from prior
evaluations are excluded from the estimation process to prevent
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redundant calculations and reduce estimation errors. This ensures
computational efficiency while maintaining surrogate quality.

3.2 Phenotypic Characterization, Genotypic
Characterization and Genotypic Distance

PC is calculated as described in Section 2.3. The reference rule is a
manually designed heuristic developed based on expert experience,
which effectively enhances container terminal efficiency [5].

GC in this study is derived from the frequency of individual
nodes, including terminals and functions. The underlying assump-
tion is that during evolution, individuals with similar performance
often share common genetic material (i.e. frequently used terminals
or operators). For each individual, the occurrence of each node is
counted and normalized by the total number of nodes (tree size),
yielding the frequency of each node type.

The GC of an individual is represented as a vector, where each
dimension corresponds to the frequency of a specific terminal or
function. The vector length depends on the total number of termi-
nals and functions defined in the representation, and the order of
nodes remains consistent across individuals. For example, consider
the individual shown in Figure 2. Node "ALT" appears once in this
individual, which has a total size of 7. Hence, the frequency of node
"ALT" is 1/7 = 0.143. The frequencies of other nodes are calculated
similarly, resulting in a GC vector such as [0,0.143,0,...,0.143, 0].

Genotypic similarity between individuals is quantified by com-
puting the Euclidean distance between their respective GCs, termed
the Genotypic Distance (GD). This distance is defined as:

GD(a,b) = [|GC(a) - GC(D)|| @

where a and b represent different individuals, and GC(a) and GC(b)
denote their corresponding genotypic characterizations. A smaller
GD indicates higher genetic similarity between individuals.

Notably, GC is not intended to uniquely identify individuals, but
to complement PC by introducing genetic-level information.

3.3 Pheno-Geno Unified (PGU) Distance

To establish a unified metric that reflects both phenotypic and
genotypic similarity between individuals, this paper proposes a
unified weighted distance by normalized phenotypic distance (PD)
and genotypic distance (GD). This approach ensures that individuals
clustered with this method share not only behavioral similarities
but also genetic commonalities, leading to a more comprehensive
and accurate selection of representative individuals.

A challenge arises from the differing scales of PD and GD, which
can skew the unified metric if left unaddressed. To mitigate this,
both distances are normalized by dividing their respective maxi-
mum values, max(PD) and max(GD). This normalization aligns
the scales, ensuring that neither the phenotypic nor the genotypic
distance disproportionately influences the final metric.

The PGU distance is formulated as a weighted combination of
normalized phenotypic and genotypic distances, offering a balanced
and integrated measure of similarity. The PGU distance between
individual g and b is defined as:

PD(a, b) GD(a, b)

max(PD) K max(GD)
where wp +wg =1 and Wp, Wy € [0, 1] are weights.

PGU(a,b) = wp - 3)
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4 Experimental Design
4.1 Fitness Evaluation

Objective values obtained from different dataset instances using the
same rule can vary significantly, introducing potential inconsisten-
cies in performance evaluation. To mitigate this, average relative
deviation (ARD) is adopted for fitness evaluation, ensuring stan-
dardized comparison across diverse instances [2]. ARD measures
the deviation of the individual’s performance from the reference
rule, facilitating fairer evaluations across heterogeneous scenarios.

In addition to performance, the simplicity, interpretability, and
generality of evolved heuristics are crucial factors. Smaller individu-
als often yield more interpretable and adaptable heuristics, making
them preferable for real-world applications. However, bloat prob-
lems (an excessive increase in individual size without correspond-
ing performance improvement [22, 24]) can occur during evolution,
negatively impacting efficiency and interpretability. To mitigate
bloating and promote concise solutions, a size-based penalty is
imposed on individuals, encouraging the evolution of smaller, more
efficient heuristics that maintain competitive performance.

The fitness function is formally defined as:

|M] . .
1 Obj(m,I) — Obj(m,ref)
F(”‘W; Gbimrep) PSS @

where |M| represents the number of instances, Ob j(m, I) denotes
the objective value obtained by individual I, for instance, m, and
Obj(m,ref) signifies the objective value derived from the reference
rule (manual heuristic) for the same instance. The penalty factor
pf controls the degree to which larger individuals are penalized,
discouraging overly complex solutions. The size of an individual,
S(I), is typically measured by the number of nodes of the tree.

4.2 Simulation Model

To support algorithm training and evaluation for DCTTS, a simula-
tion model is developed to replicate real-world container terminal
operations, based on a validated framework from prior studies [4-
6], as presented in Figure 5. The simulation begins with loading
essential data (e.g., terminal map, task information, and truck con-
figurations). Tasks are assigned to corresponding QCs to form a
task pool, while all trucks are initialized into a truck pool. Trucks
operate independently and in parallel throughout the simulation.

When a truck becomes idle, the dispatch algorithm is invoked.
The GP-evolved heuristic acts as a utility function to score and
rank candidate tasks in the pool, and the task with the lowest score
(highest rank) is selected. If the truck is partially loaded (e.g., carry-
ing one twenty-foot container), an additional task sharing the same
origin/destination and from the same QC task list may be merged.
The truck then moves to its next node, which is initially the start
node of the assigned task. Upon arrival, the task is added to the
task list of the associated crane. Idle cranes retrieve tasks from their
respective queues based on the Sequence Algorithm, which is the
First-Come-First-Serve (FCFS) rule in this simulation. Trucks wait
until the crane completes the assigned task. If additional tasks re-
main on the truck, it moves to the next destination node. Otherwise,
the truck becomes idle and awaits a new task assignment.

The simulation proceeds until all tasks are completed.
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Figure 5: The flowchart of the DCTTS simulator.
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4.3 Design of Comparisons

Four datasets were constructed using an instance generator to
simulate diverse scheduling scenarios. Each dataset comprises 100
instances, with 50 for training and 50 for testing. Key parameters,
such as loading ratio (0.25-0.75) and number of trucks per QC
(5-7) were varied to ensure scenario diversity. The best dispatching
heuristic evolved during training is applied to the testing instances,
with the average fitness across these 50 instances used to assess the
heuristic’s performance. This fitness serves as a reliable approxi-
mation of the heuristic’s true performance under uncertainty.
Three algorithms are tested for a comprehensive comparison:

o GP: The baseline GP without surrogate assistance.

o SGP_PC[28]: A state-of-the-art surrogate GP algorithm us-
ing PC for surrogate sample selection and fitness prediction.

e PGU-SGP: Our proposed algorithm leverages the PGU dis-
tance metric, which integrates both PC and GC to enhance
surrogate sample selection and fitness estimation.

To analyze the impact of phenotypic and genotypic distances,
three weight combinations of PD and GD are investigated: 1:0,
0:1, and 0.5:0.5. These combinations enable an evaluation of the
effectiveness of integrating PD and GD.

4.4 Parameter Settings

Table 3 lists the terminal set used in this paper, reflecting real-
time environmental information of the problem, referencing previ-
ous studies [4]. Similarly, the function set is also drawn from [4],
including arithmetic functions (+, —, *, /), aggregation functions
(max, min), and logical functions (&, |, if_else, <, >). The division
function / is protected, returning one if the denominator is zero. The
max and min functions yield the maximum and minimum of their
arguments, respectively. The if_else function evaluates a condition
and returns one of two values depending on the result.

The GP training parameters are summarized in Table 4, with val-
ues also adapted from previous work [4, 28]. The penalty factor pf
for large individuals is set to a sufficiently small value (0.0000001),
favoring smaller individuals with equivalent performance without
altering the ranking of individuals with differing performance lev-
els. The PC vector size is set to 40, ensuring sufficient behavioral
distinction while maintaining computational efficiency. The GC
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vector size is 22, corresponding to the total number of primitives,
including terminals and functions. The surrogate model’s size limit
is capped at 500, equal to the population size. The PGU distance
threshold ¢ plays a moderate yet important role in controlling the
granularity of individual clustering. Empirical observations suggest
that smaller values of § lead to finer-grained clusters, resulting in
increased computational cost due to more frequent true evaluations.
In contrast, larger values may cause over-grouping of phenotyp-
ically or genotypically dissimilar individuals, thereby degrading
surrogate quality and overall algorithm performance. Therefore,
d is set to 0.1 to achieve a practical trade-off between between
computational efficiency and optimization effectiveness.

Table 3: Terminal Set

Label Description

TT Time of a truck travel to start node

CTN Number of trucks working for a crane

oT Ship operation type (0 for load and 1 for unload)
SNTN Number of all trucks in the task’s start node

ENTN Number of all trucks in the task’s end node
SNWTN  Number of waiting trucks in the task’s start node
ENWTN Number of waiting trucks in the task’s end node

DT Task dispatch type

RIN Number of remaining tasks of a quay crane
ALT Average load time of a crane

AUT Average unload time of a crane

Table 4: GP Training Parameters

Parameter Value

Termination Criteria (Max Generation) 50

Population Size 500

Parent Selection Tournament Selection 5
Elites Number 10

Initialization Method Ramped-Half-and-Half
Initial Minimum/Maximum Depth 2/6

Maximum Depth 10
Crossover/Mutation/Reproduction Rate  0.8/0.15/0.05

Large Individual Penalty Factor pf 0.0000001

PC Size pcs 40

GC Size ges 22

Surrogate Size Limit 500

PGU Distance Threshold § 0.1

5 Results and Discussions

Wilcoxon rank-sum test and Friedman’s test with a significance
level of 0.05 are used to verify the effectiveness of the proposed
algorithm, based on 30 independent runs to minimize the influence
of randomness. The "Average Rank" reflects the average ranking
of the algorithm across all examined scenarios, as determined by

wn on_n

Friedman’s test. In the following results, the symbols "~", "-", and
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"+" indicate that the algorithm’s performance is statistically similar
to, significantly worse than, or better than the compared algorithm,
respectively, according to the Wilcoxon rank-sum test.

5.1 Efficiency of Algorithm Training

Training time is a critical metric for assessing the efficiency of dif-
ferent algorithms. Table 5 reports the mean and standard deviation
of training times for GP, SGP_PC, and PGU-SGP over 30 indepen-
dent runs across four datasets, with significance symbols indicating
PGU-SGP’s performance relative to SGP_PC. Both SGP_PC and
PGU-SGP exhibit significantly reduced training times compared to
the baseline GP across all datasets.

The training time of PGU-SGP varies under different weight
configurations. With a weight of 1:0 (fully relying on PC), PGU-SGP
behaves similarly to SGP_PC, as the clustering strategy primarily
depends on PC. However, unlike SGP_PC, PGU-SGP introduces a
similarity threshold that allows individuals with slightly different
PCs to be grouped together. This results in fewer clusters and
consequently reduces the number of individuals requiring true
fitness evaluations, which further decreases the overall training
time. When the weight is 0.5:0.5 (combining PC and GC), the number
of clusters formed by PGU-SGP is comparable to that of SGP_PC,
resulting in similar training times. In contrast, with a weight of 0:1
(fully relying on GC), the flexibility and diversity of GC values lead
to a substantial increase in the number of groups and evaluated
individuals, consequently increasing training time.

On average, PGU-SGP achieves a 76.11% reduction in training
time compared to the baseline GP across all datasets, which is com-
parable to the 76.60% reduction achieved by SGP_PC. This demon-
strates that PGU-SGP maintains high efficiency without introducing
significant additional computational overhead.

Table 5: The mean (std) of the training time (in minutes) of GP,
SGP_PC, and PGU-SGP with the same number of generations
over 30 independent runs in 4 datasets.

Dataset GP SGP_PC PGU-SGP
1:0 0.5:0.5 0:1
1 213(12) 47(16)  36(10)(+) 47(9)(=) 61(14)(-)
2 181(5) 43(9)  30(7)(+) 46(5)(=) 67(11)(-)
3 219(8)  57(13) 51(12)(x) 54(9)(~) 67(15)(-)
4 199(5)  43(13) 40(11)(=x) 47(8)(x) 69(17)(-)

5.2 Quality of Evolved Dispatching Heuristic

To evaluate the effectiveness of the algorithms, we assess the quality
of the evolved dispatching heuristics under two settings: with the
same number of generations and with the same training time. Sig-
nificance symbols in tables indicate each algorithm’s performance
relative to the algorithms in the preceding columns.

5.2.1  With the Same Number of Generations. Table 6 presents the
mean and standard deviation of the fitness values on test instances
of GP, SGP_PC, and PGU-SGP, evaluated with the same number of
generations over 30 independent runs on four datasets. To enhance
readability and facilitate intuitive comparisons, the fitness values
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have been scaled by a factor of 100. Only the result of 0.5:0.5 con-
figuration of PGU-SGP is reported, as the results under 1:0 and 0:1
configurations are similar and thus omitted for brevity.

As shown in the table, GP, SGP_PC, and PGU-SGP (0.5:0.5)
achieve comparable performance across all datasets, with no statisti-
cally significant differences. Specifically, PGU-SGP achieves slightly
better performance than SGP_PC. This improvement is likely due
to the unified similarity metric, combining PC and GC, which pro-
vides a more accurate representation of individual similarity. This
enhanced accuracy ensures precise grouping, minimizes errors in
fitness prediction, and delivers highly competitive performance.

Table 6: The mean (std) of the fitness values (X100) on test in-
stances of GP, SGP_PC, and PGU-SGP with the same number
of generations over 30 independent runs in 4 datasets.

Dataset GP SGP_PC PGU-SGP(0.5:0.5)
1 14.37(0.52)  14.0000.79)(~)  14.39(0.69)(~)(~)
2 17.21(0.64) 16.91(0.75)(~)  17.20(0.74)(=~)(~)
3 11.76(0.45) 11.51(0.67)(=) 11.82(0.65)(=)(=)
4 9.01(0.53)  8.76(0.46)(~)  8.96(0.43)(~)(~)

5.2.2  With the Same Time. To ensure fairness under equal time
constraints, the maximum training time was set to 210 minutes,
roughly the time required for GP to complete 50 generations. Ref-
erencing [28], 210 minutes were divided into 90 3-minute intervals,
forming 91 discrete time points from 0 to 210. At each time point,
the best-evolved heuristic for each algorithm was selected as the
one closest to the corresponding time. This approach ensures a fair
comparison by evaluating the performance of algorithms based on
the same training duration rather than the number of generations.

Table 7 presents the mean and standard deviation of the fit-
ness values (X100) on test instances of GP, SGP_PC, and PGU-
SGP, evaluated with the same time over 30 independent runs in
4 datasets. As shown, PGU-SGP(0.5:0.5) consistently achieves the
best performance, significantly outperforming GP and SGP_PC
in most datasets. The "Average Rank" further confirms its superi-
ority. Specifically, PGU-SGP(1:0) performs comparably to GP and
SGP_PC—slightly better than GP but marginally worse than SGP_PC.
This result is intuitive, as the threshold-based grouping strategy
relying solely on PC can introduce more grouping errors, thereby
reducing prediction accuracy. PGU-SGP(0:1) also demonstrates com-
parable performance, outperforming GP in all datasets and SGP_PC
in two. This can be attributed to its finer clustering, which increases
the number of true evaluations and improves prediction accuracy.
However, relying exclusively on GC may also introduce estimation
errors, as structurally different individuals can yield similar GC
representations, leading to potential misclassification and degraded
performance. Overall, PGU-SGP(0.5:0.5) achieves the best trade-off
by integrating both PC and GC, enabling more accurate clustering,
improved surrogate quality, and more reliable fitness prediction.

Figure 6 shows the curves of average fitness values (X100) on test
instances of GP, SGP_PC, and PGU-SGP over 30 independent runs
on dataset 1. Among all configurations, PGU-SGP(0.5:0.5) converges
the fastest, outperforming both GP and SGP_PC in terms of fitness
while requiring less time to reach competitive performance.
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Table 7: The mean (std) of the fitness values (X100) on test instances of GP, SGP_PC, and PGU-SGP with the same time(210

minutes) over 30 independent runs in 4 datasets.

Dataset GP SGP_PC PGU-SGP(1:0) PGU-SGP(0:1) PGU-SGP(0.5:0.5)

1 14.36(0.52)  14.65(0.66)(%) 14.46(0.64)()(~) 14.52(0.62)(*)(*)(x)  15.04(0.74)(+)(+)(+)(+)

2 17.18(0.65)  17.49(0.75)(+) 17.31(0.67)(*)(~) 17.32(0.61)(*)(x)(x) 17.87(0.66)(+)(+)(+)(+)

3 11.70(0.43) 11.86(0.54)(x) 11.85(0.43)(=)(x) 11.94(0.46)(=)(=)(=) 12.25(0.56)(+)(+)(+)(+)

4 8.99(0.53)  9.31(0.57)(+)  8.98(0.65)(~)(%)  9.20(0.53)(X)(¥)(~)  9.45(0.48)(+)(x)(+)(+)
Win/Draw/Lose 0/0/4 0/1/3 0/0/4 0/0/4 N/A
Average Rank 4.75 2.25 4.25 2.75 1.00
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Figure 6: Curve of average fitness values (X100) according to

30 independent runs on test instances of GP, SGP_PC, and
PGU-SGP in dataset 1.

5.3 Quality of Surrogate Model

To evaluate the quality of the surrogate model, we use fitness cor-
relation, which measures the relationship between the predicted
and true fitness values [16]. This metric does not directly assess the
error magnitude between predictions and true values but rather
evaluates whether the surrogate preserves the correct ranking and
selection pressure among individuals.

The fitness correlation p(¢°™) is computed as:

oy 15 (500~ F00) (560 - )
’ " 2 ofof

=

©)

where f;(x) and fj(x) denote the predicted and true fitness
values for the j-th individual, and f(x) and f(x) represent the mean

predicted and true fitness values. ¢/ and ¢/ denote the standard
deviations of the predicted and true fitness values, respectively.

Table 8 reports the mean and standard deviation of the fitness
correlation of SGP_PC and PGU-SGP over 30 independent runs in
4 datasets. PGU-SGP consistently achieves higher correlations with
comparable standard deviations, indicating more accurate and sta-
ble fitness predictions than SGP_PC. By leveraging both phenotypic
and genotypic characterizations, PGU-SGP better preserves ranking
and selection pressure among individuals, which is essential for
effective evolutionary optimization.

Table 8: The mean (std) of the fitness correlation of SGP_PC
and PGU-SGP over 30 independent runs in 4 datasets.

Dataset SGP_PC  PGU-SGP(0.5:0.5)
1 0.70(0.15) 0.73(0.14)
2 0.75(0.12) 0.85(0.11)
3 0.68(0.12) 0.72(0.13)
4 0.73(0.13) 0.79(0.12)

6 Conclusion and Future Work

This paper proposes the pheno-geno unified surrogate Genetic
Programming (PGU-SGP) algorithm to address the limitations of
existing PC-based surrogate GP. The proposed algorithm has been
tested on a real-life dynamic container terminal truck scheduling
(DCTTS) problem. By integrating both phenotypic and genotypic
characterizations, PGU-SGP improves surrogate sample selection
and fitness prediction using a novel unified similarity metric (PGU).
The newly designed GC representation method efficiently and effec-
tively captures the genotypic characteristics of individuals, offering
a complementary perspective to PC.

Experimental results demonstrate that PGU-SGP achieves com-
parable performance to traditional GP with the same number of
generations while reducing training time by approximately 76%.
With the same training time, PGU-SGP (0.5:0.5) significantly outper-
forms traditional GP and the state-of-the-art algorithm SGP_PC on
most datasets. The fitness curves further highlight that PGU-SGP
converges faster and achieves superior final performance within
given time constraints. Additionally, fitness correlation analysis
confirms that PGU-SGP improves surrogate quality by maintaining
accurate fitness rankings and selection pressure, underscoring its
reliability in evolutionary optimization.

In future work, the proposed algorithm can be extended to other
dynamic combinatorial optimization problems (e.g. DFJSS) to evalu-
ate its generality. Furthermore, exploring dynamic hyper-parameter
tuning (e.g., adaptive weights and thresholds) could further enhance
the surrogate model’s quality and overall algorithm performance.
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