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Abstract 

As autonomous driving technology continues to evolve, in-vehicle voice interaction 

has become more natural and personalized. However, these systems often face 

limitations when managing tasks that require rapid responses or precise control. 

Traditional voice input may not be suitable for all scenarios due to challenges with 

processing speed and response latency. To address these constraints this study 

explored the combination of non-verbal sounds and voice input in autonomous driving, 

with a focus on system activation and continuous non-driving-related tasks. In 

Experiment 1, participants used non-verbal sounds to wake-up the system and 

compared this method with traditional wake-up words and wake-up free approach. 

Results showed that many users still preferred traditional wake-up methods, although 

snapping fingers did not show a significant disadvantage in terms of interaction 

duration. In Experiment 2, non-verbal sound input was further developed for 

continuous task control and was tested alongside multiple voice commands and the 

Stop input for continuous non-driving-related tasks. While the combination of non-

verbal input methods was innovative, the Stop command was highly favored by 

participants, likely due to its higher accuracy and lower subjective workload, which 

may have been influenced by task design. Overall, this study introduces a novel 

approach to non-verbal sound input, offering new insights into voice input design and 

future interactions in autonomous vehicles. 
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1. Introduction 
 

1.1 Background 

 

As autonomous driving gains popularity globally, leading automakers and technology 

giants such as Tesla, Waymo, and General Motors are actively investing in the 

development of autonomous driving technologies, aiming to make vehicles a comfortable, 

safe, and enjoyable companion for passengers. However, the current research focus 

extends beyond automation in driving, concentrating on enhancing the overall driving 

experience and user satisfaction [1]. The motivation behind this shift lies in the vision of 

transforming vehicles from traditional transportation tools into mobile living spaces. In 

such an intelligent environment, users can seamlessly engage in activities such as work, 

entertainment, or social interactions while in transit[2][3][4]. By prioritizing user-centered 

design, automakers aim to redefine vehicles as multifunctional spaces that integrate 

comfort, connectivity, and convenience. 

With the development of smart cockpits, innovative human-vehicle interaction (HVI) 

modes have rapidly emerging, transforming the way drivers interact with their vehicles.  

As in-car electronic devices continue to advance, human-machine interaction (HMI) 

technologies are becoming more diverse, providing consumers with novel and intuitive 

user experiences [5]. For instance, XPeng Automobiles has adopted a more diversified 

approach in HMI technology. In addition to the traditional touch screen and voice control, 

XPeng has introduced gesture recognition technology, enabling drivers to control specific 

vehicle functions through simple, clear gestures, such as changing music or adjusting air 

conditioning temperature[6]. This introduction of gesture recognition not only enhances 

the interactivity of the interactions but also promotes driving safety. Similarly, Mercedes-

Benz has introduced the MBUX virtual assistant, which realizes the visual interaction of 

voice commands through generative AI technology and active intelligence technology[6]. 

In addition, BMW’s i3 model is equipped with an Augmented Reality Horizontal View 

Display (AR-HUD), which can display crucial information directly in the driver’s field of 

view in real-time, further optimizing the driving experience[7]. Together, these 

advancements illustrate how cutting-edge HMI technologies are reshaping HVI, focusing 

on enhancing usability, interactivity, and safety. 

Voice, as a natural method of HMI similar to human communicate, has been widely 

used in various machine operations and plays an important role in HMI[8]. It reduces the 

need for manual input, enhancing both driving safety and convenience. Current in-vehicle 

voice systems primarily rely on predefined wake-up words (WUWs) to activate voice 

assistants, which are crucial for enhancing the user experience. An ideal wake-up 

mechanism should activate promptly when needed while avoiding unintentional triggers. 

This requires precise threshold settings and dynamic adjustment strategies[11]. However, 

traditional wake-up methods present limitations. Fixed WUWs may fail to accommodate 

users with strong accents or dialects, while cognitive overload during complex tasks can 

hinder users from promptly recalling and stating these words[12][13]. In response, wake-
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up free technology has emerged, allowing speech recognition to continuously monitor 

input without specific activation words. While this approach improves efficiency and user 

experience, it raises privacy concerns as continuous listening could inadvertently capture 

private conversations or sensitive information[13][14]. 

Compared to both traditional WUWs and wake-up free systems, non-verbal sounds 

offer a promising alternative. They bypass pronunciation and vocabulary challenges, 

require minimal learning effort, and avoid many privacy risks associated with continuous 

listening[12]. By addressing some of the core limitations of existing voice interaction 

methods, non-verbal sounds hold significant potential for advancing in-vehicle HMI.  

Executing user’s voice commands is another critical function of speech recognition 

systems, but current methods are restricted to recognizing predefined word-based 

commands [9]. This limitation reduces the system's ability to handle unexpected inputs or 

complex, continuous tasks [10]. For example, adjusting a car window's height may require 

multiple sequential commands like “a little up” or “a little down”. These tasks require 

continuous input in the form of sequential motions, leading to interaction discontinuities 

that undermine the overall user experience.  

This study explores the potential of non-verbal sounds in autonomous driving by 

focusing on two primary applications: replacing traditional wake-up words (WUWs) and 

enhancing natural language for executing continuous non-driving-related tasks (NDRTs).  

By reviewing current advancements and challenges in Human-Vehicle Interaction (HVI), 

this research identifies key limitations in existing voice interaction systems, particularly in 

the context of autonomous vehicles. 

1.2 Research Objectives and Questions 

 

While speech input has become the main method for interacting with In-Vehicle 

Information Systems (IVIS), most studies on non-verbal sounds have focused on their role 

in estimating factors such as emotion[83], gender, and language[84], demonstrating that 

accurate recognition can be achieved without relying on text. Non-verbal sounds have also 

been used as output signals to provide feedback to users[85][86]. However, in the context 

of autonomous vehicles, there is limited research exploring the use of non-verbal sounds 

as input signals.  To address this gap, this study aims to investigate how non-verbal 

sounds can improve interaction efficiency, enhance user experience, and address privacy 

concerns. 

The research consists of two experiments: the first evaluates the effectiveness of 

non-verbal sounds in activating the voice interaction system, while the second assesses 

their feasibility as input signals for continuous tasks.  

Experiment 1: Comparing the effectiveness of non-verbal sound input with two other 

methods in waking up the voice interaction system and evaluating their impact on user 

experience. 

RQ1: How do WUWs, non-verbal voice, and wake-up-free modes affect interaction 

efficiency in non-driving-related tasks (NDRTs)? 

RQ2: Can the use of snapping fingers to reduce false negatives and thus improve 
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interaction efficiency? 

RQ3: What are users' preferences and subjective experiences with different wake-up 

methods for voice interaction systems? 

RQ4: Are users willing to sacrifice some privacy for more convenient interaction?  

Experiment 2:  Exploring the feasibility of using non-verbal sounds as input signals in 

continuous tasks. 

RQ1: How do different forms of hybrid voice input (Multiple Voice, speech +stop or 

snapping fingers and continuous voice) affect task performance in autonomous vehicles, 

with performance being evaluated based on task completion time and accuracy? 

RQ2: Do different forms of speech input influence on the user's cognitive load?  

RQ3: What are user experiences regarding different sound input methods?  

RQ4: What are users' preferences regarding different sound input methods?  
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2. Literature review 

 

2.1 HMI in the Automatic Driving Scenarios 

 

Autonomous driving technology is changing the role of the driver in the car and 

redefining how they interact with the vehicle[17].  The Society of Automotive Engineers 

(SAE) classifies driving automation into six levels, from manual driving (Level 0) to full 

autonomy (Level 5), each level indicating the degree of automation and the 

corresponding driver responsibilities [18]. At Levels 0-2, drivers are fully responsible for 

vehicle control, while at Level 3 (conditionally autonomous vehicles), the system assumes 

control of both lateral and longitudinal motion, as well as object detection and response. 

However, the driver must remain alert and prepared to take over in case of system failure 

or emergencies that the system cannot handle effectively [19]. At Level 4 and 5 (Fully 

Autonomous Vehicles), the vehicle takes over nearly all driving tasks, transforming the 

driver’s role from active operator to passive passenger, with their attention shifting to 

non-driving-related tasks (NDRTs) such as entertainment, communication, or productivity. 

Despite this shift, drivers may still be required to interact with the vehicle, adjusting the 

infotainment system or intervening in driving tasks for non-emergency purposes, such as 

directing the vehicle to pick up a passenger [20][21][22]. The changes in autonomous 

driving levels not only affect the driver's behavior patterns, but also put forward higher 

requirements for the design of human-machine interfaces (HMIs). Therefore, HMI design 

must prioritize both enhancing the user experience through precise command execution 

and supporting the growing need for NDRTs. As the ability to perform these tasks 

increases, ensuring that HMI systems are designed to handle them efficiently has become 

a critical factor in autonomous vehicle (AV) design [23].  

To meet these evolving demands, HMI systems must not only support complex task 

execution but also provide intuitive interfaces for diverse use cases [24]. The rise of 

automation has significantly expanded opportunities for NDRTs, such as reading, 

watching videos, or messaging[25][26][27]. The extent and nature of driver involvement 

in these activities significantly impact the driver’s ability to take over of the vehicle[28], 

which has become one of the critical area of research[24]. . Advanced HMI designs enable 

seamless transitions between NDRTs and driving tasks, reducing cognitive load during 

system takeovers[100].  

In general, the design of human-machine interfaces (HMI) in autonomous driving 

contexts poses a significant challenge, requiring designers to not only understand the 

potential shifts in user behavior within this new environment but also to anticipate and 

accommodate the varied needs of future travelers. Achieving a truly seamless and user-

centric interactive experience is the ultimate goal. This focus has driven significant 

innovation in HMI technology, positioning it as a key driver in the continued evolution and 

advancement of the autonomous vehicle industry.  

2.2 Prevalent Interaction Methods 
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The common ways of HMI in vehicles include touch screen interaction, voice 

interaction and gesture interaction, etc. (Fig. 1). 

Touch screen interaction is one of the most intuitive and natural forms of 

interaction[31]. Drivers interact with the system by tapping, swiping, or long-pressing 

icons on the touchscreen. However, one key drawback of this tactile interaction is that it 

requires drivers to divert their gaze from the road, which can affect driving safety[35]. 

With the advancement of autonomous driving technology, the reassignment of driving 

functions has prompted a transformation in drivers' core responsibilities, shifting from 

traditional driving tasks to handling NDRTs [17]. This change has led to innovations in 

driving control interfaces, such as steering wheels and cockpit designs, thereby affecting 

transformations in HMI modes. The limitations of traditional tactile interaction methods 

are becoming increasingly apparent, especially as drivers transition to handling more 

NDRTs. In contrast, touchless interaction methods are gaining widespread favor due to 

their convenience and efficiency. Pierstefano Bellani et al. have found that touchless 

interfaces are more user-friendly and appealing[36]. In the control of autonomous 

vehicles based on maneuver, touchless interactions bring about a more positive 

emotional perception of the interaction [37]. 

Gesture interaction, as a form of touchless interaction, manifests in various forms, 

including mid-air gestures, steering wheel gestures, and finger-pointing. Steering wheel 

gestures allow drivers to control the system with thumb movements above the steering 

wheel[40][41]. This approach reduces visual demands and enhances driving safety 

compared to traditional systems[40][42]. However, some studies also suggest that this 

method may have some negative impacts on driving performance and perceived 

workload [41]. Similarly, pointing gestures convey directional information to the system 

through the precise pointing of the finger. Robert Tscharn et al. proposed the combination 

of voice and indicating gestures, which can convey spatial instructions more naturally and 

intuitively [43]. Another form of gesture interaction is mid-air gestures, where drivers 

interact with the system by performing gestures toward the center console or windshield 

without touching any surface, often supplemented by ultrasound feedback [44][46]. 

Although mid-air gestures enhance the user experience, but both indicative gestures and 

pointing gestures face the same challenge: they often provide only limited information, 

and may not be enough to meet all needs in complex situations. 

Moreover, the use of gestures in HMI systems may lead to issues such as accuracy 

concerns and unconscious manipulation [50]. These limitations highlight the need for 

further research to determine the optimal input modes for in-vehicle infotainment 

systems (IVIS) and to address the challenges of gesture interaction in real-world driving 

scenarios.
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Fig. 1. In-vehicle HVI. 

 

2.3 Voice and Non-verbal Sound Interaction 

 

Voice input is one of the most common modes of interaction in both traditional and 

autonomous vehicles. As a touchless interaction method, Voice interaction can address 

the limitations of touch screen interaction, particularly in situations that require remote 

and hands-free operation[32]. Compared to gesture-based input, it can reduce the driver's 

visual distraction on the road and provide easier access to and control of IVIs. This 

contributes to both [33][34][35]. 

Typical speech-based interfaces rely on speech recognition systems, which convert 

spoken language into text commands that trigger appropriate actions[50]. However, 

speech is a complex sound that includes verbal and non-verbal cues like pitch and rhythm, 

which convey contextual and emotional information[51]. In addition to conveying speech, 

the sound channel also includes non-verbal auditory signals such as laughter, coughing, 

and other sounds that can serve a communicative function[53]. Previous studies typically 

classified non-verbal sounds based on how they are pronounced or their intended purpose 

[54], Yilmazyildiz et al proposed a definition-based classification. This approach provides a 

more accurate understanding of non-verbal sounds, referred to as non-semantic speech, 

which is divided into four categories: babble (“meaningless phonetic strings”), 

paralinguistic speech (“independent sound events”), musical speech (sounds based on 

musical theory), and non-verbal speech (other non-verbal sounds)[55]. This refined 

classification helps to deepen the understanding of the role and impact of non-verbal 

sound in interaction design, and reveals its great potential for improving user experience 

and interaction effectiveness. Studies have shown that non-verbal sounds can be 

leveraged to control interactive applications by using subtle variations in sound, such as 

pitch and volume [50]. For example, Seo J H et al. used the sound of clapping as a trigger 

signal to start gesture tracking, significantly improving the clarity and operability of the 
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interaction process [56]. 

In-vehicle voice recognition systems, for discrete tasks, such as activating car air 

conditioning or music, voice input is quite practical. However, it becomes inefficient when 

dealing with finer-grain and real-time control of continuous actions, like scrolling through 

pages or zooming in on maps. This is due to the limitations of voice input, which is not 

ideally suited for continuous and incremental operations [58]. In contrast, non-verbal 

sound interaction showcases its strengths in real-time and continuous operation control, 

independence from specific languages, and convenience in use. Moreover, non-verbal 

sound input can be processed reliably, even in noisy environments, providing stable and 

consistent system responses [50]. However, this interaction method does have limitations 

in terms of its information-carrying capacity, which makes it less suitable for conveying 

complex or multifaceted commands [8].To effectively leverage the benefits of both speech 

and non-verbal sound interaction, integrating these modes presents a promising solution. 

Research by Kaur has shown that combining voice and non-verbal sounds enables smooth 

and continuous control of a computer's mouse pointer. For example, users can produce 

different vowel sounds to indicate the desired direction of movement [54]. Similarly, 

window operation can be managed using a command like "roll the window uuuuuup," 

where the duration of the sound "up" determines how far the window opens. The window 

stops when the user stops making the sound.  This method enhances the interaction's 

naturalness and fluidity, and significantly expands the use of non-verbal sounds in the 

complex environment of HVI. 

2.4 Applications and Technologies in Voice Input 

Voice interaction technology allows users to interact with computer systems 

through natural language [54]. Central to this technology is speech recognition, which 

converts the user's speech input into text or executable commands. The development 

of speech recognition technology includes the analysis, recognition and understanding 

of speech patterns, as well as the improvement of robustness in different environments 

[55] [56]. Voice interaction technology is widely used, including but not limited to 

computer-telephone integration, voice portals, virtual personal assistants, such as 

Apple’s Siri. [57]. These systems offer users the convenience of hands-free control, 

making them an integral part of modern smart environments.  

In contrast to speech recognition, non-verbal sound recognition, such as detecting 

the sound of clicking fingers, relies on different detection methods and is applied in 

distinct scenarios. Non-verbal sound recognition primarily focuses on identifying 

specific sound events, such as a snap or a clap, rather than converting sound into text 

information. The technology behind non-verbal sound recognition detects specific 

features in the audio signal, such as frequency patterns or temporal characteristics, to 

recognize and trigger corresponding actions [59]. This distinction highlights the 

versatility of voice interaction technologies, with speech recognition handling more 

complex language inputs, while non-verbal sound recognition is better suited for 

discrete, event-based tasks. 

2.4.1 Wake-up Technology 

In voice interaction, wake-up word technology acts as a critical interface 

between the user and the system, evolving from simple voice recognition to involving 



 

8 

 

complex signal processing and pattern recognition methods. Traditionally, wake-up 

functionality primarily relies on keyword detection algorithms, which activate the 

system by matching a predefined voice template. However, this method has limitations, 

including high model complexity and the need for extensive training data that covers 

a wide vocabulary range [65][66]. With the advancement of deep learning 

technologies, particularly speech recognition models based on Deep Neural 

Networks (DNNs), such as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), Christin Jose et al. have demonstrated the use of CNNs to 

accurately detect the start and end positions of WUWs, offering more efficient and 

precise localization of trigger words [66][67]. These advancements in wake-up word 

detection have significantly enhanced the overall performance of voice interaction 

systems. Despite these technological advances, the naturalness and flexibility of 

WUWs are still limited. In contrast to real-life conversations, where a gesture or smile 

can signal the intent to start a dialogue, WUWs typically require explicit spoken 

words or phrases [68]. Common WUWs like "Ok Google" or "Hey Alexa" are often 

rigid and limited by pronunciation, vocabulary knowledge, and cultural differences. 

[69]. Additionally, noisy environments can affect the performance of WUWs, 

including accidental activations (also known as false positives) and failures to 

correctly capture the trigger word. These errors, particularly false positives, 

significantly impact the user experience and reduce user expectations and frequency 

of use of the technology [70]. To address these challenges, many researchers are 

currently exploring alternatives to WUWs, such as gaze [71] or gesture signals 

[72][73]. 

2.4.2 Wake-up Free Technology 

As intelligent interaction technologies evolve, users increasingly expect to 

initiate conversations naturally without relying on explicit commands. This demand 

has led to the development of wake-up free technology, which enables voice 

recognition systems to automatically detect user commands without the need for 

specific WUWs.  This technology employs advanced Speech Activity Detection (SAD) 

and Speaker Verification technologies, which continuously monitor environmental 

sounds and initiate interactions when specific vocal characteristics of a user are 

recognized [74][75]. Additionally, Scholars have proposed integrating multimodal 

inputs, combining voice signals with face detection, to better understand the user's 

intent to interact, thereby creating a more natural and seamless voice interaction 

experience [76][77]. 

However, despite its potential, wake-up free technology faces several 

challenges. In automotive environments, for example, the interaction subject might 

not be within the current field of view. This issue arises when passengers in the back 

seat are out of the system's detection range, or when facial information is obstructed by 

car seats.  Additionally, the "always listening" environment may pose a potential 

threat to personal privacy [11]. Moreover, during routine interactions, users might 

not provide complete information in a single attempt, as a result, they may prefer 

using WUWs to interrupt or readjust the conversation, providing them with a greater 

sense of control over the system [79]. Therefore, while removing WUWs can improve 
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system usability, it requires careful consideration to maintain the user experience 

without compromising privacy or usability. It is essential to explore new, more 

flexible ways to activate voice interaction systems. 

WUWs are designed to mimic the rich "call-and-answer" interaction patterns 

found in natural conversation, but they essentially serve as tools for activating the 

system, much like pressing a button [80]. According to binary input theory, research 

has shown that a single statement of any other Non-verbal Auditory Input (NVAI) 

mode can be used to trigger binary input [52]. Compared to traditional voice 

commands, non-verbal sounds tend to be easier for users to master since they do 

not rely on complex language skills or knowledge of pronunciation and cultural 

nuances. Furthermore, when the user knows that the interaction is with the machine, 

the user is actually “repelled” by excessive politeness and repetition [81]. Given 

these factors, exploring the potential of non-verbal sounds as WUWs represents a 

promising direction for future research. Non-verbal sounds such as clapping or 

snapping fingers are intuitive, less prone to linguistic barriers, and provide a more 

accessible method for initiating interactions. As such, they offer an opportunity to 

replace traditional verbal WUWs, resulting in a more flexible and user-friendly voice 

interaction experience. 

NO. Author, 

Publication 

year, 

Country 

The Way to 

Activate 

Voice 

Interaction 

System 

Main Findings 

1 Albert S, & 

Hamann M.  

(2021), Spain 

Wake word Although prosody cues offer potential for 

enhancing voice interfaces, we should explore 

more flexible ways to initiate interactions with 

virtual agents[80]. 

2 Jung H, & Kim 

H. (2019), 

Ireland 

Wake word First, wake words give users control over the VUI. 

Second, they seem to emotionally project onto 

sound agents [79].  

3 Combs M, 

Hazelwood C, 

& Joyce R.  

(2022), 

USA 

Wake word (1) the number of false positives is related to 

wake word; 

(2) number of false positives is related to Amazon 

Echo hardware;  

(3) false positives decrease over time[82]. 

4 Bleakleya A, 

Wua Y, 

Pandeyb A, et 

al.  

(2021), 

Ireland 

Wake word  The limited choice of wake phrases may exclude 

users who speak different languages or interact 

with IPAs in a non-native language[69].  

5 Pomykalski P, 

Woźniak M P, 

Woźniak P W, 

Gesture We conducted gesture elicitation to identify five 

candidate gestures. Initial results indicate that 

the snap gesture shows the most potential[72]. 
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et al.  

(2020), 

Poland 

6 Zhao S, 

Westing B, 

Scully S, et al. 

(2019), 

USA 

Voice & 

gesture  

 

A novel approach to activating Intelligent Virtual 

Assistants (IVAs) on smartwatches: raise your 

hand and speak naturally for accurate and 

energy-efficient detection [73]. 

7 McMillan D, 

Brown B, 

Kawaguchi I, et 

al.  

(2019), 

Sweden 

Gaze Gaze can be used to augment, or even replace, 

the wake-work in initiating interaction with 

speech agents[71]. 

8 Zhang H, Wang 

J, Yang S, et al.  

(2022), 

China 

Wake-free 

(voice & 

video) 

Make full use of both voice and video mode 

information to solve challenging multi-mode 

activation task[76]. 

9 Dong X.  

(2019), 

China 

 Wake-free 

(voice & 

video) 

Building on the original TVM ticket purchase 

process, voice recognition adds wake-up-free 

input, Chinese phonetic alphabet input, and 

fuzzy location inquiry functions[77]. 

10 Vertegaal R, 

Slagter R, Van 

der Veer G, et 

al. 

(2001) 

/ The user’s eye gaze can form a reliable source of 

input for conversational systems that need to 

establish whom the user is speaking or listening 

to [78]. 

Table 1. Summary of Previous Research on the Way to Activate Voice Interaction System 
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3. Exploring Non-verbal Wake up method for 

autonomous driving applications 
 

3.1 Methodology  

 

3.1.1 Interactive Tasks and NDRTs 

To investigate the potential of non-verbal sounds as WUWs. The study designed two 

interactive tasks for participants in controlled study environment. These tasks were 

selected to represent common Non-Driving-Related Tasks (NDRTs), where the driver 

interacts with the system using voice commands. The study chose two tasks with varying 

levels of complexity: a music-playing task and a social media browsing task. The 

complexity of each task was measured based on the number of steps required and the 

type of actions involved [87]. These tasks were selected because they reflect common in-

car activities where voice interaction could improve convenience and reduce distractions 

for drivers. The specific operation process is as follows:  

Task 1: Navigation task  

(1) Open the navigation software  

(2) Input navigation address 

(3) Navigate to the detail address  

(4) Cancel the command, change the address 

(5) Re-enter your address  

(6) Navigate to the detail address  

(7) Confirmed  

(8) Close the navigation software 

Task2: Social media browsing tasks  

(1) Open social media software  

(2) Open the first news 

(3) Browse 

(4) Close the social media software 

3.1.2 The Way and Use Strategy of Activating Voice Interaction System 

There are several strategies for activating the voice interaction system. Once the 

system is awakened, if no further voice input is received within 5 seconds, the system 

will return to sleep mode. To issue a command, users must reactivate the system. 

Three kinds of awakening voice interaction system way:  

Traditional WUWs:  

Traditional wake-up words are designed to be short enough to ensure easy 

pronunciation while being long enough to avoid accidental activations. The study 

chose "Alexa" as the wake-up word (WUWs) due to its balance between simplicity 

and effectiveness. 

Nonverbal sounds (Snapping Fingers):  

Snapping Fingers serve as binary input and discrete input, which is often 
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preferred in NVAI modalities [52], In this experiment, snapping fingers are used to 

trigger the voice interaction system, providing a non-verbal alternative to traditional 

WUWs. 

Wake-up free:  

In this mode, users can directly issue voice commands without needing to 

activate the system with a WUW or gesture. This provides a more seamless and 

natural interaction, where the system continuously listens for commands without 

the need for explicit activation. 

3.1.3 Setups 

The experiment was conducted in a quiet indoor environment. A display 

simulating the exterior environment of an autonomous vehicle was placed in front 

of the participants, with a tablet was used to provide visual feedback. The 

participants’ voices were captured using a Logitech microphone, which transmitted 

the audio to a laptop on the right. The system uploaded the audio to the cloud for 

voice recognition (Fig. 2). 

 

Fig. 2. Experiment Setups (Experiment 1). 

 

3.1.4 Participants 

The study invited a total of 20 participants (Male = 9, Female = 11), with ages 

ranging from 18 to 60 years (M = 31.75, SD = 10.27). All participants had normal or 

corrected vision and hearing and came from diverse backgrounds. Additionally, the 

study surveyed participants on their experience with voice interaction systems, with 

the results as follows: 

Frequency of Use Number of Participants 

Never Used 1 

Occasionally Used 13 

Frequently Used 6 

Table 2. Frequencies of Voice Interaction System Use Among Participants 

 

Before conducting the experiments, ethical approval was obtained from the 

University of Nottingham Ningbo China (UNNC) Ethics Committee. All participants 

were provided with detailed information about the study and gave their informed 

consent before participating. 
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3.1.5 Experiment Design 

To assess different methods of activating the voice interaction system, the study 

used the Wizard of Oz method [88].This method ensures that the system only triggers 

actions after a participant has completed a full command (either a voice command or 

a combination of a wake-up word and voice command). The system has accurately 

recognized the speech and converted it into text. This approach minimizes biases 

caused by system performance and standardizes system behavior. The study employed 

a within-subjects design with three independent variables: three activation methods 

(wake-up word vs. snapping fingers vs. wake-up free) and two interaction tasks 

(navigation and social media browsing), both classified as NDRTs. 

3.1.6 Evaluation Index 

The NASA-TLX score was used to estimate subjective workload, asking 

participants to evaluate six demand dimensions: mental demand, physical demand, 

temporal demand, performance, effort, and frustration level [89]. The User 

Experience Questionnaire (UEQ-S) was used to assess both the hedonic quality (user 

experience) and pragmatic quality (usability) of the three activation methods, as well 

as participants’ preferences [90]. This information helps us gain a more 

comprehensive understanding of user needs and expectations. 

The study also recorded the total interaction time and the number of false 

negatives in wake-up word detection.  A false negative occurs when a wake-up 

word is spoken but not recognized by the system, preventing task activation. This 

quantitative data not only reflects the efficiency and accuracy of task completion but 

also provides clear direction for subsequent performance optimization. 

3.1.7 Procedure 

 
Fig. 3. Experimental Process. 

 

Upon arrival, the researcher briefed the participants on the purpose and 

procedure of the study, emphasizing that all data would be used anonymously for 

scientific purposes. After the briefing, participants signed an informed consent form. 

Before starting the experiment, participants completed a pre-questionnaire to collect 

demographic information such as age and prior experience with voice interaction 

systems. Next, participants were trained on how to use the three activation methods 

and perform the two interaction tasks (navigation and social media browsing).  The 

researcher confirmed that participants understood the tasks and activation patterns, 

providing further explanations if needed.  

As depicted in Fig. 3, at the start of the experiment, the simulator's screen was 

set to autopilot mode.  Once participants were acclimated to this setup, they were 

assigned to perform the tasks.  Each participant was required to employ the three 

activation methods in a randomized sequence.  The experiment's duration for each 

participant was approximately 20 minutes.   
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In the experiment, the researchers recorded the interactive duration and the 

failure rate within the task. after each activation methods, the participants filled out 

questionnaires related to usability, privacy, and subjective load, and the study ended 

with an activation method preference questionnaire and participant reports. 

3.2 Result  

 

This study employed multiple data analysis methods to evaluate the performance of 

different hybrid input methods. The Shapiro - Wilk test was used to determine the 

normality of the data, and the Levene test was used to determine the homogeneity of 

variances. If the data did not meet the conditions for parametric tests, the Friedman test 

was used for inter - group comparisons, followed by the Wilcoxon signed - rank test for 

post - hoc analysis. In the assessment of subjective workload, the NASA - TLX was used to 

calculate the total and average scores. For the evaluation of pragmatic and hedonic quality, 

the UEQ - S was used, and the Cronbach's alpha coefficient was calculated, along with the 

calculation of average scores. 

3.2.1 Qualitative Measures 

3.2.1.1 Subjective Workload 

The NASA-TLX scores were used to estimate subjective workload. Participants 

were asked to rate their workload on a 20-item scale, which assessed six demand 

dimensions: mental demand, physical demand, temporal demand, performance, 

effort, and frustration level [89].The results indicated that participants in the 

Snapping Fingers group reported a higher average subjective workload (M=38.1, 

SE=18.7) compared to those in the Alex group (M=26.3, SE=16.5) and the Wake-

up Free group (M=24.5, SE=16.1). 

Statistical tests confirmed the normal distribution of data across all groups 

(Alex: P=0.123; Snapping Fingers: P=0.234; Wake-up Free: P=0.064) and 

homogeneous variances (P=0.663). A one-way ANOVA revealed a significant 

impact of wake-up method on workload (F=3.580, P=0.034). Post-hoc analysis 

(Tukey’s method)indicated a significant difference between Snapping Fingers and 

Wake-up Free groups (P=0.043). 

3.2.1.2 Pragmatic Quality and Hedonic Quality 

The User Experience Questionnaire (UEQ-S) was used to assess the pragmatic 

quality (usability) and hedonic quality (user experience) of three wake-up methods 

[90]. The UEQ-S scale ranges from -3 to 3. To assess the consistency of the scale, 

we used Cronbach ’ s α , where a value above 0.7 is considered sufficiently 

consistent. The results for Cronbach’s α were as follows: Pragmatic quality—α

_Alex=0.90, α_Snapping Fingers=0.81, α_Wake-up Free=0.95; Hedonic quality—

α_Alex=0.95, α_Snapping Fingers=0.94, α_Wake-up Free=0.88. 

The Wake-up Free group reported higher pragmatic quality mean scores 

(M=2.063, SD=1.076) compared to the other three groups. However, the Snapping 

Fingers group exhibited higher scores in hedonic quality (M=1.363, SD=1.182) 

(Table 3). 
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In terms of total UEQ-S score, S-W tests confirmed the data's normal 

distribution across all groups (Alex: D=0.953, P=0.417; Snapping Fingers: D=0.933, 

P=0.177; Wake-up Free: D=0.971, P=0.781). Levene's Test showed no significant 

difference in variance across groups (P = 0.322).A one-way ANOVA comparing the 

total UEQ-S scores across wake-up modes revealed no significant differences (F = 

0.719, p = 0.492).In terms of pragmatic quality, the results show that not all of 

them conform to the normal distribution（Alex: D=0.872, P=0.013; Snapping 

Fingers: D=0.963, P=0.598; Wake-up Free: D=0.838, P=0.003） . The result of 

Levene's Test (p=0.774) shows that there is no statistically significant difference in 

the variability (variance) of the data in the groups examined, Friedman’s test was 

used to compare pragmatic quality across the three wake-up methods. The results 

indicated significant differences (χ² = 7.719, df = 2, p = 0.021). Further post hoc 

test (Wilcoxon signed rank test) showed that there was a significant difference 

between wake-up free and Snapping Fingers (p=0.014), while no significant 

difference was observed between other pairs. 

In terms of hedonic quality, the data for all three wake-up modes conformed 

to normal distribution (Alex: D = 0.961, P = 0.568; Snapping Fingers: D = 0.946, P = 

0.308; Wake-up Free: D = 0.952, P = 0.339). Levene's Test indicated no significant 

difference in variance (P = 0.301). An ANOVA comparing hedonic quality across 

wake-up modes found no significant differences (F = 2.584, p = 0.084). 

UEQ-S Input Form 

Alex Snapping 

Fingers 

Wake-up Free 

Pragmatic 

quality 

Mean 1.838 1.100 2.063 

SD 1.182 1.165 1.076 

Hedonic 

quality 

Mean 0.413 1.363 0.925 

SD 1.594 1.182 1.144 

Overall Mean 1.125 1.231 1.494 

SD 1.187 0.906 0.902 

Table 3. UEQ-S Scores for Three Kinds of Wake Modes. 

 

3.2.1.3 Usage Preferences 

The study asked each participant to rank their preferred wake-up methods 

from most favored to least favored (Fig. 4). A clear preference divide was 

observed between the snapping fingers and wake-up free methods. 75% of 

participants preferred 'Alex' as their wake-up method, followed by wake-up free 

and then snapping fingers. Notably, 50% of participants ranked snapping fingers 

as their least preferred wake-up method. 
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Fig. 4. User Preferences for Three Kinds of Wake Modes. 

 

3.2.1.4 Privacy Concerns 

The study designed a questionnaire to assess participants' privacy concerns 

regarding voice interaction systems. Four questions were included to capture their 

attitudes and sensitivities. As shown in Fig. 5, the results clearly highlight 

participants' privacy concerns when using voice interactive systems. 

 

Fig. 5. Participants’ Privacy Concerns. 

 

3.2.2 Quantitative Measures 

3.2.2.1 Interactive Duration 

By measuring the interaction duration in different wake modes, we find that 

the average interaction duration of the wakeup free group is significantly lower than 

the other two groups (Alex and Snapping Fingers) (Table 4). 
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In the condition of task 1, we analyzed interaction durations across different 

wake-up modes, which were normally distributed (Table 4). Levene's Test showed 

homogeneous variances across groups (F=2.802, P=0.69), validating the use of 

ANOVA, which revealed significant differences in interaction durations among the 

modes (F=10.221, P < 0.001). Tukey’s post-hoc test confirmed significant shorter 

durations for Wake-up Free compared to both Snapping Fingers and Alex (P<0.001 

each), with no significant difference between Alex and Snapping Fingers. 

In the condition of task 2, the interactive duration is normally distributed in 

different wake modes (Table 4), and Levene's Test showed no significant variance 

differences across groups (F=0.551, P=0.580). And ANOVA analysis demonstrated 

significant differences in interaction durations between modes (F=13.179, P < 0.001). 

Tukey's post-hoc test highlighted significant shorter durations for the Wake-up Free 

method compared to both Alex and Snapping Fingers (P<0.001 for each), with no 

notable difference between Alex and Snapping Fingers. 

The average interactive duration under different task types was normal (Task 1: 

D=0.970, P=0.141; Task 2: D=0.984, P=0.618), the result of Levene's Test, which 

showed that the variance of the data in the examined group was statistically 

significant (F=21.502, P<0.01). Therefore, we used Wilcoxon Signed-Rank Test to 

compare the subjective load under two task types, and the result showed that the 

duration of task 2 was significantly lower than that of task 1 (N=60, MR = 30.50, SR = 

1830.00). There was a significant difference between the two (Z=-6.736, p < 0.001). 

The results of the Wilcoxon signed rank test strongly support this difference and rule 

out that it is due to randomness. 

Interactive Duration Alex Snapping Fingers Wake-up Free 

Task 1 Mean 43.436 42.000 32.338 

SE 10.5503 7.0397 7.2804 

S-W Test(P) 0.318 0.805 0.154 

Task 2 Mean 19.680 20.985 14.930 

SE 4.6000 3.5432 7.2804 

S-W Test(P) 0.096 0.069 0.735 

Table 4. Interactive Duration for Three Kinds of Wake Modes. 

 

3.2.2.2 False Negatives 

The false negative rates varied significantly across the three wake-up modes. 

The Snapping Fingers method exhibited the highest false negative rate (M=14.00%, 

SD=0.18890), surpassing both Alex and Wake-up Free modes (Table 3). The data 

were not normally distributed (Snapping Fingers: D= 0.727, P <0.001 wake-up Free: 

D=0 P=0). Levene ’s Test confirmed significant variance differences among the 

groups (P<0.001). Therefore, we used Friedman’s test to compare the false 

negative indicators under the three wake-up modes, showing that there are 

significant differences in the false negative indicators for at least two of these 

wake-up modes. (χ²  = 12.667, df=2, p = 0.002). Post-hoc analysis (Wilcoxon 
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signed-rank test) identified significant differences between the Snapping Fingers 

and Wake-up Free modes (P=0.011) and between the Snapping Fingers and Alex 

modes (P=0.018). However, no significant difference was observed between the 

Alex and Wake-up Free groups. 

False 

Negatives 

Input Form 

Alex Snapping 

Fingers 

Wake-up Free 

Mean  1.25% 14.00% 0 

SD 0.05590 0.18890 0 

Table 5. False Negatives for Three Kinds of Wake Modes. 

 

3.3 Discussion 

This study explored the feasibility use of non-verbal sounds, specifically snapping 

fingers, as a wake-up method for voice interaction systems in NDRTs. The findings revealed 

that snapping fingers did not significantly improve interaction time, reduce subjective 

workload, or lower false negative rates compared to traditional WUWs or the wake-up 

free method. These findings prompt us to reconsider the methods for replacing traditional 

WUWs. This research will discuss the potential reasons behind these conclusions with the 

aim of enhancing the efficiency and user satisfaction of future technologies. Regarding 

interaction time and false negatives (Q1 & Q2), the results indicated that the wake-up free 

method performs best in improving interaction efficiency. This advantage is likely due to 

the elimination of the WUW steps and allows users to enter commands directly, thereby 

saving time. Additionally, Task 2 exhibited significantly shorter interaction duration than 

Task 1, suggesting that the complexity or type of task is a key factor influencing interaction 

time [91]. Higher task complexity tends to increase the proportion of incorrect responses 

[92], which can negatively affect the overall user experience. However, the sensitivity of 

different tasks to the wake-up method is limited, and further research may be needed in 

the future, considering a wider variety of NDRTs and more complex interaction scenarios. 

Regarding false negatives, the wake-up free method also achieved the lowest rate, 

enhancing responsiveness and reliability of the system. In contrast, snapping fingers 

method is often affected by individual differences among users and the system’s limited 

recognition capacity, resulting in a higher rate of false negatives and lowering user 

expectations of the technology [70]. 

Regarding users' concerns (Q3), this study surveyed participants about their concerns 

when using voice interaction technology, and most participants expressed significant 

privacy concerns, including fears of eavesdropping, misuse of personal information, and 

inappropriate disclosure of data, followed by concerns about technical failures. These 

concerns mirror findings in related studies, highlighting the growing mistrust in voice 

interaction systems [88]. Participants also expressed discomfort with the constant 

monitoring inherent in wake-up free methods, which may explain their preference for 

traditional WUWs despite the higher efficiency of wake-up free. We asked participants 

about the most uncomfortable experiences with voice assistants. The results indicated 

that the majority of participants reported problems with device mis-activation or 
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inaccurate system responses. These experiences often lead to user frustration and may 

also lead to a decrease in trust in the system [89]; In addition, we explored participants' 

perceptions of constant detection in wake-up free technology. Many participants said they 

felt uncomfortable with this constant monitoring mechanism; When evaluating whether 

face recognition technology should be integrated into voice assistants, we found that most 

participants held a neutral attitude, some users had reservations, and a small number of 

participants chose to support it, considering the trade-off between privacy and data 

security. In conclusion, future research needs to take measures to reduce users' privacy 

concerns. 

Regarding subjective workload (Q4), The wake-up free method achieved the best scores, 

reflecting its simplicity and reduced cognitive demand compared to snapping fingers and 

traditional WUWs.  Additionally, snapping Fingers, as a wake-up method, required more 

physical effort, making it more demanding for users, which may affect the user's 

preference for this form of wake-up. Therefore, this research proposes that designers 

should take the subjective burden of users into consideration during the design process, 

so that users can maintain their physical and mental health while experiencing the 

convenience of technology in order to achieve the best interaction. 

Regarding pragmatic quality and hedonic quality (Q4), all wake-up modes showed 

high overall scores, suggesting that wake-up methods have limited impact on overall 

ratings of user experience and usability. However, in terms of utility quality, the Wake-up 

Free group presents the best pragmatic quality indicator, which may indicate that users 

may feel freer and more direct in the absence of explicit instruction constraints [92]. 

Future research could further explore the causes of these differences, such as how the 

user's personal preferences, cultural background, or use environment affect the 

evaluation of different wake-up method. 

Regarding users' specific preferences (Q4), this study found that participants preferred 

traditional WUWs (Alex) over the wake-up free and snapping fingers methods. Despite the 

efficiency of the Wake-up Free method in reducing interaction time, many users expressed 

concerns about continuous monitoring, which may lead to privacy breaches. It may cause 

users to be unwilling to use or even refuse to accept the services offered by smart car 

providers [93]. Similarly, Snapping Fingers was also met with skepticism due to uncertainty 

regarding its sound threshold and concerns about physical strain. Many participants were also 

uneasy about the potential safety risks of snapping fingers while driving, even in an 

autonomous vehicle scenario. 

 To be specific, they feared that this action may interfere with the driver taking 

control of the autonomous vehicle, creating a safety hazard. This potential uncertainty, 

combined with concerns about driving stability, left participants uneasy, as they realized 

that such small movements could have unintended consequences during emergencies. 

These concerns show that the choice of how users interact is not simply a matter of 

technology adoption, but also a combination of personal privacy, health, and convenience 

and security. 
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4. Exploring non-verbal sounds as input signals in 

continuous tasks for autonomous driving application 
 

4.1 Methodology  

 

4.1.1 Ways to Hybrid Sound Input 

We designed four hybrid voice input methods to explore different ways of 

combining verbal and nonverbal sounds to control tasks: 

(1) Multiple voice input: 

Voice commands can be input multiple times, allowing users to repeat or modify    

tasks as needed.  

(2) Voice + nonverbal sounds or say “stop”:  

Once a voice command is issued, the task will continue to execute until another 

command or a stop command is given.  Users can end the task by snapping their 

fingers or saying “stop.” The study utilizes standard automatic speech recognition 

(ASR) for voice commands, while finger snapping is detected based on specific audio 

features that identify this sound event. 

(3) Continuous voice:  

This method allows users to control the task by prolonging the final vowel of a 

word. The task will continue as long as vowel sound persists and it stops when the 

sound volume decreases to zero. ASR is used for detecting the initial voice command, 

while continuous control relies on volume-based detection to monitor task duration. 

4.1.2 Setups 

The empirical study was conducted in a quiet indoor environment. A display 

simulating the exterior environment of an autonomous vehicle was placed in front 

of the participants, with a tablet providing visual feedback. Audio was captured using 

a Logitech microphone and transmitted to a laptop, where the data was processed 

and uploaded to the cloud for voice recognition (Fig. 6). 

 
Fig. 6. Experimental Setups (Experiment 2). 

 

4.1.3 Participants 

The experiment invited 37 participants (16 males and 21 females), ranging in 



 

21 

 

age from 18 to 60 years (M=33.00, SD=9.829). All participants had normal or 

corrected-to-normal vision and hearing, and came from diverse backgrounds. During 

the study, we asked about the participants' familiarity with speech interaction 

technology: 2 participants said they were not familiar with the technology, 14 

participants described their knowledge as moderate, 18 participants said they were 

very familiar, and 3 participants said they were very familiar and understood the 

underlying principles of the technology. 

Before conducting the experiments, ethical approval was obtained from the 

University of Nottingham Ningbo China (UNNC) Ethics Committee. All participants 

were provided with detailed information about the study and gave their informed 

consent before participating. 

4.1.4 Experiment Design 

In Experiment 2, the tasks themselves were refined to better assess the real-

time interaction between voice commands and non-verbal sounds. For example, 

continuous sound inputs, such as humming or snapping fingers, were incorporated 

into tasks that required fluid, ongoing control, such as adjusting volume or scrolling 

through content. This adds a layer of complexity compared to the discrete control 

tasks used in Experiment 1. 

To reliably evaluate several hybrid voice input modes, the study used an in-

subject design with four independent variables: four modes (Multiple Voice input vs 

Voice + say “top” vs Voice +Snapping Fingers vs Continuous Voice) and two 

interactive tasks (music volume adjustment task and social media browsing task) 

(Fig.7), we designed the continuity of the driving task related tasks include volume 

and social media browsing tasks, specific as follows:  

Task1: music volume task  

(1) Input the name of the songs to  

(2) Adjust the volume to the target level (indicated by a red arrow on the display). 

Task2: Social media browsing task  

(1) open social media software  

(2) browse to the target line on the screen. 

 

 
Fig. 7: Experiment Target (The left image shows Task 1, and the right image shows Task 2). 

 

4.1.5 Evaluation Index 

Subjective workload was assessed using the NASA TLX scores, which measure 

six dimensions: mental need, physical need, time need, performance, effort, and 

frustration [90]. The U-S questionnaire was used to assess the hedonic quality (user 
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experience) and pragmatic quality (usability) of the four hybrid voice inputs[90], as 

well as their specific preferences. This information will help us to better understand 

the needs and expectations of our users. 

The study recorded the interactive duration of task execution, and the 

calculation results with the preset target deviation rate. For example, in task 1, we 

set the target value when the volume is adjusted to a red arrow position, and in Task 

2, we set the progress bar to move to the red arrow position as the target value. Such 

quantitative data can not only reflect the efficiency and accuracy of task completion, 

but also provide a clear direction for the subsequent performance optimization. 

4.1.6 Procedure 

Upon arrival, participants were briefed on the study’s purpose, and informed 

consent was obtained. A pre-questionnaire was administered to collect demographic 

data and assess familiarity with voice interaction technology. Before the experiment, 

researchers trained the participants on four hybrid voice input methods and the two 

interaction tasks: adjusting music volume and browsing social media. The lead 

researcher explicitly asked if participants understood the input methods and 

provided further explanations as needed. 

The experiment officially began with the simulator screen set to autonomous 

driving mode, allowing participants time to acclimatize. The researcher then 

informed the participants of the start time for the interaction tasks. Each participant 

was required to complete the two tasks using the four hybrid voice input methods. 

During the experiment, researchers recorded the duration and accuracy of task 

completion. After each experiment session, participants completed questionnaires 

related to subjective workload and user experience. The study concluded with a 

specific preference survey and participant debriefing. 

4.2 Result  

 

This study employed multiple data analysis methods to evaluate the performance of 

different hybrid input methods. The Shapiro - Wilk test was used to determine the 

normality of the data, and the Levene test was used to determine the homogeneity of 

variances. If the data did not meet the conditions for parametric tests, the Friedman test 

was used for inter - group comparisons, followed by the Wilcoxon signed - rank test for 

post - hoc analysis. In the assessment of subjective workload, the NASA - TLX was used to 

calculate the total and average scores. For the evaluation of pragmatic and hedonic quality, 

the UEQ - S was used, and the Cronbach's alpha coefficient was calculated, along with the 

calculation of average scores. 

4.2.1 Qualitative Measures 

4.2.1.1 Subjective Workload 

Use NASA-TLX scores to estimate subjective workload. Participants were 

asked to respond to a 20-point scale covering six dimensions of needs, including 

psychological needs, physical needs, time needs, performance, effort, and 

frustration[89]. We observed that the mean subjective load index of the 

continuous voice group was significantly higher than that of the other three groups, 
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indicating a higher subjective workload (Table 6).  

 The study assessed the subjective load total score of different input 

methods, and confirmed they did not show obvious normal distribution 

characteristics through S-W test (Table 6). Additionally, Levene’s Test (F = 4.778, P 

= 0.03) suggested that at least one group had unequal variances. Therefore, we 

used Friedman’s Test which showed there was a significant difference in the 

subjective load among the groups (χ² = 44.622, DF=3, p < 0.01). Subsequent post-

hoc tests (Wilcoxon signed-rank test) show that there are significant differences 

between Continuous Voice and the other three input modes respectively（P <0.001 

for each). There are no significant differences between the other input modes. 

 

 

 

 

 

 

 

Table 6. Subjective Workload for 4 Kinds of Input Forms. 

 

4.2.1.2 Pragmatic Quality and Hedonic Quality 

The User Experience Questionnaire (UEQ-S) was used to determine the 

quality of pragmatic (usability) and hedonic quality (user experience) of the three 

wake-up modalities [90]. The value of UEQ-S can range from -3 to 3. We measure 

the consistency of the scale α Cronbach's indicator, and the alpha value should 

be greater than 0.7 to be considered consistent enough. (Pragmatic quality:α

_multiple voice=0.89 ,α_stop=0.86 ,α_snapping=0.90 ,α_continuous voice=0.93 ; 

Hedonic quality: α _multiple voice=0.80 , α _stop=0.84 , α _snapping=0.92, α

_continuous voice=0.89).  

Compared with the other three groups, the Stop group showed a higher 

pragmatic quality index (M=2.129, SD=0.748), but the Snapping Fingers group 

showed a higher index (M=1.563, SD=1.225) in the hedonic quality, and the 

specific parameters are as follows. A normality test (S-W test) was performed on 

the total score of the UEQ-S to confirm the distribution of each data set. The 

results showed that the total UEQ-S scores of all input methods did not show 

obvious normal distribution characteristics (Multiple Voice: D=0.953, P=0.0138; 

Stop: D=0.970, P=0.443; Snapping Fingers: D=0.931, P=0.031; Continuous voice: 

D=0.953,  P=0.140), and the Levene's test indicates that at least one set of 

variances is unequal (F=3.157, P=0.027). We compared the UEQ-S total scores 

using the Friedman’s test and found a significant difference in the UEQ-S total 

scores between groups (χ² = 44.622, DF = 3, p <0.01). Further post-hoc tests 

(Wilcoxon signed-rank test) showed that there was a significant difference 

between Continuous Voice and the other inputs (P_ Multiple Voice=0.003, P_ 

Stop=0.01, P_ Snapping Fingers=0.002), and there was no significant difference 

Subjective 

Workload 

Input Form 

Multiple 

Voice 

Stop Snapping 

Fingers 

Continuous 

voice 

Mean 29.20 27.40 27.80 54.89 

SD 20.251 20.333 18.852 28.471 

S-W 

Test  

D 0.850 0.847 0.882 0.934 

P <0.01 <0.01 0.01 0.037 
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between the other inputs.    

In terms of pragmatic quality, the S-W test was performed on the data of 

different input methods (Multiple Voice: D=0.883 P=0.001, Stop: D=0.970 P=0.443; 

Snapping Fingers: D=0.931 P=0.031; Continuous Voice: D=0.953 P=0.140), the 

results showed that it did not conform to the normal distribution. The results of 

Levene's Test (p<0.001) illustrate statistically significant differences in the 

variability (variance) of the data within the groups. Therefore, we applied the 

Friedman test, identifying significant differences in pragmatic quality across the 

methods (χ²=41.671, DF=3, P<0.001). Further post-hoc tests (Wilcoxon signed-

rank test) showed that there were significant differences between continuous 

voice and the other three input modes respectively (P_ Multiple Voice=0.001, P_ 

Stop=0.001, P_ Snapping Fingers=0.001), with no significant differences between 

multiple voice, stop and snapping fingers. 

In terms of hedonic quality, the S-W test was applied, and the results showed 

that not all of them were normally distributed (Multiple Voice: D=0.951 P=0.118, 

Stop: D=0.941 P=0.060; Snapping Fingers: D=0.881 P=0.001; Continuous Voice: 

D=0.907 P=0.006). The results of Levene's Test (p<0.855) illustrate that there was 

no statistically significant difference in the variance of the data in the four groups. 

Since the data are not normally distributed, we used the Friedman’s test to 

compare the indicators of hedonic quality, and the results showed that there was 

no significant difference between the four input methods (χ² = 5.250, DF=3, p 

=0.154). 

4.2.1.3 Usage Preferences 

Participants ranked their preferred input methods, with 71.4% favoring the 

Stop input the most, followed by Multiple Voice and Snapping Fingers. Conversely, 

68.6% of participants found the Continuous Voice to be their least preferred 

option (Fig. 8). 

 

 

Fig. 8: User Preferences for 4 kinds of input forms. 
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4.2.2 Quantitative Measures 

4.2.2.1 Interactive Duration 

We analyzed interactive duration under four input methods across two tasks.  

In task 1, Multiple Voice group was recorded the shortest average interaction 

durations among all groups (Table 7). The interaction durations for all input 

methods approached normal distribution (Table 7). Levene's Test revealed 

significant variance differences among the groups (F=5.347, P=0.002). We used the 

Friedman’s test to compare the interaction duration of the four input modes, and 

the results showed that there was a significant difference (χ² = 16.131, df = 3, p = 

0.01). Further analysis with Wilcoxon post-hoc tests (Wilcoxon signed-rank test) 

highlighted significant differences between the Stop and Multiple Voice (P=0.02), 

and Continuous Voice when compared to other methods (Multiple Voice: P<0.001; 

Stop: P=0.014; Snapping Fingers: P<0.001), while no other significant differences 

were observed. 

In task 2, the Stop group showed the shortest average interaction duration. 

Normal distribution tests (S-W test) for the data showed were close to normal 

distribution (Table 7). and Levene's Test indicated unequal variances among groups 

(F=9.270, p<0.01). We used the Friedman’s test to compare the interaction 

duration of the four input modes, and the results showed that there was a 

significant difference in interaction durations (χ² = 84.840, DF=3, p <0.01). Further 

post-hoc tests (Wilcoxon signed-rank test) showed that there was a significant 

difference in the interaction duration between Stop and voice (p<0.01), some 

significant differences between Continuous Voice and Multiple voice, Stop or 

Snapping Fingers (P<0.01 for each), and there was no significant difference 

between the other inputs. 

The analysis of interaction durations across different task types indicated that 

the durations were not normally distributed (Task 1: P=0.740; Task 2: P<0.01). 

Levene’s Test confirmed significant differences in variance (F=65.961, P<0.01). The  

Wilcoxon Signed-Rank Test revealed that interaction durations in task 2 were 

significantly shorter than those in task 1 (Z = -10.265, P < 0.001), showing a 

notable distinction in performance between the two tasks. 
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Table 7. Interactive Duration for 4 Kinds of Input Forms. 

 

4.2.2.2 Deviation Rate 

In this study, we statistically analyzed the effects of four different input modes 

(Multiple Voice, Stop, Snapping Fingers and Continuous Voice) on deviation rates. 

Because the results of the tasks entered by voice are 100% correct, the deviation 

rate is 0. The average deviation rate of Stop is lower than that of Snapping Fingers 

and Continuous Voice of the two types of tasks (Table 8).  

In the condition of task 1, through normal test (S-W Test) to confirm the 

distribution of the data set. The results show that the deviation rate data in all 

input modes is not in obvious non-normal distribution (p_ Stop=0.058, p_ 

Snapping Fingers =0.185, p_ Continuous Voice=0.200). Levene’s test showed equal 

variance among the groups (F=1.405, P=0.205). ANOVA analysis showed that there 

was no significant difference in the performance of all input methods (F=38.674, 

P < 0.01). In multiple comparison, we adopted the Tukey HSD test to evaluate the 

significant difference between the input modes. The Stop input had a significantly 

lower deviation rate compared to both Snapping Fingers and Continuous Voice (P 

< 0.001). Although the difference in deviation rates between Snapping Fingers and 

Continuous Voice was smaller, it remained statistically significant (P = 0.023), with 

Snapping Fingers showing a lower rate. 

In the condition of task 2, the S-W test indicated that deviation rates for all 

input methods were approximately normally distributed (Multiple Voice: D = 0.957, 

P = 0.181 Stop: D = 0.986, P = 0.929; Snapping Fingers: D=0.969 P=0.405; 

Continuous Voice: D=0.956 P=0.176). However, the results of Levene's Test (F=136, 

p < 0.01) indicate that at least one variance of the deviation rate is not equal 

between the groups. We used the Friedman’s test to compare the deviation rates 

of the four input methods, and the results showed significant differences in the 

deviation rate between the groups (χ² = 84.840, df=3, p < 0.01). Further post hoc 

tests (Wilcoxon signed rank test) showed that There is a significant difference 

Interactive Duration Input Form 

Multiple 

Voice 

Stop Snapping 

Fingers 

Continuous Voice 

Task 1 Mean 9.8277 10.7026 10.3420 11.3591 

SD 1.83375 1.31899 1.01160 1.10576 

S-W 

Test  

D 0.980 0.954 0.981 0.972 

P 0.750 0.145 0.793 0.512 

Task 2 Mean 21.4846 13.3583 13.65660 15.1543 

SD 2.38374 1.09085 1.204180 1.51558 

S-W 

Test 

D 0.9 0.979 0.969 0.956 

p 0.181 0.725 0.405 0.176 
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between Stop and the other input modes (P<0.01 for each). There is no significant 

difference between the other two modes. 

 Deviation Rate Input Form 

 Multiple 

Voice 

Stop Snapping 

Fingers 

Continuous  

voice 

Task 1 Mean 0 3.3810% -8.1905% -4.5714% 

SD / 0.0449193 0.0673217 0.0544345 

Task 2 Mean 0 1.5063% 1.5899% 1.8192% 

SD / 0.0117481 0.0143020 0.0106637 

Table 8. Deviation Rate for 4 Kinds of Input Forms. 

 

4.3 Discussion 

 

In this study, we selected a variety of hybrid input methods as research objects, 

aiming to explore their application performance in continuous NDRTs. The conventional 

voice input mode was used as a baseline to compare the effectiveness of the various input 

methods in real-world usage. Our findings revealed key insights into user preferences and 

the performance of these methods across multiple metrics. One of the most notable 

findings was the superior performance of the "stop" command compared to snapping 

fingers as a means to terminate a task. The "stop" command demonstrated better results 

in both interaction duration and deviation rate, and was the most preferred method 

among participants. Conversely, the prolonged sound (continuous voice) method 

performed the worst across most metrics. This method resulted in higher subjective 

workload, longer interaction times, and greater deviation rates. Therefore, this section 

will focus on the causes of these, so as to provide useful references and improvement 

methods in the future design of HVI systems.  

Regarding interaction time (RQ1), our results revealed mixed performance across 

tasks. In Task 1 (volume adjustment), the multiple voice input method resulted in 

significantly shorter interaction times compared to the "stop" control method. However, 

in Task 2 (social media browsing), the results showed a completely opposite trend, with 

the "stop" control method has better performance on time efficiency than multiple voice 

input. These contrasting results may be attributed to the inherent differences in task 

complexity. For simpler tasks like volume adjustment, multiple voice inputs may allow for 

more direct and quicker control.  Additionally, the continuous voice method shown poor 

interaction efficiency in both tasks. The participants suggested that in a shorter task 

environment, the continuous voice method may provide a smoother experience and 

lower physical burden. This reminds us that future designers should take into account the 

characteristics and expectations of different types of tasks when designing interactive 

interfaces. Designers can simulate various scenarios to test different input methods and 

find the most suitable strategy for a specific task. This will not only improve user 
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experience but also ensure that the system remains efficient and stable under complex 

usage conditions. 

Regarding deviation rate (RQ1), the 0% deviation rate set by multiple voice inputs 

was due to system settings. Participants noted that when the gradient of a single voice 

command was too large, command accuracy tended to decrease. Conversely, if the 

gradient was small but the target value was distant, participants were forced to make 

frequent readjustments, adding to their operational load. Additionally, without the ability 

to monitor their input in real-time, participants found it challenging to achieve optimal 

results through repeated adjustments, which negatively impacted their overall 

experience. The “stop” input method performed better, allowing for real-time control of 

volume adjustments and page scrolling. However, the continuous voice method exhibited 

a much higher deviation rate than other input methods, likely due to users’ limited 

stamina and skill in maintaining continuous vocalization. Moreover, there was an 

approximate 1-second delay between the end of vocalization and the system stopping 

actions, such as volume increase or page scrolling. While previous research has shown 

that non-verbal vocalizations, like humming, can improve input accuracy compared to 

speech in gaming contexts[101], our findings differ. This discrepancy may be attributed to 

the fact that their studies leveraged the pitch of non-verbal sounds for more precise 

control. To improve user experience, developers must optimize algorithms to minimize 

unnecessary delays and explore additional information from non-verbal vocalizations, 

allowing users to achieve more precise control through real-time feedback, thereby 

creating a smoother and more natural interaction process. 

Regarding subjective workload (RQ2), the continuous voice input method had the 

greatest workload among the input methods. This high workload stems from the need for 

continuous vocalization, which naturally increases physical pressure on the participants. 

As one participant mentioned, the method could be better suited for tasks requiring fine-

tuned adjustments, where brief but precise vocalization might be useful. Several 

participants also suggested that traditional voice input could be simplified by converting 

repetitive commands into a more concise form (e.g., “volume up, up, up” instead of saying 

“volume up” multiple times) This adjustment could reduce the subjective effort required 

and enhance the overall user experience. Regarding the lack of significant differences 

among the other input methods, future research could focus on exploring various task 

types and the intensity required to complete them. A more detailed understanding of task 

characteristics could facilitate the development of input tools better suited for specific 

tasks, allowing users to perform tasks with minimal physical workload. Regarding 

pragmatic quality and hedonic quality (RQ3),In terms of pragmatic quality, the continuous 

voice method performed the worst, likely due to the increased physical burden it imposed 

on users. The need for sustained vocalization contributed to a less favorable user 

experience. On the other hand, the other input methods, including multiple voice input 

and Stop input, showed similar pragmatic quality scores, In terms of hedonic quality, 

there was no obvious gap between the four input methods, which may be because the 

system provided similar feedback mechanisms [99]. Future designs should take into 

account the user's physiological burden and system feedback mechanisms to improve the 

user experience.  
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In terms of user preferences (QR4), this research indicated that Stop input method 

was the most favored, likely due to its combination of low physical effort and high 

effectiveness across both tasks. It was simple to learn and intuitively understood by users. 

Traditional voice input also received support from some participants. An interesting 

suggestion from participants was to use the loudness of the user’s voice to directly control 

the music volume. This offers valuable insights for future voice interaction systems, 

specifically in how to better integrate user actions with system functionality to improve 

the overall user experience and satisfaction. 
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5. Conclusion  

 
This research provided a comprehensive investigation into the application of non-verbal 

sound technology in autonomous driving, with a particular focus on its use in voice activation 

and the management of continuous NDRTs. The study was divided into two parts: the first part 

examined the effectiveness and user experience of finger snapping as a novel wake-up 

method., while the second part evaluated the role of non-verbal sounds in managing 

continuous NDRTs within AVs 

In the first experiment, we investigated the potential of using non-verbal sounds to wake 

up voice interaction systems. The results indicated that, although snapping fingers to wake up 

the system did not significantly improve interaction efficiency, the wake-up-free method 

performed well in reducing false negatives and shortening interaction duration. However, the 

most participants still preferred traditional wake-up methods, likely due to their familiarity and 

trust in these interactions. Therefore, while non-verbal sound technology offers unique 

advantages, further improvements are needed in terms of user experience, task efficiency, and 

wake-up reliability. 

 In the second experiment, we further explored the performance of non-verbal sounds 

in continuous tasks by comparing the effectiveness of Stop input methods with Continuous 

Voice (vowel sustain) for managing NDRTs. The results showed that the Stop input method 

performed better at maintaining the text deviation rate and was preferred by the majority of 

participants. However, continuous voice did not exhibit a significant advantage in terms of 

interaction efficiency when compared to other sound inputs. In addition, the workload 

required to complete certain tasks appears to be large for continuous voice input, suggesting 

potential flaws in task design. To address this problem, we suggest that continuous voice may 

be more suitable for tasks requiring fine-tuning in the future. 

In conclusion, while this research highlights the potential of non-verbal sound interaction 

technology, it also underscores the challenges and areas for improvement. Our initial findings 

show promise under specific conditions, but further research is necessary to confirm the 

broader applicability of these technologies. Future research can start from user experience, 

refining system design, and optimizing algorithms to enable more efficient HVI. Through 

ongoing technological iteration and the incorporation of user feedback, non-verbal sound 

technology has the potential to become a key driver of AI development, offering richer and 

more seamless interactive experiences. 
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Appendix A: NASA-TLX Questionnaire 

NASA Task Load Index (TLX) 

Name:                    Task:                       No.: 

1. Mental Demand: How much mental and perceptual activity was required? (e.g., 

thinking, deciding, calculating, remembering, looking, searching) /心理需求：需要

多少心理和知觉活动？（例如，思考、决定、计算、记忆、观察、搜索） 

Very Low (1)                                                     Very High (20) 

非常低（1）                                                    非常高（20） 

2. Physical Demand: How much physical activity was required? (e.g., pushing, pulling, 

turning, controlling, activating) /体力需求：需要多少体力活动？（如推、拉、

转、控制、激活） 

Very Low (1)                                                     Very High (20) 

非常低（1）                                                    非常高（20） 

3. Temporal Demand: How much time pressure did you feel due to the pace of the 

task or your inability to complete it in time? /时间需求：由于任务的节奏或你无法

及时完成它，你感到有多大的时间压力？ 

Very Low (1)                                                     Very High (20) 

非常低（1）                                                    非常高（20） 

4. Performance: How successful do you think you were in accomplishing the goals of 

the task? /表现：您认为自己在完成任务目标方面有多成功？ 

Very Low (1)                                                     Very High (20) 

非常低（1）                                                    非常高（20） 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
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5. Effort: How hard did you have to work to accomplish your level of performance? /努

力：完成任务时，您需要付出多少努力才能达到自己的表现水平？ 

Very Low (1)                                                     Very High (20) 

非常低（1）                                                    非常高（20） 

6. Frustration Level: How insecure, discouraged, irritated, stressed, and annoyed were 

you? 挫折感：您在任务过程中感到有多不安、沮丧、恼火、压力大或烦恼？ 

Very Low (1)                                                     Very High (20) 

非常低（1）                                                    非常高（20） 

 

Appendix B: User Experience Questionnaire (UEQ-S) 

Name:                                          No.: 

The questionnaire is designed to evaluate your user experience with different input 

methods. Please answer each question based on how you really feel. /该问卷旨在评估您对

不同的输入方式的用户体验。请根据您的真实感受回答每个问题。 

For each question, please select the rating that best matches your actual experience with 

the system. 

For example/例如, 

For the first question/第一题: 

If you found the system to be very obtrusive, choose a score of 1/如果您觉得系统非常碍手

碍脚，选择 1 分； 

If you found the system to be very supportive, choose a score of 7 如果您认为系统非常能

提供辅助，选择 7 分； 

In all other cases, choose the appropriate score (2-6) based on your experience/其他情况根

据您的感受选择适当的分值（2-6 分）。 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
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1. Obstructive/碍手碍脚的                        Supportive/能提供辅助的 

 

 

 

 

2. Complicated/复杂的                                      Easy/简单的 

 

 

 

 

 

3. Inefficient/低效的                                     Efficient/高效的 

 

 

 

 

 

4. Confusing/令人眼花缭乱的                           Clear/一目了然的 

 

 

 

 

 

5. Boring /乏味的                                      Exciting /带劲的 

 

 

 

 

 

6. Not interesting /无趣的                               Interesting /有趣的 

 

 

 

 

 

7. Conventional /常规的                                 Inventive /独创的 

 

 

 

 

 

8. Usual /传统的                                    Leading Edge /新颖的 

 

1 3 2 4 5 6 7 

1 3 2 4 5 6 7 

1 3 2 4 5 6 7 

1 3 2 4 5 6 7 

1 3 2 4 5 6 7 

1 3 2 4 5 6 7 

1 3 2 4 5 6 7 
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Appendix C: Preference Questionnaire (Experiment 1) 

Name:                                          No.: 

Please rank the following wake-up methods based on your personal preference, with 1 

indicating the most preferred and 3 indicating the least preferred. Rank the wake-up 

methods according to your experience/请根据您的个人体验对不同唤醒方式进行排名，

其中 1 表示最偏好，3 表示最不偏好。请根据您的使用体验给以下唤醒方式排序： 

·Wake-up word activation/唤醒词唤醒:                

·Snapping finger activation/打响指唤醒:                  

·Wake-up-free activation/免唤醒:        

 

Appendix D: Preference Questionnaire (Experiment 2) 

Name:                                          No.: 

Please rank the following input methods based on your personal preference, with 1 

indicating the most preferred and 4 indicating the least preferred. Rank the wake-up 

methods according to your experience/请根据您的个人体验对不同输入方式进行排名，

其中 1 表示最偏好，4 表示最不偏好。请根据您的使用体验给以下唤醒方式排序： 

·Multiple voice input/多次语音输入:                

·Voice + say “stop” /语音+停止的输入方式:                

·Voice + snapping finger/语音+打响指的输入方式:               

·Continuous voice/连续性语音输入:        

 

 

  

1 3 2 4 5 6 7 


