
TRANSISTOR-BASED

HARDWARE NEURAL NETWORK SYSTEM:
SIMULATION AND ANALYSIS

By
ZHIHAO CHEN

B.S., University of Nottingham Ningbo, China, 2021
Ph.D., University of Nottingham Ningbo, China, 2025
Department of Electrical and Electronic Engineering

February 13, 2025

© 2025
ZHIHAOCHEN

ALL RIGHTS RESERVED

CHEN, Zhihao

Transistor-Based
Hardware Neural Network System:
Simulation and Analysis

Dissertation directed by Prof. James C. Greer & Dr. Amin Farjudian

ABSTRACT

The burgeoning field of artificial intelligence has spurred a shift in com-
putational paradigms, necessitating the development of specialized hardware to
support the demanding requirements of neural network processing. This thesis
presents a comprehensive study on the design, simulation and analysis of hard-
ware components integral to artificial intelligence systems, focusing on innova-
tion for activation function generator circuits and linear transformation circuits.
In this study, we will elucidate the design and performance characteristics of the
two types of circuit, and we will provide simulation examples to illustrate their
potential as viable alternatives to neural network accelerators.

We commence by detailing the design process of an innovative activation
function circuit (AFC) with a pair of complementary metal oxide semiconductor
(CMOS) transistors, which produces a novel activation function that exhibits
learning performance on par with widely used activation functions employed in
machine learning architectures. Through rigorous analysis, we demonstrate the
efficacy of our proposed AFC in facilitating efficient information propagation
within hardware neural network (HNN) systems.

Subsequently, we introduce our design of the multiply accumulate circuit
(MAC), which achieves a state-of-the-art performance in regard of energy effi-
ciency, response time, and silicon footprint in the computation stage of linear
transformations operations. The optimisation of the circuit is crucial to reducing
the hardware footprint and power consumption, crucial factors in the deployment
of HNN systems, especially in resource-constrained environments.

At the system level, our analysis delves into the accumulation of errors
within neural networks, providing information on the propagation and impact of
these errors on the overall performance of the network. Recognising the limita-
tions of current training methodologies, we propose potential optimisation algo-
rithms aimed at enhancing the robustness and precision of hardware-based artifi-
cial intelligence systems. Preliminary results indicate promising improvements,
suggesting the viability of our approach.

Lastly, on the basis of our analysis at the system level, we propose sev-
eral potential applications of this technology. These include, but are not lim-
ited to, real-time artificial intelligence processing in edge devices and advanced
decision-making systems where low latency and high computing capabilities are
paramount.

In conclusion, our research represents a significant stride towards the re-
alisation of efficient and powerful HNN systems. The innovations in activation
function generation and linear transformation, coupled with the systematic anal-
ysis of error propagation, pave the way for future advancements in the field, with
the potential to have a significant impact on the landscape of artificial intelligence
implementation across various industries, particularly with regard to enhancing
operational efficiency and enabling modifications in a standalone manner.

Keywords: Hardware Neural Networks, AI Implementation, Neural Network Pro-
cessing, Error Accumulation Analysis, Edge Computing

ACKNOWLEDGMENTS

I extend my deepest appreciation to those who have guided and supported me
throughout the journey of crafting this research endeavour. In particular, I am profoundly
indebted to my esteemed advisors, Prof. Jim Greer and Dr. Amin Farjudian, whose un-
wavering dedication, insightful counsel, and meticulous attention to detail have been
instrumental in shaping this work. Their scholarly acumen and rigorous academic stan-
dards have served as a beacon, illuminating the path to the successful completion of this
project.

Prof. Greer, with his extensive experience and innovative approach to research
methodologies, has consistently challenged me to think critically and expansively. His
mentorship has been characterized by a blend of rigour and warmth, fostering an envi-
ronment conducive to intellectual growth and personal development.

Dr. Farjudian’s profound knowledge and keen eye for theoretical nuances have
been invaluable, providing me with a robust foundation upon which to build my ar-
guments. His patience in explaining complex concepts and his encouragement during
moments of doubt have been sources of strength and inspiration.

Beyond their professional guidance, both advisors have shown genuine concern
for my well-being, offering support that transcends the realm of academia. Their men-
torship has been a testament to the transformative power of education and I am forever
grateful for their investment in my future.

iv

DECLARATION

The author declares that this work has been composed solely by himself and that it has
not been submitted, in whole or in part, to any previous application for a degree.

Except where states otherwise by reference or acknowledgment, the work presented is
entirely my own.

The second through fourth sections of Chapter 4, along with the second section of
Chapter 6, have been developed into a manuscript titled ”Variability Analysis for

Hardware Neural Networks,” which has been submitted to the esteemed publication
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

Contents

1 Introduction 1
1.1 Motivation and Major Research Contributions 2
1.2 Thesis Outline . 4

2 Summary of Related Literature 7
2.1 Overview . 7
2.2 Development of Hardware Neural Network 8

2.2.1 Implementations of hardware neural network systems 9
2.2.2 Output performance of hardware neural network implementations 12

2.3 Robustness Analysis and Optimisation 15
2.3.1 Error analysis against variability and noise 15
2.3.2 Robustness optimisation for neural networks 18

2.4 Conclusion . 21

3 Methodology 23
3.1 Overview . 23
3.2 Nomenclature and Validation Procedure 25

3.2.1 Module design and communications 26
3.2.2 Shared benchmark of modular system 29

3.3 Performance and efficiency analysis 33
3.3.1 Benchmark and method of analysis 34
3.3.2 System and modular tolerance 37

3.4 Conclusion . 40

4 Activation Function Circuit 43
4.1 Overview . 43

4.1.1 Background: Hardware neural computing 44
4.1.2 Motivation: Efficient Look-Up Table 45

4.2 Push-Pull Linear Follower . 46
4.2.1 Circuit diagram . 46
4.2.2 Non-linear transfer function 49

4.3 Activation Function Analysis . 52
4.3.1 Comparison with other activation functions 52
4.3.2 Special applications . 57

4.4 Circuit Performance . 59
4.4.1 Energy consumption and responding time 60
4.4.2 Fan-out . 63

4.5 Robustness Analysis . 67
4.5.1 Thermal and noise tolerance 67
4.5.2 Tolerance in neural network system 70

v

vi CONTENTS

4.6 Conclusion . 75

5 Multiply Accumulate Circuit 77
5.1 Overview . 77

5.1.1 Background: Crossbar circuit for linear transformations 78
5.1.2 Motivation: Low-current Multiply Accumulate Circuit 79

5.2 Multiply Circuit . 80
5.2.1 A scaleable quantized capacitive weighting system 80
5.2.2 Pass-gate as the multiplexer 82

5.3 Accumulate Circuit . 84
5.3.1 Linear follower and Operational Amplifier-based summing circuit 86
5.3.2 H-bridge and charge pump-based summing circuit 88

5.4 Crossbar Designed MAC . 91
5.4.1 MAC in functional blocks . 92
5.4.2 Space, time and energy efficiency 95

5.5 Robustness Analysis . 99
5.5.1 Component tolerance in multiply circuit 99
5.5.2 Parameter tolerance in neural network system 103

5.6 Conclusion . 107

6 Systematic Analysis on Performance and Behaviour 109
6.1 Overview . 109
6.2 Performance and Robustness . 111

6.2.1 Effect of variability in components 112
6.2.2 Effect of variability on neural network level 114

6.3 Limitations and Challenges . 118
6.3.1 Typical limitations for Operational Amplifier based design in

hardware neural networks . 119
6.3.2 Compromise for H-bridge design in hardware neural networks . 122

6.4 Conclusion . 125

7 Potential Adjustments and Applications 127
7.1 Overview . 127
7.2 Gradient-Free Robust Optimisation . 129

7.2.1 Hardware orientated optimiser 129
7.2.2 Biology inspired optimiser . 131

7.3 Potential Applications . 135
7.3.1 Tiny machine learning . 136
7.3.2 Neuron decision tree and mixture of experts 139

7.4 Conclusion . 142

8 Conclusion 145
8.1 Summary of Contributions . 146
8.2 Limitations and Challenges . 147

Reference 149

List of terms 189

APPENDICES 195

A Introduction of Neural Networks 195
A.1 Structural Composition of Neural Networks 195

CONTENTS vii

A.1.1 Input Layer . 196
A.1.2 Hidden Layers . 196
A.1.3 Output Layer . 197
A.1.4 Layer Stacking . 197

A.2 Principle of Model Fitting . 198
A.2.1 Training Process of Neural Networks 198
A.2.2 Fitting Principle of Neural Networks 200

A.3 Development of Neural Networks . 203
A.3.1 Perceptron . 203
A.3.2 Multi-layer Perceptron . 203
A.3.3 Convolutional Neural Network 203
A.3.4 Recursive Neural Network . 204
A.3.5 Long Short-Term Memory Network and Gated Recurrent Unit . 204

A.4 Range of Applications . 205

B Low Power 45nm MOS FET PTM 207

viii CONTENTS

List of Tables

2.1 State-of-the-arts in implementing neural networks on field-programmable
gate array platforms . 13

2.2 State-of-the-arts in implementing neural networks with analog technolo-
gies. 14

4.1 Representative activation functions . 53
4.2 Regression loss versus activation functions applied 56

5.1 The detailed description and rated expectation of time and energy effi-
ciency of the state-of-the-art of multiply accumulate circuits 97

5.2 The validation loss and validation accuracy with variability added to pa-
rameters . 106

ix

x LIST OF TABLES

List of Figures

3.1 Work flow verification . 32

4.1 The basic diagram illustrating the complementary metal oxide semiconductor-
based activation function circuit . 46

4.2 The study presents an analytical model of the activation function circuit
with a discrete matched pair . 48

4.3 Comparison between the transfer characteristics of the activation functions 54
4.4 The assessment of loss and accuracy on validation sets using various

activation functions . 55
4.5 Comparison on robustness for different activation functions against pa-

rameter perturbations . 56
4.6 The configuration of the recursive neural network for Gray Code repre-

sentation . 58
4.7 The system depicts the principle of the Gray Code analog-digital con-

verter classifier task . 59
4.8 The simulation results produced by the predictive technology model us-

ing LTspice software . 61
4.9 The reaction of a zero-load activation function circuit to a step input . . 62
4.10 The transfer function of the proposed activation function circuit with a

resistive load . 63
4.11 The response to a step function with transition of a capacitively loaded

activation function circuit . 64
4.12 The small signal response of a capacitively loaded activation function

circuit . 65
4.13 The diagram of the activation function circuit with fan-out 66
4.14 The response of the step function when applied to the activation function

circuit with fan-out . 66
4.15 Thermal sensitivity of the activation function circuit 68
4.16 Thermal sensitivity of the activation function circuit in terms of current

flow . 68
4.17 The results of a simulation involving a set of mismatched transistors . . 69
4.18 One particular instance of corrupted input data 71
4.19 The impact of noise introduced at the inputs 72
4.20 The impact of noise introduced to the outputs of each activation functions 73
4.21 The impact of noise introduced to the pre-activation and activated value

of each activation functions . 74

5.1 Fundamental principle of a capacitive weighting system 81
5.2 Basic schematic of multiplexer . 83
5.3 Three-input multiply circuit response to inputs and energy consumption 85
5.4 The diagram illustrating the revised operational amplifier configuration . 86

xi

xii LIST OF FIGURES

5.5 The systematic layout of a signal cell 87
5.6 Basic schematic of summing circuit 89
5.7 A cascaded pair of summing circuits 91
5.8 The block diagram illustrating the integration of the proposed linear fol-

lower and operational amplifier-based multiply accumulate circuit . . . 92
5.9 The block diagram illustrating the integration of the proposed H-bridge

and charge pump-based multiply accumulate circuit 93
5.10 The graphic representation of how the suggested multiply accumulate

circuit could potentially be linked together in a crossbar configuration . 94
5.11 The latest state-of-the-art of capacitor-based and field-programmable gate

array-based multiply accumulate circuits 97
5.12 Simulated set of weight presented by non-ideal weighting circuit 101
5.13 The simulated output and relative error distribution 102
5.14 The probability density function of weights generated by Monte-Carlo

method of relative weight variance . 104
5.15 The outputs of neural networks with perturbed parameters compared

with the ideal case. 105
5.16 The optimal outcome of a single hidden layer within the neural network

regarding a Gray Code analog-digital converter-centred regression task . 107

6.1 The relative error seen in each of the layers of a well-tuned network with
activation functions and parameters independently perturbed 114

6.2 The output of four neurons involved in neural network mimicking an
XOR gate . 115

6.3 The difference between ideal and non-ideal case output seen at hidden
layer neurons of the same network and configuration as shown in Fig. 6.2 116

6.4 The accuracy drop of a well-trained model against perturbations on pa-
rameters and activation functions . 117

6.5 The schematic of one linear layer and one activation layer of the imple-
mentation of a hardware neural network 120

6.6 The pulse response of a single layer perceptron 121
6.7 The response of cascading in the hardware neural networks 122
6.8 The schematic of the proposed sample-and-hold circuit 124
6.9 The time domain response of the sample-and-hold circuit 125

Chapter 1

Introduction

In the field of machine learning (ML), a prevalent practice is to employ
artificial neural networks (ANNs) for a variety of tasks in business, science, and
technology, leveraging their abilities in classification, clustering, and regression
[1]. The system has its strength in processing high-dimensional inputs with in-
herent complexity.

ANNs have shown great potential in a multitude of applications due to their
efficient hierarchical structure. Unlike traditional computer architectures, these
parallel distributed systems organize instructions and operational details into pa-
rameters, commonly known as weights [2, 3]. These parameters describes the
strength of connections, or synapses, between neurons. The neurons refer to a
set of mathematical abbreviations of functional units within neural networks that
perform signal aggregation and non-polynomial transformations before transmit-
ting outputs to other neurons through synaptic connections. A brief introduction
on the structure of neural networks and a typical optimisation procedure for the
model to fit a given function is provided in Appendix A.

To evaluate the performance of a given neural network, aside from the
learning outcome, or the accuracy the system has for a specified problem, latency,
fault tolerance and scalability are also vital aspects to be paid special attention
to of the system specification [4]. Commonly, the research in this field usually
focuses on the following aspects:

• Robustness: The predictive capability when introducing uncertainty and
distortions in operation stages during operations

• Transparency: The possibility of interpreting neural network models with
explanations of the basis of decisions made

• Extrapolation: The generalisation ability of the model to predict accurately
the outward range of data used during calibration
However, aside from the aspects focusing mainly on the performance of

the mathematical model, there are also concerns related to the physical imple-
mentation of the system. With a physical platform performing the system opera-
tions, typically on servers with numerous parallel computing devices, the poten-
tial inconsistency between the non-standard computation scheme and the widely
adapted von Neumann or Harvard architecture computers has also attracted at-
tention in recent research [5].

The configuration of the neural network system raises important questions
about the significance of individual parameters or sets of parameters in influenc-

1

2 CHAPTER 1. INTRODUCTION

ing system performance, as well as the implications of a neuron’s output given
a specific input. Balancing system efficiency with the learning process is a key
challenge [6].

The potential redundancy in neural network systems can lead to a high vol-
ume of computing operations, which can be energy-consuming. In cases where
computing overheads are constrained, efforts are made to simplify the system
structures, both in terms of mathematical models and hardware. In addition,
the poor transparency in the potentially redundant parameters makes the system
more difficult to analyse in terms of its robustness to potential attacks and calcu-
lation failures or to correct when errors are introduced or detected [7].

Systematic attempts are being made to assess the efficiency of interconnec-
tions in neural networks, with proposed frameworks for analysis and subsequent
pruning based on these assessments. Furthermore, ongoing research is being
conducted on the geometric and topological properties of neural networks and
the impact of their configurations on learning outcomes.

In practical cases, a common strategy employed in practical applications
involves using lower-resolution representations of parameters to decrease stor-
age requirements and streamline computations. In addition, linear transforma-
tions can be substituted with multiple bit-level operations to enhance computa-
tional efficiency [8]. Some researchers are also investigate the mapping of ac-
tivation functions to look-up tables (LUTs) as a method to improve operational
efficiency. field-programmable gate arrays (FPGAs) or application-specific in-
tegrated circuits (ASICs) are frequently used to optimise operations and boost
efficiency. Particularly, there are proposals for processing-in-memory (PIM) ar-
chitectures aimed at eliminating the frequent read-and-write operations during
neural network operations.

In addition to digital systems, there is an attempt to incorporate analog sys-
tems in neural network accelerator designs. In these instances, the linear trans-
formations required for layer-wise communications are altered using specially
designed array-based LUTs, enabling faster and more energy-efficient interac-
tions. This system can be more easily integrated into memories or their equiv-
alents, leading to reduced space occupancy. However, there is limited research
dedicated to implementing analogueue LUTs, with the majority of them simply
mimicking existing activation functions with transfer functions of passive and /
or active components.

Although efficiency gains have been observed in various fields, concerns
about the overall robustness of these approaches persist. The trade-off between
resolution in data representation and the approximations made in computations
raises questions about potential performance limitations in ANN systems.

1.1 Motivation and Major Research Contributions
Based on the foregoing discussions, a primary concern related to the im-

plementation of neural networks involves optimising systematic operation effi-
ciency in terms of response time, energy consumption, power usage, and silicon
footprint. Moreover, there will be a focus on ensuring the system’s resilience to
variability in various parameters.

The biological nervous system, which naturally contradictions as ANN,

1.1. MOTIVATION AND MAJOR RESEARCH CONTRIBUTIONS 3

has shown remarkable learning abilities that surpass even the most sophisticated
currently in existence. If we consider that the principles guiding neural networks
mirror those governing the human brain, there is the possibility of developing a
trainable system only using analog mechanisms. This implies the potential inte-
gration of linear and non-linear transformations, as well as learning and updating
mechanisms, into a purely analog system.

The aim of applying non-polynomial functions as activation functions be-
tween each two linear layers of a neural network model is to prevent it from
degrading to a purely linear transformation. It has been proven that activation
functions can be chosen to be any non-polynomial functions [9, 10]. Based on
the observation of the significant non-linearity in transistor transfer functions,
it is conceivable that they could act as an analog look-up table (LUT) for neu-
ral networks implemented in hardware. Additionally, due to the mathematical
similarity between linear transformations and the operations of a standard sum-
ming amplifier network, we are confident in the system’s potential as a practical
alternative to traditional computing devices.

The implementation of both linear and non-linear operations in neural net-
works typically takes the form of sub-modules referred to as layers, which are de-
signed to accommodate multiple inputs and outputs. The two sub-modules have
the ability to provide prompt responses to potential inputs, enabling the hard-
ware neural network (HNN) system to effectively address latency issues when
arranged in a cascaded form and communicated with a standardised form of sig-
nal. In particular, using transistors for the system activation functions, there is
a possibility of enhanced energy efficiency compared to existing digital designs
[11].

In general, the analog system can provide superior computing performance
with a more efficient interface than software-based implementations and digital
systems employing arithmetic logic units (ALUs) or field-programmable gate
arrays (FPGAs).

In the course of our research, the key contributions are as follows:
• Developed a purely analog activation function circuit involving only a pair

of complementary metal oxide semiconductors transistors. This circuit
exhibits strong thermal resilience in generating a specific transfer function,
primarily serving as the activation function circuit and partly supporting
the multiply accumulate circuit design.

• Proposed a unique activation function based on the transfer function ob-
tained with the aforementioned circuit, demonstrating equivalent learning
capacity to other widely used activation functions.

• Designed a weighting circuit with capacitive components following the
configuration and specifications of the AFC for compatibility considera-
tions.

• Presented two versions of the summation circuit based on the design of
the weighting circuit to mainly satisfy either stability requirements or effi-
ciency concerns.

• Formulated a model describing the progression of error accumulation within
a given neural network, factoring in any potential inaccuracies and noise
present during analog processing.
The process of designing a circuit and applying its transfer function as

4 CHAPTER 1. INTRODUCTION

activation functions of a neural network represents a novel approach to this un-
derstudied topic, as will be exemplified in Chapter 4. Based on the extensive
literature review conducted, no similar methodologies have been identified.

The MAC offers a technically advanced design solution that uses the con-
temporary industry technology that is readily available. The circuit is also capa-
ble of achieving a state-of-the-art (SOTA) performance as demonstrated through
simulations, in regard of its operational efficiencies and scalability in terms of
resolution.

Our proposed error accumulation model takes into account various pertur-
bations specified within our design, offering valuable information on predicting
errors at different layers of a neural network. Although current methods may not
yet fully anticipate drops in learning outcomes without statistical methodolo-
gies, the focused efforts in this thesis towards generalisation have significantly
advanced knowledge in this particular domain.

Furthermore, ongoing research efforts in the community and future work
related to the research discussed in the thesis are focused on developing robust
black-box optimisers and evaluating changes in learning efficiency and outcomes
in relation to topology, configuration, and perturbations.

1.2 Thesis Outline
This document is divided into six primary chapters, each encompassing

the core content and essential framework as delineated hereafter.
1. Chapter 2: We have conducted a thorough review of the existing literature

pertaining to the development and applications of hardware neural net-
works (HNNs). Taking into account the potential risks associated with the
non-ideal nature of its components and signal interface in practical inte-
grated circuit designs, we also examined studies on the analysis of various
sources and types of disruption, as well as recent efforts to detect, address,
and rectify these issues.

2. Chapter 3: We conducted a preliminary discussion regarding the design
process and considerations for hardware systems aligned with the corre-
sponding mathematical representations required. Our evaluation encom-
passes a comprehensive analysis of the system’s overall performance, bench-
marking against established implementations, and projecting the potential
effects of any deficiencies on both specific components and the system in
its entirety.

3. Chapter 4: We have put forth a circuit design that features a push-pull lin-
ear follower configuration, comprising a pair of complementary metal ox-
ide semiconductor transistors to function as the activation function circuit
of the hardware neural network. Analysing the activation function gen-
erated in comparison with other commonly used functions, summarising
the power consumption and latency of the circuit for nonlinear operations
through simulations and evaluating of thermal resilience and tolerance to
mismatches for system stability are also highlighted.

4. Chapter 5: An introduction to the multiply and accumulate components
pertinent to the multiply accumulate circuit is proposed. This study will
encompass an analysis of system scalability with respect to bit resolution

1.2. THESIS OUTLINE 5

and network size. Additionally, it will involve a comparative assessment
of the proposed system against the state-of-the-art designs, focusing on
the metrics of time and energy efficiency. Furthermore, we will address
the effect of potential inaccuracies resulted from rounding errors and ele-
ment tolerance, and consider the relevant physical constraints affecting the
system.

5. Chapter 6: The assessment of the performance of a HNN inclusive of the
two previously mentioned circuits will be conducted under both optimal
and less-than-optimal conditions. A model will be proposed to illustrate
the accumulation of disturbances on the output side, which will be vali-
dated through practical examples. Furthermore, we will explore enhance-
ments to the MAC aimed at fostering improved collaboration with the AFC
in real-world scenarios. This will be accompanied by discussions focused
on strategies for efficiency optimisation and the robustness of the proposed
modifications.

6. Chapter 7: This chapter aims to deliver a comprehensive overview of
under-explored topics within the discipline. It will include a thorough
review of pertinent literature, emphasizing systematic considerations and
prospective research directions. Additionally, it will propose actionable
applications grounded in the existing scholarly framework.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Summary of Related Literature

Neural networks are often regarded as versatile tools for performing a
range of complex tasks. In response to energy and time limitations, there is a
heightened focus on incorporating specialized hardware to optimise their oper-
ation. The advancement of computational power consumption associated with
neural networks trading capabilities has prompted concerns regarding energy
availability, thereby necessitates a balance between efficiency and performance.
Hardware accelerators developed for this purpose have demonstrated their ca-
pability in performing certain tasks in practical applications with a more effi-
cient manner. Our analysis in this part encompasses various implementations
and their corresponding efficiency against power and energy usage during op-
timisation and application, responding time and hardware occupation. We will
also examine studies addressing error estimation in systems with uncertainties
in both signal flow in each layer and the computation process. Furthermore,
we delve into discussions regarding error analysis pertaining to device and input
inconsistencies and explore strategies aimed at fortifying the system’s resilience.

2.1 Overview
Neural networks, especially deep neural network (DNN), have been effec-

tively utilized in a variety of complex tasks such as visual and auditory signal
recognition, decision-making, and robotic control [12]. These networks have
shown a remarkable ability to automatically extract features from input data in
a generalized manner with the derivative-based optimisation algorithm stochas-
tic gradient descent (SGD), which is a simple technique that can significantly
enhance the learning performance of neural networks [13].

The energy cost of accessing data in dynamic random-access memorys
(DRAMs) is notably higher than the cost of performing linear transformations,
causing a push to minimise data flows between computing devices and storage
components [14]. Without being prevented by the inclination to employ exten-
sive computing devices and storage with substantial costs and energy expendi-
tures persist in certain sectors, it is not economically feasible to utilise such tech-
nology directly for edge devices or similar applications where energy budget is
limited [5]. Hence, there is a need for solutions to implement such a machine
learning algorithm effectively on the devices currently accessible [15]. In these
applications implementing neural network in stand-alone hardware systems, em-

7

8 CHAPTER 2. SUMMARY OF RELATED LITERATURE

ploying field-programmable gate arrays (FPGAs) [16] or application-specific in-
tegrated circuits (ASICs) [17] as interface with off-chip system for storage and
computation has emerged as a preferred approach [18, 19].

Furthermore, the inherent attributes of deep neural networks (DNNs) lend
themselves well to leveraging analog devices for operations in scenarios that al-
low for a variety of platforms with precise restrictions. Recent research [20, 21]
underscores the feasibility of using analog devices for lower resolution imple-
mentations of the model. Thus, a more efficient approach to the implementation
of DNN is suggested to involve analog or mixed signal techniques [22].

Although it is true that neural networks can achieve satisfactory results
with lower precision levels without significantly affecting learning outcomes [23],
it is crucial to carefully consider the design and configurations of DNNs to en-
sure compatibility with hardware requirements. Furthermore, quantumization is
essential in this context for optimal performance [15]. The limited precision of
analog systems can lead to a decrease in accuracy, as highlighted in studies by
Valavi et al. [18] and Yin et al. [19].

In this study, we will discuss the advancement of HNNs and their ability
to balance learning capabilities and efficiency. The chapter will highlight the
following aspects:

• Examine the implementations of hardware neural network with FPGA sys-
tems and analog systems utilising resistive and capacitive components

• Analysis of energy, time and space efficiency in comparison to the state-
of-the-art (SOTA) works on hardware implementations in this field.

• Concerns related to the propagation of errors and their robustness within
neural networks, including methods to anticipate differences in output val-
ues and decisions.

• Recent advances in classification and correction of distortions and algo-
rithms that incorporate and utilise perturbations to enhance their optimisa-
tion processes.

2.2 Development of Hardware Neural Network
The mathematical model neural network has been shown effective on nu-

merous examples of practical applications, with various high-level programming
toolboxes put forward to accelerate the optimisation process and boost the accu-
racy of decision making in these tasks. However, there is a noticeable trade-off
between the use of neural networks as general-purpose solvers for complex prob-
lems, such as non-deterministic polynomial-hard (NP-Hard) class of problems,
and the significant power and space consumption the operations of neural net-
works require during training and applying processes [24] This trade-off has led
to a growing interest in exploring alternative ways of presenting the model of
neural network beyond traditional software implementations [25].

In order to design efficient systems that can be implemented in practical
devices with improved response time and reduced energy consumption with the
learning outcome of decision-making ability remaining unaffected, there is a
renewed focus on the parallelism of performing separate operations in a HNN.
This approach, which was originally developed in the 1980s, has once again
become a compelling and appealing topic of research [26].

2.2. DEVELOPMENT OF HARDWARE NEURAL NETWORK 9

In this section, we will examine the utilisation of neural network technol-
ogy through custom hardware systems and offer an evaluation of their perfor-
mance based on predetermined criteria. We will explore both digital and analog
systems, outlining specific criteria for each. A comparison of the performance
of each design will be presented briefly.

2.2.1 Implementations of hardware neural network systems

The increasing need for efficient utilisation of neural networks have ne-
cessitated hardware configurations without unnecessary functional redundancies
in data transmission processes and unused high-level functionalities in process-
ing elements. Research into the hardware implementation of models that do not
require excessive computing power due to software interactions and input / out-
put (I/O) during real-time applications has been a focus of scholarly inquiry for
some time [27]. In addition to ongoing efforts to minimize memory usage at
the algorithmic level [28, 29], advancements in parallel computing [30–32] and
the exploration of processing-in-memory (PIM) architectures [33–35] have been
introduced to enhance I/O performance and reduce chip area through the reor-
ganisation of processing elements.

With a well-known background of incorporating neural networks and their
variations such as DNNs, convolutional neural networks (CNNs) and recursive
neural networks (RNNs), the technology of HNN implementation has garnered
interest in tasks focused on efficiency and research efforts [5]. When considering
the convolutional layer of a CNN as a sparse fully connected matrix utilising an
identical set of weights, or when we extend the temporal representation of a
RNN into a spatial domain, we can arrive at a model that resembles a DNN in
the traditional context. Thus, in the following article, we will concentrate on the
HNN implementations for DNN acceleration.

Being able to enhance operational efficiency beyond traditional methods
involving the utilisation of graphics processing units (GPUs) or equivalent de-
vices, the technology of HNN is being applied to edge applications as a promis-
ing accelerator to perform the necessary operations involved in the neural net-
work model, where constraints such as latency, energy consumption, and space
availability are critical considerations [5].

In practice, field-programmable gate array (FPGA) based HNNs are pre-
ferred over digital signal processor (DSP) or application-specific integrated cir-
cuit (ASIC) implementations due to their parallel computing capabilities and pro-
grammability [27]. This system, utilizing a limited variety of functional blocks,
can achieve response time efficiency up to 16 times greater than central process-
ing unit (CPU) based software models [36]. Furthermore, embedded systems
offer robust parallel computing at lower costs compared to conventional CPU or
GPU based technology [36].

Analog HNNs implementations have gained attention for increasing en-
ergy efficiency and response speed compared to digital methods such as FP-
GAs [37]. This research stream enhances integration with practical applications
like sensor systems, avoiding cumbersome conversion between analog and dig-
ital signals. Interest in analog approaches has persisted since the 1980s due to
these advantages [26].

10 CHAPTER 2. SUMMARY OF RELATED LITERATURE

In HNN applications, resistive components organised in a “crossbar” con-
figuration have drawn significant attention from academia and industry [38].
These components act as efficient LUTs for matrix operations [39, 40]. With
components equipped to store and implement weighting information in a single
stage, both complementary metal oxide semiconductor (CMOS) or memristor-
based summation systems built on the basis of operational amplifiers (Op-Amps)
can be arranged in a parallel fashion within the crossbar system [41]. The mem-
ristor can have its conductance manipulated by controlling current flow, enabling
efficient switching between two states. This allows it to store and implement bi-
nary information in a single device, similar to a floating gate transistor, but with
a smaller physical footprint and a simplified control system [42].

By modifying connections in crossbar configurations to capacitors or ad-
justable components while following neural networks mathematical models, the
crossbar framework provides an alternative for low static power HNN implemen-
tation. A clock-dependent digital pulse signal enables capacitor-based multiply
accumulate circuit (MAC) with a resolution of 3 to 6 bits using switched capac-
itors [43]. Design enhancements include a “digital-to-capacitor converter” for a
scaled 9-bit resolution [44]. Additionally, “memcapacitors”, inspired by mem-
ristors, offer a configurable capacitor design that can more accurately emulate
biological neurons [45, 46].

Unlike traditional approaches that merely replicate mathematical models
of neural networks, some implementations draw inspiration from biology [47].
These include capacitive components integrated into junctions [48], or as part of
the neuron structure [49], utilising modulation levels that convey signals with
factors in the frequency domain or phase differences. Optimisation and ap-
plications of these implementations typically focus on spiking neural networks
(SNNs) [50,51], which have demonstrated greater computational efficiency than
traditional CNNs [52, 53].

In addition to the aforementioned implementations, there are various types
of architecture that are less commonly discussed. HNNs with optics-based tech-
nology have been developed based on the wavelength and phase of electromag-
netic waves, such as light [54]. In addition, there are other designs, ranging from
digital phase-domain accelerators [55] to a current-base system compatible with
the static random-access memory (SRAM) system [21, 32], each with their own
unique characteristics and demonstrated efficiency in specific applications. Cer-
tain technologies will be examined in greater detail regarding their operational
efficiency and power consumption at specified frequencies.

Among all configurations and designs discussed above, a primary focus
is to effectively navigate the delicate balance between the capacity for paral-
lel computing and operational efficiency, particularly concerning response time,
power consumption. Constraints arise from factors such as bit precision and de-
sign complexity, as well as the cost to integrate non-polynomial look-up tables
(LUTs) and memory devices [27]. The endeavour to achieve the requisite com-
putational precision and capabilities is significantly hindered by these physical
limitations, which have emerged as principal obstacles to the advancement of
HNNs.

There have also been noted concerns regarding the potential limitations
and uncertainties surrounding the operational efficacy of memristive HNNs. The

2.2. DEVELOPMENT OF HARDWARE NEURAL NETWORK 11

system is purportedly susceptible to noise and exhibits inherent non-polynomial
characteristics within its components in the linear operation stage. In addition,
there are design limitations related to the voltage and current prerequisites to
write information [56]. Furthermore, the implementation of the derivative-based
back-propagation learning algorithm is deemed challenging with devices with
limited number of states and low resolution, and an escalation in design intricacy
accompanies its scalability [57].

Additionally, a more challenging predicament faced by the technology in-
cludes the lack of readily available toolboxes on FPGA platforms and the con-
straints on operating frequency [58]. The absence of appropriate programming
tools and a universally accepted standard impedes the progressive development
of edge applications utilising neural networks.

In addition to research primarily concentrating on the implementation of
the multiply and accumulate operations of neural networks on hardware plat-
forms, there are also studies dedicated to enhancing the computational efficiency
of activation function through hardware implementations. The implementation
of activation functions generators using hardware alone is often not explored as
extensively as the efforts to realise linear transformations within neural networks.
With the ease of performing vector-matrix multiplication (VMM) in hardware
systems based on Op-Amps, from traditional SRAM to various systems based
on memristor or other tunable resistive components, there is little doubt about
the feasibility of operating with analog and mixed signal technologies. The re-
search on implementing the non-polynomial aspects of neural network opera-
tions is still not well-investigated. Although Mhaskar has demonstrated the abil-
ity to use any non-polynomial function as activation functions to approximate
any function with high accuracy in mathematics [9, 10], academia primarily fo-
cuses on approximating wider-adopted activation functions by designing transfer
functions for electronic circuits.

Typically, the hardware implementation of activation functions in analog
mode can be categorized into three main types:

• Binary [59, 60]
• Rectified Linear Unit (ReLU) [61–65]
• Sigmoid [41]

It has been pointed out that there has been a lack of thorough research
regarding the utilisation of a solely analog system design for implementation
activation functions. In addition to the three prominent sectors, there is a scarcity
of analog implementations of activation functions. A common method utilised
to carry out non-polynomial transformations in HNNs implementations involves
interfacing with software or FPGAs via converters [41, 61, 65, 66].

However, it is important to note that the precision and resilience of the
analog HNN may be compromised in the face of various types of interference.
This situation could lead to potential difficulties in layout and packaging, as well
as a reduction in signal-to-noise ratio (SNR), which is a critical consideration in
all circuit designs [37].

12 CHAPTER 2. SUMMARY OF RELATED LITERATURE

2.2.2 Output performance of hardware neural network im-
plementations

In order to effectively evaluate and compare different implementations of
mathematical models of neural networks, it is necessary to establish specific cri-
teria for analysis. Several meta-criteria have been suggested for this purpose,
including:

• Ensuring that assessments are comprehensive and applicable across a di-
verse array of contexts of hardware neural networks.

• Concentrate on the overarching conceptual elements, particularly those
pertaining to the domains of learning, application, and the efficacy of gen-
eralisation performance.

• Independence from specific problems, despite potential challenges in gen-
eralising the problem or criterion.

• Possessing a high level of discrimination power.
• Being measurable using reasonable computing resources.

We should prioritise a hardware implementation’s ability to match its corre-
sponding mathematical model, as well as its resilience against noise and sys-
tematic errors. Furthermore, it is important to evaluate the efficiency in terms
of time, energy, and space for each of the operations to be performed at an ex-
pectation level, as well as the scalability of the implementation in terms of the
network topology and the resolution and precision of each data presentation and
operation process [67].

In this field, a set of criteria is outlined, encompassing factors such as the
speed of computation, the rate of parameter updates, and the energy efficiency of
each operation or update [47]. The derivation of these parameters and additional
criteria are also outlined in the works of Van et al. [67] and Cornu et al. [68].

An effective metric for evaluating implementation on digital hardware hinges
on power consumption at a specific clock frequency, correlating with time delay
and output quality based on task requirements. In digital designs, the integration
of activation functions often bottlenecks efficiency. Many studies propose using
LUTs to represent functions [76] or employing piece-wise linear (PWL) func-
tions as activation functions [77] to mitigate this issue. In addition to considering
time and energy efficiency, evaluating the performance of networks on different
tasks is also crucial in academic research. In Tab. 2.1, when examining FPGA
implementations as representatives of digital networks, it becomes evident that
there is a wide range of performance and consumption outcomes. However, in
many cases, detailed information on the configuration of networks is lacking,
making it challenging to determine if the system has reached its peak perfor-
mance. Therefore, in the empirical evaluation of the operational efficacy of our
proposed systems, we shall assign precedence to both temporal efficiency and
power consumption metrics, contingent upon the attainment of computational
accuracy exceeding 90% relative to the SOTA benchmark, thereby enabling a
robust comparative analysis.

The previous information clearly shows that optimising logical operations
and computational resources through various algorithms is a key factor in de-
ploying digital HNNs. Additionally, the choice of platforms for executing mod-
els and algorithms is crucial for estimating energy, time, and spatial requirements

2.2. DEVELOPMENT OF HARDWARE NEURAL NETWORK 13

Table 2.1: Operational efficiency in terms of power consumption at the speci-
fied clock frequency of state-of-the-art when implementing neural networks with
field-programmable gate array platforms. The data have been collected or esti-
mated based on the assumption that a reasonable predictive capability supported
by demonstrative examples can be achieved.

Platform Literature Demonstration Task Prediction Accuracy Clock Frequency Power Consumption

Efinix Ti60 FPGA [69]
MobileNetV1 80.7%

75MHz
137mW

DS-CNN 93.7% 132mW

Cyclone IV FPGA [70] HAR 90% 100MHz
100mW (Serial)

130mW (Parallel)

ZCU102 FPGA

[71] X3D 95.9% 142MHz 26W

[72]

C3D 83.2%

160MHz N/A

Slowonly 94.5%

R(2+1)D-18 88.7%

R(2+1)D-34 92.3%

X3D 96.5%

VU9P FPGA [73] Jet-DNN 76.1% 384MHz 5W

VCU 118 FPGA [74]

MNIST 99.2%

600MHz

7.70W

CIFAR-10 87.1% 20.1W

CIFAR-100 65.9% 29.8W

Tiny ImageNet 46.7% 38.1W

ImageNet 40.1% 40.2W

Zynq 7000 FPGA [75]

MNIST 98.5%

N/A

0.192W

CIFAR-10 89.6% 4.629W

Tiny ImageNet 53.4% 1.181W

for scaled models across industries. Consequently, establishing a universal stan-
dard to evaluate diverse HNN implementations is challenging. The next chapter
will present proposed criteria for a more effective assessment framework.

Regarding the designs for analog HNNs, a significant challenge lies in
the inherent inaccuracies of each element, ranging from parameter storage and
application to the non-polynomial response of activation function generation.
While prioritizing energy efficiency, we also emphasize the system’s precision,
as shown by the decision-making accuracies in Tab. 2.2. It is important to fully
acknowledge the technology used in the design. Basic estimations suggest that
the proposed design can scale across different technologies by examining the
square of the ratio of channel length with a feasible process at a given technol-
ogy [15].

The computational capacity of the network is defined by the connection
primitives per second (CPPS), which is determined by the number of operations
per second multiplied by the bit resolution of the inputs and parameters [67].
The precision of each signal is a crucial component of computing, along with
efficiency in both computation and energy usage. The quality of analog repre-

14 CHAPTER 2. SUMMARY OF RELATED LITERATURE

Table 2.2: Operational efficiency in terms of power consumption at the specified
operational speed of state-of-the-art when implementing neural networks with
analog methodologies. The data have been collected or estimated based on the
assumption that a certain level of precision can be attained, thereby facilitating a
reasonable predictive capability supported by demonstrative examples.

Technology Literature Demonstration Task Prediction Accuracy Power Efficiency Precision

5 nm CMOS [78] N/A 650 TOPS/W 7-Bit

22 nm CMOS
[79]

CIFAR-10 90.2%
45.5 TOPS/W 4-Bit

CIFAR-100 64.15%

[21] N/A 2.99 TOPS/W Analog

40 nm CMOS

[80]
MNIST 95.7%

223.6 TOPS/W Ternary
CIFAR-10 81.7%

[81]

CIFAR-10 89%

27.0 TOPS/W BinaryCIFAR-100 82%

ImageNet 67%

[82]
ImageNet 69.4%

2.2 TOPS/W N/A
Flowers102 40.0%

55 nm CMOS [83] CIFAR-10 88.5% 53.2 TOPS/W Ternary

65 nm CMOS [44] MNIST 95% 20.83 TOPS/W 6-Bit

90 nm CMOS [46] “letter classification” 100% 199 TOPS/W Analog

130 nm CMOS [84] MNIST 94.4% 78.4 TOPS/W Analog

sentation or computation is often limited by fundamental physical constraints,
as well as stability factors that mitigate drifting issues [85]. It is also impor-
tant to consider non-idealities and variance when training the system off-chip, as
neglecting these factors may lead to decreased performance [47].

Furthermore, as illustrated in Tab. 2.2, the validation of performance through
the use of small-scale or highly simplified tasks and examples has indicated a de-
creased emphasis on the execution of extensive training or applications [46] This
observation also suggests challenges in ensuring performance or training quality
with suboptimal systems [86]. Thus, CPPS will be incorporated into the analy-
sis of the proposed design to enable a more robust comparison with the SOTA
benchmarks, without requiring the completion of an identical task or achieving
a same decision-making capability.

Our analysis confirms that HNN systems efficiently perform traditional
neural network functionalities. However, there is a lack of a universally accepted
benchmark for evaluating these implementations. The literature often presents
unclear insights into the importance of topology and optimisation algorithms,
with minimal evidence of their performance on GPU or similar systems, rais-
ing concerns about their element-wise efficiencies. Thus, the next chapter will
establish a comprehensive set of criteria for evaluating these systems.

2.3. ROBUSTNESS ANALYSIS AND OPTIMISATION 15

2.3 Robustness Analysis and Optimisation
The occurrence of undesirable behaviours in neural networks due to inher-

ent weaknesses related to the architecture and decision space of the mathematical
model [87, 88], corrupted incoming signals and transmission errors [89, 90], or
variabilities found in computing devices [91, 92] has garnered significant atten-
tion.

This section will mainly delve into the origins of these disturbances in
the field of neural networks, as well as the efforts to identify and mitigate them,
along with research focused on understanding systematic resilience against these
perturbations. Additionally, there are studies exploring the applications of these
factors as will be shown in this section. The impact of these issues on sys-
tem functionality, particularly in the context of implementing HNNs and related
fields with less clear boundaries, will also be emphasized.

2.3.1 Error analysis against variability and noise

In the realm of error analysis in the field of neural networks, one must con-
sider the resilience against variations in input or parameters. While the model
of neural networks has demonstrated the capability to tackle complex problems
with a level of proficiency comparable to that of human beings [93], its suscepti-
bility to noisy signals [94] still serves as a reminder to the academia and industry
of its fragility [95]. Numerous experiments are conducted to assess and mitigate
the potential against attacks that may be applied to the system, with a major focus
on defending against distorted signals from the input side [96–99]. This defence
strategy is rooted in the concept of optimising the system by a factor “adversarial
loss” as defined by ρ (·) and its neighbourhood [100]. The term ρ (·) at a given
parameter matrix P can be formulated as:

ρ (P) =
1

n

i=1∑
n

max
∥x′

i−xi∥
p
≤ε

ℓ (fP (x′
i) , yi), (2.1)

where the function fP (·) represents the neural network along with its parameter
matrix P . The distorted input, x′

i falls within the range ε under the p dimensional
Lebesgue space norm Lp on the original input xi’s basis, with yi representing
the intended output. The variable n denotes the total number of data examples
employed in the optimisation phase.

The concept known as the “loss landscape” refers to a high-dimensional
hyper-surface that characterizes the adversarial loss of a specific model and in-
dividual parameters within that model [101, 102]. Studies have shown that a
flattened loss landscape can improve learning efficiency, generalisability, and re-
silience to varying inputs [99, 101]. However, it should be noted that existing
research mainly emphasises the impact of input distortion on the loss landscape,
often overlooking potential variations of the parameters of neural networks [95].

In the realm of general classifiers, the concept of “robustness” primarily
pertains to the ability to withstand various forms of distortions such as input
variance, regardless of whether there is a priori knowledge of the information
of the model, as well as geometric variability in the loss landscape [87]. For

16 CHAPTER 2. SUMMARY OF RELATED LITERATURE

example, as demonstrated in a particular case study generated by Moosavi [103],
even minor input distortions can sometimes severely impact the final output of
a well-trained neural network when there is an understanding of the network
configuration.

Researchers have also observed that as a result of different distortions in-
troduced during the training phase, leading to the injection of errors and attacks
into the dataset used, the parameter space of the trained model can be influenced
even when the loss experiences minimal changes throughout the training inter-
val [104].

As discussed previously, achieving an optimal balance between energy and
time efficiency and achieving desired learning outcomes is a critical considera-
tion for HNNs. Consequently, the adoption of parameter quantisation and the
implementation of finite precision LUTs has become commonplace in these sys-
tems. Nonetheless, it is crucial to acknowledge the potential challenges asso-
ciated with accuracy degradation and the accumulation of errors that may arise
from employing these methodologies.

The process of quantising parameters or producing neural network chips
or accelerators has the potential to cause distortion within the parameter space,
consequently affecting the accuracy [95,105]. When limited to a finite number of
digits for precision, the accuracy and efficiency of both training and applying the
neural network will be significantly compromised [91]. By representing inputs
and weights in the form of an ideal value supplemented by their respective error
terms, denoted p+∆p and x+∆x, respectively, and accounting for an additional
error εα introduced by the activation function, the resulting distortion observed in
the output z can be determined using the following derivation, as will be applied
in subsequent chapters:

∆z = (p∆x+∆px+ ε×)α
′ (px) + εα, (2.2)

where in ε× represents the error caused by limited precision multiplication. Stud-
ies further demonstrate the linear aggregation of all error components [91]. Nev-
ertheless, the correlation between the errors introduced into the computation pro-
cess of the neural network system and its decision-making performance remains
to be established.

Especially within the realm of HNNs, there has been a growing interest in
investigating the impact of errors, particularly sub-systematic level ones, on the
system’s overall performance [106]. The majority of errors observed in these sys-
tems are typically attributed to manufacturing faults, voltage supply problems, or
thermal-electric interactions [107]. It is acknowledged that the linear transform-
ing systems with hardware implementations commonly have inherent limitations
in terms of precision, which often introduces Gaussian distributed noise to the
parameters presented and the operations [108]. Treating DNN systems as noisy
information channel [109], it has been observed that the normalized mutual in-
formation between input and output decreases in a nearly linear fashion against
the inverse of the SNR.

For FPGAs implementations, there is a need to convert mathematical mod-
els from a commonly adapted software-orientated format to a hardware-orientated
format to accommodate the platform’s inherited limitations. Compression meth-

2.3. ROBUSTNESS ANALYSIS AND OPTIMISATION 17

ods are being explored and applied at each stage of the operations. Through
layer-wise quantisation, parameters and signals originally represented in the 32-
bit floating point format can be transformed to 16 bits or even 4/8 bits, while
maintaining accuracy close to the original SOTA generated on a software plat-
form [110].

It has also been observed that an accuracy decrease of less than 10% com-
pared to the SOTA can be achieved with AlexNet when compressing activation
function presentations from 32-bit to 8-bit resolution in hidden layers [111]. In
some instances, halving precision does not significantly impact overall perfor-
mance, and in certain cases, performance may even improve slightly without the
need for further adjustment [112].

In more extreme scenarios where data are compressed into balanced ternary
or binary representations, over 80% of SOTA performance can be achieved [113–
115]. By incorporating LUTs and employing mixed compression techniques,
models as small as 8% of their original size can still demonstrate effective per-
formance in the designated task [116].

Examining the cases mentioned above shows that a decrease in the preci-
sion of calculations and data representations does not invariably lead to a signifi-
cant increase in systematic error and learning outcomes within DNNs. Therefore,
despite the fact that the significantly lower element tolerance can result in sig-
nificantly lower data precision in performing the operations needed compared to
digital system representations, it is still feasible and worthwhile to advance the
development of HNNs using analog circuit configurations.

The architecture and complexity of a neural network can have a counter-
intuitive impact on their performance. Research suggests that by adjusting the
connections within each layer of a DNN model, it is possible to still maintain an
impressive results. For example, a study with an AlexNet structure found that
removing up to 70% of connections had no significant impact on system perfor-
mance, maintaining a 70% accuracy rate compared to its origin [117]. Similarly,
fine-tuning a pruning of 90% of connections of one special case did not result in
a noticeable decrease in accuracy [118].

However, it is important to note that even minor errors, such as a bit flip,
can significantly compromise the accuracy of a neural network in some special
cases. Research has shown that a neural network with a small weight error in
the form of bit flipping has a high probability of performing poorly, reaching a
precision of less than 10% compared to a well-trained model achieving a preci-
sion of 85.5%. Similarly, the robustness of CNNs against parameter variance can
vary based on factors such as layer size, network depth, and the overall number
of parameters [119].

The analysis of these seemingly paradoxical cases suggests that, in gen-
eral, there exists a significant degree of redundancy within neural networks. This
phenomenon may elucidate the ability of neural networks to sustain relatively
high levels of learning accuracy, even in the presence of substantial rounding
errors and noise. As noted in Guo’s observations, robustness and network size
are generally viewed as critical factors in assessing network performance [88].
Furthermore, Arechiga’s findings indicate a negative correlation between robust-
ness and network size [119]. Consequently, the algorithm for network weight
pruning holds considerable promise for enhancing fuzzy systems represented by

18 CHAPTER 2. SUMMARY OF RELATED LITERATURE

analog HNNs. However, due to the limited interpretability associated with neu-
ral networks, the process of accurately estimating and optimising their overall
robustness remains a considerable challenge.

In light of the abundance of research findings, assessing the reliability of a
specific neural network remains a challenging task [120]. This challenge persists
even in scenarios where there is only one hidden layer with a maximum size of
20 [121]. An examination of a balanced binary neural network revealed a near-
linear accumulation of errors across layers according to a hyper-space model
of the system [122]. In this study, the error in each layer was estimated to be
the square root of the quadratic sum of perturbations on input and parameters.
Various approaches utilizing hyper-sphere [123] or hyper-cube [105] have been
put forth. However, these approaches are restricted to binary or balanced binary
simplifications of neural networks.

In addition, a sensitivity metric was introduced to measure the variation
in the output relative to the changes in the input. This statistic-based analysis
allows for the estimation and evaluation of the impact of parameter perturba-
tions on a given neural network [124]. It has also been observed that for DNNs,
the introduction of an upper limit for the commonly used Rectified Linear Unit
(ReLU) function in the activation process can effectively prevent potential at-
tacks originating from the input side, thereby avoiding their accumulation within
layers [125]. The experiments indicate that the current methods used to evalu-
ate the robustness of neural networks may vary depending on the specific cir-
cumstances and settings, and may lack a comprehensive analytical analysis in
general.

In conclusion, due to their inherent complexity and limited transparency,
neural networks exhibit a range of distinctive characteristics related to their ro-
bustness. Research in this area underscores the importance of conducting a com-
prehensive analysis of this particular issue. Furthermore, it highlights that the
analog HNNs retain adequate capabilities to address practical challenges, even
when constrained by restrictions in precision and network size.

2.3.2 Robustness optimisation for neural networks

It is well-documented that off-chip learning may experience performance
degradation as a result of element non-idealities [37]. Therefore, it is necessary
to perform a thorough fine-tuning based on potentially inaccurate inputs, feed-
back signals from loss functions, back-propagation values, and the actual assign-
ments of each parameter in order to achieve more precise estimations [126].

In the realm of improving neural networks with robustness criteria, the
concept of resilience to variations in input or adversarial attacks is highly ap-
pealing. In this context, the primary objective of optimising robustness revolves
around the capacity to withstand inaccuracies or random uncertainties in input
data [127]. These challenges can arise from various sources, such as unpre-
dictable or unquantifiable estimations of labelling or input data [128], adversar-
ial or noisy samples [129], or datasets labelled through questionable or corrupted
means [130]. The optimisation techniques used for these cases employed typi-
cally involve a blend of various algorithms, including gradient descent, simulated
annealing, genetic algorithms, and others [131].

2.3. ROBUSTNESS ANALYSIS AND OPTIMISATION 19

In the context of data processing, particularly in cases where class bound-
aries are unclear or a single data point can belong to multiple classes, the quality
and quantity of training samples are crucial. Pre-processing and fine-tuning of
data can greatly enhance the overall performance in these circumstances [132]. It
has been observed that linearly separable datasets may not converge to any local
minima when perturbations are introduced during training with gradient-based
optimisation algorithms [90]. Therefore, the selection of a suitable optimiser is
essential for the effective generalisation of a noisy training processes [133].

In order to safeguard against potential adversarial attacks, strategies are
recommended for implementation during the training and / or deployment phase
of neural networks. Various frameworks have been introduced to identify pos-
sible threats or disturbances in input data [97]. In addition, adversarial attack
frameworks have been devised to showcase the resilience of a model and pro-
vide additional protective measures, generally [134].

An innovative technique known as “Parametric Noise Injection”, which
involves introducing Gaussian distributed noise to both parameters and activa-
tion function during the training process, has yielded favourable learning results
when compared to alternative defence strategies using either clean or corrupted
data [135]. Furthermore, a training approach rooted in information theory and
noise injection has demonstrated the potential to significantly enhance noise tol-
erance, potentially doubling it in some cases [107].

An efficient refinement algorithm incorporating adversarial examples into
a training dataset of non-robust models has been shown to increase the system’s
ability to withstand approximately four times as many adversarial attacks com-
pared to a SOTA model [94]. Moreover, through statistical analysis, it is feasible
to predict the pixel-wise sensitivity of an image classifier [136]. Furthermore,
employing a dual approach of an adversarial generator and a defensive optimiser
can offer general resilience against distorted or adversarial input data [137].

In accordance with the design of an alternative to traditional CNNs named
local binary convolutional neural network (LBCNN) proposed by Xu [138], a
method involving a blend of linear transformations and non-linear activation of
perturbed inputs has exhibited promising results in the realm of image classifica-
tion, avoiding the need for convolution layers [139]. Furthermore, the introduc-
tion of noise into gradient information during the optimisation process has been
identified as a means of enhancing both learning efficiency and the likelihood of
avoiding getting trapped within unwanted local minima [140]. Notably, this ap-
proach offers the added benefit of bolstering resilience against input variability
throughout the training phase [141].

In the realm of graph neural networks (GNNs), connecting unlabelled sam-
ples with mislabeled ones during the training process has been found to be ca-
pable of enhancing general robustness against label flipping [142]. This study
reveals the feasibility of introducing self-calibration mechanisms in neural net-
works.

By adapting each fixed parameter using samples from a specified distribu-
tion, it has been observed that a trainable network can be produced that exhibits
comparable efficacy in contrast to networks derived from gradient-based opti-
misers [143]. Furthermore, it is also possible to assign the parameters of a neural
network by another network named “Hyper-network”. With the utilisation of

20 CHAPTER 2. SUMMARY OF RELATED LITERATURE

Hyper-network, the methodology is extended to intricate architectures such as
residual neural network (ResNet) yielding competitive results across multiple
defined tasks. This approach also offers a quantifiable degree of uncertainty as-
sessment [144].

In contrast to optimising for high resolution or accuracy, training on a hard-
ware platform must also demonstrate robustness against noise and errors in feed-
back signals and lower-precision presentations of parameters and functions. The
flatness of the local loss surface takes precedence over achieving the global min-
imum loss value within the landscape once a certain level of accuracy has been
reached accordingly to the specifications [145]. Binarized training algorithms are
utilised for updating based on the difference between a given point and its per-
turbation, given the interval or binary-state nature of hardware neural network
accelerators such as memristive neural network chips [145, 146].

Furthermore, there are several alternative optimisation frameworks that are
compatible with hardware implementations [92]. These methods include per-
turbation of inputs [147] or parameters [148], local learning [149, 150], self-
organising feature map [151], Boltzmann machine learning [152], and others.

However, there remains a significant gap in our comprehensive understand-
ing of how individual parameters and the overall topology can impact both the re-
silience and efficiency of a given neural network [87]. Although existing research
has focused primarily on the potential risks posed by noisy data or parameters on
the performance of the model, there are alternative optimisation algorithms that
capitalise on stochastic elements for improved outcomes.

The uncertainty also pertains to the correlation between the decision bound-
ary and the utilised activation functions. It remains unclear whether there exist
valid inputs that could be situated significantly far from the boundary based on
the configuration [87]. The endeavour to achieve explainability in this context is
anticipated to offer insights into logical or illogical decisions, thereby indicating
potential vulnerabilities in the system [153, 154]. Various initiatives have been
taken to visually represent the input-output transformation process, thus facilitat-
ing a more simplified network analysis and a deeper understanding of the issues
and solutions derived from the model [155].

Another potential strategy to enhance performance in inaccurate settings
involves the implementation of fuzzy interfaces, which can offer an efficient,
resilient, and transparent interface to neural networks [156, 157]. Furthermore,
the balance between the capacity for generalisation and the efficiency in specific
tasks remains a significant focal point in these studies [127].

The aforementioned literature suggests that the implementation of HNNs
within fuzzy systems, particularly those represented by analog circuit systems,
may yield significant improvements in global robustness. Moreover, the optimi-
sation algorithm delineated in these papers holds potential applicability for the
training methodologies employed in these low-precision systems. Furthermore,
leveraging insights gained from studies on loss landscapes and decision trans-
parency, we can enhance the training process by integrating analytical assign-
ment with back-propagation or other alternative optimisation algorithms, thereby
increasing training efficiency.

2.4. CONCLUSION 21

2.4 Conclusion
The general characteristic neural networks system has shown promise in

a variety of applications, albeit at the expense of energy consumption, response
time, and storage space for computing devices. The advancement of HNNs aims
to offer a practical solution to achieve a balance between decision-making ac-
curacy and operation efficiency in these aspects, especially in fields where the
budget for these aspects is limited. Analog systems may further enhance effi-
ciency compared with digital implementations, but their inherent inaccuracies
could hinder their full potential.

Issues such as failures in processing internal and external signals, as well as
vulnerabilities that arise unintentionally while iterating and responding to biased
or pseudo-labeled data during training and application, have underscored the
importance of optimising system robustness.

Although efforts have been made to identify and address potential risks and
failures at the mathematical modelling and implementation levels, there has been
a lack of focus on assessing risks during the manufacturing phase or operational
periods. Many works assume that the presence of incomplete information within
the system contributes the majority of the failures while neglecting the possi-
bility of failures or errors during operation, even in well-optimised systems. In
contrast, there is a noticeable deficiency in the allocation of energy and resources
towards these particular areas of study, potentially leading to unforeseen hazards
during the implementation phase.

22 CHAPTER 2. SUMMARY OF RELATED LITERATURE

Chapter 3

Methodology

The research of hardware neural network (HNN) implementation has shown
the potential the designs have to represent a specific neural network, which in re-
turn highlights the importance of analyzing of difference between a hardware
implementation and its mathematical prototype of an ideal neural network. The
value of the aforementioned analysis is commonly overlooked or confused with
the ability of the given system to perform a certain task. In this part, we will pro-
pose a set of procedures from realising the design of a hardware implemented
deep neural network (DNN) system with certain criteria and assigning, tuning
the magnitude of components involved, to final analysis of performance with
other works as reference.

3.1 Overview
It is recognised that the analog devices or the analog part in mixed-signal-

based circuit designs are typically serving as analog computing systems. In order
to deploy hardware neural networks (HNNs) with such a system, with the afore-
mentioned recognition, we can use physical reactions and dynamic behaviours
to represent mathematical operations in a manner similar to analytical solving.
This involves a physical system evolving from an initial state, typically the in-
puts states, to designated states as its outputs through state space updates based
on transfer functions of the components involved [85].

By designing circuits as modules to represent the operations required in
the linear and non-linear sub-modules in neural network operations and ensuring
standardised communication between modules, we can construct a system that
meets performance requirements as defined by the corresponding mathematical
model the hardware design is to represent. We have created an experimental
simulation environment to simulate necessary operations, such as multiplication
and accumulation applied in linear transformation, as well as non-polynomial
activation of given incoming signal vectors. According to our specification, each
sub-module was tested independently to evaluate their performance under ideal
and non-ideal conditions, determining the system’s capacity and failure tolerance
levels for various tasks.

In light of considering HNNs as a viable implementation of neural net-
works — which are acknowledged for their theoretical Turing complete nature
— conducting exhaustive testing on all possible input configurations for tasks

23

24 CHAPTER 3. METHODOLOGY

characterized by infinite variability is both impractical and unnecessary. Further-
more, the inherent lack of explainability associated with neural networks com-
plicates the ability to forecast the performance of HNNs in relation to specific
tasks. As we shall elaborate later, the main objective of our forthcoming discus-
sion will not be to assess whether a HNN can competently execute a particular
task. Rather, our emphasis will be on evaluating whether, within specified toler-
ances in data presentation and computation, this system can produce outputs that
closely mimic those generated by a finely-tuned model that has been specifically
trained for the same task.

The assertions further emphasise the comprehensive and case-independent
meta-criteria described in Section 2.2, thereby underscoring the significance of
the conceptual components pertaining to both learning and application perfor-
mance. The hypothesis we kept can be concluded as follows:

• With infinite resolution and accuracy, a hardware neural network can fully
represent a given neural network .

• Neural networks are Turing complete.
• A HNN can be Turing complete with infinite resolution and accuracy.

The analysis highlights the importance of assessing the capability of a pro-
posed design of a HNN to execute a specific task, assuming it is mathemati-
cally solvable. This involves determining if a corresponding neural network de-
sign can be accurately represented by the implementation at hand. Alternatively,
one can evaluate the effectiveness of a neural network in addressing a particular
problem by considering any discrepancies caused by inaccuracies in the HNN
implementation. In essence, the key consideration in evaluating performance is
whether the system can faithfully reflect the intended design of the neural net-
work or if it can produce comparable results within a limited framework. A
systematic approach can also be employed to assess the efficacy of individual
sub-modules in achieving their theoretical mathematical equivalents. Thus, we
may conclude from the claims that the primary criteria for HNNs is the oper-
ational efficiency at both the system and element levels, on the condition that
the anticipated outcomes related to decision-making accuracy are satisfactorily
achieved.

Additionally, it is imperative that we explore and assess the operational
efficiency of the implementation in relation to conventional methods as a central
objective of this technological advancement. The assessment will be conducted
based on the quantities of the elements involved and the methodology employed
in the execution of the identical computational tasks across each sub-module’s
operation.

This section will primarily concentrate on the following aspects:
• The design and standardisation of a realisation and description of the hard-

ware neural network system at a circuit level.
• Alignment between the proposed system and the corresponding mathemat-

ical representation at the systematical level.
• Overall performance of decision-making capability estimation of the sys-

tem proposed and comparison against current implementations.
• Anticipating the potential impact of non-ideal factors on individual com-

ponents or the system as a whole.

3.2. NOMENCLATURE AND VALIDATION PROCEDURE 25

3.2 Nomenclature and Validation Procedure

In the exploration of implementing HNNs, there arises a notable challenge
of reconciling the theoretical framework of the neural network models with the
real-world functionality of individual components of the system. The necessity
for aligning these two aspects is primarily hindered by discrepancies in termi-
nology and standards, as well as the complexities introduced by varying levels
of abstraction in practical application.

In order to streamline the conversation and establish a consistent terminol-
ogy, it is useful to provide the definitions and limitations of certain terms in the
realm of circuit design and implementation of artificial intelligence within this
document.

When discussing the signal flow within a neural network, the term “input”
will refer to the incoming signal at a neural network’s level of abstraction only,
typically originating from an external data stream. At this level of abstraction, we
conceptualise the implemented system as a series of interconnected mathemati-
cal functional blocks, each of which functions as a discrete unit. These functional
blocks facilitate the processing of data through various interfaces while inten-
tionally excluding the underlying physical principles and realisations. Likewise,
the signal obtained from the final layer of the network will be referred to as the
“output”. Signals entering the individual non-polynomial layers, or the inputs
of the activation functions, of the network will be referred to as “pre-activation
values”, while the outputs of these layers will be known as “activated values”.
The term “target” will indicate the desired output corresponding to a given input,
representing the objective of network optimisation.

The terms “accuracy” and “loss” only hold significance within the context
of mathematical models of neural networks in this part of the research, helping
to evaluate the alignment between the network’s output and its target output. In
this context, accuracy and loss should not be viewed as directly associated with
the information present in the data from the output layer and its associated errors.
Instead, they should be understood as functionals of the output data, the output
target, and the relevant evaluation criteria. Consequently, these terms should not
be equated with output, output error, or similar terminology.

It is important to clarify that accuracy is obtained by integrating the output
of the neural network with particular evaluation criteria to quantify the propor-
tion of correct predictions. The term loss, on the other hand, is determined by a
designated loss function that evaluates the discrepancy between the actual out-
put and the target result. Furthermore, although accuracy and loss often have a
statistically negative correlation, the two terms are not strictly revealing an equiv-
alent aspect of the given neural network. By using specific evaluation and loss
functions, systems can show a high loss in conjunction with a high accuracy si-
multaneously or vice versa. Meanwhile, the term “precision” refers specifically
to the inaccuracies that arise from the representation of parameters or the degree
of operational accuracy within neural networks, which should not be confused
with the former two terms.

The operation responsible for a non-polynomial transformation within the
mathematical model will be referred to as the “activation function”. In contrast,
a “transfer function” in the field of circuit design only, will denote the mathe-

26 CHAPTER 3. METHODOLOGY

matical representation of the relationship between two physical variables: the
independent input and the corresponding dependent output of a system char-
acterised by linear properties, as observed in a physical element or device. In
certain instances, the activation function may be symbolized by the transfer func-
tion of a specific circuit, although modifying the transfer function to align with
the activation function’s requirements is not always feasible nor necessary. This
conclusion is derived from the conditional constraints placed on the selection of
the activation functions in conjunction with the non-polynomial characteristics
inherent to semiconductor devices.

The aforementioned terms, excluding the transfer function, are dimension-
less. In contrast, the transfer function adheres to the standards set forth by the
Système International d’Unités (SI) and can be scaled by altering the units ap-
plied based on the hardware configuration and mathematical model in use.

In the context of advanced research, contemporary studies suggest that the
mathematical operations inherent in neural networks can be emulated by metic-
ulously engineered circuit architectures. However, it is important to note that the
alignment between the mathematical formulation and the analog circuit may not
always be precise, as discrepancies may arise from inaccuracies in modelling the
non-polynomial components of the circuit’s transfer functions. Furthermore, due
to the limitations of computing power, the widely used simulation program with
integrated circuit emphasis (SPICE) software may struggle to efficiently solve
the equilibrium state transfer functions of analog circuit systems with numerous
non-polynomial and inter-connected components. This can hinder the ability to
conduct simulations in a single iteration of solving. Additionally, existing SPICE
software may not be equipped to, set-up for, or intended to handle the optimisa-
tion process based on vast datasets commonly used in software-based training,
necessitating separate simulation and verification of each trained model. The ex-
ecution of circuit testing and model verification is contingent upon the utilisation
of pre-trained parameters and the incorporation of randomly selected data sam-
ples. Our research suggests that component selection for network development
can be tailored based on tolerance and other specifications to ensure compatibil-
ity with the desired application.

All simulations carried out in this study were carried out using the LTspice
platform, using the predictive technology model (PTM) for a low-power 45 nm
metal-gate field effect transistor (FET), as detailed in Appendix B.

3.2.1 Module design and communications

In this work, we outline the procedural steps for designing a HNN imple-
mentation as follows:

1. Establish the format for presenting and communicating information sig-
nals.

2. Determine the appropriate domain and range for presenting the signal flow
including input, output and the layer-wise communications.

3. Map functionality of the given neural network within the aforementioned
range.

4. Partition of the neural network system into functional components based
on specified requirements.

3.2. NOMENCLATURE AND VALIDATION PROCEDURE 27

5. Create circuit schematics for each functional component.
The first two steps will be discussed mainly in this section, with a more thorough
analysis of circuit schematic design provided in subsequent chapters.

In the field of neural network’s research, it is standard practice to separate
the weighting and summation operations from the activation functions by organ-
ising them into linear and non-linear layers. This abstraction allows for a more
straightforward analysis of system design in both of the mathematical model and
analog circuit level, as will be seen, by breaking it down into specialised sub-
modules, each taking specific inputs and producing desired outputs. Communi-
cation between these modules at a physical implementation level is represented
in terms of physical variables, with voltage levels chosen as the preferred method
for simplicity in both design and analysis.

The selection of criteria for electronic systems with inter-communications
across multiple levels involves determining whether an electronic or magnetic
signal is more suitable for generation and processing. Factors such as device
size and unwanted interference between neighbouring components must also be
taken into account to optimise performance. Thus, a magnet signal is not always
preferable in this area unless technology advances. When considering signal
types for the interface, they can be categorised according to their domain and
form.

Although both of the two options within each categories are theoretically
equivalent in their outcomes can be achieved with careful design, practical con-
siderations such as operational efficiency, systematical complexity in implemen-
tation, and compatibility with external computing devices come into play. Af-
ter evaluating the pros and cons of different options, we have decided to use
a voltage-based signal format relative to a common ground as the standardised
communication method. This decision was influenced by the need for straight-
forward communication with various input and output devices, as well as the
cost of potential implications of converting between current and voltage formats.

In addition, we have chosen to present signals in the time domain for bet-
ter time efficiency and a more continuous flow of information. Also, the analysis
process can be simplified with this form of signal by eliminating the time se-
quence modifications and related translations. Also, the specification enables
the system to operate with negative parameters or signals. Although this may
result in some loss of accuracy due to noise, we believe that the benefits of this
approach outweigh the drawbacks in the context of our project.

In general, it is important to recognise that the signal strength of each layer
within neural networks can exhibit considerable variability in practical applica-
tions. While this variation does not necessarily result in overflows or present sig-
nificant risks in mathematical models and software implementations, direct ap-
plication in HNN systems — where analog circuit systems are primarily utilised
— may not be advisable. Should the input or output signals of any layer be trans-
mitted according to their original levels, there exists a substantial likelihood of
exceeding the acceptable operational range for both linear and non-linear units.
Therefore, to mitigate the risk of system failure, it is imperative to implement
linear contraction at each layer.

The signal is initially limited to a practical range of the supply voltage,
which is balanced to allow for the representation of negative signals commonly

28 CHAPTER 3. METHODOLOGY

found in practical applications of neural networks. In practical scenarios, when
dealing with the incoming signals of linear modules, the objective of scaling is to
preserve a significant amount of information throughout the process for as many
cases as possible. If a signal s falls within the range of [smin, smax], a simple
linear mapping f : S −→ 2S

smax−smin
− smax+smin

smax−smin
is sufficient. In cases where the

true distribution range of a signal is unknown, label each case with z, where zmax

and zmin represent the maximum and minimum values, respectively. If either of
these values has an absolute value greater than or equal to two thirds of the given
range, the mean or median can be used as the reference point ⟨z⟩. Assuming
∆z = |zmin − ⟨z⟩| ≥ |zmax − ⟨z⟩|, the scaling relationship can be expressed as
f : Z −→ 3

2∆z
(Z − ⟨z⟩). This approach is particularly useful for inputs in pattern

recognition or prediction tasks with unbounded input values, as well as for the
output of neurons with unbounded upper or lower activation functions, such as
the widely used Rectified Linear Unit (ReLU).

Conversely, in non-polynomial layers, the primary objective of scaling is to
adjust the capacitance of the system accordingly. The purpose of this process is
to reduce information loss in the output stage of the designated layer while min-
imising distortion. Instead of simply scaling the inputs, a more direct approach
is taken for activation function with both upper and lower saturation regions. In
such cases, the non-saturation region is scaled down to approximately 2

3
of the

supply limit.
For those activation functions without saturation limits, assuming the func-

tions are monotonically increasing, two sets of linear transformations can be ap-
plied at the input and output ends to negate the impact of the aforementioned
limitation. The parameters for these transformations can be estimated based on
the observed input range or derived from the previous layer’s output within a
certain range z ∈ [zmin, zmax]. With the activation function denoted as α (·),
we may specify the loss function δ (·) is defined to measure the discrepancy be-
tween the transformed output and the ideal target output, using mean square error
(MSE) as the metric:

δ (Ai, Bi, Ao, Bo) = MSE (Aoα (AiZ +Bi) +Bo, α (Z)) , (3.1)

where Ai, Bi represent the linear operations applied to the input set Z of the
activation function while Ao, Bo denote the transformations on the outputs. The
ultimate goal of this optimisation process is to minimise the disparity between
the outputs of the transformed activation function and the original one. Conse-
quently, we can ensure that the proposed HNN operates within a secure range,
while striving to retain the performance characteristics of the neural network
system to the greatest extent feasible.

It can be deduced that when subject to appropriate transformations, the im-
plemented devices generating activation functions in the form of linear functions
can achieve the pre-supposed result without disrupting at its final output signal’s
side. In the case of generating the function ReLU , it is possible to establish a set
of transformation that can adjust the input of the non-polynomial layer in a way
that preserves the desired output.

Likewise, it is possible to adjust the input of an exponential function when
it serves as the activation function in a network while adhering to the condition

3.2. NOMENCLATURE AND VALIDATION PROCEDURE 29

shown below that ensures the target output remains unchanged.
The logarithmic function, serving as the inverse of the exponential func-

tion, exhibits a comparable yet reversed correlation across matrices. Similarly,
sine and cosine functions can undergo smooth transformations, enabling periodic
functions to be shifted by any multiple cycles without the need for additional
adjustments of the pre-activation values to meet the demand while avoiding dis-
tortions at the activated values.

The implementation of these linear transformations will facilitate the pre-
cise characterisation of a specific category of activation functions across various
input ranges, utilising the transfer functions of practical devices supplied with
finite sources. Nevertheless, it may prove challenging to attain the aforemen-
tioned realisation in a lossless manner solely through the application of linear
transformations when employing more generalised activation functions.

In practical application, it should be noted that the transformation may not
always maintain complete accuracy due to the non-polynomial nature of the ac-
tivation function α (·), thus necessitating meticulous optimisation and compen-
sations. In such instances, a critical and viable strategy is to extend the activation
functions through Taylor expansion or Fourier transform. Alternatively, a more
risky method involves approximating the given activation function to a scalable
function and regarding any resulting discrepancy as a systemic error, provided it
is negligible compared to errors introduced by other components of the system.
In this work, we will assume that all signals including the inputs and the pre-
activation values are scaled to an appropriate range, and the activation functions
applied either saturations on both ends or is scalable according to the method
aforementioned, without involving distortions to the systematic performance.

All normalisation methods are based on fundamental linear operations,
demonstrating their potential for convergence within the linear module proposed
for a thoroughly trained model in the applications we specify in this work.

By establishing a correlation between the signal within a HNN system and
the parameters within a mathematical neural network model, we can forecast
the alterations in efficiency and robustness terms as a physical implementation
of the complexity of a neural network. The systematic complexity of the sug-
gested circuit as a network can then be categorised based on how the quantities
of elements evolve as the size and depth of the network increase. Interestingly,
we can partition the linear operation’s summation component into one category,
where complexity increases linearly with each layer’s size, and the multiplication
section into another, characterized by a bi-linear growth in complexity derived
from the adjoining layers’ sizes. This approach allows for any systematic errors
arising in the summation part to directly translate into a representation of acti-
vation functions as an unidentifiable factor or distortion. Conversely, the linear
transformation matrices mentioned above will be applied uniformly across all
connections to neuron weighting junctions.

3.2.2 Shared benchmark of modular system

In order to assess performance in the presence of non-ideal conditions,
it is important to understand the concept of “robustness” in both the field of
circuit design and computer science. As shared within the two fields, the term

30 CHAPTER 3. METHODOLOGY

robustness refers to the system’s ability to function properly despite disturbances
or variations.

In circuit design, the major concern of robustness is to ensure that the
system can still operate effectively even in the face of certain internal interference
including production failure, random electron moving or noise generated during
operation. It is essential to evaluate the performance of the system in various
operational conditions to ensure that it meets its intended functionality, as well
as to assess whether it incorporates inherent fault tolerance mechanisms during
the design phase [158–161].

On the other hand, in the realm of computer science, particularly in the
context of neural networks, robustness is related to the system’s ability to handle
external perturbations such as noisy inputs, signal variations, sample distribu-
tion, and failure optimisation [127, 162–164]. These factors can lead to unstable
or unintended behaviour, highlighting the importance of considering system per-
formance from a systematic and practical perspective.

With differing methodologies for integrating the mathematical neural net-
work model with physical components, including the utilisation of digital or ana-
log techniques to represent both linear and non-linear layers, there is a necessity
for establishing a standardised benchmark for articulating and evaluating perfor-
mance and efficiency across these approaches.

The proposed criteria, based on the meta-criteria outlined in Section 2.2
will primarily assess the capacity of implementations to attain equivalence with
their corresponding theoretical models of neural network and evaluate the energy,
time and space level cost-effectiveness of their operations.

In this section of the project, we will outline the process by which we es-
tablished a series of benchmarks to standardise performance comparisons across
various implementations and tasks accessible. The steps involved are as follows:

1. Develop a theoretical model of a neural network optimised using software-
based techniques for a arbitrarily given decision making task.

2. Validate the consistency between design of hardware and the given math-
ematical model of neural network at multiple levels of abstraction through
various methods, as will be discussed.

3. Conduct a performance analysis of the system using established bench-
marks, comparing it against current state-of-the-arts.
An in-depth explanation outlining the process of converting parameters

and activation functions will be presented in the forthcoming chapters. Our em-
phasis will primarily be on identifying common patterns in the discourse of this
section.

In order to standardise comparisons and establish criteria, we use the ideal
concept of a neural network as a primary reference point. This assumes the
existence of an ideal system capable of performing operations without any po-
tential distortion or noise, with near-infinite resolution for data storage, pre-
sentation, and calculations in a well-defined and well-trained model set at the
state-of-the-art (SOTA) level. While the meta-criteria stipulates that the testing
procedure must be case-insensitive, for the sake of facilitating our discussion,
we may choose to utilise several widely recognised benchmark examples as our
initial reference points. Subsequently, we will determine the appropriate hyper-
parameters based on these selections. This model is presumed to be acquired

3.2. NOMENCLATURE AND VALIDATION PROCEDURE 31

using a designated network topology and optimiser during the training phase.
However, it should be noted that it is not guaranteed that it will reach a global
minimum. Nevertheless, it can be regarded to be an effective solution within the
vicinity of the local minimum that it attains.

The achievement of an optimal network configuration presents significant
challenges in practical implementation, primarily due to the constraints imposed
by the inherent limitations in the precision and quantity of computing compo-
nents, including neurons and connections. In order to address this issue, we
implemented a well-constructed model within a traditional programming frame-
work, utilising a 64-bit computing environment equipped with sophisticated op-
timisation tools. This approach allowed for the application of a computational
method that achieves a level of representational accuracy sufficiently close to
that of the ideal model. This model is rigorously trained, verified, and tested
using a randomised dataset to ensure reliability. The model developed on that
platform, when fully trained and fixed, is double-checked with all pieces of data
in the dataset specified, inputted in a randomised sequence and size of batches,
to make sure any further optimising will not alter the weights further (gradient is
summed to be a zero for all batches) or will oscillate within a certain range (gra-
dient is summed to be non-zero but the ideal-case parameter lies within an inter-
val between values a floating-point-based system can represent). These checks
ensure that the model parameters remain within a reasonable margin about the
local minima found during optimisation.

With a well-established network, the approximation of the ideal-case net-
work is considered a valid benchmark of the performance of an optimised sys-
tem. It should be noted that while the test does not ensure that the network has
reached a definitive global minimum of the loss function space, the ability to con-
verge parameters to a specific set of values allows for the system to achieve ade-
quate efficiency, albeit still facing challenges in being non-deterministic polynomial-
hard (NP-Hard) due to the complexity of exploring all possible parameter com-
binations and verifying against all available data sets.

In this project, our attention is directed towards the limitations posed by
the implementation of neural network by purely analog hardware systems. We
will primarily examine a proficiently trained model with parameter inaccuracies
that impact signal representation and operations. Our analysis will delve into the
isolated and collective influences of various aspects, spanning individual stages,
combined stages, and a comprehensive evaluation throughout the system.

Upon translating the ideal parameters into approximate circuit components
values based on their precision and the system specification, and the connectiv-
ity of the components, we aim to streamline the multi-stage design and analysis
process for performance and robustness. To achieve this, we will use a mixed-
method approach that involves analytically estimating ideal-case performance.
We will also introduce variance calculated based on the method we couple the
circuit connectivity and the corresponding mathematical equivalency to predict
worst-case corruptions in the event of potential reduced precision. This predic-
tion is taken from the Monte-Carlo method simulations. Furthermore, we will
analyse potential failures of physical components and noise generated through
analytical transfer functions using an electronic-based simulation. These results
of software solving of the neural network level and layer level will be verified

32 CHAPTER 3. METHODOLOGY

Figure 3.1: The workflow involves evaluating possible disruptions and perfor-
mance at each level of abstraction based on the methodology as described in the
text. Analysis at the circuit and small-scale sub-module levels is conducted using
an analytical model and validated through simulation program with integrated
circuit emphasis (SPICE) simulation. Layer-wise and systematic evaluations are
carried out using SPICE simulation and PyTorch simulation, respectively, with
verification completed in Matlab.

using simulated results as individual components and further validated through
a systematic small-scale analysis. This ensures consistency between the mathe-
matical model derived from transfer functions and the simulation outputs gener-
ated with SPICE software. The iterative approach is used at different levels of
abstractions of transfer models when multiple components interact.

Once the consistency between circuit level and mathematical level sim-
ulation of both optimal output and sub-optimal distortion is confirmed, we will
translate the physical model of all components involved back into a mathematical
framework. We will condense the weighting, summation, or activation function
of the entire circuit into a unified mathematical abstraction, incorporating the
predicted disturbances according to the mathematical model. Inter-connections
will be simplified through ideal mathematical operations, supplemented with ad-
ditional randomised disturbances from a pre-determined distribution. This ab-
straction process will transform each circuit design into a mathematical represen-
tation within a matrix or an activation function, accounting for the uncertainties
outlined in a study that emphasises the reliable optimisation of neural networks.

Based on the examination of perturbations observed at each element of
a weighting matrix or activation function’s output signals, namely their pre-
activation and activated values, we will be able to accurately assess the oper-
ational impact that varying levels of element-wise variances have on the sys-
tem’s decision-making process. Subsequently, by determining the desired output

3.3. PERFORMANCE AND EFFICIENCY ANALYSIS 33

or tolerance level required for a system to function within an acceptable range,
we can effectively ascertain the necessary specifications for component selection
and manufacturing tolerances.

In order to evaluate effectiveness, we will analyse both the static and dy-
namic characteristics of each node within the circuit implementation. This as-
sessment will include examining the weighting and summation devices in the
linear-operations, and the circuits designed to function as an activation function
generator for the non-polynomial part. Each of these sub-circuits will be mod-
elled as a single operation of floating-point numbers in the mathematical model
of neural network operation, with its energy consumption and responding time
required to be examined under the case a given precision requirement is met. As
the system operates in a fully parallel mode within layers, we will measure the
time it takes for a peak-to-peak step-formed signal to be applied to a circuit’s
input and for a steady output to be observed at the output as the operation speed
of the system. The energy consumed during the process and any potential reset
operations, will be considered for overall energy consumption analysis.

With the convergence of the model reaching a stable local minimum, we
can now conduct a detailed analysis of the performance of various implementa-
tions generated through computations [27] or LUT [165] on a field-programmable
gate array (FPGA)or other potential devices such as standard chips or specialized
neural chips [47,166]. This analysis will focus on the ability of these implemen-
tations to generate similar outputs at both modular and system level, allowing
comparison them to our own design. The results from each stage will be com-
pared to those obtained from a full-resolution computation using data and pa-
rameters sourced from the specified references at each layer.

Training sessions for systems that use various configurations of activation
functions are conducted using a standardised topology, learning rate, and opti-
miser. Limited diversity in optimisation algorithms shared during the training
phase result in similar time and energy complexities of this part. Additionally,
the multitude of hyper-parameter variables requiring testing and the sensitiv-
ity of the training process creates challenges in accurately estimating analytical
factors [167–170]. Should the training algorithms under consideration undergo
further refinement and be deemed ready for implementation, it may facilitate a
thorough evaluation of training efficacy across various algorithms.

3.3 Performance and efficiency analysis
In consideration of the possibility of implementing a neural network using

exclusively analog hardware and with the appropriate design parameters, it has
been demonstrated numerous times to be entirely viable. This indicates that a
hardware neural network (HNN) can achieve equivalent performance to its theo-
retical mathematical model equivalency under optimal conditions. The primary
focus of this study is to determine whether the hardware implementation can de-
liver a performance comparable to other approaches, in terms of both efficiency
and robustness, taking into account variability in the components involved and
signal distortion caused by noise.

The current SOTA in the construction of HNNs varies greatly in terms
of structures, ideologies and technologies, making it challenging to establish a

34 CHAPTER 3. METHODOLOGY

definitive standard that encompasses all the proposed designs. To address the
concerns in the aspect of circuit design, we have chosen energy consumption, re-
sponse time, and silicon footprint as the primary criteria for our implementation.
We aim to demonstrate that our design has achieved a cutting-edge level in these
aspects.

In light of the innovative activation function generator and the functions
proposed, our analysis also encompassed a thorough examination of learning
efficiency that related closer to the field of computer science. The notion that
any non-polynomial function can serve as an activation function to accurately
model a continuous function in the real domain [9, 10] prompts the question of
whether the proposed function can rival the effectiveness of other widely utilised
activation functions. Additionally, as a result of the comprehensive nature of
systematic redundancy in quantities of layers, neurons and connections, and
non-polynomial operations, we have established a set of criteria to assess the
precision of each layer and transform it into a systematic analysis.

In the subsequent section, we will proceed under the assumption that our
ideal model successfully describes the actual configuration of a specified neural
network. We will then present our strategy for evaluating the performance for
each relevant aspect.

3.3.1 Benchmark and method of analysis

In consideration of the modular and systematic approach to performance
evaluation, as discussed previously and illustrated in Fig. 3.1, we can summarise
our process for assessing performance and other relevant factors for different
aspects of the system and alternative solutions suggested by existing works under
both optimal and sub-optimal conditions as follows as is applied in standard
system designs:

1. Categorise the system into neural network functional blocks according to
their designated design objectives.

2. Establish the attainment of their designated objectives for each functional
block as the performance criterion.

3. Segment each functional block into circuit groups based on mathematical
operations.

4. Define the mean performance metrics for systematic operations pertaining
to each circuit group as the efficiency criteria.
The activation function circuit (AFC) will be introduced in the following

section, due to the novelty of the activation function, we will conduct a com-
parison of its compatibility with other commonly-used activation functions on
commonly used datasets. This comparison will focus on analyzing the optimi-
sation speed of networks utilising the transfer function of the AFC as an acti-
vation function g, aiming to achieve performance levels similar to other widely
used activation functions. Time efficiency in this context will be measured by
the training iterations required to reach a specific level of accuracy or loss, as
well as the learning outcomes of the network at the same stage of optimisation
with same configuration, compared with other widely used activation functions
as baselines.

All experiments will utilise a shared network topology and optimiser on

3.3. PERFORMANCE AND EFFICIENCY ANALYSIS 35

a small scale to ensure consistency and efficiency in executing the tests. The
objective of this phase is to establish a baseline system for comparison purposes,
aiming for a discernible improvement over random guessing, rather than reach
a SOTA level accuracy. Thus, we will primarily focus on small-scale networks
with adequate iterations of optimisation to simplify the training and validation
process. The ultimate goal is not to achieve SOTA performance in terms of
mathematical modeling, but rather to assess the performance of the network with
the proposed activation function in a controlled environment.

The subject of comparison is the SOTA technologies published within the
last decade, which primarily prioritize stand-alone systems designed for a singu-
lar purpose. It is important to note that intricate systems encompassing function-
alities unrelated to neural network processing, akin to traditional computers, will
not be included in the comparison.

In analyzing the data sourced from available sources, considering the sys-
tem’s topology and tasks that are performed, it is noted that not all proposed de-
signs provided a comprehensive discussion on all functional blocks involved. As
such, our approach involves primarily extracting and organizing the data based
on their significant contributions, if specified, while disregarding criteria that are
not prominently highlighted. By assuming that in a neural network, the output
magnitude and parameter visibility at each specified node are evenly distributed,
we can approximate the average power and time consumption of each operation
within a network by dividing the consumption within the target fields by the total
number of operational functional blocks within that stage.

In order to assess efficiency, we will be analyzing the energy consumption
in both static and dynamic states, as well as the response time for each potential
operation and interaction between functional blocks. This analysis will also in-
clude the silicon footprint. It is important to note that an N-Channel metal oxide
semiconductor (N-MOS) and a P-Channel metal oxide semiconductor (P-MOS)
will each be counted as one transistor, without taking into account layout spacing
or the size difference to make a matched pair, for simplicity of discussion.

The concept of operation is defined within the framework of mathematical
representations outlined in our documentation, with equal consideration given to
both linear and non-linear operations. To clarify, each instance of multiplication,
addition, and non-polynomial transformation facilitated by the activation func-
tion for a specific input-output pair will be considered as a single operation. It is
important to note that in today’s advanced computing device architectures, par-
ticularly those featuring high levels of parallel processing capabilities, the time
required to compute a set of inputs using a specific neural network will signifi-
cantly vary across different implementations or architectures. As such, we rely
on the average duration needed to complete each operation as a point of refer-
ence.

In this work, the analysis of the AFC will primarily focus on its capabil-
ity to consistently generate desired outcomes and maintain a standard level of
learning proficiency in terms of accuracy and loss at a comparable number of
training iterations to commonly utilised activation functions. Additionally, the
circuit will be assessed as a functional component in terms of its static and dy-
namic power consumption, as well as response time, without undergoing any
optimisation procedures.

36 CHAPTER 3. METHODOLOGY

In the upcoming analysis of the AFC proposal, we will examine the ef-
ficiency of time and energy by testing the latency in response and power con-
sumption during dynamic and static mode using a SPICE software. This will
involve testing a standalone circuit with an ideal voltage source and outputs of
no loading.

To assess performance, we will input a sweeping periodic signal of a tri-
angle and sine waveform at various frequencies and analyse the phase shift and
distortion to determine the limits of response. Power consumption will be calcu-
lated by measuring the root mean square (RMS) current level for each region the
transistor structure is operating in and for a whole cycle.

The evaluation of the multiply accumulate circuit (MAC) will focus on its
ability to execute accurately a specific linear transformation task. This assess-
ment will involve testing the performance of the weighting circuit in applying
the intended weight to a designated input and analysing the variance between the
analog output and the theoretical output derived from mathematical computa-
tions. Furthermore, we will assess the overall capacity of the system to generate
a linear transformation on a varied set of parameters and inputs within the des-
ignated operational range, by evaluating the deviation between its output and the
desired target output.

In a MAC where external information on the parameters and data flow of
its potential application is not available, our modular testing will prioritise the
analysis of peak-to-peak power and time consumption for all possible combi-
nations of inner connections within the proposed weighting system. In order
to estimate space requirements, we will provide a formula for determining the
minimum transistor count needed for each junction at every stage, with resolu-
tion as an independent variable of the model, considering the lack of resolution
information for a specific application.

In the assessment and comparison of the SOTA works, particularly in the
realm of digital systems, we will be conducting a thorough analysis of the clock
cycles required for each operation individually. The required number of cycles
will then be multiplied by a standard time interval of 0.2 ns, corresponding to
a clock frequency of 5 GHz, which is commonly achieved by a typical central
processing unit (CPU) may achieve. For the purposes of this analysis, we will
disregard the read-and-write consumption of the computing process. Instead, we
will focus on the Assembly Code instructions utilised and the number of cycles
needed for each line of code in order to estimate and compare time requirements
with greater simplicity. The performance evaluation of analog designs will pri-
marily be based on the specified characteristics as stated in the respective works.

In regards to the spatial aspect, it is relatively straightforward to estimate
the overall footprint based on the simplicity of the design and the required tech-
nology. By analysing the FPGA specifications, we can determine the minimum
number of transistors needed for a computing device, as well as calculate the
portion of gate arrays utilised for the task. However, in cases where cutting-edge
technology, particularly in analog-based designs, is employed, the mapping of
multi-stack and cross-layer components to the silicon surface can vary signif-
icantly depending on the specific circumstances. This circumstance allows for
the assessment of the dimensions of these components solely on the basis of their
classification and quantity.

3.3. PERFORMANCE AND EFFICIENCY ANALYSIS 37

Therefore, we have chosen to focus on discussing the expected number of
transistors per functional block and developing a formula to predict the scalabil-
ity and growth of transistors necessary for each circuit involved in this project.

3.3.2 System and modular tolerance

The evaluation of a potential circuit design revolves around its ability to
accurately replicate the output of a mathematical model when provided with the
same input. This analysis focusses on the alignment of the physical system out-
put, as measured by the voltage measured at its output port, with the anticipated
output of the corresponding mathematical representation. Dimensional consid-
erations are disregarded in this assessment for simplicity of discussion.

In application-orientated industries, it may not be advisable to assess the
performance of a system by evaluating each individual sub-system. The notable
attributes of neural networks, such as non-linearity and opacity, present signifi-
cant challenges when conducting a thorough system-level analysis, particularly
concerning accuracy and loss. This complexity makes it impractical and ineffec-
tive to rely solely on information regarding the network’s architecture and param-
eter configurations, as a comprehensive understanding necessitates detailed data
samples. In neural network with multiple hidden layers trained using the gradi-
ent descent algorithm and an activation function with a gradient not exceeding
unity within its range, it is challenging to establish solid prediction that the en-
hancement of the precision of each component results in an overall improvement
in systematic accuracy or performance at the neural network’s level.

In order to establish a dependable benchmark for assessing modular per-
formance, it is our belief that the tool should accurately depict the tolerance of
each component within the design. This can be achieved through quantifiable
measurements aligned with a straightforward and universally accepted standard
that can be applied to any potential input and output scenarios.

Using a uniform approach to replicate the alignment between mathematical
models and analog implementations, the sequential steps are outlined as follows:

1. Establish models and conduct simulations to assess the variability of indi-
vidual components.

2. Develop models and conduct simulations to assess the variability of each
layer within a specified configuration based on component variability.

3. Create models and conduct simulations to evaluate multi-layer and sys-
tematic variability through layer-by-layer analysis.

4. Derive models and perform simulations to assess performance based on a
combination of component and signal variability.

The fourth stage, distinguished from its predecessors, stands alone and centres
primarily on the characteristics of neural network. This stage will highlight cer-
tain aspects related to its optimisation and configurations, serving as a reference
and providing insight into the practical application’s scope, rather than focusing
solely on the functionality of combinations of non-ideal components as repre-
sented by the mathematical model. Furthermore, when examining the network’s
robustness, in addition to analysing its resilience to external disturbances, such
as noise and temperature fluctuations, it is essential to consider its ability to with-
stand variations in elements. The examination of external perturbations will be

38 CHAPTER 3. METHODOLOGY

touched upon in the relevant chapters.
In summary, when considering notations X; P ; Y = PX; α (·); or Z =

α (Y) represent the input vector, linear transformation matrix, pre-activation
value, activation function and activated value in ideal cases, respectively, and
using the same symbols with an additional hat notation to denote their perturbed
versions, we can evaluate and assess performance using the following equations:

∆X = X̂ −X; (3.2)

∆Y = P̂X − PX; (3.3)
∆Z = α̂ (Y)− α (Y) . (3.4)

These equations quantify the discrepancies observed in the input stage (∆X),
caused by the linear transformation (∆Y) and introduced by the linear trans-
formation and the activation function (∆Z). These terms serve to illustrate the
shortcomings that may arise in the implementation of each functional block com-
pared to ideal theoretical models.

In order to assess the overall effectiveness of a neural network , it is possi-
ble to establish a target value, denoted as T , for the single-layer neural network.
The general function of the neural network can be labelled as f (·), and its loss
function can be defined as δ (·). The network’s performance in a purely theoret-
ical context can be measured by δ (f (X) , T), without taking into account any
specifics of the actual system.

For instance, if we consider a single-layer perceptron as our model, we can
calculate a series of altered outputs:

∆Z|X̂ = α
(
PX̂

)
− f (X) (3.5)

∆Z|P̂ = α
(
P̂X

)
− f (X) (3.6)

∆Z|α̂ = α̂ (PX)− f (X) (3.7)

These equations demonstrate the difference in output compared to the model due
to variations in individual components. By analyzing these functions, we can
gain a better understanding of potential errors introduced by different elements
of the network. While these insights can help identify how the output may be
distorted systematically, they do not necessitate an actual decrease in overall
performance in practical cases.

In adherence to this approach, it is deemed necessary to conduct addi-
tional analysis on the impact of δ

(
f̂
(
X̂
)
, T

)
on the systematic performance,

with f̂ (·) denoting a distorted system. This quantity is intended solely for illus-
trative purposes in showcasing the alterations in network performance, without
indicating directions for any ensuing corrections.

With the use of the benchmarks, we can effectively assess the deviation
introduced into a system in comparison to its desired outcomes. However, this
method is not ideal for a systematic assessment in the context of neural network,
due to the non-polynomial nature of activation functions. These functions may
produce similar outputs for different inputs, making it difficult to identify poten-
tial failures or errors in the input data.

3.3. PERFORMANCE AND EFFICIENCY ANALYSIS 39

With the use of Taylor expansion, with the gradient of the activation func-
tion α (·) at the input point x denoted as θ, while disregarding the second and
higher order terms, it leads to the emergence of an error term as a result of input
perturbation between α (x+∆x) and α (x) represented by the equation:

α (x+∆x)− α (x) = θ∆x, (3.8)

where the value of θ falls within the range of 0 to 1 by designs for the activation
function, ensuring that it does not exceed the maximum magnitude of the gradi-
ent between x and x + ∆x. This principle can further be supported by a more
broad interpretation of Lagrange’s mean value theorem, which asserts that:

“For a given planar arc between two endpoints, there is at least one
point at which the tangent to the arc is parallel to the secant through
its endpoints.”

Based on this concept, it can be inferred that for a function with a gradient that
consistently remains below an absolute value of 1 within its applied range, the
secant between any two points is either less than or equal to 1. This function
demonstrates that, when introducing a perturbation of ∆x to the input, any dis-
crepancy in the output of the system in comparison to its original output should
converge after the activation process.

The efficacy of the activation functions can be compromised in non-optimal
scenarios. This discrepancy may come from two main sources: inconsisten-
cies between the theoretical activation function and the practical circuit transfer
function, as well as the noise generated during operation. These perturbations
are quantified using a linear operation to minimise a loss function as shown in
Eq. (3.1), along with an additional relative error ϵα encompassing all potential
inputs and a constant noise with magnitude ϵn. In the case of the activation
functions analysed in this study, where the deviations between the original and
implemented functions are minimal, our estimation approach has been validated
as effective as will be demonstrated in Chapter 6.

Although some researchers in the field of computer science focus on analysing
errors in floating point arithmetic within digital systems [171–173], the prevail-
ing approach leans towards prioritising accuracy and security over storage con-
cerns. This is mainly due to the redundancy built into the system and the limited
impact of errors on applied neural networks [174, 175]. In contrast, in analog
systems where inaccuracies can vary significantly from digital systems, there is
a growing need to evaluate the capacity correcting errors. To meet the demand
for a comprehensive framework for assessing the performance of individual sub-
modules, a thorough analysis involving multiple layers is necessary. This holistic
approach will reveal the extent to which each functional block introduces un-
wanted distortions, ensuring the validity of performance analysis of the HNN at
a general level.

This thesis will primarily focus on evaluating the reliability and effective-
ness of the implementations of each layer on the functioning of a HNN, with
the aim of establishing standards that will allow researchers and industry pro-
fessionals to develop and implement a sophisticated neural network on a silicon
platform. In this study, we will operate under the assumption that any combina-
tion and magnitude of parameters are feasible and that the capacity to execute

40 CHAPTER 3. METHODOLOGY

any real-world task is determined by the mathematical model produced in the
structure of the neural network. The objective of this proposed design is to ac-
curately represent each necessary operation for the mathematical model with
minimal deviation from the optimal output scenario.

The analysis of the performance of the circuit can be achieved through a
careful examination of a neural network, assuming that it has undergone exten-
sive training and reached a state-of-the-art level. Performance can be defined as
a function of all potential ideal inputs X and their respective ideal outputs Y .
We can denote the transfer function of the circuit as φ (·), with the loss function
assumed to be the RMS of the probability density function (PDF) of the relative
error between φ (·) and Y

δ (φ (·)) = RMS
(
φ (X)− Y

Y

)
(3.9)

The decision to not use non-systematic analysis when neural networks with
a gradient descent-based optimiser experience decreased performance can be
better explained by the lack of transparency without modular pre-training and
additional fine-tuning with human intervention. Research has shown that while
optimising neural network can yield satisfactory results, it falls short in pinpoint-
ing and explaining issues [176], often described as a “ black box” [177] or ”Ma-
tryoshka Doll” scenario [178]. This complexity hampers our ability to fully un-
derstand the inner workings of the system, posing challenges in evaluating the
performance and effectiveness of individual components.

There is significant concern within the artificial intelligence community
about the uncertainties surrounding potential risks and approaches to assess the
performance of feature matrices and data representations used in training and
applications [177–179]. As a result, there is a shortage of precise tools to ac-
curately gauge the performance and learning efficiency of specific layers, their
inputs, and outputs, utilising metrics like “accuracy” and “loss” commonly em-
ployed in systematic analyses.

In addition, due to constraints in data accessibility and challenges related
to batch testing in SPICE software, it is exceedingly difficult to thoroughly test
every sub-module of a proposed system with all conceivable combinations of
input and output data in practice. It is imperative that the benchmark for testing
is raised to a higher standard in order to guarantee the performance is maintained
at a consistent level across a wide range of potential applications, whether they
are actively being tested or not.

3.4 Conclusion

In order to successfully implement the proposed circuit with the HNN
framework and accurately measure its performance relative to other SOTA works
in various formats and configurations across multiple dimensions using a variety
of datasets, we have established specific criteria and methodologies for conduct-
ing these comparisons.

The methodology is grounded in our strategic objective of developing a
modular system that incorporates a standardised framework for information trans-

3.4. CONCLUSION 41

mission and processing. This approach entails the translation of the conceptual
model of the neural network into a corresponding hardware implementation. Fur-
thermore, we evaluate the coherence between the proposed hardware design and
the underlying mathematical model.

In this section, we have outlined the key criteria deemed essential for the
implementation, along with detailing the methodology used for measurement
and estimation from a modular foundation to a systematic approach. In order
to address the clarity issue identified, we have clarified that performance eval-
uations are to be made relative to the neural network being represented by the
system, with all comparative analyses conducted in a context-neutral environ-
ment devoid of practical application considerations.

The terminology and classifications of signals will serve as a framework
for the work presented in Chapter 4 and 5. Additionally, the criteria estab-
lished for assessing the performance of a specific HNN will be utilised in the
subsequent three chapters. This approach will facilitate a more comprehensive
comparison with other widely-used activation functions or SOTAstechniques,
thereby ensuring a robust evaluation of the learning outcomes and resilience of
systems employing these technologies.

42 CHAPTER 3. METHODOLOGY

Chapter 4

Activation Function Circuit

We are to introduce a hardware neuron that has the capability to generate
a wide range of activation functions. Strict requirements for the explicit form of
activation functions within neural networks are not necessary [9, 10]. Through
the use of standard transistors, a variety of non-polynomial transfer functions can
be easily achieved to be utilised as activation functions.

In our study, we discuss the similarities and differences between hardware
versions and similar mathematical activation functions. Two hardware neural
networks (HNNs) examples have been created based on the design of the hard-
ware neuron. These networks have been thoroughly evaluated for regression and
image classification tasks.

It has been determined that the accuracy and reliability of the HNNs are
comparable to their software counterparts, with only slight performance degra-
dation when considering input perturbations and component variability. This
neuron, compatible with complementary metal oxide semiconductor (CMOS)
technology, paves the way for easily manufacturable HNN . This provides a prac-
tical, low-power platform together with low power multiply accumulate circuits
(MACs) for incorporating HNNs into applications such as the Internet of things
(IoT) and systems on a chip (SoC).

4.1 Overview
The computational model formalised as artificial neural networks (ANNs)

serve as the foundational framework for the majority of contemporary machine
learning (ML) studies and applications [180]. These neural networks have found
application in a diverse array of fields, including but not limited to computer
vision, speech recognition, automatic control, finance, and robotics. The funda-
mental objective of utilising neural network in such contexts is to approximate
an unknown function, a task facilitated by the theoretical understanding of the
universal approximation properties inherent to neural networks. In a simplified
explanation, the universal approximation theorem entails that for any function
f within a certain class F and any desired level of precision ε there exists a
neural network N capable of approximating the said function f to within the
specified ε degree of accuracy. Various results of this kind are available in the
literature that verify the universal approximation capabilities of neural networks
across a wide range of practical functions, albeit with certain conditions often

43

44 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

imposed on the activation functions of the networks to ensure this universal be-
haviour [181–183].

4.1.1 Background: Hardware neural computing

Although not longer strictly following the cadence outlined by integrated
circuit (IC) advancements that serve as the foundation for computing systems,
ICs are consistently decreasing cycle time and energy consumption for a floating-
point operation (FLOP) [184]. When it comes to the software execution of a
neural network model, the associated computational overheads—such as mem-
ory usage, compute time, and power consumption—in relation to the network’s
performance can vary significantly across the wide variety of available hardware
platforms. Consequently, evaluating the comparative energy efficiency of the
software implementation of a neural network is not straightforward [185].

Software-based neural networks are typically implemented on machines
with a von Neumann architecture. Such an implementation involves the compila-
tion of the code from a higher-level programming language to low-level machine
instructions suitable for the underlying platform. These instructions are then ex-
ecuted on a circuit that is designed to handle a much wider class of problems.
Furthermore, the separation between processing and memory in a von Neumann
model leads to a data latency and energy cost that can exceed the time and energy
needed to perform a single operation by several orders of magnitude [186].

An alternative is to map the neural network—which requires no separa-
tion between processing and memory—directly to a circuit architecture. This
approach naturally leads to an implementation using hardware neural network
(HNN) systems, especially circuits with analog electronic realisations [187].
HNNs have been developed for many decades [47] with applications including
signal processing [188–191] and control automation [192–194]. These works
follow varying approaches to the design of the weighting, summation and acti-
vation function functional blocks. A key goal for the design of HNN is to boost
the performance of a neural network relative to the equivalent software designs
performed on conventional computing platforms. Depending on the application,
improved performance can be achieved in terms of reduced computation time,
lower power, higher reliability, reduced form factors for mobile and embedded
applications, and enhanced security [47].

Many applications of neural networks do not require a large number of
neurons per layer, thereby admitting circuit layouts compatible with conventional
complementary metal oxide semiconductor (CMOS) circuits. HNNs fabricated
with conventional CMOS solutions offer attractive features for integration with
embedded systems and particularly for systems on a chip (SoC) applications.
Many SoC applications—as for most electronics applications—require trade-offs
between high frequency and power efficiency. Low-power neurons are especially
appealing for applications that use autonomous distributed systems or the Inter-
net of things (IoT). For IoT applications, the demand to perform complex tasks
locally is at odds with the low energy requirements for each component in a
network, whereas the speed of operation may not be a critical factor.

4.1. OVERVIEW 45

4.1.2 Motivation: Efficient Look-Up Table

In an analog HNN, circuit configurations mimic the architecture of the
neural network. Similarly, as a combination logic circuit is implemented as in-
terconnected Gates, the HNN architecture consists of interconnected neurons.
Some notable advantages that are gained include:

1. reduction of energy costs for performing the operations required of a neu-
ron;

2. elimination of circuit redundancy compared to, for example, a processing
unit or a micro-controller;

3. limiting latency to the propagation delay through each neuron layer.
However, there are also some disadvantages associated with HNNs as well. First,
precision is lost in analog computations compared to binary computations. Fur-
thermore, the fan-out is limited by the interconnect technology used to manufac-
ture a HNN, and hence scalability becomes an issue with an increasing number
of neurons in a layer. As such, for the foreseeable future, software implementa-
tion will remain the preferred approach for applications requiring high precision
and / or a larger number of neurons per layer.

The hardware design of the activation function may be approached from
at least two angles. One approach is to first select an activation function as the
target, then develop a circuit to mimic that function [195–197], and finally im-
plement a neural network design for integrated circuits [64, 198, 199]. This is
justified by the aforementioned universal approximation results in neural net-
works. A somewhat opposing approach is to take advantage of non-polynomial
devices such as transistors to explore which non-polynomial functions are easily
reproduced by a circuit, and to exploit non-polynomial functions that are intrin-
sic to the operation of a circuit. In this study, the latter approach is followed,
which allows a large class of viable activation functions.

Against this background, a neuron is studied that is fully CMOS compat-
ible, can be designed to work in the weak inversion or sub-threshold region for
low power conditions, is simple from a circuit viewpoint, and can be adapted
to provide tailored activation functions for different applications. The starting
point of the study is the voltage-to-voltage transfer function for a simple two-
transistor circuit. The transfer function produced by the circuit, while exhibiting
non-polynomial characteristics, has the potential to function effectively as an ac-
tivation function in practical neural network applications. More broadly speak-
ing, the circuit is capable of offering a range of activation functions that can be
examined as a circuit-based representation of a piece-wise linear (PWL) func-
tion. The circuit implementation of the activation function generator will then
be demonstrated to have advantages for the HNN design. The variability in the
electronic components providing the summation and weighting functions also
influences the overall performance of a neuron, and as a consequence, that of the
HNN. Hence, for representative HNNs applied to a simple regression problem
and for a classification example using the Modified National Institute of Sci-
ence and Technology (MNIST) dataset, robustness against input perturbations
and stability against component variations are analysed.

46 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

4.2 Push-Pull Linear Follower
The foundation of a HNN is a neuron circuit that is integrated with an in-

terconnect scheme to facilitate the construction of a network. A straightforward
implementation of neurons can be achieved with two main functional blocks: an
activation function circuit (AFC) and a MAC. These components work together
to execute the non-linear and linear operations mandated by the various layers of
a specified neural network.

In the face of the challenging task of analytically modelling the behaviour
of transistors and other active elements in the field of electronic engineering,
which often entails a large number of parameters [200–203], it could lead to
difficulties in designing a circuit to replicate the behaviour of any widely used
activation functions. Nevertheless, recognising that any non-polynomial func-
tions can serve as activation functions, it is possible to create a custom circuit
with a non-polynomial transfer function to serve as a look-up table (LUT) of an
activation function, and construct neural networks based on this approach.

4.2.1 Circuit diagram
The inherent non-polynomial nature of the transfer function of active com-

ponents has proven to be a suitable choice for serving as the generators of acti-
vation functions in a neural network [47].

Figure 4.1: The basic diagram illustrating the complementary metal oxide
semiconductor-based activation function circuit. The circuit is powered by two
balanced voltage sources referred to as Vcc and -Vcc. The signal produced and
analysed in the multiply accumulate circuit (MAC) is fed into the input port Vin
which includes the common Gate of the transistor pair. The resultant output can
be retrieved from the shared Source, denoted as Vout.

The proposed circuit for the AFC of the HNN system features a straight-
forward pair of symmetrically matched CMOS devices depicted in Fig. 4.1. This
configuration serves as a means to deliver a range of activation functions. The
CMOS pair-based design showcases a topology known as a “single stage CMOS
buffer”, where the input signal is applied to the common Gate of the two tran-
sistors while the output signal is extracted from the Source. This setup results in
a consistent relationship between the input voltage Vin and output voltage Vout
, as evident from the circuit operation. The design, while yielding a comparable

4.2. PUSH-PULL LINEAR FOLLOWER 47

transfer function to that presented by Khanday et al.in their research [204], fea-
tures a significantly more streamlined architecture. This simplification not only
reduces the silicon footprint but also facilitates easier wiring configurations.

In the typical operation of a CMOS design, it can be anticipated that only
one transistor will be in the active state, facilitating the flow of current. This tran-
sistor will demonstrate significantly higher conductance than the other transistor,
thus exerting a strong influence on the output voltage, usually directed towards
one terminal, specifically Vcc or -Vcc. As the Gate voltage aligns with or sur-
passes the level of the Drain , the transistor can be effectively represented as
diode-connected. Subsequently, the output voltage stabilises at the Drain volt-
age, denoted as VD.

An analysis of the relationship between the voltage applied to the Gate of
the CMOS pair illustrated in Fig. 4.1 and the resulting voltage observed at the
Source , as well as their discrepancy, is depicted in Fig. 4.2a based on the math-
ematical model obtained in the subsequent section and verified with results of
simulation program with integrated circuit emphasis (SPICE) simulations util-
ising the predictive technology model (PTM) as shown in Appendix B. As has
been illustrated in Fig. 4.2a, the voltage following nature of the circuit results in
a zero Gate-Source voltage (VGS = 0) and facilitating sub-threshold operation
at the centre of the graph. As the input voltage Vi (denoted by VG) approaches the
Drain voltage of either the N-Channel metal oxide semiconductor or P-Channel
metal oxide semiconductor transistor (V n

D or V p
D, respectively), one of the tran-

sistors will reach a zero Drain-voltage, shown by the orange curve, follows the
relationship VGS = VG − V

p/n
D in the saturated region when the complementary

metal oxide semiconductor pair is locked, otherwise it remains close to zero. It is
important to note that the N-Channel metal oxide semiconductor (N-MOS) and
P-Channel metal oxide semiconductor (P-MOS) transistors cannot be operated
concurrently above the threshold voltage with the design.

By understanding the transfer function in relation to the Gate-Source volt-
age VGS applied to the field effect transistors (FETs) and its conductance, the
presence of two saturation regions at the end of the curve of the Source The volt-
age VS can be simply elucidated. One transistor operates in an above-threshold
region where resistance is minimal, while the other operates in the depletion re-
gion with significantly higher resistance. In such a scenario, VGS will be drawn
towards the corresponding voltage supply level (Vcc or -Vcc).

In the operational range of the transistors, as indicated by the simula-
tion results, both transistors are functioning in a sub-threshold state. In this
sub-threshold state, the conduction effects can be described by the equation
ID = I0 exp

VGS

ξVT
[205]. Here, I0 represents the current pre-factor, calculated

as I0 = 2µCoxV
2
T

W
L

, with µn denoting electron mobility and Cox referring to
Gate capacitance specific to the fabrication technology being utilised. The as-
pect ratio W

L
is determined by the dimensions of the transistor’s Channel (width

W and length L).
For a symmetrically matched pair of CMOS transistors in this study, the

pre-factor remains constant, as long as the condition Wp

Wn
= µn

µp
is met. The non-

ideality factor is denoted as ξ and the thermal voltage VT can be expressed by
kBT/q, where kB represents the Boltzmann’s constant, T is the temperature and
q is the charge of an electron, which is approximately 26 mV at room tempera-

48 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

(a)

(b)

Figure 4.2: The study presents an analytical model of the activation function
circuit with a discrete matched pair, derived from the mathematical framework
discussed in Section 4.3. (a) The transfer function illustrated by the dark curve
demonstrates the correspondence between the output voltage Vo, denoted as VS ,
and the input voltage Vi, denoted as VG, for a matched transistor pair. The volt-
age difference between Vi and Vo remains at zero, except in instances where Vi

approaches the Drain voltage of either transistor. (b) The relationship between
the Drain-Source currents IDS and the current pre-factor I0 for the individual
transistors is depicted for varying values of VG and VS (N-MOS represented by
the orange surface and P-MOS by the dark surface), with fixed Drain voltages
set at V n

D = −V p
D = 1 V for the N-MOS and P-MOS transistors, respectively.

The intersection of the two surfaces (highlighted with grey meshes) at the centre
of the graph indicates the condition InDS = −IpDS The solid grey mesh also rep-
resents the condition where Vo ≈ Vi, aligning with the mathematical model of
the AFC.

ture, as is applied in this work.
When the gate-source voltage VGS is fixed and consistent for both tran-

sistors, the current flowing through the system remains steady, in line with Kir-
choff’s current law, which dictates that:

“The algebraic sum of currents in a network of conductors meeting
at a point is zero.”

As a result of the circuit configuration and the analysis conducted, it is deter-

4.2. PUSH-PULL LINEAR FOLLOWER 49

mined that the current flow through both transistors will be consistent and equal,
based on the aforementioned analysis and circuit configuration.

4.2.2 Non-linear transfer function

The utilisation of a circuit to represent the activation function α(·) can
be achieved using the voltage-based transfer function φ (·) of the proposed cir-
cuit. This function produces an output that is saturated for inputs below a lower
threshold, acts as a voltage follower within a specified range, and returns to a sat-
urated state for inputs exceeding an upper threshold. The configuration depicted
in Fig. 4.1, showcasing a two-transistor setup, will be showcased as meeting
these criteria successfully.

The circuit arrangement comprises a single pair of CMOS transistors, de-
signed with a topology similar with a conventional CMOS push-pull follower.
However, a key distinguishing feature is that the transistors in the inverter have
been exchanged. The AFC is structured in a manner ensuring that the Drain of
the N-MOS transistor (Vcc) is maintained at a voltage V n

D , while the Drain of
the P-MOS transistor (-Vcc) is set at a voltage of V p

D. The Gates of both transis-
tors are connected to the input voltage Vi, while the output voltage Vo is derived
from the shared node of the two Sources.

In the context of simulations discussed in Li et al.’s work [64], employing
voltage supplies of V n

D = 1.8 V and V p
D = 0, with threshold voltages for both

transistors to be V n
th ≈ |V p

th| ≈ 0.5 V , the operation takes place in the weak
inversion or sub-threshold region. The circuit is then tested within an input range
of −1.8 V ≤ Vi ≤ +1.8 V , illustrating a resulting voltage transfer function
closely approximating ReLU function.

The results of the simulation above suggest that the selection of the voltage
supplies V p

D and V n
D corresponds to the allocation of values to x− and x+ in a

PWL function as will be shown as Eq. (4.13). Next, an analytical model based on
metal oxide semiconductor field-effect transistor (MOSFET) operation in weak
inversion and incorporating the transition to a blocked state will be developed.
The utilisation of the analytical model will elucidate the degree to which the
voltage transfer function of the AFCs replicates the different functions outlined
by the PWL model. Additionally, it will offer straightforward relationships to
illustrate how the mismatch and temperature variation of the transistors affect
the performance of the activation function circuit (AFC).

In the weak inversion region, the Drain current for a N-MOS transistor
can be approximated by:

InD = In0 exp

(
VG − V n

th

VT

)
×
(
exp

(
−VS

VT

)
− exp

(
−VD

VT

))
. (4.1)

The aforementioned equation showcases the relationship between a pre-factor
denoted as In0 , the threshold voltage of a N-MOS transistor known as V n

th, and
the thermal voltage indicated as VT . By utilising a specific pre-factor denoted as
βn = In0 exp(−V n

th/VT), the Drain current can then be reformulated accordingly
as:

InD = βn exp

(
VG − VS

VT

)
×
(
1− exp

(
−V n

D − VS

VT

))
. (4.2)

50 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

For the cases V n
DS ≫ VT , Eq. (4.2) can be approximated as:

InD = βn exp

(
VGS

VT

)
. (4.3)

A similar description for a P-MOS transistor in the sub-threshold region can be
written as:

IpD = −βp exp

(
−VGS

VT

)
. (4.4)

The impacts of drain induced barrier lowering (DIBL) and the body effect
may be considered [206] when examining the variation in the current pre-factor
with Drain-Source biasing and Source-Bulk bias. These supplementary effects
do not have a meaningful impact on the conclusions drawn from the basic analyt-
ical model. This conclusion will be further validated through circuit simulation
using compact models that account for additional effects not addressed in the
analytical model or the analysis of individual transistors to be presented in Sec-
tion 4.3.

Upon observing that both transistors are functioning within the sub-threshold
range, the current flow through a CMOS pair of transistors is adjusted to be equal
by utilising equations Eq. (4.3) and Eq. (4.4). This analysis yields the conclusion
that the stated condition is as follows:

exp

(
Vo − Vi

VT

)
= exp

(
Vi − Vo

VT

)
(4.5)

must be met, where Vi and Vo refer to the input and output voltages applied and
measured at the Vin and Vout ports respectively. This equation was referenced in
a previous study by Li et al. [64] to explain the results of their circuit simulation.
In order for the condition Vo = Vi to be satisfied, the circuit’s operation is limited
to functioning as a voltage follower for values of Vi within the range of V p

D ⪅
Vi ⪅ V n

D . This means that the unity gain area of the AFC offers a straightforward,
energy-efficient voltage follower with broader utility for sub-threshold circuit
designs. However, it is important to acknowledge that Eq. (4.5) cannot accurately
depict the output voltage as it approaches either V n

D or V p
D, or when the activation

function reaches its saturation.
The circuit is then examined under the condition that the output satisfies

V p
D ≪ Vo ≈ V n

D . In this case, having the same current through the two transistors
implies that the following condition must be met for a matched complementary
pair of transistors:

exp

(
Vi − Vo

VT

)
×

(
1− exp

(
−V n

D − Vo

VT

))
= exp

(
Vo − Vi

VT

)
. (4.6)

This equation may be arranged to give:

Vo = Vi − VT sinh−1

(
1

2
exp

(
+
Vi − V n

D

VT

))
, (4.7)

where sinh−1 (·) is the inverse hyperbolic sine. It is noted for large values of the

4.2. PUSH-PULL LINEAR FOLLOWER 51

input Vi that

exp

(
−Vi − V n

D

VT

)
≈ 0, (4.8)

allowing Eq. (4.7) to be approximately written as:

Vo ≈ Vi − VT sinh−1

(
sinh

(
Vi − V n

D

VT

))
= V n

D . (4.9)

Hence, as the input exceeds V n
D by several multiples of kBT/q, the output satu-

rates to V n
D . A similar analysis can be performed for the condition V p

D ≈ Vo ≪
V n
D that leads to:

Vo = Vi − VT sinh−1

(
1

2
exp

(
−Vi − V p

D

VT

))
. (4.10)

In this scenario, the output voltage reaches saturation at the lower value of the
power supply, denoted V p

D. Given that the second term in Eq. (4.7) significantly
deviates from zero only for certain values of Vi that render the second term in
Eq. (4.10) effectively zero, and vice versa, it is permissible to consolidate the
two equations to derive the transfer function:

Vo = φ (Vi) = Vi − VT

(
sinh−1

(
1

2
exp

(
+
Vi − V n

D

VT

))
− sinh−1

(
1

2
exp

(
−Vi − V p

D

VT

)))
, (4.11)

The function φ (·) denotes the transfer function of the circuit under consid-
eration. After thorough measurements, it has been determined that this function
can be effectively approximated as a PWL function operating within the domain
of R, which be expressed in terms of an input variable v as follows:

φ(v) =

Vcc, v <

-Vcc
θ

θv,
-Vcc
θ

≤v ≤ Vcc
θ

-Vcc, v >
Vcc
θ

(4.12)

The parameter θ represents the deviation of the actual slope of the transfer func-
tion, which satisfies θ ⪅ 1. The non-unity slope is a result of a Bulk leakage
path from Vcc to -Vcc. Using ideal components with the silicon on insulator
(SOI) substrate or by properly biasing of the leakage path, we can achieve a
slope closer to unity in the linear region. Additionally, we can amplify the pre-
activation input to optimise the performance as observed at the input side of the
circuit.

The approximation demonstrates its accuracy in the full range of input
voltages Vi when reasonable choices are made for the voltage supply and thresh-
old voltages. This model elucidates how a matched complementary pair serves
as an approximation for the set of PWL functions categorised by the activation

52 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

function α(·) given in Eq. (4.13). Furthermore, it enables a description of how
the transfer function may deviate from the PWL expression due to transistor mis-
match and temperature effects. It is observed that the circuit transfer function and
the PWL model for an ideal matched pair show notable differences only within
a range extending a few multiples of the thermal voltage VT about V n

D and V p
D.

The difference between the simulation output of the transfer function and
the PWL model is most appreciable in the transition regions between the satu-
rated and linear regions, but the simulation and model are nearly indistinguish-
able for this transistor pair and at the chosen scale if proper scaling is made
according to the practical-case transfer function generated.

4.3 Activation Function Analysis
In the realm of neural networks, there is a range of non-polynomial acti-

vation functions that can ensure the universal approximation property. However,
it has been observed that certain activation functions may be more efficient in
learning efficiency or final outcome than others for specific applications.

It should be noted that incorporating functions such as the hyperbolic tan-
gent through traditional active electronic components can lead to a significant
increase in the complexity of designing a hardware neuron [200–203]. As an al-
ternative solution, various non-polynomial transfer functions can be generated by
a single CMOS circuit. This is made possible by making simple design choices
for a two-transistor circuit, allowing it to produce transfer functions that encom-
pass a variety of PWL functions that such as ReLU , ReLU6 [207], and hard
hyperbolic tangent (tanhH) [208]. A comprehensive list of representative func-
tions related to this circuit can be found in Tab. 4.1.

Although the specific form of an activation function is not necessarily crit-
ical for a neural network, there are distinct advantages to using certain functions
over others in practical applications. For instance, choosing ReLU over tanhH

or vice versa. can lead to improved performance in specific scenarios. Further-
more, it is important to note that a circuit does not need to perfectly replicate
a desired activation function as long as its learning outcomes and some specific
characteristics closely approximate the intended function.

4.3.1 Comparison with other activation functions
Prior to delving into the characteristics of the hardware neuron, a prelim-

inary PWL function representing the activation function that the circuit aims to
replicate is presented as Eq. (4.12), with the adjustment of the factor θ adjusted
to be 1, is shown as follow:

α(x;x−, x+) =

x−, x < x−

x, x− ≤x ≤ x+

x+, x > x+

(4.13)

with x− < x+. The mathematical activation function α(x) exhibits a linear re-
lationship with a slope of one between the lower threshold x− and the upper
threshold x+. It should be noted that the input range of x may exceed the spec-

4.3. ACTIVATION FUNCTION ANALYSIS 53

ified range of [x−, x+]. When the argument x < x− or x > x+, the function
reaches a saturation point at x− and x+, respectively.

In the case of x+ = −x− = 1, the function transforms into a hard hyper-
bolic tangent function known as tanhH. The function tanhH is an odd function
that saturates at extreme positive and negative values of the input. It is mono-
tonically increasing, differentiable in most of its domain of definition, and has a
slope of one near the origin, similar to the function tanh. The same reasoning
applies to equations Eq. (4.13) leading to PWL functions for ReLU and ReLU6
with x− = 0 and x+ −→ +∞ or x+ = 6 respectively.

Generally, the activation functions generated by Eq. (4.13) share in com-
mon that they are PWL, monotonically increasing, and have a derivative that
yields a slope of unity within the range of x− ≤ x ≤ x+. This property has been
shown to provide an advantage in learning efficiency [209].

Table 4.1: Some representative activation functions, the functions discussed
in the comparation of the transfer function-based activation function are high-
lighted.

Activation Function Mathematical Expression Range

Sigmoid 1
1+e−x (0, 1)

tanh ex−e−x

ex+e−x (−1, 1)

tanhH max(−1,min(x, 1)) [−1, 1]

ReLU max (0, x) [0,+∞)

ReLU6 max(0,min(x, 6)) [0, 6]

Softplus log (1 + ex) (0,+∞)

Softsign x
1+|x| (−1, 1)

The AFC is simulated utilising a generic 45 nm low-power CMOS tech-
nology node described by compact models from the PTM repository [210]. The
low-power 45 nm compact models are optimised for a norminal power supply
voltage of VDD = 1.1 V in the model, offering valuable insights into the func-
tionality of the AFC for contemporary technology nodes that operate at lower
voltages. This includes addressing short-channel effects and substrate leakage
issues.

The transistors within the AFCs are selected for optimal performance, with
gate lengths set at L = 45 nm and widths configured at Wn = 140 nm, and
Wp = 450 nm. The threshold voltages for the N-MOS and P-MOS are chosen
to be equal with V n

th = |V p
th| ≈ 0.42 V which together with the selection of the

transistor widths approximates a matched integrated complimentary pair.
In Fig. 4.3, the voltage transfer function for the PTMs simulation and ana-

lytical model, as well as the scaled functions tanhH and tanh are presented. The

54 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

Figure 4.3: Analysis of the transfer characteristics of the activation function pro-
vided by the transfer function obtained through the 45 nm predictive technology
model (PTM) simulations with unit [V] (dark solid line). This includes com-
parisons with activation functions derived from a simplistic analytical model
by Eq. (4.11) (dark dashed line), a hyperbolic tangent function scaled by a
factor of 0.3, formulated as tanh (x) = 0.3 tanh (x/0.3) (orange solid line)
and a scaled hard hyperbolic tangent function with the same factor given by
Vo = 0.3 tanhH (x/0.3) (orange dashed line). The curves are examined in the
context of activation functions, and therefore are dimensionless.

power supply voltages have been selected to be V n
D = |V p

D| = 0.3 V , while the
input voltage is systematically adjusted within the range between ±0.7 V .

Upon initial examination of the analytical model at lower voltages, it is
evident that the reduction in voltages leads to a smoothing of the transition to
saturation due to a proportional rise in areas influenced by Boltzmann factors.
However, the slope at Vi = 0 remains very close to one. In contrast, the PTM
simulations exhibit a much more pronounced smoothing near the transition point,
with a deviation from unity in the central region in the relationship between input
and output. These deviations can be attributed to various factors such as DIBL,
substrate leakage, and Source / Drain resistances that were considered in the
integrated pair simulations but were not accounted for in the simplified version of
the analytical model. Importantly, these factors do not have a significant impact
in the simulations of matched discrete pairs.

In light of the impacts attributed to a smaller technology node, it is ob-
served that the activation function generated by the integrated AFCs yields an
approximation closely resembling a hyperbolic tangent function tanh (·) in a
crude manner. Therefore, it is reasonable to anticipate that both will demonstrate
comparable learning efficiency when incorporated into neural networks.

The activation function can subsequently be integrated into a neural net-
work. The findings of two separate experiments will be presented, one focused
on a regression task and the other on image classification using the MNIST
dataset. In addition, identical networks with the same structure and parame-
ters were trained for both tasks using alternative activation functions, i.e., tanhH,
tanh, and ReLU for comparison purposes. All of these activation functions are
increasing monotonically and have derivatives near the origin that resemble the
identity function, leading to improved learning efficiency for the network [209].

4.3. ACTIVATION FUNCTION ANALYSIS 55

(a)

(b)

Figure 4.4: The assessment of loss and accuracy on validation sets using various
activation functions. This includes the simulated transfer function φ (·) (black
solid lines), tanhH (·) (black dashed lines), tanh (·) (yellow solid lines) and
ReLU (yellow dashed lines). (a) The loss obtained on validate sets for different
activation functions implemented in the same neural network architecture with
the same training hyper-parameter set. (b) The accuracy obtained on validate sets
for different activation functions implemented in the same neural network archi-
tecture with the same training hyper-parameter set. It is evident that the ReLU
based network exhibits lower validation accuracy compared to others, even the
validation loss remains at a same level.

Utilising the parameters derived from the software model, the resulting
HNN is constructed and implemented using LTspice. The output of each neuron
within the HNN are validated against the trained software model. The training
and validation outcomes for the MNIST dataset can be observed in Fig. 4.4. It is
evident that the behaviour of the circuit transfer function closely resembles that
of tanhH and tanh functions.

In the scenario illustrated in Fig. 4.5, a regression task was carried out
to approximate a hyperbolic paraboloid f (x, y) = x2 − y2 within the range of
−1 ≤ x, y ≤ 1. This task was accomplished using a neural networkconsisting of
a single hidden layer with 16 neurons. The network was fully connected with a
two-neuron input and a one-neuron output. The activation function used in this
network were the proposed circuit transfer function φ (·), tanhH (·), tanh (·) and

56 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

(a) (b)

Figure 4.5: The learning outcome (dark brownish mesh) and output of a dis-
torted network with a Gaussian noise of 3% the original values introduced (or-
ange mesh) of (a) Circuit transfer function-based network and (b) tanh-based
network. The transparent blueish shaded surface indicates the target plane.

ReLU .

Table 4.2: The validate loss in L1 norm on simple regression task of f (x, y) =
x2 − y2 with Gaussian noise added to the weighting parameters in a trained
model when different activation functions are applied. For example, the row
with ε = 0.10 corresponds to the noise tolerances with standard deviation of
10%.

φ (·) tanhH (·) tanh (·) ReLU

ε = 0 0.0089 0.0089 0.0015 0.0069

ε = 0.01 0.0449 0.0276 0.0392 0.0178

ε = 0.03 0.1654 0.1751 0.1704 0.1476

ε = 0.10 0.2375 0.2588 0.5411 0.2906

Through this approach, a series of well-trained models were obtained, with
associated losses of 0.0089, 0.0089, 0.0015, 0.0069 in the L1 norm as shown in
Tab. 4.2. It should be noted that the function tanh (·) is found to yield the most
favourable results due to its continuous nature. The other three functions perform
similarly in terms of accuracy, showing results that are comparable to both the
tanh (·) function and the target surface.

Variations in parameters following a Gaussian distribution can have a sig-
nificant impact on the output of a network. In the absence of such perturbations,
the simulations shown in Tab. 4.2 indicates a consistent learning efficiency across
different activation functions.

When subjected to perturbations by introducing a Gaussian noise whose
root mean square (RMS) value equivalent to 3% of the original parameter values
onto the weight components in the form will be shown in Eq. 4.19 and Sec-

4.3. ACTIVATION FUNCTION ANALYSIS 57

tion 5.5, the simulated loss values shifted to 0.1654, 0.1751, 0.1704, 0.1476,
respectively. This similarity in the results indicates that all four activation func-
tions exhibit a similar level of robustness.

Analysis of the results presented in the Tab. 4.2 reveals that, as perturba-
tions on the circuit components increase in magnitude, the tanh network expe-
riences the highest increase in loss. Consequently, we can assert that the imple-
mentation of the transfer function generated by the proposed AFC as the activa-
tion function of a neural network in practical applications is unlikely to lead to a
substantial reduction in robustness or learning efficiency.

It has been observed that the introduction of Gaussian noise directly to
the components representing parameters of the network can have a significant
impact on the output, particularly if the network is well-trained. Furthermore, the
relationship between the additional loss experienced when a consistent level of
noise is added and the specific activation function utilised is not easily discernible
at this stage.

4.3.2 Special applications

Capitalizing on the strong linearity present in the non-saturation region of
the circuit design, we are able to enhance efficiency when carrying out specific
tasks such as recursive neural networks (RNNs) and residual neural networks
(ResNets). This allows us to effectively maintain the input information within
a specified range by executing linear operations on the relevant portions, or by
isolating the desired segment while filtering out extraneous information through
the saturation regions.

Using a hard hyperbolic tangent function tanhH proves to be the optimal
choice for this process. The activation function produced by the transfer function
of our proposed circuit is able to operate with a consistent efficiency as tanhH

within the majority of non-saturation regions. There are isolated instances where
the function may have limitations, specifically in areas near the transition points
where neither |VDS| ≫ VT or |VG| ≫ |VD| conditions are satisfied, as well as in
the two saturation regions.

In this section, we will demonstrate the capabilities of PWL functions us-
ing an experiment that converts an input within the range of [−1, 1] into its Gray
Code binary representation. By analytically assignment of the parameters, it is
determined that the system must accurately process data points that meet specific
criteria, allowing them to progress to the next layer without being altered. Any
data points that do not meet these criteria will be disregarded and set to constant
values.

In this particular scenario, as depicted in Fig. 4.6, the range of input values
ranging from −1 to 1 is discretized into four segments, between ranges divided
at the points −0.5, 0 and 0.5. Each segment contains the information on the
output of the first hidden layer in a specific range and will be further transformed
linearly within subsequent hidden layers using a matrix that employs a technique
akin to “folding”, inspired by the work of De Ponte et al. [211] and Pace et
al. [212].

Based on our thorough analysis, we are able to calculate the analytical for-
mula for determining the appropriate size and transformation matrices required

58 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

Figure 4.6: The configuration of the recursive neural network for Gray Code
representation representation is depicted at a theoretically arbitrary bit resolu-
tion. Each layer has the capability to generate an additional two bits of output.
The illustrated figure showcases the output neurons (coloured red) from the sec-
ond to the seventh bit, while the input neuron is depicted in blue. The green
nodes represent the recursive hidden layers. Bias nodes have not been specif-
ically identified. The adjacency between consecutive hidden layers is depicted
by full connectivity through black straight lines (only connections from the up-
permost neuron are displayed for simplicity). The activation functions used in
hidden neurons is a hard hyperbolic tangent function (tanhH). The outputs are
interconnected through their respective hidden layers by silver curved lines, us-
ing a Binary Step function as their activation functions.

for each layer to meet various specifications regarding the resolution of bits to
be produced, whether through a recursive or non-recursive approach. The ma-
trices necessary for facilitating communication between the hidden layers in the
illustrated architecture depicted in Fig. 4.6 are as follows:

weight =

−4 4 −4 4
−4 4 −4 4
−4 4 −4 4
−4 4 −4 4

 , bias =
[
−7 −5 −3 −1

]
(4.14)

The results obtained from the matrices are illustrated in Fig. 4.7, with an
activation function of the CMOS transfer function and subsequent adjustments
based on the deviation from the tanh H function. It is evident that effective util-
isation of the matrix for enhanced resolution hinges on the strength of transfer
function’s identity. In cases where the transfer function is not sufficiently similar
to the PWL function, or the linearity in the non-saturation region is not strong
enough, additional processing is necessary to align inputs with the linear range
of the activation function.

The performance of the network has been evaluated using an 8-bit resolu-
tion, demonstrating a minimal bit error rate of less than 1% on all outputs. This
design distinguishes itself from prior research by minimizing the need for exten-
sive amplification in comparison to softer activation functions when utilised in
recursive operations [211]. As a result, the system exhibits enhanced robustness
to potential parameter variations and relative errors.

4.4. CIRCUIT PERFORMANCE 59

(a) (b)

Figure 4.7: The system depicts the principle of a piece of signal processing in
Figure 4.6 serves as a solution for the Gray Code analog-digital converter clas-
sifier task. The virtual waveform stands for the input dataset arranged by the
magnitude of corresponding input seen at the input neuron. The grids are set to
illustrate the relative magnitude of the signal at each port of the corresponding
layer (one hidden layer and the output layer it is fully connected to). (a) The
outputs of the hidden layer neurons are generated through a well-designed utili-
sation of input signals in the form of a period of a triangular waveform consist-
ing of four segments produced by the previous layer. (b) The pre-activated input
generated by a linear transformation of the outputs of the corresponding hidden
neurons with biases for balancing (red lines). The frequency of the virtual wave-
form is doubled once or twice seen by the two output neurons. To produce a
Gray Code presentation of the input, Logic 1 is outputted when pre-activation
values are greater than 0, represented by shaded gray boxes, and 0 otherwise.

With the utilisation of selectively retaining information without compro-
mise, we can implement this approach in ResNets by formulating matrices to
convert the necessary data generated at one layer into a linear region and pre-
serving it for subsequent use. In this aspect, the circuit and activation function
plays a crucial role in isolating and ensuring the layer-wise robustness of hard-
ware implementations of such designs.

4.4 Circuit Performance
In the context of hardware design for the AFC, one must carefully con-

sider its potential functionality as an analog LUT and its ability to generate the
expected output in an analog manner. Additionally, a crucial aspect to address is
how the design may impact a well-established system that relies on digital com-
putation. The key factors to prioritise, aside from simplicity and minimal space
utilisation, include energy efficiency in both active and dynamic states, as well
as the speed at which it can consistently produce an output that aligns with the
input.

In order to successfully implement large-scale neural networks, it is crucial
to take into account the overall scalability with respect to energy consumption
and fan-out. This refers primarily to the increasing size of each layer within the

60 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

model and the cumulative time consumed throughout its depth.
When constructing a system with ultra-high dimension input and output

to handle a significant number of computations, it is important to consider the
possibility of building the system using a fully parallel approach without the
need for external control or data read and write operations. In doing so, we
can calculate the amount of power required for each operation individually and
then estimate the peak power consumption needed for the system to function
normally in practical cases. Additionally, we should also estimate the operating
time needed based on the duration of a single non-polynomial operation.

In accordance with the specified topology of the neural network to be emu-
lated, the number of load devices driven by the device is largely contingent upon
the final configuration of the system. This, in turn, necessitates the establish-
ment of a robust fan-out capability to effectively manage the flow of data within
the circuit. The term fan-out is a concept commonly employed in digital circuit
design to delineate the maximum number of inputs that can be provided from a
single device without impeding the functionality of the overall circuitry.

In this section, we will discuss the effectiveness of the proposed AFC, with
a specific focus on identifying any potential issues related to its ability to drive
multiple loads.

4.4.1 Energy consumption and responding time
For every operation conducted in the stage of activation function process

with the AFC, an estimation will be made regarding the time and energy con-
sumption. This estimation will be based on the duration taken for the input
signal to reach the input port of the device, denoted as Vin until a stable signal
is detected at its output port, denoted as Vout. In addition, the analysis will also
consider the current flow during this specified timeframe.

With a designated array of voltage supplies allocated for each component,
it can be inferred that the total power consumption correlates directly with the
current flow. Within this section of the system, there exists the condition of the
device functioning in a state where the input remains relatively constant through-
out the operation and maintains a consistent magnitude until the subsequent op-
eration is ready to be executed. Therefore, when estimating the total power con-
sumption, it is feasible to overlook the distinction between dynamic and steady
stages and instead consider the average power consumption for a specific level
of input as the overall consumption, which can be calculated by

P = IDV
n
DS + IDV

p
SD. (4.15)

In the given scenario, where ID represents the current flowing through the system
when a specified input voltage is applied to the common Gate, the potential
differences between the Source and Drain of the CMOS pair are denoted as V n

DS

and V p
SD, respectively. In this portion of the conversation, we will be setting aside

the consideration of the polarity of these parameters according to the symmetry
of the system to simplify the discussion.

As previously discussed, when the curves of transfer function reach sat-
uration, there is no current flowing through the circuit as one of the transistors
is in a blocked state. If the N-MOS transistor is operating above the threshold,

4.4. CIRCUIT PERFORMANCE 61

(a)

(b)

Figure 4.8: The simulation results produced by the predictive technology model
using LTspice software. (a) The DC sweep from −0.7 V to 0.7 V at the input
port labelled as Vin (blue line) along with the corresponding output response
(red line). Additionally, the current flow through the two transistors is illustrated
in the upper subplot. The horizontal axis represents the voltage level of the input
signal, while the vertical axis illustrates both the current flow through the device
and the voltage level of the output signal, respectively. (b) The small signal
analysis conducted within a frequency range of 10 Hz to 10 GHz. The input
signal is displayed as a reference in blue curves while the output response is
represented in red. Solid lines indicate the amplification ratio and dotted curves
showcase the phase shift. For input frequencies exceeding 100 kHz, it is observed
that the system experiences a phase shift that increases to approximately 22◦

before returning to 0◦ at 100 MHz. Additionally, there is a noted amplitude
attenuation of 7 dB for 1 MHz and higher input frequency. This phenomenon
arises from current leakage due to parasitic capacitance between the Gate and
Source. The horizontal axis represents the frequency of input signal in small
signal analysis.

its channel resistance will be significantly lower than that of the P-MOS transis-
tor in the sub-threshold region. This results in the majority of the voltage drop
occurring across the P-MOS transistor, driving the Source voltage towards Vcc
and causing the N-MOS transistor to be in a blocked state, leading to no current
flow within the circuit, and vice versa.

With the analysis above, , it can be inferred that the two transistors must

62 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

both be functioning within the sub-threshold region concurrently or alternatively,
one of the transistors may be experiencing a state of obstruction. This deductive
reasoning, as demonstrated in the simulation depicted in Fig. 4.8a , aligns with
the findings presented in the simulations showcased in Fig. 4.2.

As is typical for these low-power models, the current passing through the
two MOSFETs is significantly lower compared to the discrete matched pair. The
maximum current recorded is approximately 25.9 pA at an input voltage of Vi =
300 mV , with a peak power consumption of around 15.56 pW for the pair
of MOSFETs at standard room temperature conditions. In scenarios where the
circuit operates in a saturated state, where current flow is blocked, a minimal
current of approximately 1 pA may be observed, resulting in an overall power
consumption of about 1 pW .

In the absence of any external techniques artificially driving unusedAFCs
into saturation states, it can be argued that for an input range of ±0.7 V , the RMS
power consumption is approximately 11.35 pW for one single activation stage of
neurons in a HNN at room temperature condition. This value can be considered
the average power consumption when the input signals in certain neural networks
are uniformly distributed within or exceed the specified range.

It is evident that in conventional neural networks, the number of AFCs
required for implementation is directly related to the quantity of neurons utilised
in the model. This ensures that the system can be easily scaled with a focus
on energy efficiency, particularly when considering the architecture solely as the
physical LUT or generator of activation functions.

In Fig. 4.8b, it is anticipated that there will be a nearly consistent amplifi-
cation of the input signal within the frequency range of approximately 10 Hz to
100 kHz. The overall decrease in amplification is expected to be less than 5 dB,
resulting in a decrease of approximately 0.3 time of the original input signal.
This indicates that the system is quite resilient and reliable for use as an activa-
tion function generator for signals with lower frequencies in the specified range
of examination.

Figure 4.9: The reaction of a zero-load activation function circuit to a step in-
put. The horizontal axis represents the duration over which the data has been
collected. The raising time is selected to be 1 fs, 10 fs, 100 fs and 1 ps respec-
tively. It has been observed that the peak overshoot is significantly increased
by approximately 80% when the 1 fs raising time is utilised compared to the
steady-state output.

4.4. CIRCUIT PERFORMANCE 63

In the simulations, when a step function input ranging from zero to 0 to
0.3 V is applied to the signal with its rising time within 0.1 ps, no overshoot
or wave distortion is observed, as depicted in Fig. 4.9. This ensures that the
performance of the AFC remains effective as a time-efficient LUT in real-world
scenarios. Specifically, for both slightly loaded and unloaded AFCs, we can
anticipate a relatively immediate response to the input signals provided.

The response time is directly related to the capacitance of the load con-
nected to the device. Furthermore, it is important to consider that, as the mag-
nitude of the net load increases, a higher level of charge flow is required. This
places a constraint on the physical dimensions of each layer within the neural
network where the system is to be suitable to be deployed without further adjust-
ments involved.

4.4.2 Fan-out
In the implementation of HNNs, the activated signal generated by a single

neuron will be sent to multiple separate devices for additional linear operations
before being passed on to the next layer. The specifications of the AFC and the
emphasis on energy efficiency have prompted concerns regarding the capacity of
a circuit to drive multiple devices.

Figure 4.10: The transfer function of the proposed activation function circuit
with a resistive load. The colour gradient from green, blue, and red to dark green
corresponds to load resistance values ranging from 1 kΩ to 1 GΩ. Each line
on the graph represents a decade of incremental growth in load resistance. The
horizontal axis represents the voltage level of the input signal, while the vertical
axis illustrates the voltage level of the output signal.

If the potential load of the AFC being proposed is resistive, as is com-
monly discussed in the literature, it is crucial to consider the possibility that the
resistance of the CMOS pair in weak inversion mode may not have a significantly
lower output impedance than that of the load resistor. This could result in current
leakage through the load to the ground if there are no additional isolation stages
in place, ultimately causing distortion to the transfer function to the neutral point,
as exemplified in Fig. 4.10. Although this characteristic may be advantageous in
certain neural network where adjustment of the activation functions is preferred,
as suggested by Liu et al. [213], the character may not be suitable for other de-

64 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

signs. Therefore, it is imperative to develop a weighting system that effectively
eliminates any potential leakage paths.

In our proposed approach involving capacitive MAC , each junction of lin-
ear operation can be represented by a capacitor with a fixed value. This design is
expected to reduce power consumption in active mode and significantly diminish
dynamic power consumption associated with potential current paths. Neverthe-
less, the system’s functionality can be compromised, particularly when executing
a substantial neural network model and demanding a heightened operational fre-
quency.

Figure 4.11: The response to a step function with transition from 0 to 0.3 V
as the input of the activation function circuit when capacitive loads of different
magnitude is applied at the output port Vout. The horizontal axis represents the
duration over which the data has been collected. For the case a fan-out ratio of
1 is applied, the system is capable to reach the saturation region within 2 µs,
corresponding to an over 500 kHz operation condition. The red curves stand for
conditions where the equivalent load is set to demonstrate conditions that 1, 10,
100 and 1000 sets of loads are applied, each has a magnitude of 0.67 fF , while
the blue curves are the signal observed at the input for reference.

As depicted in Fig. 4.11, the time-domain response of an AFC with a ca-
pacitive load to a step input signal can be analysed. The equivalent capacitance
of the various loads, based on the topology of a given neural network, plays a
crucial role in determining the response. In a commonly used neural network,
the layer size can vary significantly from a single neuron to a few thousand neu-
rons. Consequently, the implementation of numerous junctions at the output
port, labelled Vout, can lead to an unstable condition, as evidenced by the data
presented in the figures.

Based on the observed response to raising edge of voltage output Vout
with capacitive loads introduced, it can be asserted that in order to achieve a
response time of less than 2 µs to fit an operating speed of 500 kHz, a fan-out
ratio can merely be set to approximately 1. When higher fan-out ratios are used,
it is evident that the response time will increase in a linear fashion against the
charging time. Furthermore, from the data presented in Fig. 4.12, it is appar-
ent that the signal strength decreases linearly as the number of outputs or net
capacitance of the load increases when exposed to higher frequency signals. In
conclusion, in order for the system to operate reliably at a frequency of 500 kHz
or higher, additional sub-circuits are required to prevent high-frequency signal

4.4. CIRCUIT PERFORMANCE 65

Figure 4.12: The small signal response of the activation function circuit when
capacitive loads of different magnitude is applied at the output port Vout. The
horizontal axis represents the frequency of input signal in small signal analysis.
With the purely capacitive load applied on the Vout port, the high-frequency
conditions are not able to normally perform as a clamping voltage follower and
shorted to a nearly Ground level. For cases the fan-out requirement is smaller
than 10 elements, we may have a nearly linear output for input signals with
10 kHz or slower. The upper sub-plot illustrates the current flow through the
load capacitor corresponding to different sizes increasing linearly from the case
fan-out is 1 (green curve) to 1000 (purple curve), the phase corresponds to the
voltage phase plot respectively. In the lower subplot, the red curves stand for
conditions where the equivalent load is set to demonstrate conditions that 1, 10,
100 and 1000 sets of loads are applied, each has a magnitude of 0.67 fF , while
the blue curves are the signal observed at the input for reference.

interference.
It can be confidently asserted that in instances where low-frequency ap-

plications are the sole consideration and current leakage through the capacitor-
based MAC can be deemed negligible for the AFC, a substantial fan-out ratio
can be attained. However, in cases where additional isolation is necessary due to
higher current levels, the use of resistive components in the subsequent MACs of
the circuit will be imperative for achieving a heightened responding speed while
maintaining fan-out ratio for the circuit.

As depicted in a modified rendition in Fig. 4.13 of the initial AFC, incor-
porating a supplementary cascade of several (specifically 10 in the illustrated
instance) fan-out circuits mirroring the design of the aforementioned AFC, it is
possible to enhance the overall fan-out ratio in a proportional manner without
notable time delay.

From the analysis based on Fig. 4.14 , it is evident that the initial output
consistently maintains a uniform response time in comparison to scenarios where
loads are directly linked. This behaviour closely resembles the reaction time ob-
served when a single load is introduced. The overall response time of the system
at the output end, starting from the moment the incoming signal at the shared
fan-out bus FO (referenced in Fig. 4.13) stabilizes, to when the output achieves
a stable state, mirrors the response time illustrated in Fig. 4.11. This indicates
that the linear follower structure of the AFC serves as an effective isolator. From
the viewpoint of the original AFC, it can be assumed that it is connected to an

66 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

Figure 4.13: The diagram of the layout of the activation function circuit with an
additional cascade to enhance the fan-out performance. By connecting to multi-
ple fan-out circuits (designated by a box labelled FOC) through the shared port
FO, the AFC (highlighted by a box labelled AFC) can accommodate a grow-
ing number of outputs (represented by load capacitors labelled CL). Each set of
fan-out circuits may exhibit a similar fan-out characteristic as the original AFC
without causing significant distortion.

Figure 4.14: The response of the step function when applied to the activation
function circuit (AFC) with fan-out circuits as shown in Fig. 4.13. The signal
produced at the output port of the original AFC (highlighted in red as TO) is dis-
tributed to ten AFCs of the same type, each connected to an output load equiv-
alent to a range of junctions’ capacitance from 1 (the leftmost curve) to 1000
(the rightmost curve). The output observed at the load (highlighted in green as
Vout) demonstrates a similar response time as depicted in Fig. 4.11, with a pro-
portional decrease back to the initial value. The horizontal axis represents the
duration over which the data has been collected.

output comprising ten devices, each with a constant capacitance value. If we
designate the equivalent capacitance of each AFC-based isolating circuit as Cα,
and the load as CL, the total capacitance CΣ perceived by the original component
can be expressed as:

CΣ =
CαCL

Cα + CL

. (4.16)

In the event aforementioned that when Cα ≪ CL, the equivalent capacitance of

4.5. ROBUSTNESS ANALYSIS 67

each isolating circuit Cα will predominate and ensure optimal performance of
the initial stage of the system, as Cα exhibits a considerably smaller magnitude
in comparison to the load.

Furthermore, in order to enhance the robust performance of large-scale
implementations, it may be prudent to explore the implementation of amplifier-
based systems on the output side of the AFC. Connecting resistors of a specified
level can ensure stability in high-frequency environments by providing a consis-
tent current supply and frequency-independent weighting systems. It should be
noted that this adaptation may result in increased dynamic power consumption,
but it is tailored to meet the specific requirements of certain task specifications.

4.5 Robustness Analysis
In the realm of this current article, it is stated that a neural network demon-

strates robustness in relation to variations in a set of parameters if minor al-
terations to those parameters do not lead to substantial variations in the net-
work’s output. When utilised in software applications, the robustness of a neu-
ral network is commonly evaluated in terms of how it handles changes in input,
model parameters such as weights and biases, and activation functions employed.
Nonetheless, there has been a notable focus has been on researching input distor-
tion, with little attention paid to other forms of distortion stemming from config-
uration issues raised from the precision in representing the functions involved.

In the upcoming section, we will be focusing on the analysis of the appli-
cation of AFC. Specifically, our discussion will centre around the system’s capa-
bility to consistently generate a reliable analog LUT of the function, irrespective
of external factors such as the well-discussed and case-sensitive factor incoming
signals. In addition, we will delve into the intricacies of electron interactions,
which can lead to various types of disturbance and impact the efficiency of the
system. Furthermore, we plan to assess the overall inaccuracies stemming from
these aforementioned factors, as well as the variance present in the transistors
utilised in the system.

As per the protocol, we will conduct simulations to illustrate the impact
of noise injection on the system throughout the training and validation phases
individually. This will allow us to anticipate the circuit’s ability to withstand
potential distortions from its expected ideal outputs in practical scenarios.

4.5.1 Thermal and noise tolerance
At this level of approximation for the derivation of Eq. (4.5) in Section 4.2,

it is important to highlight that the voltage output remains nearly unaffected by
temperature variations when using a perfectly matched complimentary pair, as
previously discussed.

It is important to highlight that there is a minor leakage to the substrate for
each transistor, measuring approximately 1.4 pA. This issue could potentially be
addressed by utilising SOI substrates or optimising the manufacturing process.

In Fig. 4.15, a comparison of the temperature sensitivity between the PTM
and analytical models is presented for the temperature range of 250 to 350 K
(approximately −23 to 77 ◦C). The smooth transition of the transfer function of

68 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

Figure 4.15: Thermal sensitivity of the activation function circuit analysed based
on the 45 nm predictive technology model simulations (solid lines) and analyt-
ical model (dashed lines) for the transition region between the linear and upper
saturated region at temperatures ranging from 250 to 350K. Only minor thermal
dependence can be noticed at the transition region in both mathematical predic-
tion and simulation outcome. The labels in the figures indicate the temperatures
corresponding to the curves.

the circuit between the linear and saturated regions is clearly depicted in the fig-
ure. Due to the Boltzmann terms in the transfer function, the transition between
these regions is more distinct at lower temperatures and smoother at higher tem-
peratures.

As predicted by the analytical model, the significant temperature varia-
tion occurs only in the regions where the transition to saturation takes place, as
shown in Fig. 4.15. On the other hand, the regions with a non-zero slope and the
saturated limits themselves are essentially temperature-insensitive for practical
purposes.

Figure 4.16: Evaluation of the current flow through the pair of transistors in the
AFC (solid lines on the left vertical axis) and the voltage transfer function ob-
tained using the 45 nm PTM simulations (dashed lines on the right vertical axis)
against varying temperature. The labels in the figures indicate the temperatures
corresponding to the curves.

Fig. 4.16 illustrates that while variations in the transfer function with re-

4.5. ROBUSTNESS ANALYSIS 69

spect to temperature within the defined domain may be subtle, the fluctuations
in current within the linear region are substantially pronounced. Consequently,
utilising the voltage-current transfer function of this circuit may result in signif-
icant calculation inaccuracies. Hence, as articulated in Chapter 3, we will adopt
the pure voltage signal transmission methodology for our analysis.

The integrated AFCs can be interpreted as generating a transfer function
that lies between a tanhH and tanh with a linear ramp. Based on the analysis,
it can be deduced that the circuit is capable of approximating various functions
similar to those produced by the PWL function discussed in the work. This
offers a range of suitable activation functions that can be selected for specific
applications within the hardware implementation.

In the event that the transistors are not appropriately matched, it is impera-
tive to retain the pre-factors β and consequently, the transfer function within the
linear region shown in (5) will be affected and becomes:

Vo = Vi +
VT

2
ln

(
βn

βp

)
. (4.17)

Figure 4.17: The results of a simulation involving a set of mismatched transistors
with varying ratio βn

βp
, ranging from 0.1 (rightmost) to 10 (leftmost) , displayed in

a logarithmic sweep pattern. A linear trend is noticeable when plotted against the
logarithm of the ratio ln βn

βp
. The horizontal axis represents the voltage level of

the input signal, while the vertical axis illustrates the voltage level of the output
signal.

Up to this point, it has been assumed that N-MOS and P-MOS transistors
have threshold voltages that are ideally matched. Moving forward, we will now
consider the scenario where the transistors are matched in all aspects except for
a mismatch in their threshold voltages. This threshold mismatch will result in
a small deviation in the output voltage, either positive or negative, compared to
the ideal scenario. This deviation will be approximately equal to the difference
between the two threshold voltages.

Consider the situation where the threshold voltages have a difference, which
can be either positive or negative, denoted by V n

th = −V p
th −∆V . If we assume

that the pre-factors β are equal and set ∆V to be non-zero, the impact of this

70 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

difference will be as follows:

Vo = Vi +
∆V

2
. (4.18)

The discrepancy at this particular stage of the model assessment is anticipated to
be unaffected by temperature for output values of the activation circuit that are
not nearing or have not reached the saturation thresholds.

In order to introduce perturbations in the training and validation process of
the network, Gaussian noise with varying standard deviations σ will be applied
to both the input and the pertinent model parameters of the network. To further
elaborate, define ε(σ) as a value generated randomly from a Gaussian distribu-
tion with a mean of 0 and a standard deviation of σ. When considering a specific
parameter, if we denote the ideal and physical (or perturbed) values as p and p̂
respectively, the relationship between the physical and ideal values is defined as
follows:

p̂ = (1 + ε(σ))p (4.19)

The results of physical (or non-ideal) activation functions may involve
multiple factors that require further estimation. The interference that arises dur-
ing operations can be a mix of various sources, with amplitudes that may be
proportional to the original signal, or dependent on factors such as frequency
or temperature, but independent of the signal itself. It is also important to ac-
knowledge that deviations in the activation function of AFCs can occur due to
issues such as component mismatch, thermal effects on electronic systems, and
manufacturing defects.

In such scenarios, these deviations can be viewed as a combination of a
relative error in the output compared to the expected value and an additional
fixed or voltage-dependent error linked to the bias signal’s power supply. This
bias signal is a constant source set at a nominal value of 1 V , present at each layer
and subjected to amplification by a parameter denoted as bk in the kth layer.
All these parameters are incorporated into a model represented by Eq. (4.19).
Consequently, the behaviour of the actual activation function can be realistically
depicted as a composite of the aforementioned disturbances, as will be shown:

α̂ (·) = (1 + εα (σα))α (·) + εn (σn)

= (1 + εα (σα))α (·) + εβ (σβ) β.
(4.20)

In this context, the terms εα, εn and εβ refer to the scaling distribution of noise
that is applied to the activation function, white noise with constant magnitude
and noise modelled by the bias signal of the neural network denoted as β, re-
spectively.

4.5.2 Tolerance in neural network system

The robustness of a neural network is often evaluated by examining how
it responds to changes in input data and adjustments in its weights and biases.
Furthermore, in this analysis, the network’s ability to withstand computation im-
perfections and generation of activation function due to component tolerances in
the hardware implementation is considered. To simulate variations in the hard-

4.5. ROBUSTNESS ANALYSIS 71

ware elements of the HNNs during the network’s training and validation process,
random perturbations generated from Gaussian distributions with varying levels
of standard deviation σ applied around the optimal parameter values.

(a) (b)

Figure 4.18: One particular instance of corrupted input data, denoted as num-
ber 7 within a dataset known as the Modified National Institute of Science and
Technology dataset, is to be entered into the neural network given. The four sub-
sections of each case depict the input that the neural network will observe with a
proportional distortion of 0, 0.5, 1 and 1.5 times of the original element. (a) The
distorted inputs, without further pre-processing, as will be applied in the experi-
ments. (b) The distorted inputs, after being clamped back to the initial range of
input, attached as a reference.

According to former practice, the perturbation on the input of the activation
function can be considered as a scaled value with a known relative error, as
depicted in Fig. 4.18. This relative perturbation follows a certain magnitude
or distribution as outlined in Eq. (4.19). The output of the physical generated
activation function can then be accurately modelled using the model defined in
Eq. (4.20).

The physical device known as the hardware generator of the activation
function is then integrated into a neural network for classification purposes. This
neural network is of a topology of [784× 28× 14× 10], i.e., 784 input neurons,
featuring two hidden layers with 28 and 14 neurons in the first and second hidden
layers, respectively, and ten output neurons. The activation function and utilised
after the calculation of the logits layer is a Softmax function. The neural network
underwent training using the well-known MNIST dataset using a cross-entropy
(CE) loss function for a total of 32 epochs with a batch size of 256. The results
of the training process, including ideal scenarios, are depicted in Fig. 4.4 for
reference.

Fig. 4.19 shows the impact of noise introduced to the input of the neural
network on the network’s accuracy. The perturbation affects only the input signal
to be transformed by the input neurons. When the training data is contaminated
with noise, a relative error of 50% may result in a mere decrease of 2% in pre-
cision when tested against an ideal validation set. Even with a higher error rate,
there is not a significant decline in accuracy.

72 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

(a)

(b)

Figure 4.19: The impact of noise introduced at the inputs of the system during
both validation and training procedures which can be represented by the equation
X̂ = X (1 + εX (σ)) (a) Noise added to the inputs during training period. (b)
Noise added to the inputs during validation period. The dark blue, grey, orange,
and yellow curves illustrate the varying levels of relative perturbation εX (σ),
depicted with standard deviations σ ranging from 0, 0.5, 1 to 1.5.

On the other hand, training the network with clean data can still yield a
90% accuracy rate even with data that has been slightly perturbed by 50%. How-
ever, with higher levels of distortion, the inaccuracies in the model increase sig-
nificantly.

The impact of noise added to the output of activation functions in each
layer on the accuracy of the network is depicted in Fig. 4.20. When a minor
(20%) distortion is applied during both the training and validation phases, there
is little observable decrease in accuracy. However, for all scenarios where pertur-
bations are introduced to activation functions during validation, there is a consis-
tent linear drop in overall accuracy relative to the intensity of the perturbations.
It is worth noting that when a significant perturbation is implemented during
the training phase, the system may struggle to reach a stable local minimum as
effectively compared to other scenarios.

It is also possible to represent the distortions at the activation functions as
a displacement along the curve and an additional random variation. This can be

4.5. ROBUSTNESS ANALYSIS 73

(a)

(b)

Figure 4.20: The impact of noise introduced to the outputs of each activation
functions during both validation and training procedures which can be repre-
sented by the equation α̂ (·) = (1 + εα (σ))α (·)+εn (σ), where εα and εn shares
a same standard deviation of σ. (a) Noise added to the activated signals during
training period. (b) Noise added to the activated signals during validation pe-
riod. The dark blue, grey, orange, and yellow curves illustrate the varying levels
of relative perturbation εα (σ), depicted with standard deviations σ ranging from
0, 0.2, 0.4 to 0.6.

expressed as:

α̂ (Y) = α (Y (1 + εI (σI)))× (1 + εO (σO)) . (4.21)

In this case, Y is the nominal pre-activation value of the activation function, εI
and εO represent the perturbations on the pre-activation and activated sides of the
activation function. This approach combines linear and non-linear operations,
making it challenging to differentiate or analyse the impact of each individual
sub-module. The output of Monte-Carlo method simulation with this mean of
model is presented in Fig. 4.21

In conclusion, the HNN developed in this study demonstrates a satisfactory
level of robustness and accuracy for classification tasks compared to the ideal-
case software configurations according to simulations with noisy signal channels.
When perturbations are applied to the neural networks when they do not exceed

74 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

(a)

(b)

Figure 4.21: The impact of noise introduced to the pre-activation and activated
value of each activation functions during both validation and training procedures
which can be represented by the equation α̂ (Y) = α (Y + εI (σ)) + εO (σ),
where εI and εO shares a same standard deviation of σ. (a) Perturbation in-
troduced to the pre-activation and activated signals during training period. (b)
Perturbation introduced to the pre-activation and activated signals during valida-
tion period. The dark blue, grey, orange, and yellow curves illustrate the varying
levels of relative perturbation εI (σ) and εO (σ), depicted with standard devia-
tions σ ranging from 0, 0.25, 0.5 to 0.75.

50% of the input or 25% of the activated output of the activation function, during
either training or validation, the system can be trained with approximately 90%
accuracy when validated on a separate dataset, which is only a slight decrease of
approximately 2% compared to a system without perturbations.

In practical applications, as illustrated in Fig. 4.19b and Fig. 4.20b, we can
confidently utilise a model trained under ideal conditions while implemented
with non-ideal elements to achieve satisfying accuracy in this specified task.

In accordance with the findings presented in Eq. (3.8) in Section 3.3, it is
observed that activation functions with a gradient not exceeding 1 throughout its
domain have the potential to mitigate distortion or noise through their inherent
properties. This phenomenon allows for deeper and more streamlined neural
networks architectures to effectively maintain internal resilience by rectifying
noise during the activation process.

4.6. CONCLUSION 75

4.6 Conclusion
Developed within the framework of hardware neural networks, a simple

schema has been introduced for low-power implementation of activation func-
tions. The design is fully CMOS compatible and can be readily manufactured
with commercial technologies available.

The AFC demonstrates favourable characteristics with regard to the stabil-
ity of generating the proposed transfer function, even when subjected to changes
in temperature and parameters. As a result, this simplifies the requirements for
the overall neuron design. This assertion has been demonstrated through the
development and training of a multi-layer perceptron (MLP) for image classi-
fication task defined with the MNIST dataset. The activation function utilised
in the sample networks can be seen as a variation of the hard hyperbolic tan-
gent (tanhH) outlined in Tab. 4.1, incorporating a softer transition feature that
enhances the efficiency of gradient-based optimisation techniques.

Compared with digital-based implementations of neural networks, HNNs
are subject to less precision in their construction and less accuracy in their op-
eration. Yet, under practical assumptions, the accuracy and robustness of the
example hardware network are comparable to their software counterparts, with
respect to noise added during both the training and validation phases. In par-
ticular, the robustness of the network is acceptable regarding the perturbations
of both the input and also model parameters, within the ranges encountered in
practice.

Moreover, the activation function with similarities to the tanhH function
demonstrates improved performance when compared to the widely used ReLU .
It achieves higher accuracy in a shorter number of training epochs. The low
power consumption, the resilience to input noise and component variability, and
the ease of integration of the hardware neuron suggest a promising direction
for compact HNNs for embedded and distributed applications. Compared with
the function tanh suitable for embedded and distributed systems. Additionally,
the derived function exhibits advantages over the hyperbolic tangent function in
tasks that necessitate recursive behaviour and linear transformations.

76 CHAPTER 4. ACTIVATION FUNCTION CIRCUIT

Chapter 5

Multiply Accumulate Circuit

In order to develop a multiply accumulate circuit (MAC) with minimal
current demand suitable for being driven by the activation function circuit (AFC),
we have devised an innovative structure using capacitive components and pass-
gates based on complementary metal oxide semiconductor (CMOS) technology.
This novel MAC has been designed to accommodate signed weighting factors,
while conforming to a defined range of specifications in terms of precision and
range, and utilising technology that meets industry standards.

Furthermore, we conducted an analysis of the performance of the structure
both as a standalone module and as a functional block within a specified neural
network , taking into account both ideal and non-ideal components. Based on
our calculations and simulations, we have demonstrated the ability of this de-
sign to achieve comparable levels of time and energy efficiency as the current
state-of-the-art (SOTA) hardware neural network (HNN) design. Additionally,
this structure maintains a high level of simplicity both in device design and scal-
ability.

An examination of scalability with regard to equivalent bit resolution within
the context of imprecise components has been conducted. It has been observed
that there is a systematic error with respect to the desired output, which can be
effectively controlled by employing appropriate elements as will be specified,
and proper training algorithms.

5.1 Overview
In the realm of neural networks and associated disciplines, the commonly

used linear operation y = Ax + b plays a significant role in facilitating commu-
nication between layers, presenting pertinent data, and presenting its potential
impact on classification and regression tasks. In the context of hardware imple-
mentation, the mechanism used to transform multiple inputs into outputs in a
linear fashion is known as a multiply accumulate circuit (MAC).

The utilisation of an intricate network of multiple buses for each input
and output in order to achieve a linear operation within a hardware-implemented
system, often referred to as a crossbar or synaptic network, is widely utilised in
the field of circuit design for neural network acceleration research. In this type
of design, the horizontal and vertical wires correspond to the output port of the
previouos layer delivering the incoming signals and the input port of neurons

77

78 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

in the subsequent layer, respectively. The connections between each horizontal
(input) wire and vertical (output) wire typically are constructed with resistive
elements, symbolising the weights that are being assigned. A detailed schematic
will be demonstrated by Fig. 5.10 in Section 5.4.

5.1.1 Background: Crossbar circuit for linear transformations

The use of crossbar structures in parallel computing as a switching system
has demonstrated its ability to efficiently distribute signals among memories and
processors [39, 40]. Recent studies have explored the use of programmable re-
sistive devices to modify the switching components, resulting in the successful
development of a bio-inspired computing system on a chip in a naturally par-
allel fashion. This innovative approach enables a time-efficient communication
and processing method that can directly interact with analog signals from ex-
ternal devices, such as sensors, without the need for time-consuming conversion
stages [214]. Additionally, this method offers enhanced time and space efficiency
when compared to traditional digitalized binary computing elements [215].

In the context of neural networks, particularly in deep neural network
(DNN), convolutional neural network (CNN), or other time-independent fully
connected structures, memristors are frequently selected as programmable resis-
tors [216, 217]. Interestingly, this concept shares a topological similarity with
conventional summing amplifier networks. In both cases, incoming signals for
a specific neuron are converted into voltage levels and passed through weight-
ing resistive components to a common wire or port, where the voltage reference
remains constant with respect to a designated ground. These signals are then
summed by the amplifier in the summing or converting circuit [218].

One drawback of the current system lies in the fact that the resistivity of a
linear resistor is constrained to be positive, which impedes the ability to display
input weights with identical signs for a specific neuron. One possible resolution
could involve the incorporation of replicated input wires linked to the negative
terminal of operational amplifier (Op-Amp) within the summation or conversion
phases accompanied by extra junctions [219].

An additional aspect of linear circuit technology involves the utilisation of
capacitive junctions, as discussed in the literature [215]. This particular appli-
cation is typically focused on time-dependent systems, such as spiking neural
networks (SNNs) [45], because of their ability to generate charge by current
pulses during operation. However, these capacitive junctions can also be used
effectively in more static and time-independent systems [220]. In these applica-
tions, the technology is known to effectively eliminate direct current paths and
static energy consumption.

Various methodologies can be employed to optimise the efficiency of ca-
pacitive junctions within these systems. This entails meticulous adjustment of
the charging duration, leveraging the first-order linearity in the exponential growth
for a small signal, and ensures that charge generation on the capacitor is linearly
proportional to time. Furthermore, the use of various capacitances of varying
magnitudes can be explored to scale signals by different ratios [43,44,78]. These
versatile techniques can be implemented individually or in combination to effec-
tively address specific operational requirements [221]. Moreover, a method has

5.1. OVERVIEW 79

been devised for managing current sources through the process of signal weight-
ing, leading to the conversion of these weighted signals into stored charges on
capacitors [222]. In addition, additional junction designs incorporating quantum
dots [223] as well as a hybrid of capacitors and memristors, known as memca-
pacitors [46, 224] are present but will not be elaborated upon in this research.

The criteria for evaluating such tools primarily centre around the opera-
tional frequency measured in floating-point operation per second (FLOPS), or
operation per second (OPS), and the power consumption relative to this speed,
expressed as operation per second per Watt (OPS/W). In recent years, typical de-
signs have showcased a range of Mega- to Giga-FLOPS level, along with energy
efficiency levels ranging from Terra- to Pita-OPS/W. This is consistant with the
innovative capacitive designs that our research is currently developing.

5.1.2 Motivation: Low-current Multiply Accumulate Circuit

With the implementation of an energy efficient activation function circuit
(AFC) that we have developed, it has come to our attention that, without ad-
ditional amplification, the current output drawn from the circuit is markedly
insufficient. This has resulted in a fan-out issue often encountered when in-
corporating traditional resistive arrays. In our pursuit of an energy-saving MAC
design, we have instead opted for a lesser known capacitor-based system to navi-
gate around current limitations at the expense of maximum operation frequency.
Furthermore, to achieve an optimal design without the need for complex and
time-consuming converters to bridge the gap between analog and digital signals,
we have treated all digital signals as analog voltage levels and standardised the
interface to facilitate seamless compatibility.

In the course of investigating this particular subject, it has come to our
attention that in many MACs with capacitor-based functional components, the
capacitance values vary from one another. This variance complicates the manu-
facturing process, increases the complexity of parameter selection, and requires
extensive tuning. A potential interim measure involves quantizing parameters
into binary format and implementing a ladder structure composed of just two
types of capacitor within the system, with transistors serving solely as pass-gates.
This approach allows for scalability in the design, with a minimal number of
components involved, resulting in a highly compact and therefore space-efficient
system.

Following an extensive review of the literature, it has come to our attention
that there exists a conspicuous absence in the discourse pertaining to inaccura-
cies associated with control elements, current leakage paths, and non-ideal char-
acteristics in capacitive components. These significant themes will be carefully
examined and deliberated upon in the pursuit of our research endeavours.

The primary objectives of this chapter will encompass the following areas
of focus:

• Development of a multiply accumulate circuit that incorporates a reduced
number and variety of components compared to previous circuit designs.

• Evaluation of system performance in both ideal and non-ideal scenarios.
• Estimation of maximum energy and power consumption in worst-case sce-

narios, juxtaposed with state-of-the-art technology.

80 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

• Comparison of various implementation approaches involving software and
hardware for the MAC stage, culminating in a detailed analysis of the pro-
posed design.

5.2 Multiply Circuit
The key focal point in the development of the multiplicative segment of

the MAC lies in analysing the energy usage per operation in various operational
states, including dynamic and static modes. The proposed AFC raises a partic-
ular concern as it may not be optimal for driving multiple outputs due to the
limited current supply of a sub-threshold mode transistor pair. This limitation
renders it susceptible to noise interference and may result in increased process-
ing time when interfacing without being isolated by summing amplifier arrays
as commonly employed in the literature. Fig. 4.12 also indicates that the output
impedance of activation function circuits (AFCs) may not be sufficiently small.
Consequently, this could potentially hinder the MACs from drawing the neces-
sary current to achieve the desired voltage level at the subsequent layer.

As an alternative solution, we suggest implementing a static capacitor-
based system instead of a resistive array. The proposed design minimises the
charge supply required for linear operations on inputs driven from the output
ports of AFCs in preceding neurons or external sources. This system can be
scaled efficiently using a recursive approach tailored to the specific task at hand,
exhibiting a response speed and power efficiency comparable to current state-
of-the-art (SOTA) using industry-compatible technologies. It excels in terms
of space, energy, and response time efficiency, operates without the need for
external commands, and can be easily integrated into existing memory systems.
The details of the design and the analysis on its performance will be discussed in
the following sections.

5.2.1 A scaleable quantized capacitive weighting system
The multiplying part of the MAC has been designed with a streamlined

methodology influenced by principles of recursion. It features a network of in-
terconnected capacitors that allow for seamless integration of input from either
a predefined analogue voltage source derived from an activation circuit or the
ground, made possible by the use of multiplexers (MUXs).

In an optimal scenario, as depicted in Fig. 5.1, parts surrounded by boxes
that share a same line style contributes an equivalent capacitance as a whole
across the three circuits. Consider the structures on the left and centre of the
illustration as an example, upon analysis from the designated node labelled o1,
assign C as the standard value of the capacitor as visually indicated in the dia-
gram. Thus, the capacitance of the dotted part in the middle, seen from node o2
can be computed as:

C−1
Σ = 2C−1 + (C + C)−1

= C−1.
(5.1)

Therefore, it can be postulated in theory that the two aforementioned seg-

5.2. MULTIPLY CIRCUIT 81

Figure 5.1: The diagram illustrating the fundamental principle of a capacitive
weighting system. The selection of component parameters is made in a subjec-
tive manner for the purpose of illustrating their interrelationship. The signal input
vX and its corresponding connection represent a selected input source, whether
from a signal source or grounded, facilitated by an analog multiplexer. The dot-
ted and dashed box outlines a systematic approach for integrating further input
signals.

ments bear equivalence to the node being examined. Moreover, the expanded
section demarcated by dashed outlines within the dotted rectangle serves as an
illustration of how the system could be extended to enhance resolution.

Utilising the identical approach, we may deduce that for every node de-
noted as oX (where X represents the index of the node), the upper and lower
components it perceives are equivalent in magnitude. By employing capacitor
with a capacitance value of either one or two times of the standard value C within
the system, and seeing it from the input nodes designated as vX, we can derive
a correlation between the impact that input vX exerts on output oX as outlined
below:

oX =
(C + C)−1

C−1 + (C + C)−1vX

=
1

3
vX.

(5.2)

In accordance with the superposition principle, when determining the ulti-
mate output voltage observed at any given node within the network, it is advis-
able to individually assess the impact of each voltage supply and subsequently
combine these results to obtain the final output. Referring back to the notations
detailed in Fig. 5.1, it is possible to ascertain that the potential o2 introduced
onto o1 is

o1|o2 =
(C + C)−1

2C−1 + (C + C)−1o2

=
1

2
o2,

(5.3)

Following the methodology employed in the preceding analysis, it can be

82 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

inferred that o2|o3 = 1
2
o3 and o1|o3 = 1

22
o3. This principle can be extended

with more intricate recursive expansion of the system. Furthermore, the ultimate
result observed at node o1 can be succinctly encapsulated as follows:

o1 =
1

3
v1 +

n∑
i=2

1

2i−1
oi

=
2

3

n∑
i=1

2−ivi.
(5.4)

Based on this element, we can proceed to execute the desired multiplica-
tion p ·x as described in the linear operation of the neural network. This involves
representing the input x by a voltage-based signal vx seen at a specific input bus
while representing p by 2

3

∑n
i=1 2

−isi, where si denotes the connectivity of indi-
vidual input nodes vX to the bus vx. This connectivity is indicated by s ∈ {0, 1}
and corresponds to an on / off switch in the circuit design. In this particular con-
figuration, the maximum output that can be achieved from such a module with

n-bit resolution will be equal to pmax =
2(1−2−n)

3
.

In consideration of the level of accuracy necessary for a specific task, the
design will facilitate potential scalability with binary-based bit-wise resolution.
In an optimal scenario with n cascades of the suggested capacitor-MUX group,
we can achieve a weight within the span of

[
−2n−1

2n
α, 2

n−1
2n

α
]
, with a resolution

of 1
2n
α. It is important to note that in this context the term α equals 2

3
.

In order to achieve a weighting parameter p greater than 1, it is advisable
to utilise a collection of m modules known as synapses within the weighting
circuit. The quantity of synapses needed can be calculated by m =

⌈
p

pmax

⌉
,

which represents the minimum quantity required. Each synapse will be assigned

a weight of either plower =
⌊2n p

m⌋
2n

or pupper =
⌈2n p

m⌉
2n

.
In the examination of artificial neural networks (ANNs), utilising a se-

curely trained and stable parameter configuration, the weight values are main-
tained in a static state in the memory for the regulation of MUXs. The des-
ignation of a parameter applied to each input value can be managed through a
setup of a MUX for every bit. Consequently, in this particular framework, it is
viable to assert that the system can be constructed utilising conventional static
random-access memory (SRAM) without causing any disturbance to the primary
functional components.

5.2.2 Pass-gate as the multiplexer
In the previous section, it was proposed that the weighting information

could be stored across multiple synapses, with each synapse having a maximum
magnitude of 2

3
. The weighting information for each synapse is calculated using

the formula shown previously. It can be inferred that the parameter is governed
by a series of distinct selections from a nominal set consisting of either 0 or 1.
Consequently, it is reasonable to assume that the system operates in a binary
manner and presents itself in a manner akin to fixed-point numeric represen-
tation. Given the linear relationship of each selection’s contribution, we may
designate this as a “bit”, analogous to terminology utilised in digital systems.

5.2. MULTIPLY CIRCUIT 83

To effectively control each bit of the weight, one common approach is to
use transistors as switches. However, in real-world situations, the incoming sig-
nals may not always maintain a consistent positive or negative magnitude within
the same synapse and task under varying conditions. The design including a pair
of parallely connected N-Channel metal oxide semiconductor (N-MOS) and P-
Channel metal oxide semiconductor (P-MOS) for pass-gates is a conventional
design of many advantages. As a result, it may become essential to employ a
pair of CMOS to create a practical pass-gate mechanism.

In alignment with the established design principles and the overarching
goal of optimal functionality, it is imperative to address the potential issue of dis-
torted signals due to the accumulated charge on input capacitors in our capacitor-
based system. To mitigate this risk, a connection to the ground bus GND will
be implemented for the purpose of discharging any residual charge. Moreover,
in order to ensure proper operation and prevent both pass gates from being of
a same state simultaneously and result in undefined behaviours, two additional
transistors will be incorporated to create an inverter. This modification will trans-
form the structure into a MUX capable of accommodating a range of incoming
voltage levels.

Figure 5.2: The schematic of the multiplexer system. The load capacitor of
0.67C denotes the equivalent capacitor of the synapse seen from the input port.
IN denotes the real input passed onto the synapse and OUT denotes the output
port of the MUX, and the input of the proposed weighting array. SIGN denotes
the sign of the given bit, fed to a pair of inverters to drive the two inverted pass
gates (highlighted by dotted boxes).

An advantage of this particular design is that the control of the assigning
module is effectively regulated by the Gate potential of the inverter and pass
gates, as illustrated in Fig. 5.2. This ensures that no current may inadvertently
leak through the components in the static stage. Essentially, apart from the nec-
essary current path from the input IN, across two pass gates in opposing states,
to GND, and the path within the inverter, minimal static energy consumption is
anticipated when weights are assigned to the input for each bit. This setup al-
lows for the input to be powered by charges stored in a CMOS-based memory or
equivalent alternatives with a controlled level of energy consumption.

Furthermore, in applications where parameters remain constant or are only
occasionally modified during linear operations as is the case for very low fre-

84 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

quency operation, it is likely that the module will rarely transition into a dynamic
state. This observation aligns with the prevailing trends in the market regarding
digitally designed units, suggesting that it is feasible for large-scale systems to
attain an adequate energy budget for each operation with the design.

In certain unique configurations of neural networks where the parameters
can be adjusted in real time, our studies, conducted using the circuit illustrated in
Fig. 5.2, involved a capacitor with a capacity of 0.67 pF to represent scenarios
where the capacitors depicted in Fig. 5.1 have a nominal values of C = 1 pF .
The selected value has been determined to align with commercially available
levels for ceramic patch capacitors, thereby facilitating the subsequent circuit de-
sign and verification processes. In the domain of semiconductor manufacturing,
specifically referring to the 45 nm fabrication process, it is generally anticipated
that the capacitance values will fall within the femto-farad or atto-farad range.

It was observed that the transient peak of current during saturation-region
switching of pass gates was limited to a minimal level of half a milli-ampere
(specifically peak currents of 240 µA for N-MOS and 120 µA for P-MOS with a
switching time in a micro-second level) according to simulation performed with
a 45 nm technology predictive technology model (PTM) in a simulation pro-
gram with integrated circuit emphasis (SPICE) software, as shown in Fig. 5.3.
The primary contributor to the peak current pulse is the capacitor, which will
exhibit a proportional decrease in relation to both the supply voltage and capaci-
tance. Furthermore, by extending the transition duration, it is possible to achieve
a reduction in the peak current. Under steady-state conditions, it is anticipated
that the device draws less than 1 nA from the source, depending on the selected
channel widths of the N-MOS and P-MOS of 140 nm and 450 nm, as desig-
nated for the AFC. As will be demonstrated in Section 5.4, the consumption will
be negligible compared to the consumption in the capacitor array. Moreover, in
the event that the system is permanently hard-wired, the energy consumption as-
sociated with the pass-gates can be effectively minimised. This dynamic mode,
taking into account the charging and discharging impact of the capacitor, can
thus be perceived as demonstrating commendable energy efficiency.

The potential ramifications of this design offer the opportunity for en-
hanced memory processing efficiency by allowing the potential seen at the SRAMs
to directly interface with the assigning of parameters. Also, the design decreased
silicon utilisation in real-world scenarios. In the aspect of weighting, the addi-
tion of each bit resolution only necessitates the use of one pair of inverter, two
pass-gates, and two extra capacitors, culminating in a total allocation of six tran-
sistors and two capacitors within the framework of the current application and
topology. Furthermore, for a hard-wired implementation of this system, it is also
feasible to simplify the two pass-gates and construct the circuit using just three
transistors.

5.3 Accumulate Circuit
Based on the proposed design of the multiply part of the system, it will

be relatively easy to demonstrate a linear operation of a singular input. In order
to linearly transform a one-dimensional array of multiple inputs simultaneously,
as is typically seen in neural network models, a summation operation will be

5.3. ACCUMULATE CIRCUIT 85

(a)

(b)

Figure 5.3: The response to inputs and energy consumption of a three-input mul-
tiply circuit in simulations. The horizontal axises represents the duration over
which the data has been collected for both of the sub-figures. (a) The waveform
of the conceptual diagram of a three-input multiply circuit, with the three inputs
connected to the same voltage source of a magnitude of 2 V , controlled by sepa-
rate ideal switches. We may see a clear linear combination relationship between
the outputs labelled as oX against input combinations vX . (b) The current flow
through two transistors of the pass-gate specified (Upper sub-plot) and voltage
seen at the input port (Lower sub-plot) of a one-input multiply circuit, with input
voltage to be 1 V . In both cases, the multiplying circuit is a three-input multiply
circuit as shown in Fig. 5.1, with the magnitude of capacitors to be 1 pF and
2 pF respectively.

required.
Furthermore, it is important to note that in parameter matrices, the sign

of each element may not consistently be non-negative. In many instances, even
when dealing with binary parameters, the system may exhibit a balance of pos-
itive and negative parameters within the same layer. Unfortunately, achieving
this balance solely through the architecture we have proposed is currently not
feasible.

While it may seem logical to include the sign bit within the weighting
system, we have opted to simplify the signing process by converging the sign bit-
related systems at the summation stage for the sake of general ease and efficiency.
This approach not only streamlines the process but also enhances the overall

86 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

robustness of the system, making it easier to control and train effectively.

5.3.1 Linear follower and Operational Amplifier-based sum-
ming circuit

The utilisation of signed parameters will enable the neural network to
effectively exclude invalid information and to identify potential negative cor-
relations between distinct patterns and categories throughout the training pro-
cess. With respect to the quantized parameters, the differentiation between sign
bits and significant digits is crucial for enhancing data storage efficiency. This
methodology not only enables an increased capacity for information within the
same number of blocks but also facilitates the seamless adjustment of weights
from positive to negative values across zero. This process is achieved without
introducing the counter-intuitive aspects as typically observed in digital systems
where the inverse of a number is represented in the form of its complement.
The utilisation of sign bits and significant digits aligns more closely with con-
ventional writing practices, thereby providing a more streamlined and efficient
methodology for the ongoing enhancement of weighting tuning and assignment
systems.

An efficient method for building summation circuits in analog systems in-
volves utilising Op-Amps. Through the utilisation of negative feedback, the Op-
Amp is able to automatically stabilize the voltage difference between its two
input terminals. By adjusting the ratio of impedance values in the components
connected across the incoming signal, one input terminal, and the output termi-
nal or a ground node, we can easily control the linear transformation of multiple
sources. However, it is important to take into account the potential for leakage
through resistively connected junctions, as well as the overall static energy con-
sumption and current requirements necessary to operate the device efficiently.
These challenges must be addressed in order to optimise the functionality and
effectiveness of the system.

Figure 5.4: The diagram illustrating the revised operational amplifier configura-
tion with capacitive elements. The signal observed at the output terminal denoted
as OUT remains a combination of all input signals along with a bias signal la-
belled as Bias. It will be perferable to apply low power Op-Amps to further
reduce the power consumption

In order to prevent signal leakage among different input signals and the

5.3. ACCUMULATE CIRCUIT 87

output node, we have replaced the resistive devices commonly utilised in the
design by incorporating capacitors, as illustrated in Fig. 5.4. The relationship
between output and input signals aligns with that of resistive Op-Amps, with the
amplifiying ratio to be −CPos−CNeg

COA
, where CPos and CNeg denotes the pair of ca-

pacitors connecting PosX or NegX and the Op-Amp respectively, and COA is the
capacitance between the negative port and the output port of the Op-Amp. Thus,
the output is determined by the difference between each pair of input signals.

Through our experiments involving various Op-Amps, including the Preci-
sion Low-Cost HS BiFET Dual Op-Amp AD549, Low Power Low Noise Preci-
sion field effect transistor (FET) Op-Amp AD795 and Dual Single / Dual Supply
Rail to Rail output Low Power FET Input Op-Amp AD822, as integrated in the
LTspice library, we have observed that the output is significantly influenced by
the bias current of these Op-Amps. This influence results in a bias shift in the out-
put while maintaining an absence of any noticeable distortion. Therefore, when
integrating non-ideal Op-Amps into the system, it is advisable to implement an
additional bias voltage at the input port Bias illustrated in Fig. 5.4.

Figure 5.5: The diagram depicting the systematic layout of a signal cell that
links the output port of the weighting capacitor array to the two input nodes of
the summing amplifier. The linear follower positioned on the left serves to isolate
between the capacitors and transmits the voltage to the two push-pull followers
acting as the power source. The followers on the right side exhibit an inverted
connection to the input Vin as well as a ground node GND, both being regulated
by the same signal. This particular design ensures that only one of the input
ports may be connected to a signal with a given magnitude of Vin, and GND
otherwise.

In order to create a signed signal based on this design, the relationship
between a duplicate of the suggested input and each combination of inputs for
PosX and NegX as depicted in Fig. 5.4 is regulated by an external signal labelled
SIGN. To elaborate further, we have implemented three sets of linear followers
to serve as AFCs for the regulation. As illustrated in the schematic in Fig. 5.5,
the signal SIGN can activate either the N-MOS or the P-MOS in a follower pair
to reach the saturation region, thereby connecting the input port of either Pos
or Neg in the amplifier to either the incoming signal Vin or a common ground
GND. Furthermore, the opposing connections of the two followers ensure that
the connections are in reverse orientation.

88 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

The primary limitation of this particular design stems from the extensive
usage of the linear follower, which typically operates in a sub-threshold linear re-
gion, resulting in less-than-optimal response frequency. Although this approach
may be suitable for tasks characterised by nearly constant input or gradual, low-
frequency changes, particularly when parameters are maintained consistently, it
may not yield a prompt response in high-frequency tasks. Additionally, the utili-
sation of an amplifier-based network may lead to an escalation in static power
consumption. This design may not be the most suitable choice for energy-
sensitive or time-sensitive systems. In such instances, it may be advisable to
consider the alternative design outlined in the subsequent section.

5.3.2 H-bridge and charge pump-based summing circuit

A potential alternative design for the summation circuit of a single synapse
can be conceptualised by considering the output capacitor of the weighting ca-
pacitor array, depicted as the uppermost capacitor shown in one schematic in
Fig. 5.1, if we designate the port o1 as the output port of the synapse.

In order to facilitate the integration of the voltage-based signal with out-
puts from various synapses, we explored the concept of a charge pump. This
design involves connecting a charged capacitor in series with an external voltage
source to generate a voltage level higher than the supply voltage. This applica-
tion is in alignment with the principles of Kirchoff’s voltage law, which could
be described as

“The directed total electromotive force (EMF) around any closed
loop is zero.”
In this proposed design, through the interconnection of multiple fully charged

capacitors, each serving as the external voltage source for the others, it is pos-
sible to achieve an aggregate of these voltages or in mathematical terms, the
summation of each weighted input.

In order to accomplish the objective, a recommended method involves con-
necting a set of double Pole double throw (DPDT) switches to the two plates of
the output capacitor to facilitate switching between the charging and summing
modes. Additionally, to invert the phase of the signal, an H-bridge was integrated
at the output of the summing mode connection to alter the polarity of the con-
nection to the respective capacitors. The basic design and a circuit that employs
pass-gates as controlled switches are shown in Fig. 5.6.

The module shall represent an amalgamation of two distinct sub-modules:
the H-bridge featuring four switches along with a controlling signal identified as
Sign, as well as a sample and apply circuit encompassing the capacitor in ques-
tion and the DPDT switches regulated by two mutually shared external signals
known as Sample and Apply.

The sign indicator Sign is akin to the weighting mechanism depicted in
Fig. 5.2 and likewise can be considered as being predetermined and either stored
in the memory or hard-wired. The representation is generally similar to that
of fixed or floating point numbers stored in a typical modern computer system
but varies in the method in which a negative value is stored. Despite both sys-
tems containing a sign bit, the fundamental principles of the two systems differ.
Specifically, in the system we have proposed, the mantissa consistently reflects

5.3. ACCUMULATE CIRCUIT 89

(a)

(b)

Figure 5.6: The basic concept of a summing cell in a sub-circuit SUM as shown
in Fig. 5.10, and a diagram of how signal flows in the two phases of sampling
and applying. (a) The summing cell, having an input Vin, a pair of outputs
connecting to either the previous cell (or ground) Out prev or the latter cell
(or output) Out next. The cell is controlled by one static signal Sign and two
dynamic phases of operation Sample and Apply. (b) The cell translated to a
transistor-based sketch, with the same notations employed.

the absolute value of the stored parameter, and any overflow will consistently
shift the data to either a positive or negative zero. Considering the fact that in
computer systems, negative data are often represented by complement of its in-
verse, it may be advantageous to incorporate additional XOR gates in the MUX
of the multiplier if a more conventional interface is desired with a computer sys-
tem.

The Sample and Apply signals are critical for the proper functioning of all
synapses within a layer. It is imperative that these signals are managed properly
to prevent logic conflicts. To ensure data integrity and safety, both signals should
not be set to logic high simultaneously. In order to prevent the migration of stored
information in the form of charges, it is recommended to have both signals set to
logic low and enter the Hold stage in steady state to minimise steady-state power
consumption. To streamline the operational process, a full functional cycle can
be broken down into four distinct stages: the Sampling stage, the Applying
stage and two Hold stage in between.

90 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

The Sampling stage initiates at the rising edge of the SAMPLE signal
and concludes at its falling edge. During this stage, the system, in conjunction
with the weighting capacitor array, establishes a capacitor ladder to generate
a weighted output voltage across the summing capacitor as shown in Fig. 5.1.
The Sampling stage typically lasts at least six time constants, where each time
constant is given by τ = RonCtotal, with the potential for an extended duration
during the initial setup. In the expression of time constant, Ron stand for the net
resistance of the pass-gates seen from the weighting capacitor, while Ctotal is the
net capacitance seen from the input node.

Following the deactivation of the SAMPLE signal and prior to the activa-
tion of the APPLY signal, or vice versa, there are two brief Hold phases aimed
at maintaining stability. The Hold stages should not exceed a single time con-
stant to ensure efficiency and minimise the potential charge leakage through the
pass-gates.

During the Applying stage, the APPLY signal is exclusively active. The
capacitor is disconnected from the signal source and is connected to the H-bridge
for the summation operation. The direction of the summation is determined by
the SIGN bit stored, ensuring accurate processing of data.

In the system illustrated above, the potential is received through a Vin port,
and then captured and maintained by the capacitor. Subsequently, it is modified
by the H-bridge, which in turn determines the direction in which the potential is
ultimately computed.

As evidenced in Fig. 5.7b, the manner in which the potential across the
capacitors is observed varies according to their respective connections. For the
sake of clarity and simplification, we shall designate the upper plate in the afore-
mentioned figures as the positive plate of capacitors (noted as C+), and the cor-
responding lower plate as the negative plate (noted as C-). The potential written
onto the capacitors in a state of equilibrium shall be derived as follows:

UC = UC+ − UC- = VVin. (5.5)

Therefore, in the event that we neglect the leakage, in the scenario depicted
in Fig. 5.7b shows, UCl+ = GND = 0V , UCr- = UCl- = UCl+ − VVin1 = −VVin1,
VOUT = UCr+ = VV in2 + UCr- = VVin2 + (−)VVin1. Outputs under different
circumstances can be examined in a similar manner.

In practical applications with a transistor-based implementation as shown
in Fig. 5.6b, it is possible for the stored signal to leak through the imperfectly
opened switches. We can make calculations under the assumption that the signal
begins at each plate of a capacitor and ends at the ground nodes. It is important to
consider that the resistance of each off-state switch is sufficiently high compared
to on-state ones, so we only need to account for the shortest path through the
pass-gate arrays between capacitors and the ground.

In this scenario, the path taken from each plate to the GND will pass
through either one or two switches, resulting in a net resistance of approximately
1 GΩ for the cases we modify switches using pass-gates as demonstrated earlier.
When using a capacitor of 1 pF , we can determine that the time constant τleak

falls within the range of about 1 ms. The percentage of leakage is estimated to
be around 2% of the original value at a low frequency of 10 kHz , which makes it

5.4. CROSSBAR DESIGNED MAC 91

(a)

(b)

Figure 5.7: A two-cell SUM system cascaded with reversed Sign signal applied
at different stages. The blue lines show the signal flow in the given phase. The
dotted boxes show the states of the switches. On-state switches have significantly
smaller inner resistance than off-state ones and are represented by wires in boxes,
while off-state ones are represented by resistors labeled as R enveloped in boxes.
The resistances of off-state pass-gates are finite yet large enough, so the leakage
through these devices are negligible. (a) The system at a Sample stage. The
signals provided by the input Vin1 and Vin2 flow in and charge the capacitors.
(b) The system at an Apply phase. The signal stored on capacitors flows out and
is read as a whole from the port Out

considerably longer and readily neglected in comparison. It is strongly advised to
deploy devices with increased resistance in the off-state to enhance performance
under low-frequency conditions.

5.4 Crossbar Designed MAC
In the context of mathematical modelling neural networks, it is paramount

to ensure proper connectivity of neurons based on linear layer matrix guidelines.
However, when transitioning to real-world applications on silicon, it is also im-
perative to establish a systematic approach for organising each component in a
sequential manner while minimising overlap and conflict in the layer-wise design
of wiring and other elements in addition to the mathematical criteria. In practical

92 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

terms, the “crossbar” layout will be used to transmit input to synapses aligned
with matrices through parallel wires denoted as BUS, with the aggregated out-
puts will be transferred to a separate set of parallel BUSes for subsequent use in
the vertical signal lines.

When considering each weighting block as a resistive component, and due
to the fact that the signal, particularly in the form of voltage level, is often
supplied to high impedance systems for subsequent summation and amplifica-
tion [224, 225], or is transformed into alternative presentations. It can be in-
ferred that the system remains a modification of a conventional Op-Amp-based
summation network with multiple cascades.

5.4.1 MAC in functional blocks
The aforementioned sub-systems have the capability to be integrated and

interconnected at various levels, with an inherent component for data storage.
This allows the data-storage components interfacing with the weighting sub-
system to function as a controlling system, utilising a network of interconnected
wires to transmit and scale the analog signal generated during the previous oper-
ations. In addition, the system features capacitive components to linearly manip-
ulate the analog data Va according to the stored data. Furthermore, the system
includes a circuit for sampling the output, aggregating inputs, and transmitting
them for additional processing.

Figure 5.8: The block diagram illustrating the integration of the proposed lin-
ear follower and operational amplifier-based multiply accumulate circuit within
a system, with a central memory unit as the controlling component. Each encap-
sulated section denoted by a solid boundary represents a subsystem with tangible
hardware implementation, such as the capacitors CAP, multiplexer MUX, accu-
mulating circuit ACC and incoming signal bus SIG BUS. The interconnections
within the system are regulated by data stored in a dedicated memory unit, indi-
cated by numerical values enclosed within a dotted boundary.

In the case as illustrated in Fig. 5.8, when the system utilises external Op-
Amps as summation components, it can be efficiently integrated with the pro-
posed multiply circuit and a memory-stored signal interface for convergence. At
the system level, numerous circuits will be arranged in parallel and intercon-
nected through vertical signal lines featuring rounded interfaces, as depicted on

5.4. CROSSBAR DESIGNED MAC 93

the right-hand side of the diagram. This cascading configuration represents the
inputs to an individual neuron in the subsequent layer, before which the wire
will be connected to an operational amplifier, as illustrated in Fig. 5.4. Once
weight-related data are inputted into the designated memories and accessible for
the MUXs, the system can operate in a fully static manner without the need for
additional external signals or controlling factors. The weight is managed by ex-
ternally stored data (enclosed by dotted boxes), as will be identified as MEM in
Fig. 5.10.

In the diagram, the leftmost bit of the weight signal represents the least
significant bit (LSB), while the bit near the sign bit denotes the most significant
bit (MSB) of the weight. The weighting data remains in a static state and in-
fluences behaviour through surface potential on pass-gate-based switches, which
will not consume static-state power. The input signal and its grounding refer-
ence are depicted by two wires within the horizontal box, labelled Va and GND
respectively.

Figure 5.9: The block diagram illustrating the integration of the proposed H-
bridge and charge pump-based multiply accumulate circuit within a system, with
a central memory unit as the controlling component. Each encapsulated section
denoted by a solid boundary represents a subsystem with tangible hardware im-
plementation, such as the capacitors CAP, multiplexer MUX, accumulating cir-
cuit ACC and incoming signal bus SIG BUS. The interconnections within the
system are regulated by data stored in a dedicated memory unit, indicated by
numerical values enclosed within a dotted boundary.

The operational block diagram of the multiplying circuit with charge pumps
as summation components, along with its interface with the incoming signal flow
and the summation system, can be observed in Fig. 5.9. Additionally, the di-
agram displaying a series of capacitor-MUX pairs as have been presented in
Fig. 5.1 and Fig. 5.2. The functioning control of the summation component
is overseen by two signals denoted as SAMPLE and APPLY, as indicated in
Fig. 5.6. The summation of the outputs will be transmitted through the interface
denoted by the vertical line.

In Fig. 5.10, there is a depiction of a cascaded system that creates a cross-
bar design for the MAC unit. The memory unit (MEM), if not required to be
adjustable, can be permanently hard-wired. Although the access to this part is
not illustrated, the design flexibility allows for the generation of different charge

94 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

Figure 5.10: The graphic representation of how the suggested multiply accumu-
late circuit could potentially be linked together in a crossbar configuration and
utilised as a MAC for linear operations. The SUM circuit will capture, maintain,
and aggregate data from all components that are directly linked to it. The incom-
ing signal is received from the side identified as SIGNALwhile the output signal
is produced and triggered by the elements marked as ACTIVE. The process of
retrieving data from memories is not depicted in the diagram. For the purpose
of this project, we can assume that the data is pre-configured and remains un-
changed during operation.

levels in the MUXs.
The input signal, assumed to originate from a linear follower AFC, is con-

nected to the weighting circuit labelled as MUL CIR based on data stored in
memories. The processed signal is then sent to the summation component SUM
and further transmitted to the ACTIVE circuit as input. The ACTIVE circuit
can be a single AFC of the subsequent layer, or a sample-and-hold (S/H) device
as will be introduced in Chapter 6. With proper isolation and maintenance of sig-
nal magnitude, the crossbar mesh can be cascaded at various levels to represent
different layer sizes in a neural network in a theoretical scenario. Furthermore,
it is feasible to efficiently integrate MACs utilising identical weights to amplify
parameters exceeding one within the network, as previously addressed.

In the system, when utilising the charge pump-based MAC in a cascaded
serial configuration to create a bus, the signals for each separate synapse in a
given layer SAMPLE and APPLY are jointly utilised within the layer. When
analysing various layers and factoring in response and charging times, it may be
advantageous to ensure that these two signals are in opposite phases in adjacent
layers to maintain a seamless data processing flow. Additionally, considering the
system’s characteristics, it is desirable for the input to remain relatively stable
observed from the sampling capacitor at a frequency below a mega-Hertz level.

Additionally, bias can be implemented by modifying the GND port illus-
trated in Fig. 5.7 through the incorporation of an additional charged capacitor.
This capacitor can be constructed by introducing an extra set of MAC connected
appropriately to the common ground and powered by a constant voltage input of
1 to streamline the design and updating processes.

The primary benefit of the proposed design with H-bridge-connected charge
pump in comparison to the SOTA is the elimination of amplifier-based circuits

5.4. CROSSBAR DESIGNED MAC 95

in the summation portion of linear algebra, ensuring minimal static power con-
sumption in low-current settings. Additionally, this design allows for a more
versatile range of weighting parameters including non-positive values without
the need for an additional connection to the negative port of the amplifier.

One significant issue of the charge pump-based MAC regarding the AFC
or the S/H circuit identified as ACTIVE is its potential limitations in effectively
responding to a consistently fluctuating signal presented in the form of voltage
levels, especially when found at the common Gate of the two transistor pull-push
structure of the AFC. The presence of parasitic capacitance within the AFC could
further impact the accuracy of the combined signal’s behaviour. Additionally,
the possible leakage of charges from the resistive pathways illustrated in Fig. 5.7
could result in a gradual decrease in signal strength relative to its source.

While our analysis allows for an estimation of this decline in conjunction
with the AFC’s imprecision, a practical application may necessitate the introduc-
tion of the S/H circuit as mentioned between the input of AFCs and the output
of MACs to maintain overall response stability. This proposed solution does in-
volve a trade-off in terms of static power consumption and the introduction of a
certain degree of distortion in the signal represented. The decision to implement
such a system is discretionary and relies heavily on the scale of the network and
the design of potential AFC under consideration, as well as whether the system
can meet the desired outputs and specified application tolerances without the
added S/H stage. A detailed discussion will be put forward in Chapter 6.

5.4.2 Space, time and energy efficiency

As previously mentioned, the synapses will predominantly be comprised
of a sequence of capacitors, along with various CMOS-based switches that are
linked to the Va bus and GND as shown in Fig. 5.8 and Fig. 5.9. This system
will facilitate the utilisation of quantized weights represented by the formula
−1b ×

∑
2i × si, where b denotes the sign signal and s indicates the connection

status to the signal source for the capacitor array.
As illustrated in Fig. 5.1, the system comprises a collection of capacitors

with values of either C or 2C, with the option to select a nominal C = 1pF for
practical demonstrations, and even smaller values for real-world applications.
This choice is arbitrary and primarily for ease of calculation, simulation, and
demonstration purposes to elucidate the relationship between systematic time,
energy consumption, and component magnitude. Additionally, the transistor can
be chosen based on different on-state resistance Ron. The capacitance at each
port is calculated to be 2

3
C , resulting in a system time constant of τ = 3

2
RC.

In order to achieve a stable state in the system, a response time of T =
6τ = 9RC can be chosen for an analog steady state, with a maximum frequency
of f = T−1 = 1

9RC
. The energy consumption for a single capacitor fully charged

peak to peak by a single source is given by CV 2, leading to an average maxi-
mum dynamic power consumption of V 2

9R
, where the voltage V corresponds to

the signal level Va.
Since the majority of power is utilised during the initial time constant

while charging the series of capacitors to (1− e−1)V , the energy consumption
amounts to approximately 40% of the upper limit. The peak power consumption

96 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

is calculated to be 4
15

V 2

R
, which is approximately 0.3V 2

R
.

Furthermore, when considering a single multiplication operation and the
necessity for a system to have a resolution equivalent to the 2−n time of its origin,
the rate of OPS can be calculated as

⌊
2

3RC

⌋
, with a power consumption of nV 2

9R
.

In addition, the metric of OPS/W can be determined to be 6
nCV 2 .

In a hypothetical scenario involving a 45nm technology-based design, as-
suming a 4-bit resolution in the MAC. All capacitors are constructed using metal
oxide semiconductor (MOS) capacitors with a Gate size of roughly 1000 unit
squares and an oxide capacitance factor chosen to be 3×10−3Fm−2. In this par-
ticular case, any parasitic resistance, capacitance, and leakage path are ignored
for the sake of simplicity of discussion. In the context of practical applications,
it is advisable to utilise devices characterised by reduced leakage levels, or to in-
corporate the effects of parasitic capacitance and resistance into the calculations.
This approach will yield a more accurate and reliable design. The Gate size is
determined to be 2× 10−12m2 (each edge length is 1.4µm, which is significantly
larger than the technology restriction to ensure precision in the design of the ca-
pacitor). Consequently, the capacitance is calculated to be 6 × 10−15F = 6fF ,
and the resistance of the MUX at its On at its On state is simulated to be 2kΩ.
The voltage supply is set at a nominal 1V . The aforementioned dynamic mode
parameters are as follows:

e = nCV 2 = 24fJ

p̂ = nV 2

9R
= 222µW

OPS = 2
3RC

= 55.6MHz
OPS/W = 6

nCV 2 = 0.25PHzW−1

(5.6)

In the preceding examination of the weighting component of the circuit,
it has been determined that with fully realisable technologies, it is feasible to
achieve a linear operational functional block that operates consistently at its max-
imum operating frequency with peak-to-peak charging operations and consumes
power at the milli-Watt level, while attaining computational speeds in the mega-
Hertz range.

Additionally, if the system remains in a stable state where the sole current
pathway for high-frequency noise produced within the system is directed to the
ground via the leakage path outlined in the summation section utilising less than
ideal pass-gate switches, the magnitude of this pathway still remains relatively
low.

When analysing the performance of a system utilising the advanced de-
sign and a consistent configuration, it is evident that there is potential for scala-
bility in both frequency and energy efficiency based on certain parameters. By
evaluating the magnitude of the voltage signal range peak-to-peak and the ca-
pacitance, which is directly proportional to the square of the length of the Gate
of the transistor-designed capacitors, we can optimise the energy consumption
per junction or speed. Furthermore, maintaining a higher resistance level in the
leakage path can allow for the utilisation of transistors with shorter Channel and
lower conducting impedance, thereby enhancing the circuit speed and minimis-
ing the power requirements in a linear fashion.

Furthermore, adjusting the peak voltage, in conjunction with the tech-
niques described above, has the potential to significantly decrease the power and

5.4. CROSSBAR DESIGNED MAC 97

Figure 5.11: The latest state-of-the-art of capacitor-based and field-
programmable gate array-based multiply accumulate circuits is outlined based
on recent research articles, focusing on floating-point operations metrics [21,32,
43, 44, 46, 55, 78]. This summary specifically examines time and energy effi-
ciency. The central black circle represents the theoretical performance of the
hardware neural network proposed in this work utilising 45nm technology. A
detailed introduction on the examples are illustrated in Tab. 5.1

energy consumption per operation or frequency. For example, by implementing
technology similar to previous methods as specified in Eq. (5.6) and selecting a
channel length of 450 nm (resulting in a ten-fold reduction in capacitance), op-
erational speeds of up to 556MHz and power efficiency of 2.5 PHzW−1 can be
achieved. This approach demonstrates performance levels comparable to leading
works in the field, as illustrated in Fig. 5.11.

Table 5.1: The detailed description and rated expectation of time and energy ef-
ficiency of the state-of-the-art of multiply accumulate circuits shown in Fig 5.11.
The efficiency is estimated according to constant voltage scaling method to a
nominally 45 nm scale for each system, assuming its validity.

Reference Process Technology Rated OPS Rated OPS/W Demostration Examples

Lee et al. [43] 40 nm
Passive switches and
300aF unit capacitors 1.25 G 6.50 T CIFAR-10

Toyama et al. [55] 28 nm Gated-ring oscillator 296.7M 5.17 T N/A

Zhang et al. [44] 65 nm
Successive approximation register

analog to digital converter 521.6M 36.7 T
Edge detection,

MNIST based classification and
speech denoising

Demasius et al. [46] 90 nm Memcapacitive device 230.9M 795.8 T letter classification

Papistas et al. [32] 22 nm SRAM-based compute cell 2.66M 624 T N/A

Agrawal et al. [78] 5 nm Population counter circuit 9.88M 8.02 T N/A

Nägele et al. [21] 22 nm
Pulse width modulated input

analog charge-based accumulation 119.5M 341.9 T N/A

This work 45 nm
Capacitive weighting array and

charge pump accumulator 55.6M 250 T
Regression and

MNIST based classification

In accordance with the SOTAs of MAC designs presented in Tab. 5.1, and
assuming the validity of the scaling rule in this context, we have calculated the
rated efficiency concerning operating frequency and power consumption through
a single operational procedure. It is noteworthy that the study conducted by De-
masius et al.a unique set of non-standard components referred to as “memca-

98 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

pacitor”, as highlighted in the table. This technology is not compatible with the
current manufacturing processes prevalent in the industry. Conversely, the de-
signs developed by Lee et al., Toyama et al., Zhang et al.and Nägele et al.appear
capable of achieving higher operating frequencies than the design proposed in
this research. Additionally, the work led by Nägele et al.demonstrates the ability
to sustain a higher operational power efficiency compared to our study. However,
a significant consideration is that their approach entails a more complex design
structure and does not allow for a negative weighting factor.

In this work, for a theoretical working environment with the technology
specified, ideally, we may also drive the summation part circuit by the theo-
retical working frequency specified. However, the estimation only looks at the
performance of the given weighting system, without real collaboration with the
summation part and the activation function part. In situations where the design
works, the overall design may not necessarily reach the proposed working fre-
quency and may not always experience power consumption as in the theoretical
case. For an even more stable system working with lower frequency require-
ments and higher energy consumption concerns, it is also necessary to lower the
operation frequencies according to the practical requirements and allow for more
charging time for the activation function circuit to respond to the signal accumu-
lated, to ensure that the system can always meet a steady state even when the
incoming signal is at the linear region of the activation function circuit.

From the design, the footprints can also be estimated by the number of
connections in the crossbar network, or connections that For each weighting and
summation junction with an n-bit resolution, it is necessary to incorporate 2n
capacitors and 2n pass-gates with inverters. Among these, n − 1 capacitors
should be of a size that is double that of the remaining capacitors. Each pass-
gate will utilise a two-transistor CMOS pair. Consequently, this arrangement
results in a footprint that totals fewer than 6n transistor and 3n − 2 capacitors.
Specially, in this part the capacitors used in the footprint counting are assumed
to be of the same size and other configuration, while the capacitor of twice the
capacitance is assumed to be two identical capacitors connected in parallel.

In the summation component of the design, an H-bridge-based configura-
tion requires 24 transistors and one capacitor, while a linear follower configura-
tion necessitates 6 transistors and 3 capacitors. Therefore, when considering the
footprint of a capacitor to be significantly larger than that of a single transistor,
the overall anticipated footprint is estimated to not exceed 6n+6 transistors and
3n+ 2 capacitors for each multiply-accumulate junction.

If the parameters are pre-set and hard-wired, it is feasible to exclude all
pass-gates within the weighting component, as well as the H-bridge along with
the inverters associated with the Sign signal, or the amplifying capacitors along
with their corresponding pass-gates. Regarding the MUX, for each bit of resolu-
tion, the design will conserve one pair of inverters and two pairs of pass-gates,
resulting in an overall footprint of 2n transistors and 3n − 1 capacitors for this
segment. With respect to the summation component of the H-bridge configu-
ration, simplification allows for the omission of four pairs of pass-gates, which
leads to a footprint of 12 transistors and one capacitor for this design. In the case
of the linear follower-based architecture, it is possible to eliminate two pairs of
linear followers and one capacitor. Consequently, for the aforementioned junc-

5.5. ROBUSTNESS ANALYSIS 99

tion, the footprint will consist of two transistors and two capacitors.
In conclusion, provided that the requisite spacing is implemented in ac-

cordance with the technology utilised, each junction exhibiting a resolution of n
bits, with memory and optional Op-Amps configured otherwise, one MAC may
necessitate a circuit footprint comparable to either 2n+12 transistors and 3n ca-
pacitors, or alternatively, 2n+ 2 transistors and 3n+ 1 capacitors. Furthermore,
should further adjustments and fine-tuning be required, an additional 4n + 12
transistors and one capacitor will be necessary.

5.5 Robustness Analysis
In the realm of pure mathematics and its practical applications through

software implementations, careful attention is paid to ensuring precision for op-
timal use of limited memory resources. Despite these considerations, the accu-
racy is maintained at a floating point level, adhering to a resolution of 23 bits
for single precision as outlined in the IEEE 754 standard [226, 227], and 10 bits
for half-precision equivalents. Furthermore, in these scenarios, it is tacitly pre-
sumed that all computations, both linear and non-linear, are executed accurately
and without any uncertainties.

In hardware implementations where the systems function as look-up tables
(LUTs), we have noted discrepancies arising from noise in inter-layer commu-
nications, the sub-optimal representation of parameters, and deviations between
our theoretical activation function and the actual transfer function observed in
practical scenarios. The undisclosed risks present a significant likelihood of
compromising precision, thereby calling into question the merit of relentlessly
pursuing heightened resolution in the proposed design.

In the subsequent sections, we will examine the impact of parameter distor-
tion resulting from non-ideal conditions on training and validation performance.

5.5.1 Component tolerance in multiply circuit

Using the topology depicted in Fig. 5.1, an output port labelled as o1 and
capacitors denoted as C1 to C7 (arranged from top to bottom) are designated.
Regardless of the resistors displayed in the diagram, as in a stable condition, all
capacitors are considered to be open loop and possess infinite resistance. It is
assumed that there is a uniform level of inaccuracy denoted as ε shared among
all capacitors, which is introduced to the components through a relative variation
expressed as ∆C

C
= ε.

The resultant voltage levels observed at o1 to o3 when subjected to volt-
ages v1 to v3 respectively can be succinctly summarized as follows:

o1|v1 = 1+ε2
3+ε1+ε2+ε3+4∥(5+6∥7)

v1
o2|v2 = 1+ε4

3+ε1∥2+3+ε4+ε5+6∥7
v2

o3|v3 = 1+ε6
3+ε(1∥2+3)∥4+5+ε6+ε7

v3
(5.7)

Taking the net relative error of the equivalent capacitor denoted as C1∥2+3

as an example, which is caused by the combined effect of multiple capacitors

100 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

(specifically identified as C1, C2 and C3, where C1 = C2 = 1
2
C3 = C) can be

further ascertained through additional calculations shown below:

εΣ =
Creal

Cideal
− 1

=
1

1
(1+ε1)+(1+ε2)

+ 1
2(1+ε3)

− 1

=
ε1 + ε2 + 2ε3

4 + ε1 + ε2 + 2ε3

(5.8)

In this analysis, the symbol ε represents the relative error observed in each com-
ponent, with the omission of terms beyond the second order. Subsequently, we
have undertaken the conversion of the relative error expression into absolute form
in order to facilitate subsequent calculations.

As noted previously, the distribution of ε is evenly distributed among the
capacitors, allowing us to simplify the equation to εΣ = ε

1+ε
≤ ε. Subsequently,

the summation of two sets of capacitors can be reorganised as εΣ2 =
3ε+ ε

1+ε

4+3ε+ ε
1+ε

=
ε

1+2ε
≤ εΣ.
Therefore, it is possible to formulate the error of the voltage signal in a

manner consistent with the discussion that
εo1 = 2ε

3+10ε
⪅ 2ε

3

εo2 = 2ε
3+7ε

⪅ 2ε
3

εo3 = 2ε
3+10ε

⪅ 2ε
3

. (5.9)

For the sake of efficiency, we may assume that the net relative errors are
of a distribution whose root mean square (RMS) value is no greater than 2

3
ε.

Additionally, the impact of factors o2 and o3 have on o1 can be systematically
deduced as follows:

ε o1|o2
= ε o2|o3

=
2+2ε
4+4ε
1
2

− 1 = ε (5.10)

εo1|o3
= (1 + ε)2 − 1 = 2ε (5.11)

ε o1|v3
= (1 + ε)

(
1 +

2

3
ε

)
− 1 =

5

3
ε (5.12)

εo1|v3
= (1 + 2ε)

(
1 +

2

3
ε

)
− 1 =

8

3
ε (5.13)

An elementary calculation suggests that, for a connected nth, system (ex-
cluding the SIGN bit), the output adds 2

3
2−n when connected to a signal source.

The noise is approximately
(
n− 1

3

)
ε. To ensure effective operation, maintain∑n

i=1 2
(
i− 1

3

)
2−iε < 2−n, leading to ε < 3

2n+2−2
, where n represents the num-

ber of bits integrated into the system.
In a scenario where the standard deviation of the component tolerance is

σ = 0.1, the bit resolution is approximately 3. For a 5-bit system, it is advisable
to aim for component precision of σ = 0.02. When utilising readily available
devices, achieving a resolution greater than 7 bits becomes challenging in this
specific design, especially if the accuracy of the components is lower than σ =

5.5. ROBUSTNESS ANALYSIS 101

0.01 according to the worst-case estimation.
For every weight utilised in a specific circuit, the potential values the

weighting circuit may display consist of a set of fixed 2n+1 numbers. These
numbers are evenly distributed within the range of

[
0, 2

3
2n−1
2n

]
in absolute value,

with an additional error that is represented by a Gaussian distribution applied to
each element.

(a)

(b)

Figure 5.12: Simulated set of weight presented by a non-ideal weighting cir-
cuit, each has an element variance ε. The magnitude of each capacitor is
given by Ĉ = (1 + ε)C. (a) Weighting parameters obtained with Gaussian
distributed element variance ε with a mean µ = 0 and standard deviation
σ = 0.25. (b) Weighting parameters obtained with uniformed distribution ε
ranged in [−0.25, 0.25]. Blue circles indicate the simulated weights presented,
and red dots are the proposed weights with the combination of circuit elements.
The negative parameters presented is symmetrical to its inverse.

In Fig. 5.12 , we present two potential weight sets that a proposed circuit
could generate when dealing with non-ideal components, resulting from a 25%
relative error in components. It is evident that while a certain combination of
elements may theoretically yield a higher weight, this may not translate into a
higher weighted output in reality due to a 2

3
ε error if the condition ε < 3

2n+2−2
is

not met.
In the context of parameter representation, utilising the configuration out-

lined in the preceding sections, real numbers are stored in memory and are as-

102 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

sociated with the weighting operation through the regulation of the switching
states of pass-gates. For example, when a specific parameter is assigned a des-
ignated value, the binary code written to the memory is named a ”command”. It
is important to note that, given the finite resolution of the numerical system, and
acknowledging that the actual capacitance of the capacitors may deviate from
the intended critical capacitance, the real parameter presented may not precisely
correspond to the value specified in the configuration of the neural network.

While it is possible to organise output signal commands based on actual
outputs and seek a closer command to achieve a desired weight, it would be
advantageous to incorporate robustness optimisation during the training and val-
idation phases to ensure a more universally optimal loss function in a broader
range of potential implementations across different branches. Hence, it is crucial
to adhere to the aforementioned training and tuning specification in all practical
scenarios.

(a) (b)

(c) (d)

Figure 5.13: The simulated output and relative error distribution by the Monte-
Carlo method. The perturbation ε is introduced separately for each component
in the simulated components by Creal = Cideal ∗ (1 + ε (σ)). (a) The output seen
at the OUT port of a 5-bit weighting circuit, with an input of 1 and a uniform
distribution of perturbation on capacitors. (b) The relative error seen at the OUT
port of a 5-bit weighting circuit, compared with the ideal output, with a uniform
distribution of perturbation on capacitors. (c) The output seen at the OUT port
of a 5-bit weighting circuit, with an input of 1 and a Gaussian distribution of
the perturbation on the capacitors. (d) The relative error seen at the OUT port
of a 5-bit weighting circuit, compared with the ideal output, with a Gaussian
distribution of perturbation on capacitors. In all of the figures above, red, cyan,
blue, and black dots stand for the ideal case, the case with σ = 0.01, σ = 0.03
and σ = 0.1 respectively.

In order to simulate the sub-optimal parameters for a resilient optimisa-
tion algorithm using the identical function as previously employed, we propose
simplifying the actual parameter to a proportionally adjusted value relative to its
desired value. This can be expressed as Creal = (1 + εΣ)Cideal, where εΣ rep-

5.5. ROBUSTNESS ANALYSIS 103

resents the permissible deviation for the entire weighting system. To calculate
the tolerance for each component ε, one may use the aforementioned formula or
resort to Monte-Carlo method, with the approximation that εΣ ≈ 2

3
ε.

Fig. 5.13 showcases the potential parameter obtained by the set of non-
ideal weighting circuits through a Monte-Carlo method simulation, along with
their relative error compared to the proposed parameter to be generated. In the
simulation, the capacitors of one single multiple circuit are assigned an addi-
tional error that is proportional to their capacitance. All potential commands
are established, from 0 to the maximum presentable value. Subsequently, the
actual weighting factors are gathered and compared with the theoretical factors
for analysis. For example, if we introduce a Gaussian distributed perturbation
as shown in Fig. 5.13c and Fig. 5.13d) , within the specified parameter tolerance
ε = 0.03, we may observe a perturbation in the parameters of approximately 0.02
from the desired value. The maximum relative error that can be observed is ap-
proximately 0.05. This means that, in accordance with Eq. (4.19), the worst-case
parameter can be estimated to be approximately P̂ = (1± 0.05)P . In addition,
it may indicate a mapping relationship between the variability in elements ε and
the perturbation of the parameters in the mathematical model εX .

Based on the findings from Fig. 5.14 , it can be inferred that when the
variance of the elements is Gaussian distributed, the resulting output is typically
comparable to or slightly superior to the anticipated outcome. In contrast, when
variance are uniformly distributed, the output is even more favourable, surpass-
ing the expected value by a distribution with its standard deviation 4

9
σ. However,

for the sake of simplicity in our simulation, we will continue to use σ as the
standard deviation for the Gaussian-distributed model, despite the fact that this
may result in a sub-optimal output compared to what could be achieved in actual
practice.

Based on the aforementioned examples, it can be inferred that a specific
distribution of element variance ε has a discernible impact on the systematic tol-
erance εΣ within the analog circuit. Furthermore, this phenomenon can be asso-
ciated with the perturbation εP observed in the respective mathematical expres-
sion, thus facilitating a more comprehensive analysis of the forthcoming model
to be specified in Chapter 6.

5.5.2 Parameter tolerance in neural network system

Based on the depicted relationship between component tolerance and the
relative error in parameters presented, the discrepancy observed at the output
of the multiplication circuit corresponds directly to the tolerance of the system.
Through the calculations and simulations conducted so far, we can deduce that
the relative error in the multiplying component can be approximated as a Gaus-
sian distribution ε with a standard deviation of 2

3
σ, where σ symbolises the toler-

ance of the collection of components. The estimation has been conducted based
on the most unfavourable scenario, which represents a significantly more adverse
outcome compared to other possible error distributions as recognised within in-
dustry manufacturing standards.

In the Modified National Institute of Science and Technology (MNIST)
dataset-based classification task outlined in this study, as shown in Fig. 5.15a, a

104 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

(a)

(b)

Figure 5.14: The probability density function (PDF) of weights generated by
Monte-Carlo method of relative weight variance, and Gaussian function as refer-
ence. (a) Relative error generated by Gaussian distributed variance ε with stand
deviation σ in each element (blue broken lines), PDF for Gaussian distribution
with a standard deviation of 2

3
σ respectively (yellow curves) and standard devi-

ation of ε respectively (orange dashed curves). (b) Relative error generated by
Uniform distributed variance within [−ε, ε] in each element (blue broken lines),
PDF for Gaussian distribution with standard deviation of 4

9
σ respectively (yellow

curves) and standard deviation of σ respectively (orange dashed curves). From
upper to lower subplot in each sub-figure, the element variance ε has its corre-
sponding standard deviation σ to be 0.1, 0.03 and 0.01 respectively.

randomly selected validation case of a hand-written digit, which should ideally
be identified as the number 4 (or belong to class 4) is fed to a well-trained neural
network. The figure presented illustrates the output of a vector consisting of 10
elements as observed at the logits layer. Both scenarios—including those with
and without parameter perturbation—are included for comparison. The output
generated by this layer represents a non-normalized score that correlates with the
confidence level poised to be processed by the subsequent softmax layer, or it
can be translated into the index corresponding to the category with the highest
confidence via a max layer. In the instance presented, assuming an optimal
network configuration, the correct class 4 is projected to yield a confidence score
of approximately 13, whereas the highest confidence score for any other class,

5.5. ROBUSTNESS ANALYSIS 105

(a)

(b)

Figure 5.15: The outputs of well-trained and tuned neural networks with ideal
activation functions and perturbed parameters are compared with the ideal case.
(a) A network trained with full resolution Modified National Institute of Science
and Technology dataset-based classification task, with an input of image showing
a hand-written digit 4, transforming from R28×28 input vectors to R10 output
vectors at the final logistic layer, with two hidden layers sized of 28 and 14
each, before entering the max layer. For each category from 0 to 9, the leftmost
dot indicates the ideal case output, and to the right are outputs with perturbed
parameters. (b) Output of the 5th bit for a regression network designed for Gray
Code ADC representation, transforming from R1 inputs to R1 outputs, with three
hidden layers sized of 4 each before entering the sign layer. For each subplot
dashed lines indicate the ideal case outputs and from uppermost to lowermost
solid lines indicate outputs with perturbed parameters. The relative error for
each case in the two examples is 0.01, 0.02, 0.05, 0.1 and 0.2 respectively.

specifically class 9 , is anticipated to be around 4.3, as denoted by the leftmost
dot in each respective column. It can be noticed from the illustrated case that it
is possible to specify a distinct boundary separating the classes in this ideal-case
network.

By introducing a Gaussian-distributed perturbation with its RMS value to
be 0.2 times relative to the original values of the parameters, it is noted that the
confidence level for class 7 can reach 8.9, while the lowest confidence level for
class 4 is 11.8. in the worst-case scenario. Although these two cases do not

106 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

occur simultaneously, there is a significant risk that a boundary may no longer
be able to be effectively differentiated between each class. Consequently, while
the system is still capable of producing accurate output, the network’s confi-
dence in correctly identifying the number 4 decreases from 99.9% to 94.3%.
Additional simulations suggest that a tolerance of 0.2 will likely be the highest
amount within which the network can experience a slight decrease in accuracy
when compared to the optimal scenario specified for the network (typically rang-
ing from 92% to 90% in the majority of simulations conducted with Monte-Carlo
method by introducing errors to the parameters of the neural network.

Table 5.2: The validation loss in cross entropy and validation accuracy for the
Modified National Institute of Science and Technology dataset-based classifica-
tion task with Gaussian distributed variability added to parameters. Ten iterations
of simulation are applied.

Standard Deviation
validation Loss validation Accuracy

min avg max min avg max

σ = 0 1.5165 0.9223

σ = 0.01 1.5164 1.5165 1.5167 0.9221 0.9225 0.9229

σ = 0.05 1.5154 1.5167 1.5173 0.9209 0.9220 0.9234

σ = 0.10 1.5165 1.5187 1.5219 0.9163 0.9201 0.9234

σ = 0.20 1.5229 1.5264 1.5325 0.9063 0.9128 0.9168

σ = 0.30 1.5324 1.5393 1.5512 0.8907 0.9013 0.9072

σ = 0.40 1.5592 1.5712 1.5912 0.8522 0.8727 0.8822

σ = 0.50 1.5734 1.6237 1.6587 0.7876 0.8214 0.8709

Tab. 5.2 presents the impact of incorporating Gaussian distributed toler-
ances on the parameters of a well-trained neural network for operating classifi-
cation tasks. The tolerances is chosen with various standard deviations in relation
to the nominal values of the parameters obtained during training without toler-
ances. It can be observed that performance degradation is minimal for σ ≤ 0.01,
and only marginal for σ ≤ 0.10. In practical applications, it is advisable to
utilise components with tolerances of no more than 15%, which aligns with the
condition σ = 0.1 as shown in tab. 5.2. In the context of classification tasks, the
developed HNN in this study demonstrates a satisfactory level of resilience and
accuracy when compared to its software counterpart when realistic components
are employed.

In the regression task depicted in Fig. 5.15b, where the system is designed
with a minimal number of neurons as demonstrated in Fig. 4.6, there is an ob-
servable trend of increased susceptibility to parameter variances leading to out-
put corruption. It is important to note that even a minor relative error of 0.01

5.6. CONCLUSION 107

can lead to significant fluctuations in the pre-activation signals. This may subse-
quently cause phase shifts in the activated signals or potentially distort the output
function altogether. Furthermore, increased variances can hinder the system’s
ability to generate any recognisable output. Through further simulations, it is
evident that the low redundancy level and precise parameter selection render the
system highly sensitive to inaccuracies in parameters and activation functions.
Additionally, the regression nature of the weighting matrix exacerbates error ac-
cumulation within layer communications and prevents correction by neighbour-
ing neurons. Thus we may conclude that for analog systems where tolerance is
not negligible, training methods for “ideal” systems may be insufficient.

Figure 5.16: The optimal outcome of a single hidden layer within the neural
network regarding a Gray Code analog-digital converter-centred regression task,
as portrayed in an ideal scenario, where each distinct colour represents the output
of an individual neuron.

In the context of regression, a practical approach to enhance the usability
of the overall system is to implement an additional fine-tuning process. Dur-
ing the fine-tuning phase, it is essential to focus on minimising the discrepancies
that may arise from the non-idealities inherent in practical implementations. Ide-
ally, each layer’s output should resemble the form depicted in Fig. 5.16, which
corresponds to the philosophy illustrated by Fig. 4.7. By utilising a layer-by-
layer fine-tuning process and incorporating additional neurons to align the sum
of neuron outputs with the corresponding curves, we can effectively improve the
system tolerance. To achieve this, we can systematically reduce the divergence
between the activated signal of the practical system and the neuron output pre-
dicted by the idealized model. This can be accomplished through a layer-wise
training and interval adjustment process for each respective layer.

5.6 Conclusion
The proposed design, aimed at modifying linear operations in floating

points through a analog computing device of the multiplication and summation
operations, has demonstrated a computing capability reaching mega-Hertz lev-
els. This design operates in parallel with a reduced number of components when
compared to arithmetic logic units (ALUs) and control blocks that interact with

108 CHAPTER 5. MULTIPLY ACCUMULATE CIRCUIT

memory. Additionally, this design allows for constant parameters to be stored
statically while processing inputs dynamically in memory. Furthermore, it facil-
itates the application of a processing-in-memory (PIM) approach with a direct
interface to analog or digital inputs and outputs.

The proposed design, driven by its low-current requirements, demonstrates
a notable efficiency in time and energy consumption when compared to the state-
of-the-art. This efficiency is achieved using only industry-standard technologies.
Additionally, the system boasts high scalability in resolution and can seamlessly
integrate into a crossbar design, allowing for further expansion in network size
as shown in Section 5.4. The components of the design are highly standardised,
ensuring efficient use of silicon space.

With an innovative ladder design in the weighting system, the impedance
observed at the input remains constant, leading to a proportional relationship be-
tween current supply and energy consumption based on the system’s bit-resolutions.
Additionally, our design allows for convenient adjustment of relative error com-
pared to ideal outputs, enabling us to establish a connection between component
variance and systematic tolerance of the MAC. This in turn enables us to conduct
an overarching estimation and simulation regarding the potential inaccuracies of
neural networks or equivalent systems if the topology and configuration is given.

One of the key challenges associated with this system is the inherent trade-
off between accuracy and the benefits it offers. In the context of simulating the
curve fitting necessary for the logit layers of the neural network analytically
designed for the Gray Code analog-digital converter (ADC) task, it has been
observed that error accumulation can significantly compromise the integrity of
the output. Therefore, we can deduce that in precision-critical systems, particu-
larly those involving regression requirements, a hardware implementation of this
technology may not be advisable without further enhancements and refinements.

A suitable use case for this technology is to integrate it as a front-end in-
terface for sensor input systems or to use it as stand-alone modules to classify
multiple types or to manipulate data for further processing. The power efficiency
of the system enables operation with a minimal power supply, while its com-
pact footprint facilitates seamless integration with other systems, without signif-
icantly increasing chip size or weight. Additionally, the primary drawback con-
cerning response time limitations can be effectively mitigated in a nearly steady-
state environment. In Chapter 7, we will further explore potential applications,
as well as adjustments to neural network topology and training algorithms.

Chapter 6

Systematic Analysis on
Performance and Behaviour

In the technical literature, there has been significant research interest in
exploring the non-ideal behaviours of systems utilising hardware neural network
(HNN) implementation. It has been identified that factors such as component
tolerances, which may result in distortions in parameters, activation functions,
and inputs, warrant attention and consideration. It is worth noting that the con-
cept of “robustness” within the community tends to be discussed on a local level
pertaining to individual inputs, with less emphasis on global behaviours. Fur-
thermore, there is a noticeable lack of a comprehensive approach to effectively
model how errors within each layer’s operations propagate between layers.

In this chapter, we will be presenting a formula for estimating such factors
based on the model we have established in Section 6.2, with the aim of estab-
lishing a connection between these factors and the overall system performance.
Additionally, we will be outlining specific guidelines for implementing HNNs
using the modules we have proposed and highlighting any limitations of this
system.

6.1 Overview
In developing hardware neural networks (HNNs) systems, a key consid-

eration is whether a HNN can efficiently and accurately perform predictions or
calculations comparable to a mathematical model or software implementation of
a neural network. It has been hypothesised that achieving a mathematical equiv-
alence between the hardware system and the mathematical model will result in
equivalent behaviour. Given the ability to represent all solvable mathematical
problems with neural networks of infinite size and precision using various acti-
vation functions theoretically, the challenge lies in obtaining a close-to-ideal ac-
tivated value by non-ideal activation function computing devices with finite size
and precision in practice, while accounting for inaccuracies in functional blocks
due to noise in sampling and transmissions and computing errors in algorithm
design and component non-ideality.

We have examined the performance of each functional block outlined in
preceding chapters and offered a succinct assessment of their resilience against
device variability on an individual basis. However, there remains a significant

109

110CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

gap in the discourse regarding the construction of a HNN incorporating these
two modules, as well as the potential propagation of perturbations and failures
throughout the system.

The emphasis in the current research revolves around addressing the issue
of error propagation in neural network implementation. This is primarily con-
cerned with the potential impact of corrupted inputs, training data, or signal flow
on the precision of the HNN system. It is important to note that under the limi-
tations of hardware variability, any inaccuracies in the implementation can lead
to a heightened risk of prediction failures.

Nevertheless, establishing a direct correlation between the learning out-
come and the system-level disturbances resulting from noise and imprecision
of the parameters can be challenging, particularly when employing a statistical-
based methodology. Despite advancements in techniques such as parameter re-
estimation and matrix-based computations [228], discrepancies in predictions
persist among different methods, even in regression scenarios where output stan-
dard deviations serve as reliable indicators of implementation success. Further-
more, tasks commonly used as benchmarks for network models and optimisation
algorithms fall short of achieving human-like resilience against noise or attacks
introduced into input samples [229].

We will base our discussion on the local stability of the system derived
from global stability. By utilising the concept of the global Lipschitz constant,
we can determine the maximum tolerable variability possible in inputs, parame-
ters, and non-polynomial activation stages without experiencing a loss in accu-
racy.

In addition to investigating the ability of HNNs to achieve its intended
learning outcomes, it is imperative to examine the systematic parameters related
to latency and power consumption associated with a specified neural network-
topology. The primary aim of utilising analog designs of HNNs is to improve
operational efficiency, specifically regarding power consumption and response
time—two aspects that represent significant constraints in digital neural network
. Furthermore, the energy efficiency of the overall design deserves careful con-
sideration.

Moreover, compared to alternative implementations, a hardware-based neu-
ral network system may require diligent oversight of temporal sequencing due to
operational frequency and signal transmission latency. While a majority of de-
vices might demonstrate stable timing, the responses can exhibit considerable
variability in both time and frequency. In practical applications, signals may be
subject to distortions arising from group delay and frequency-specific filtering at-
tributable to component mismatches. Additionally, the ability of a single output
source to simultaneously drive multiple loading circuits is vital to determining
the dimensions of each layer without relying on external buffers and amplifiers,
although this may introduce a certain degree of distortion.

In this chapter, we will conduct an analysis of the activation function cir-
cuit (AFC) design and the two proposed designs of the multiply accumulate
circuit (MAC). The aim is to provide a comprehensive overview of the overall
performance, advantages, disadvantages, potential risks, and expected working
conditions of the circuits. Specifically, our objectives are as follows:

1. Evaluate the propagation of inaccuracies throughout the hardware neural

6.2. PERFORMANCE AND ROBUSTNESS 111

network-level implementation.
2. Demonstrate the prediction of error accumulation through examples, high-

lighting how it may impact the learning outcome.
3. Identify and discuss the potential drawbacks and limitations of each com-

bination of activation function circuit and multiply accumulate circuit de-
signs.

4. Assess the changes needs to be made to maintain the working stability for
each combination of AFC and MAC.
In the initial sections, we will begin by formulating an equation for the

accumulation of errors in a perceptron. Subsequently, we will extend this analy-
sis to a deep neural network (DNN) featuring k cascades of uniform perceptron
layers. In the ensuing portions of the project, we will underscore the obstacles
present in both scenarios if no additional modifications are made, along with a
separate discussion on the analysis and subsequent solutions.

Moreover, it is possible that there are additional considerations related to
redundancy and effectiveness of networks, such as a “dying” neuron on the brink
of expiration that maintains a consistent activated value regardless of the inputs it
receives [230], as well as the dimensions and complexity of hidden layers [120].
These aspects will not be explored in this chapter. The prevalent issue of adver-
sarial attacks, whereby disruptions are introduced into input data [231,232], will
only be touched upon briefly in terms of random input variability εX . Likewise,
the strategies for training and refining models—such as incremental learning
with noise introduction [107] and the integration of external decoder architec-
tures [229]—both existing and proposed, will not be expounded upon.

6.2 Performance and Robustness
The utilisation of neural networks may experience a decrease in perfor-

mance when components in practical cases exhibit variability, as evidenced in
Sections 4.5 and 5.5. Testing functional blocks and perturbed systems separately
reveals a non-linear relationship between the decline of learning outcome and
component tolerance. While there is no definitive benchmark for evaluating the
performance of individual layers or modules within layers, as discussed in Sec-
tion 3.3, it is possible to simulate and analyse the systematic variation in outputs
and performance changes arising from that are of great interest to the computer
science community [233].

In this section, we will focus on analysing the impact of output perturbation
due to the variability of each functional block and signal transmission within the
module. We will evaluate the overall performance in terms of accuracy and loss
on the output side of the module using mathematical models of the system. The
procedure for this analysis is outlined as follows:

1. Determine the perturbation at each layer due to element variability.
2. Calculate the perturbation of linear and non-linear layers pair by pair based

on layer-wise inaccuracies.
3. Develop a formula to describe system-level perturbations accordingly.
4. Establish the minimum threshold for systematic robustness to ensure no

decrease in accuracy in classification tasks.
5. Validate the predictive models established above.

112CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

6.2.1 Effect of variability in components

Through an analysis of the diverse components utilised in the deployment
of neural networks, we have made individual projections on the margin of error
present in the accuracies and losses of the HNNs simulated. Furthermore, as a
hierarchical structure consisting of various tiers of distinct functional units, we
are also able to highlight the correlation between component variability and its
impact on the ultimate outcome of a particular system.

In the case of a single linear layer with an output error margin of εL,
which will be passed to an ideal activation functions, serving as input for the
non-polynomial layer, we may observe a magnified error margin of θεL based
on certain considerations as shown in Eq. (3.8) by first order Taylor expansion.
This factor θ represents the approximation of gradient observed at the activated
value under ideal conditions. However, there may also be an additional error
introduced due to imperfections in the AFC, requiring additional consideration
in the analysis.

To streamline the evaluation process, we simplify by setting θ = 1 and
assessing the impact of a given error distribution ε on the activated value of
a specific linear activation function layer operating solely with identity trans-
formations. This distribution ε impacts all parameters and the input provided,
denoted by p̂ = (1 + ε) p, where p represents the parameter being studied.

In the case of receiving a corrupted set input signals at each layer, assuming
that the relative error of the linear transformation part and the incoming signals
are relative to their magnitude. Note the factors of each pre-activation value yj
contributed from input signal xi to be yi,j , with the relationship yi,j = pi,jxi, the
relative error seen at the factor can be calculated as εP + εX , where εP and εX
are shared distribution of relative errors among transforming matrix P and input
vector X , for each element p and x. Additionally, for each element yj in the pre-
activation value, there may be an absolute error of the sum of

∑
(εP + εX) pi,jxi,

which also equates to a relative error of εP + εX when disregarding second and
higher order factors. Furthermore, at a modular level, we are able to establish a
correlation function that

∆Y = P̂ X̂ − PX

= (P + εPP) (X + εXX)− PX

≈ εPPX + PεXX.

(6.1)

In this context, P symbolises the matrix utilised for linear operations, with X
denoting the input vector of the matrix and Y representing the output-side pre-
activation vector of the transformation. Consequently, the relative error εY ob-
served at the output side of the linear operation section will be a result of the
combined errors of εP +εX obtained through element-wise operations. It should
be noted that in the case of a purely linear system, a linear accumulation of errors
will be evident on the output.

In regards to the activated values of non-polynomial layers, it is advised
to omit the gradient-related scaling factor θ, and assume it takes a maximum
value of 1 during worst-case simulations. We may present the distorted activation

6.2. PERFORMANCE AND ROBUSTNESS 113

function, which is denoted by α̂ (·), in the following manner:

α̂ (·) = (1 + εα)α (·) + εn, (6.2)

where the ideal-case activation function is noted as α (·). . The relative error
associated with the error induced scaling of this function is denoted by εα, while
the noise component, quantified by the absolute error, is represented as εn. As
per previous derivation shown in Eq. (4.20), it is important to note that if we
consider the activation function α (·) to be a unity transformation in the worst-
case scenario, the error ∆Z (Y) observed in the activated value relative to the
input Y will be εαα (Y) + εY Y + εn. The relative error in this case will be
εZ = εα + εY + εn

α(Y)
. When we introduce a lower gradient or saturation regions

where θ ≈ 0, assuming an average scaling factor of θ (where θ ≤ 1), which
means α (Y + εY Y) ≈ α (Y) + θεY Y , and the activated value does not have a
significant static error or direct current (DC) offset εn, there may be a relative
error modelled as follows:

εZ ≈ εα + θεY + εn, (6.3)

where the assumption is made that the expected value of the activated value ⟨Z⟩
is 1.

In order to assess the impact of the static error caused by activation func-
tions in practical scenarios on the linear operation of the subsequent layer, it is
also possible to encounter distortion generated from non-ideal activation func-
tion components introduced into a linear layer. We may also have

∆Y = εPPZ + εZPZ

≈ εPPZ + εαPZ + θεY PZ + εnP.
(6.4)

In instances where ⟨Z⟩ = 1, it is possible to assert that the overall trend of error
accumulation within the network exhibits a lesser degree of linearity.

Assuming the input X̂ enters a non-ideal dual-layer configuration consist-
ing of a linear layer with transformation matrix P succeeded by a non-polynomial
layer denoted as α (·), the total distortion observed at the activation layer’s acti-
vated value will be:

∆Z = α̂
(
P̂ X̂

)
− α (PX)

= εαα (PX) + θ (εX + εP)PX + εn.
(6.5)

The calculation will result in the determination that Z = α (PX), εZ =
εα + εn

Z
+ θPX

Z
(εX + εP). Note θr = θPX

Z
, in a system of k cascading layers

where linear and non-linear layers are used alternately if input is observed at a
linear layer with a relative error of εX , the following relationship may also apply:

εZ =
1− θkr
1− θr

(
εα +

εn
Z

+ θrεP

)
+ θkrεX . (6.6)

In accordance with the previous derivation Eq. (6.6), it has been estab-
lished that for structures consisting of 2k layers where k is an integer, the pos-
sible degree of inaccuracy on the output will not surpass the expression that

114CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

Figure 6.1: The relative error seen in each of the layers of a well-tuned network
with activation functions and parameters separately perturbed. From the lower-
most to the uppermost meshes are the relative error seen at the first to the fourth
hidden layer.

ε ≈ k
(
εα + εn

Z
+ θεP

)
+ εX . In the case where there is a zero gradient region

within the domain for the activation functions, the total inaccuracy will be con-
fined to the sum of εα + εn

Z
. In this case, the errors will not propagate within the

neural network.
In the task of executing as an analog-digital converter (ADC) based on

Gray Code, as outlined in Section 5.5, utilising a layer size of 4 neurons each,
and deploying a scenario with two hidden layers capable of delivering 5 bits’
resolution, there is potential for a noticeable distortion of the signal at the Output
layer if the parameters are slightly altered, resulting in a relative error of 0.2 time
of the proposed values.

In line with Eq. (6.6) and the matrix given in Section 4.3, it is plausible
to anticipate a relative error escalating as we progress from the input of each
linear layer to the activated value of the corresponding activation layer, primarily
due to the influence of the term θr, conservatively estimated to have a value
of 4 for this scenario, contributed by the transforming matrix as specified in
Eq. (4.14) and a unity gain linear region of the proposed activation function.
Furthermore, as depicted in Fig. 6.1, the relative error evident at each layer εZ
increases proportionally with the relative error terms εα and εP , intensifying
rapidly as the depth of the layers increases in a nearly exponential manner.

6.2.2 Effect of variability on neural network level

Based on the previous discussion, it is evident that adjusting the parameters
of neural networks based on the feedback from the loss functions is an effective
approach to aligning the functional relationship between high-dimensional in-
puts and outputs, thereby enhancing the decision-making accuracy. However,
it is important to acknowledge potential risks associated with this method, as it
may overlook the relationships between input features and the target output fea-
tures, which are critical for understanding the characteristics of the given task and
thus improve the generalisation. Utilising a model that relying solely on linear
separation could potentially give rise to unforeseen disruptions stemming from

6.2. PERFORMANCE AND ROBUSTNESS 115

the element-wise variation caused by the formula for relative error propagation
outlined in Eq. (6.6).

(a) (b)

Figure 6.2: The output of four neurons involved in the first two layer of a simple
network representing an XOR gate’s output with a [2× 2× 1] sized network
with ideal-case parameters and circuit transfer function shown in Chapter 4 as
its activation function and relative errors of εP , εα and εn set to be 0.5. (a)
The output of the non-ideal network seen at each of its hidden neurons. For
the first hidden layer (two sub-plots on the left), the output illustrates the ability
to linearly separate the input space by two parts. At the second hidden layer
(two on the right) exhibits a weaker ability to drive two parts in the input space
separately. (b) The difference the non-ideal case output and the ideal-case output.
In the first layer (two sub-plots on the left), the difference is of medium value,
while in the second layer (two sub-plots on the right), the difference reaches a
greater magnitude.

Through the outcome of a basic experiment depicted in Fig. 6.2 replicating
the functionalities of an XOR gate using the neural network, it has become evi-
dent that as demonstrated in Eq. (6.6), , the relative error associated with the ac-
tivated value can significantly accumulate due to parameter tolerances and com-
putational inaccuracies, particularly in relation to the depth of the layer. Besides,
we may also hypothesis that with the proportion between parameters unchanged,
a scaling factor applied on all of the parameters may also affect the robustness
against parameter variance and distortions in activation function calculations.

With the simulation based on the example presented in Fig. 6.2, when scal-
ing the parameter matrices uniformly, it is evident from Fig. 6.3 that the trend of
perturbation accumulation aligns with our initial hypothesis. When dealing with
larger weighting parameters, the model’s robustness against parameter changes
tends to decrease, while a parameter with a substantial absolute value is more
effective in distinguishing between different classes. While the boundary may
appear more distinct in the input space, there is also a notable increase in the
overall error accumulation. Moreover, during the training phase of classification
tasks, especially involving a softmax layer, it is common for a typical optimiser
to implement significant parameter updates, particularly in the later layers, pos-
ing a potential risk.

In the instances we have previously addressed, the performance of the sys-
tem in relation to its accuracy, loss, and resilience to variation in parameters or
activation functions is specific to the current configuration. It is crucial to take

116CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

(a) (b)

Figure 6.3: The output of non-ideal case neural network and its difference from
ideal-case output seen at hidden layer neurons of the same network and con-
figuration as shown in Fig. 6.2. (a) The output and difference seen when all
parameters are scaled by a factor of 0.5. The upper row shows the output of one
neuron of each hidden layer. The lower row shown the corresponding difference
between ideal case. The second layer (right-hand side) has a vague separation
between classes while with medium level compared with ideal case outputs. (b)
The output and difference seen when all parameters are scaled by a factor of 2.
The upper row shows the output of one neuron of each hidden layer. The lower
row shown the corresponding difference between ideal case. The second layer
(right-hand side). A clear perturbation is observed at both neurons within the
input space while it can clearly separate the input space into four parts as de-
signed. The neuron in the first hidden layer (left-hand side) also exhibits slightly
recognisable difference against ideal outputs.

into account the surrounding sub-space of attainable average values within the
hyper-space of the loss function near the local minimum achieved through train-
ing when evaluating the potential application of a neural network.

In a pragmatic case study utilising the Modified National Institute of Sci-
ence and Technology (MNIST) dataset, we have developed a well-trained neural
network model with dimensions of [784× 28× 14× 10], as described in Sec-
tion 4.5. To demonstrate the impact of parameter perturbation, we introduced
variations into the parameters and activation functions simultaneously based on
Eq. (4.20) and discussions in Section 5.5. The output depicted in Fig. 6.4 il-
lustrates that these modifications have a nearly additive effect on the system’s
performance, with no significant decrease in accuracy observed during classifi-
cation tasks conducted under normal distributed relative errors up to a standard
deviation of 0.5.

In order to assess the robustness of a neural network at a system level,
given that the network is represented by a function denoted as f (·), a com-
mon approach is to establish a maximum distance δ such that for all inputs
∀x : ∥x0 − x∥ ≤ δ ⇒ f (x0) = f (x) [134]. In practical scenarios, such as
hardware implementations, variations in parameters and activation functions can
significantly impact the overall performance. These variations can be quanti-
fied as potential deviations denoted by εα, εn and εP . Therefore, it is necessary
to consider all these factors collectively, leading to a reformulation of the cri-
teria as ∀εX , εα, εn, εP : ∥εXX∥ ≤ δ, ∥εα∥ ≤ δ, ∥εn∥ ≤ δ, ∥εPP∥ ≤ δ ⇒

6.2. PERFORMANCE AND ROBUSTNESS 117

(a)

(b)

Figure 6.4: The accuracy drop of a well-trained model for performing a Mod-
ified National Institute of Science and Technology dataset-based classification
task when perturbations injected to the weighting-related parameters εP and ac-
tivation functions εα. (a) Accuracy drop against perturbations, in linear scale. (b)
Accuracy drop against perturbations, in logarithms scale. Within a reasonable
and achievable tolerance range, where perturbation for both parameters in each
layer is modeled as a Gaussian distribution with its standard deviation σ = 0.1,
the accuracy maintains a higher-than-90% level, compared to the ideal case of
around 92% for the model.

f
(
x̂, α̂ (·) , P̂

)
= f (x, α (·) , P). For intricate systems, conducting such an

analysis can incur substantial computational expenses, especially in a statistical
manner with all data pieces available and for all possible inputs [234].

However, in a thorough analysis utilising Eq. (6.6) for multi-layer rela-
tive error assessment, we can establish a specific range within which the neural
network’s output remains unaffected by variations in input quality and network
configuration during both the training and validating phases of a classification
task.

When examining the output at the logits layers of networks in response
to input stimuli, taking the classification based on the MNIST dataset shown in
Fig. 5.15a as an example, discrete values are generated for each class as a “con-
fidence score”. The output is subsequently intended for processing by a softmax

118CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

or max layer, enabling the conversion of raw outputs into prediction confidence
levels. This allows for a comparison between the generated output and the “tar-
get vector” as well as the “target” itself, facilitating the evaluation of loss and
accuracy. From an information theory perspective, it is important to note that
a substantial portion of the input data’s information may be diminished as it
traverses through the sequential layers, which introduces a certain degree of ac-
ceptable distortion within the system. Consequently, any discrepancies observed
between accuracy and loss, in conjunction with the self-stabilizing dynamics of
signal transmission and processing, suggest that the model’s predictive capac-
ity is unlikely to be adversely affected in scenarios where significant distortions
are not present, thus maintaining stability in the relationships among accurately
predicted instances.

The conclusions derived from this analysis can be expressed in a mathe-
matical framework that facilitates the comparison of the maximum output value,
represented as Zmax , against other output values denoted as Z. This comparison
allows us to establish a criterion for the identification of potential inaccuracies
within the system. Specifically, the integrity of the system’s accuracy is called
into question if the condition Zmax (1− ε) ≤ Z (1 + ε) is not satisfied. It is es-
sential to note that Zmax is presumed to always be a positive value. Furthermore,
for levels of systematic perturbation ε that remain beneath a defined threshold,
as determined by statistical methodology (ε < εZ), the system sustains robust
performance across both training and validation samples.

In simulations using the Monte-Carlo method, it is common to observe that
when the root mean square (RMS) values of perturbations smaller than the op-
timiser’s step size, there is a possibility for the network to achieve an improved
output compared to its trained state. This observation highlights the unpre-
dictable nature of performance in relation to perturbations. Experimental results
also indicate that reducing data precision (equivalent to introduce inaccuracy in
some extents) can sometimes lead to overall performance enhancement [112]. It
is essential to fine-tune neural networks implementations locally, despite achiev-
ing a well-trained model. In general, we can statistically observe a proportional
increase in error rate with increasing levels of distortion allowing for a linear
relation in cases of small perturbations.

With a comprehensive understanding of the potential sources and pathways
by which errors can arise, spread, and accumulate within a neural network under
consideration, it becomes feasible to anticipate the distribution of errors at each
layer based on the specific implementation and parameters employed. Nonethe-
less, it is important to note that the presence of error terms does not always
exhibit a direct positive relationship with the overall systematic performance of
the system, as elucidated in the literature on explainability in this field [176].

6.3 Limitations and Challenges
While the efficiency of the AFC and MAC designs has been validated

through calculations and simulations, it is important to note that the time-domain
response differences could pose a challenge when integrating these modules di-
rectly into a system.

In Chapter 5, we have put forward two potential designs of MAC for a

6.3. LIMITATIONS AND CHALLENGES 119

HNN system, each with its own set of limitations and advantages in practical
applications.

One of the proposed designs involving operational amplifiers (Op-Amps)
allows for the construction of a cascaded system based on the topology and con-
figuration of neural networks. However, the use of additional devices and stages
for sign bit assignments may introduce distortion to the system in a same way
as get non-ideally activated. Additionally, the latency of each linear follower
or sample-and-hold (S/H) stage could potentially diminish the overall response
quality of the design.

As evidenced by the large-scale fan-out capabilities required by the AFC
as described in Section 4.4, the imposed current restriction on the sub-threshold
mode circuit could result in limited effectiveness in driving multiple output loads,
thereby causing a systematic delay. Conversely, the implementation of a weighted
system utilising multiple switches may inadvertently create an undesired leakage
pathway to the common ground GND or the opposing plate of the summation ca-
pacitor, necessitating frequent intervention in practice, as estimated in Chapter 5.
Furthermore, the attenuation of signal strength and energy loss inherent in the
use of exclusively passive devices within the layers necessitates the exploration
of potential solutions through the integration of active devices for amplification
and isolation.

In practical applications, additional amplifier-based networks can be utilised
to conduct a S/H operation as a linear buffer in order to meet the response time
needs of both circuits.

For the design incorporating Op-Amps and linear follower circuits as a
signed summer, we will address the following subjects in the upcoming project:

1. Conducting an analysis and facilitating discussions regarding the time and
energy consumption of the specified system through simulation

2. Executing simulations on clearly-defined tasks to evaluate the robustness
of the system in relation to device tolerances arising from various levels of
the neural network.

3. Developing conclusions on the practicality and limitations inherent to this
particular implementation.

Furthermore, in reference to the H-bridge-based design with a charge pump-
based accumulate circuit of the system, we intend to:

1. Investigate strategies for addressing discrepancies in frequency within weight-
ing, summation, and activation circuits.

2. Develop a suitable circuit design for the sample-and-hold operation in
practice.

3. Assess the incremental static and dynamic power consumption associated
with the proposed S/H circuit introduced.

6.3.1 Typical limitations for Operational Amplifier based de-
sign in hardware neural networks

In considering the design of an Op-Amp-based MAC in HNN implemen-
tations, a key challenge that may arise is the issue of robustness, as well as the
potential impact on overall time and energy efficiency within the system.

As illustrated in Fig. 6.5, the integration of each sub-module incorporated

120CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

Figure 6.5: The schematic of one linear layer and one activation layer of the
implementation of a [2× 2] hardware neural network as proposed. The system
is based on an operational amplifier design. The functional blocks Interaction,
Weight, Sign, Pos and Neg, together with the Op-Amp connecting to AFC con-
sist the multiply accumulate circuit. In the design, Interaction connects the
MAC to the signal and ground bus. Module Weight and Sign follows the design
of multiply circuit proposed in Chapter 5. The Op-Amp and the capacitor array
Pos and Neg forms the accumulate circuit as proposed.

in the design has been streamlined to create a scalable cascade of circuit design.
By employing a higher abstraction level, it is possible to extend the structure de-
picted to establish more intricate networks. The capacitors linking the Op-Amp
in the Pos labelled box and the one linked to the GND in the Neg labelled box
are referred to as summation capacitors. These capacitors have been specifically
sized or scaled to a ratio of 1/r compared to the other capacitors in order to
achieve an amplification of r times at the pre-activated value of the linear opera-
tion segment.

In this scenario, should we consider incorporating the pull-push linear fol-
lower structure outlined in the Sign module as an additional component of the
activation function, we could then potentially reformulate the function f (·) de-
scribed by this structure as follows:

f (x) = α̂ (p̂x̂)

= α (sign (p)α (|p|x))
(6.7)

In the equation mentioned above, the sign (·) function is represented by a
modified version of the linear follower, with a signal on its common Gate capa-
ble of driving it to the off-state for either of the transistors. In this scenario, it
can be assumed that the conductance of the transistor in the on-state is signifi-
cantly higher, leading to a slight adjustment to the weighting factor p due to the
non-ideality of the linear following nature and the voltage dividing behaviour of
the pair of subsequent transistor pairs. However, the variable x̂ is significantly
affected by the replication of the transfer function of the follower. As is shown in
Eq. (5.4), the weight generated by the Weight circuit is consistently below 1, and
the gradient of the activation function based on the transfer function also does
not exceed 1, ensuring that the input of the Sign circuit always operates within a
linear range of the device. Consequently, the output observed in the initial stage

6.3. LIMITATIONS AND CHALLENGES 121

of the circuit by the first follower can be expressed as

y = |p|x (1 + εα) +
εn

α (px)
. (6.8)

Therefore, the actual input perceived by the Pos and Neg segments can be sim-
plified as

p̂x̂ = px (1 + εα + εP) +
εn

α (px)
. (6.9)

Through adjustments, Eq. (6.6) can be reformulated as:

εZ =
1− θkr
1− θr

(
εα +

εn
Z

+ θr

(
εα + εP +

εn
Z

))
+ θnr εX . (6.10)

Figure 6.6: The response of a single layer perceptron receiving two pulse inputs
Va and Vb. Their sum seen before the activation function circuit Vpa and the
activated value of the AFC Vout are presented. The curves are tested with an
amplification of 1×, 3× and 5× at the pre-activated value. Time response is
nearly constant at 10 µs. A clear linear relationship between the inputs Va and
Vb, the pre-activated values Vpa and the activated value Vout can be seen from
the plots.

Regarding the timing delay of the system, it is evident from Fig. 6.6 that
a nearly consistently uniform charging time of 10 µs is necessary for the system
when utilising 1 fF capacitor in all components except for the two summation
capacitors connecting the Op-Amp and from the positive port of the Op-Amp to
the ground. In the simulation displayed in Fig. 6.6, scaling ratios 1/r of 1, 1

3
and

1
5

are implemented to demonstrate the system’s behaviour in a perceptron model.
When employing a smaller scaling ratio, the pre-activated value can be adjusted
to 1, 3 or 5 times the original value. It is apparent from the results that there is
a linear scaling factor for scenarios where the scaling factor is either r = 1 and
r = 3. However, when the scaling factor is set at r = 5, the scaled pre-activation
value surpasses the linear range and becomes saturated at approximately ±0.3 V .

A scaling ratio of 1
5

is utilised for the summation capacitors in the scenario
depicted in Fig. 6.7 for all four neurons. The system has been tailored in ac-
cordance with the experiment specifications as applied in Fig. 6.2 to carry out
an XOR operation on the two inputs. The experiment employs a [2× 2× 1]
network, with analytically assigned parameters and an activation function gen-

122CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

Figure 6.7: The response of the first two layers of cascading in the hardware
neural networks (HNNs) performing XOR operation of two pulse inputs Va and
Vb. The activated value seen at the two neurons in the first hidden layer are
labelled as Vhid1 and Vhid2, and the activated value seen at one of the two
neurons in the second hidden layer is labelled as Vout. The delay between two
layers are difficult to notice. A clear linear relationship between the inputs Va
and Vb and the pre-activated values Vpa, activated values Vhid0, Vhid1 and
Vout can be seen from the plots.

erated by the transfer function of the AFC. The lower sub-plot reveals a similar
response time for both layers, suggesting that the propagation delay may not be
purely additive and have a significant impact on the overall time response of the
network. From our estimation, the overall responding time from receiving the
pulse signal to reaching a steady state at the output is proportional to the time
constant of one stage, rather than the overall responding time charging the ca-
pacitors employed in weighting circuits to “fully-charged” state (which is much
larger than the time constant). Should the assertion be substantiated through ad-
ditional practical experiments of the HNN, a deeper and narrower, rather than
shallower yet wider network would be favoured for the design implementation,
to reduce the overall time delay of the system.

Each component will operate with minimal static energy consumption in
the pico-Watt range as described in Chapter 4, or will only exhibit transient cur-
rent flow during dynamic states. To optimise energy efficiency, the selection of
the amplifier utilised will be determined by its efficiency and linearity at the op-
erational frequency, which in this scenario is of a mega-Hertz level to align with
the responding frequency of the MAC.

6.3.2 Compromise for H-bridge design in hardware neural
networks

For the incorporation of a HNN comprising of AFC and MAC units util-
ising an H-bridge and charge pump design as presented in Chapters 4 and 5,
a trade-off between operational frequency and potential failure due to leakage
and the leading degrade of signal level needs to be addressed. As illustrated in
Fig. 4.12, it is evident that increasing the operational frequency of the AFC will
result in a decreased fan-out capability, thereby restricting the system’s capacity
to deploy a large-scale network in real-world scenarios. Furthermore, as out-

6.3. LIMITATIONS AND CHALLENGES 123

lined in Section 5.4, the non-ideal off-state resistance of the pass-gates within
the accumulation stage, necessitating four switches for both the H-bridge and
charge pump, introduces signal leakage that constrains the minimum frequency
at which the pre-activated value remains stable, as illustrated in related diagrams
and discussions.

Given the assumption that the equivalent capacitance of the weighting sys-
tem remains a constant 2

3
fF and the on and off state impedance of the pass-gates

are 1 kΩ and 1MΩ respectively, it can be inferred from the data and discussions
in Section 5.3 that the leakage path from one plate of the capacitor to its oppo-
site plate or the GND node will be approximately 3 MΩ. This indicates that the
time needed for one plate to be discharged by 63% will only be 2 µs. Moreover,
in order to achieve less than 1% leakage a 200 ns response time represents the
upper limit, which is significantly faster than the operational frequency at which
a single-load AFC can achieve a stable activated output. Furthermore, enhancing
the ratio of resistance between the on- and off-states of the pass-gates may still
present a viable solution. Nevertheless, as channel lengths decrease and off-state
resistance diminishes, there remains a growing demand for increased operational
speed.

Henceforth, it is recommended to utilise each module individually for var-
ious applications, as introduced in this study. In situations necessitating the
concurrent application of both modules as linear and non-linear look-up tables
(LUTs) in potential neural network implementations, a S/H circuit will be essen-
tial. In this particular scenario involving amplification tasks with passive compo-
nents, a critical issue to consider is the signal strength and its robustness against
leakage and other forms of distortion. For networks with a large number of lay-
ers, there is a possibility of experiencing exponential decay at the output end
with purely passive components as demonstrated in the relevant design, necessi-
tating a certain level of amplification to prevent degradation from noise interfer-
ence. As detailed in the systematic analysis on performance and robustness in
Section 6.2, it is acknowledged that while both summation and amplification op-
erations are generally regarded as linear processes, non-linear factors can affect
each operation due to voltage limitations and inherent non-linearity of devices
employed, which may be underestimated in second and higher-order terms as
described by Taylor expansion of the transfer function. Therefore, it is imper-
ative to recognise the importance of operating within the linear region of the
transfer function provided by the devices, while also allowing for adequate com-
pensation for non-linear factors. This approach is essential to minimise adverse
effects on the output of the HNN to be implemented. For simplicity and stabil-
ity, it is advisable to utilise a traditional Op-Amp-based summation circuit in the
implementation of large-scale networks.

An alternative approach that could be considered involves implementing a
S/H circuit at the output side of the accumulate circuit discussed, as depicted in
Fig. 6.8. This circuit has been designed to be devoid of resistive components or
any current leakage paths, thereby minimising static power consumption. The
control signal for this functional block can be directly derived from the APPLY
signal introduced in a previous Section 5.3. To ensure optimal performance, a
two-Op-Amp structure is recommended for the circuit that effectively eliminate
potential leakage paths. Additionally, the possibility of integrating the AFC into

124CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

Figure 6.8: The schematic of the proposed sample-and-hold circuit, with its out-
put signal Vcap connected to the input of an activation function circuit. Two
unity-gain amplifiers are applied to produce a two-stage feedback loop main-
taining the sampled signal to be a constant. The two switches are controlled by
signal App and its complement, which is also the signal involved in the summa-
tion circuit. Summed signal is inputted via Vsum

the S/H system should be explored. This integration would require recalculating
the activation function based on a combination of with the transfer functions of
the amplifier and the AFC involved as the updated function to be applied in the
HNN.

Utilizing a S/H circuit can assist in achieving the necessary frequency pa-
rameters for both sub-modules, albeit at a sacrifice of efficiency and resilience,
as depicted in Fig. 6.9. It is demonstrated in Fig. 6.9b that with a norminal 1 pF
S/H capacitor, we can adequately sample a 10 MHz signal and maintain it for
a period of at least a micro-second without notable decay (not depicted in the
figures). This capability ensures the scalability of the AFC for implementations
of neural networks with wider layers.

However, it is noted that the trade-off for combining these components is
a decrease in energy efficiency and an increase in inaccuracies. Upon examining
the two-stage amplifiers utilised in this configuration, it can be observed from
Fig. 6.9 that there is already a phase shift of π

6
and a reduction in amplitude of

approximately 25%. While the decay and potential phase response to various
frequencies can be considered as part of the activation function’s behaviour, it is
evident that the overall signal strength diminishes across layers. To effectively
accommodate a deep network, additional amplification weights will be neces-
sary. Ultimately, the convergence may lead to a less stable system with higher
levels of error εα, εn and PX

Z
.

On the contrary, with regard to energy usage, each calculation and activa-
tion process necessitates a charging and discharging procedure. Despite the fact
that dynamic energy consumption increases proportionally with the number of
neurons, it can still become a significant expense for larger neural networks. Ad-
ditionally, there is a requirement to operate a pair of Op-Amps in the S/H circuit,
charging hold via a capacitor which consumes no power under the control of a
pair of switches, along with a potential additional amplifier at the output stage
of the AFC. While it may be necessary to incorporate an extra amplifier between
the S/H capacitor and the AFC, in practical terms, due to potential leakage issues

6.4. CONCLUSION 125

(a)

(b)

Figure 6.9: The time domain response of the sample-and-hold circuit. (a) The
response to a soft step-form input. (b) The response to a sine wave input. The
waveform of a reference voltage signal Vsum representing the input at the final
stage of summation circuit, the sampled signal seen at the capacitor Vcap and
the activated value of the activation function circuit Vact. The controlling signal
App is also shown as a reference. Phase shift and decay in amplitude at both
Vcap and Vact can be observed by non-ideality of components.

that could arise from adjustments made to the system, this option may not be as
appealing.

6.4 Conclusion
It can be inferred that in a series of cascaded neural networks, the final error

in relative terms will be a result of the cumulative impact of parameter pertur-
bations, activation functions and noises in signals within the system. However,
currently there is no definitive link between systematic errors and the accuracy
of predicting behaviour of a well-trained neural network. However, there is an
observed tendency suggesting that the distortion in parameters and signals may
be positively associated with the loss seen at the output. In simpler terms, for
regression scenarios where accuracy is directly tied to the final output, it is fea-
sible to deduce or estimate a reduction in performance with less computational
resources by analysing the factor θ PX

α(PX)
by the behaviour of activation function

126CHAPTER 6. SYSTEMATIC ANALYSIS ON PERFORMANCE AND BEHAVIOUR

applied and feed to the model shown by Eq. (6.6). This can lead to an overall
improvement in efficiency to create a robust neural network model. On the other
hand, for classification tasks, the global Lipschitz constant-based method can be
employed to rigorously assess situations where accuracy is required to remain
constant.

Through the outcome gathered with the experiments, it is possible to fur-
ther corroborate the validity of the formula we have derived regarding neuron
outputs. Nevertheless, it remains challenging to accurately predict the extent to
which errors in layer outputs may impact final inaccuracies. In our examination
using the MNIST dataset, a discernible proportional relationship between final
stage distortion and inaccuracies was observed. This suggests that by perturbing
each individual functional block within a certain threshold, we can still attain
a satisfactory output, approaching less-than-1% accuracy drop compared to the
theoretical optimal scenario. It is important to note, however, that this conclu-
sion is specific to the minimum threshold we have identified and has not been
statistically validated across other potential local minima.

Upon analysis of the two potential combinations, it has been determined
that the Op-Amp-based design could potentially align well with the AFC with
minimal time delay. However, it is important to note that energy consumption,
while increasing linearly with the number of neurons, should not be underesti-
mated. On the other hand, the charge pump and H-bridge offer the advantages
of significantly lower energy consumption and circuit footprint, and are more
suitable for use at higher frequencies. However, they may not be suitable for
low-frequency conditions without high-impedance switches or S/H devices. As
a result, it may not be advisable to directly integrate them as a functional block
with the proposed AFC proposed. Even with the use of S/H circuits, there may
be a decrease in energy and time efficiency compared with our aforementioned
theoretical estimation.

Chapter 7

Potential Adjustments and
Applications

Despite the advantages of hardware neural network (HNN) compared to its
corresponding software implementations in terms of energy, time and space ef-
ficiency, it is important to acknowledge the operating limits due to its inherently
lower precision. The inherent challenges associated with the back-propagation
algorithm, particularly in systems experiencing variations in parameter represen-
tation due to production processes, necessitate the optimisation or redesign of the
optimiser algorithm to ensure the stability of local optimal solutions. This section
offers a general review of the current research on optimisation algorithms that in-
volve discrete features for HNNs and its applications, the use of local search al-
gorithms in this domain, and the potential of Hebbian method algorithms in this
context. Furthermore, a brief assessment of the feasibility of implementing such
algorithms on hardware for on-chip training is provided. Finally, we present
examples of practical application and potential adjustments in the topology of
HNNs for future research, and specific case studies that can serve as valuable
benchmarks for hardware design in both industry and academia.

7.1 Overview
As a versatile tool, neural networks have been used in various industries.

However, when considering highly specialised hardware neural networks (HNNs),
the primary challenge lies in the accuracy trade-offs against efficiency. This can
make it unsuitable for applications in precision-driven or high-performance en-
vironments. On the other hand, in scenarios where energy and space constraints
are a concern, particularly when rapid responsiveness is essential, HNN can be a
favourable option. To fully unlock the capabilities of this system, it is essential
to identify applications where it can excel and devise algorithms to help alleviate
some of its inherent limitations.

The design of HNNs has shown significant variability in numerous studies
in recent decades. Typically HNNs aim to provide efficient solutions for tackling
complex and poorly defined problems as other forms of neural network imple-
mentations, with a reduction of latency in operations and a boost in efficiency of
power consumption and system footprint. From our estimation and simulation,
the proposed design of the HNN may lead to a reduction in operational latency

127

128 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

and a decrease in the number of computing devices required to perform equiva-
lent tasks compared with the state-of-the-art (SOTA) works. However, it is im-
portant to note that this efficiency often comes at the expense of precision, with
lower resolution parameters and increased noise within the system during opera-
tion. Thus, advanced optimisation algorithms are required for the low-precision
and noisy case while insufficient knowledge of activation functions is provided.

Recent studies have indicated the potential for maintaining output accuracy
in lower-resolution implementations through additional optimisation and pruning
techniques. There is awareness that the error observed in inputs and the imple-
mentation of each parameter of the system can be modelled as perturbations of
a given mathematical model, and we may also find works suggesting how errors
can propagate along the system and affect the final-stage outputs. However, there
are few works highlighting how distortions seen in the output stage are related to
the final accuracy of a given neural networks.

Hence, this particular field holds significant appeal for developing an al-
gorithm for fine-tuning or training schemes to update network configuration in-
volving its topology and parameters. However, training analog systems can be
challenging due to device tolerance and a lack of awareness of the said inaccu-
racies in the computation and transmission of signals [37]. Optimisation efforts,
particularly those occurring off-chip, may encounter issues related to inaccu-
racies in both the multiply accumulate circuit (MAC) and activation function
circuit (AFC) components.

Initially, it can be challenging to dynamically obtain the inverse of the
original value of a weighting parameter, which serve as the key point of the
gradient descent algorithm, for a real case in analog systems, even with full con-
trol over its connection. As mentioned previously, the parameters of the neural
network implemented by hardware can be distorted in various ways and may de-
viate significantly from the desired value (e.g. the 5-bit weighting system with
25% relative error illustrated in Fig. 5.12). Even though it is conceivable that a
precise implementation of parameters might be achieved in a close-to-ideal cir-
cumstances, the rounding errors of the low-resolution system may still result in
an imprecise response to adjustment signals.

Furthermore, when it comes to the generated activation functions by ana-
log circuits, it is important to take into consideration the potential mismatches
and technology scalability as discussed in Chapter 6. It is noted that the gradi-
ent of the proposed activation function derived from a mathematical model of a
single AFC may not align with the actual derivative seen in the transfer func-
tion of the implemented AFC at the same point of pre-activation input. We have
not been able to find works or approaches to identify any definitive information
regarding the potential impact on the training process when dealing with the in-
consistence between the activation function and the derivatives applied in the
training processes.

In this part, we will address certain areas of interest that we have begun ex-
ploring but have not yet obtained satisfactory results concerning decision-making
accuracy and the generalisability of findings across various tasks or topological
structures. In addition, we will propose some experiments and technological
route for future exploration according to the limitation of the HNN proposed.

7.2. GRADIENT-FREE ROBUST OPTIMISATION 129

7.2 Gradient-Free Robust Optimisation

HNNs, identical to cases with MACs constructed with resistive crossbar
designs, share a common characteristic of presenting tunable yet stochastic op-
erations in practical cases. The sensitivities and potential limitations on the num-
ber of states available in non-ideal hardware implementation are observed. The
training of such a set of designs will require algorithms to be capable to drive
the weight updating scheme in a numerical probabilistic method with local gra-
dients involved. In such case, the gradient of activation functions used in the
algorithm and the parameters seen at the mathematical expression of the neural
network may not be consistent with the transfer functions of the AFCs together
with the amplification ratio of the MAC. Compared with the analytical method
for classical gradient descent-based optimisers, the methods to be proposed are
commonly expected to be less sensitive to hardware non-idealities [235].

Based on the discussion on the proposed HNN, taking into account non-
ideal circumstances, it can be inferred that utilising a direct method for calculat-
ing the final stage loss and back-propagation in traditional algorithms based on
gradient descent could pose risks to the convergence of the optimiser. Therefore,
we are in search of methods to optimise a network without direct access to the
actual magnitude of the parameters or the analytical model of the behaviours of
the layers.

It is vital to validate and deploy the HNN as neural chips within real-world
optimisation processes to ensure enhanced integration with the sensor and con-
trol systems of modern electrical systems. To accomplish this, it is pertinent to
explore interface design, the practical application of the system, and how algo-
rithmic and hardware implementations can be integrated.

We are optimistic that this preliminary phase, encompassing the design
of the circuit and the development of the optimisation algorithm, will establish
a foundational basis for constructing a system of suitable scale that can be de-
ployed in practical applications. Additionally, the integration of training and
refinement technologies will be essential to facilitate the mass production of the
neural chips detailed in our proposal, along with other SOTA designs referenced
in the preceding chapters of this document.

7.2.1 Hardware orientated optimiser

When representing parameter values with hardware components that ex-
perience random perturbations within analog devices’ tolerance, adjustments are
fixed by the selection of devices after calibration., the use of optimisers rely-
ing on derivatives may not be appropriate. As demonstrated in Tab. 2.2 and
Fig. 5.13, traditional analog MAC devices may only offer a limited range of pa-
rameters with stochastic deviations from their intended values. Consequently,
systems based on gradient descent may not always be effective in this context.

According to the errors identified on the output of a linear classifier, a
weight update algorithm known as the “minimal disturbance principle” is pro-
posed in the last century [147]. In the algorithm, we need to consider the input
vector denoted as X , the error δ in its output, the learning rate η, and the weight
update formula for each iteration given by ∆W = η δX

|X|2 . In cases where a non-

130 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

linear system (specifically a balanced binary system whose range is {−1, 1} in
this context) is present, the updating process will be adjusted to ∆W = η δX

2|X|2 .
Additionally, in cases where the pre-activation input Y is less than or equal to a
specified constraint γ (|Y | ≤ γ), the term η

2
can be adjusted by a fixed term d

based on a derived concept.
On the other hand, there are efforts being made to approximate the par-

tial gradient term ∂δ
∂w

by using the zero-order approximation δ(w+∆w)−δ(w)
∆w

[148].
The algorithm eliminates the need for backward transmission of the weighting
information of subsequent layers to the former. The algorithm has demonstrated
the ability to effectively perform classification tasks using a hardware activation
function similar to a Sigmoid function. In their work, a slight adjustment rate of
∆w = 0.001 is suggested, which still exceeds the level of accuracy achievable
with our current design if not applying cutting-edge devices and technologies. In
a similar fashion, drawing inspiration from optimisers that incorporate momen-
tum, the momentum term m is quantised as m′ = 2⌊log2 m⌋ [236]. Results from
the study show that for basic regression and classification tasks, the quantiza-
tion process of the system does not show any discernible impact on performance
compared to popular optimisers such as Momentum and Adam.

It has been demonstrated that using a fixed randomised matrix of equal
size for the back-propagation path can result in increased efficiency during the
training process. This presents a potential route for implementing the Hebbian
learning rule [237, 238]. This approach, known as “feedback alignment”, is de-
scribed by the equation ∆W ∝ BeXT , where B is a fixed random matrix, e
represents the error term calculated by T − Z, and XT denotes the transpose
of the input vector X . T represents the target and Z signifies the output of the
neural network.

The examples suggest that, for optimisation purposes, the precision of
backward signal accuracy and updating step sizes may not significantly impact
the ultimate learning outcome. An analog HNN could be successfully trained
on-chip with satisfactory results tailored to specific applications as shown in the
case studies demonstrated in literature. However, despite advancements in re-
ducing operation power consumption, the precision requirements outlined in the
aforementioned studies continue to pose challenges.

A potential method for parameter acquisition under finite resolution and
stochastic perturbations is meta-heuristics, such as the “simulated annealing al-
gorithm” [239]. While it may converge slowly, the simplicity of the algorithm
makes it suitable for lower computational power systems [240]. Variants like
Creutz’s “micro-canonical annealing” [241] and Dueck’s “threshold accepting
method” [242] effectively tackle combinatorial optimisation problems. Other
local search strategies, such as Charon et al.’s technique [243] and Glover’s
“Tabu search” [244], can also be useful. When multiple devices are available,
population-based meta-heuristics can be applied. However, the effectiveness of
search algorithms is limited for small neural networks due to efficiency con-
cerns [245].

The main challenge in implementing search algorithms without gradient
involvement is the massive neurons and the connections between them. Re-
search on estimating the importance of specific synapses before training con-
cludes is limited, making pruning during training impractical. A viable alterna-

7.2. GRADIENT-FREE ROBUST OPTIMISATION 131

tive is to create multiple pre-trained sub-networks on a smaller scale, inspired by
the “capsule neural network” concept by Sabour et al. [246]. Although there is
little empirical evidence for its universal application, this approach could facili-
tate incremental learning and improve task generalisation. Additionally, training
the neural networks off-chip with gradient descent-based optimisers, using an ap-
proximation of the derivative of the activation function, followed by fine-tuning
with the methods discussed, is a potential approach recommended.

In addition to the algorithmic functions focused on parameter adjustment
through explicit functions, there is also research in the realm of physical learn-
ing. This field views natural systems as analog computing devices and typically
suggests a posterori approach to explaining the self-modulation process [247].
Although the system we have put forth bears resemblance to an analog computer,
the lack of clarity in the specifications of the training progress mentioned in this
work makes it challenging for the system to be trained accordingly in real-world
scenarios effectively. As a result, designing the proposed system for enhanced
learning capabilities presents significant complexities.

From the literature as cited in this section, the research on optimisation
neural networks has illustrated that there is no explicit necessity to apply a
gradient-dependent algorithm or knowing the exact magnitude of the parameters
involved to search for a local minima of the loss surface. The conclusion hints
that for analog systems, there do exist potential optimisation algorithms that can
work in the “black-box” system. Besides, as can be learnt, the major drawback of
the searching algorithms is the effieiency to search through the high-dimension
parameter space consisted of the large number of parameters involved in neural
network, the philosophy of divide and conquer may illustrate a feasible starting
point. In our research, , the integration of the previously mentioned algorithms in
this section has produced initial findings in basic classification and fitting tasks.
Nevertheless, in light of the limitations observed in our learning outcomes when
contrasted with SOTA methodologies, as well as the challenges associated with
the generalisation of the algorithm, we assert that additional research is war-
ranted in this area.

The primary challenge in this aspect pertains to the ability to align the
algorithms with hardware implementations. Even though the approximations
mentioned in this part are tailored for the systems they examined, they may not
always lead to accurate convergence in real-world scenarios, especially when the
proposed system is highly analog-based. Although our weighting system has
been designed with a high level of discretization to minimize the risk of error ac-
cumulation, there is no certainty that the suggested step direction aligns with the
actual parameter shifts, as depicted in Fig. 5.12. Furthermore, the computational
and storage demands of the search algorithms may render direct implementations
impractical.

7.2.2 Biology inspired optimiser

It has been demonstrated that hardware implementations of neural net-
works may not achieve the same level of precision as a software model with high-
resolution parameters [19]. Nevertheless, the generalisation ability observed in
biological nerve systems makes it more convincing that complex tasks can be

132 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

accomplished by a slower and fuzzier yet a more efficient structure. If the as-
sumption that a mathematical model of neural network accurately represents the
behaviour of biological neurons is valid, there may be heuristic algorithms that
can overlook inaccuracies or disturbances to facilitate more efficient learning in
brain-like systems.

Additionally, as demonstrated in previous chapters, the activation function
produced by the proposed circuit may vary depending on manufacturing and
operational variables. This variability poses challenges in accurately predicting
the performance of individual neurons in practical applications. Gradient-based
optimisation techniques may struggle to reach optimal local minima due to dis-
crepancies between ideal and non-ideal activation functions and their gradients.

To address the issue, we decided to seek guidance from the bio-inspired
Hebbian algorithm. As observed by Hebb,

“When an axon of cell A is near enough to excite a cell B and re-
peatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased [248].”

The mathematical representation of this update is wij = xixj , or more generally,
wij = ⟨xixj⟩ when considering multiple instances from a specific set of input-
output pairs. Here, The terms xi, and xj represent the outputs of neurons i and j
respectively, with their connection strength denoted by wij . The function ⟨·⟩ sig-
nifies the average of its inputs. Alternatively, ∆wij = ηxixj , where η symbolizes
the learning rate of the system. If external targets t are available, it is feasible to
modify the output term of the dependent variable (or neuron in the latter layer)
by the disparity between its output and the target. In this scenario, the formula
can be displayed as ∆wij = xi (tj − xj), under the assumption that neuron j is
reliant on (or connected from) neuron i [249]. Additionally, it has been observed
that the performance of this algorithm aligns with traditional gradient descent
based algorithms when the loss function is characterized by mean square error
(MSE) δ (z, t) = (t− z)2, where z represents the output and t denotes the target
for the specific example [249, 250].

The weight updating algorithm, as outlined in its expression, does not
necessitate detailed knowledge regarding the characteristics, behaviour, or at-
tributes of the parameters or activation functions. This feature contributes to
the widespread use and acceptance of the weighting update algorithm within the
realm of spiking neural networks (SNNs) as noted in literature [251].

The results obtained from our testing of single-layer perceptrons have demon-
strated an acceptable level of performance, with an accuracy of over 85% ac-
curacy on the Modified National Institute of Science and Technology (MNIST)
dataset. As a reference, with gradient descent algorithms, the prediction accuracy
of the trained network may also reach a similar accuracy seen at the validation
process to be roughly 85%. The heatmap illustrating the parameters of the neural
network trained using the Hebbian method effectively demonstrates a weighting
that more accurately reflects the pattern of the input characteristics. Neverthe-
less, some challenges must be addressed to effectively integrate the algorithm
into the realm of deep learning.

When implementing the technique on deep neural networks (DNNs), the
adjustment of connections within hidden layers continues to rely on the gradi-

7.2. GRADIENT-FREE ROBUST OPTIMISATION 133

ents of neurons. The formula commonly used for updating hidden connections
is ∆wij = ηxi (tj − xj)

∂
∂wij

f(wij), where f (·) represents the network func-
tion [249,250]. In the absence of an alternate algorithm facilitating the transmis-
sion of error information to each parameter without the use of gradient descent,
the system may still encounter issues related to inconsistent gradients as previ-
ously mentioned in the reason for not applying gradient descent related optimis-
ers.

It has been observed that in situations where external targeting informa-
tion is not readily available for supervision, the algorithm tends to reinforce the
initial bias or impression of the model at the onset of training, irrespective of its
accuracy. The finding also gets confirmed according to the observation of human
learning activities [252]. From a biological standpoint, there are also concerns
regarding the lack of a definitive equivalent of loss functions for humans (and
other cognitively capable animals). Furthermore, the bi-directional structure en-
abling back-propagation has yet to be discovered [253,254]. The requirement for
each neuron to have explicit information about weighting the former ones and the
absence of randomness in data transmission or translation is also non-physical in
mammal brains.

Based on the aforementioned discussion of potential failure of optimisa-
tion algorithms based on gradient descent, it is imperative to consider making
appropriate modifications to the weighting update scheme. Multiple methods
have been suggested for deep learning utilising the Hebbian method. In a dy-
namic system where there is a direct feedback matrix denoted as Wl+1,l con-
necting from layer l + 1 back to layer l, which is the transpose of the reversed
directional matrix (Wl+1,l = W T

l,l+1), there is the formation of a temporal-error
model according to O’Reilly et al. [255]. The dynamic behaviour of the system
can be described by the equation

·
Xl = Wl−1,lXl−1 +Wl+1,lXl+1 −Xl, (7.1)

and the updating formula is given by

∆Wl,l+1 ∝ TXT
l︸ ︷︷ ︸

Hebb|T

−Xl+1X
T
l︸ ︷︷ ︸

Hebb|¬T

(7.2)

in a steady-state condition as
·
Xl → 0 [254]. For previous layers, it will be neces-

sary to adjust the target information T in the successor layer to Tl = Wl+1,lTl+1

from the previous layer. A practical application involving hardware, specifi-
cally a memristive crossbar, follows the same principle as the specification of the
HNN. It achieves faster and significantly more energy-efficient learning perfor-
mance, resulting in a 95% accuracy in recognising Braille words training process
based on central processing unit (CPU) or graphics processing unit (GPU) [235].

In the context of improved separation of forward prediction and backward
optimisation, together with the aforementioned dynamics, it is possible to es-
tablish a “predictive coding model”. During the predictive phase, the formula
Xl+1 = WlXl is utilised, while in the learning phase, δl = W T

l+1δl+1 is em-
ployed. The behaviour of the signals in each layer X and the difference δ is

134 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

represented by
·
Xl = −δl + W T

l,l+1δl+1 and δl = Xl − Wl−1,lXl−1 [256]. By
substituting Xl for δl, the resulting dynamic can be expressed as

·
Xl = Wl−1,lXl−1 −Xl +W T

l,l+1Xl+1 −W T
l,l+1Wl,l+1Xl, (7.3)

leading to the formation of a “dendritic error model” [257, 258]. The learning
formula still satisfies ∆Wl,l+1 ∝ δl+1Xl. This approach can be viewed as an
approximation of an error propagation algorithm. The algorithms referenced
utilise simplified linear activation functions, and it is important to make appro-
priate adjustments for real-world applications. Additionally, data pre-processing
is necessary for input-output pairs that do not conform to the specifications of
our proposed system.

The corresponding updating algorithms using the temporal error model,
predictive coding model, and dendritic error model have been analysed in the
course of our research. In the classification task based on the MNIST dataset,
the employed algorithms demonstrate a markedly reduced time requirement for
the optimisation programme to achieve convergence. It is important to note that
the learning outcome does not consistently reach an optimal state, and is not as
favorable when compared to those achieved by networks utilising gradient de-
scent algorithms. Additional analysis is necessary to enhance the programme
established in our study and evaluate its effectiveness. Furthermore, the algo-
rithms must be refined to align with the discretised nature of the suggested MAC,
requiring a fusion of hardware-focused algorithms.

In order to establish a training system for the analog neural network-on-
chip, it is advised to start with Hebbian or similar methodologies. The process
of adjusting weighting factors by non-integer increments can be translated into a
series of probability-based adjustments for the parameters. When this approach
is paired with a sufficient number of iterations and examples, it can yield a sta-
tistically significant result based on our simulations. To streamline the training
process, it can be segmented into smaller modules or sub-problems in a priori
manner. Subsequently, each module can be trained individually before being
consolidated, resembling the structure of the capsule neural network or mixture
of experts (MoE) systems. Upon the completion of training, the implementation
of local searching algorithms such as simulated annealing or Tabu search can be
utilised to further optimise the system.

If these methods prove to be effective, it may be beneficial to investi-
gate the development of hardware systems and circuits that are compatible with
our design. This could involve the creation of gate-controlled systems utilising
analog storage and comparison amplifiers to execute a Hebbian updating algo-
rithm. Nevertheless, the incorporation of local searching algorithms into hard-
ware poses a significant challenge.

Even if the system is not pursued in future research, it is recommended to
consider developing stand-alone chips that can interact with our proposed sys-
tem. These external systems should have the ability to read network configu-
rations and write onto the proposed MAC. Without this functionality, manual
tuning alone may not fully exploit or evaluate the potential to generalise these
systems in practical verification processes or manufacturing. In summary, it is
both practical and advantageous to implement algorithms as an alternative to

7.3. POTENTIAL APPLICATIONS 135

gradient descent for optimising the hardware-implemented network, even in the
absence of direct access to the specific parameter configurations and the opera-
tional characteristics of the applied activation functions. This approach has the
potential to contribute significantly to advancements within the computer science
community.

7.3 Potential Applications
The utilisation of HNNs, while accurate to a certain extent, is still limited

in its generalisation abilities due to precision and the lack of practical proofs
of concepts. Previous chapters have demonstrated its potential for carrying out
basic classification tasks, but there are concerns about its ability to handle re-
gression tasks effectively in practical cases with non-ideal parameters and acti-
vation functions whose resolution will not be high enough. This raises questions
about the system’s practical limitations, prompting the need for case studies or a
mapping of the HNN developed to specifications for applications to evaluate its
performance using real-world experiments.

To achieve the primary goal of developing a HNN, it is crucial to evaluate
the proposed hardware system through practical implementations rather than re-
lying solely on software simulations. The verification process is limited by the
computational capacity of simulation tools and the complexities of manual cir-
cuit design. Therefore, a straightforward and robust testing platform and bench-
mark are essential for effective validation.

Experimental cases should be small and simple to allow researchers man-
ual control at the start. They should be clear and have specific objectives for
researchers to analyse and validate the training scheme. This enables the identi-
fication of learning patterns and potential risks during training and tuning.

In the foregoing chapter, we analysed the performance of the HNN and
identified robustness limitations due to systematic errors observed in simulations
and calculations. To address these issues in practical applications, it is essen-
tial to impose constraints on the implementation of this system and the topology
and configuration of the neural network based on the aforementioned model.
We must also evaluate the operational complexities of implementing this tech-
nique and consider whether additional complexity is necessary during verifica-
tion. This section will examine potential applications that could help tackle these
challenges.

A verification-orientated application of this research involves developing
complex logic gates using neural networks. The goal is to replicate logic gates or
design complex Boolean circuits with multiple digital inputs and outputs using
HNNs with up to three hidden layers. Another testing scenario could involve
assessing input-output vector pairs from a randomly chosen function. The two
experiments have been carried out during the research.

The tasks are well-defined, and results can be evaluated against established
mathematical models. However, the former experiment may seem overly sim-
plistic and the latter may lack practical context, causing confusion. Additionally,
they do not highlight the importance of optimisation efforts. Therefore, further
case studies are needed to evaluate the capabilities and limitations of HNNs in
real-world applications.

136 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

In the subsequent part, we will present two potential areas, tiny machine
learning (TinyML) and neural decision tree (NDT) of probable research interests
along with a tangible example that can serve as the initial focus for each area.

7.3.1 Tiny machine learning

TinyML is a specialized branch of machine learning (ML) focused on de-
ploying models to low-power edge devices, such as micro-controllers or micro-
processors [259]. The applications of the system enable devices to efficiently
solve complex problems using algorithms identical to variants of neural net-
works while conserving time and energy. Additionally, it eliminates the need
for the system to rely on accessing the global network [260]. The system is
typically integrated with sensors and utilised in Internet of things (IoT) appli-
cations. The primary objective of such an application is to optimise time and
energy usage while incorporating smaller and more cost-effective devices for
deployment [261]. Our proposed system may offer efficiency in these areas, as
previously demonstrated.

The potential applications of TinyMLs are diverse and include anomaly
detection and control in industrial settings [262], smart agriculture by forecast-
ing crop and weather conditions [263], or animal tracking and identification in
environmental engineering [264]. The approach has also shown its potential in
the fields of medicine and healthcare [265] or can function as operational com-
ponents within smart wearable devices [266]. Among the various areas of appli-
cation, the TinyML approach can operate independently with minimal power or
energy requirements, making it suitable for integration into small-scale devices.
One potential use case is in scenarios where constant connectivity to the Internet
is not feasible (e.g. augmented reality (AR) devices) [267].

Based on a careful analysis of the strengths and weaknesses inherent in
a typical TinyML system, we can accurately anticipate the specific criteria our
proposed design must satisfy to emerge as a competitive alternative to existing
implementations:

• Devices tailored for TinyML operations are designed to operate efficiently
under energy constraints, typically at a milli-Watt level or lower [260,267].
In contrast to GPU-based devices consuming around 100 Watts of power,
TinyML systems offer significant efficiency advantages, potentially allow-
ing battery-powered functionality for devices incorporating TinyML fea-
tures [261].

• The devices need to be cost-effective, making them suitable for widespread
use in various regions [268]. These devices are designed to operate with
minimal storage and computing capabilities, resulting in lower costs com-
pared to traditional server-based systems [259, 269]. By eliminating the
need for data transmission to a cloud platform, the system can also reduce
bandwidth expenses [260].

• The potential time delays inherent in the interaction with cloud or fog
computing devices can be mitigated by leveraging embedded systems to
manage computationally intensive tasks [269]. This enables the provi-
sion of real-time user interfaces and prompt notifications for critical situ-
ations [260, 270]. The lack of network connectivity in both directions can

7.3. POTENTIAL APPLICATIONS 137

help safeguard sensitive data and enhance overall reliability [261, 269].
This aspect can address privacy concerns, especially in fields like business
and decision-making systems [259].
However, the multitude of hardware platforms and software used for opti-

misation results in a lack of standardised testing and benchmarks across various
systems. Determining the total energy consumption for each implementation
presents difficulties due to the unique nature of the platforms and the computing
power demanded for each model. The challenge of pursuing greater efficiency
by using smaller memory and less powerful processing units hampers the com-
pletion of complex tasks [261, 267, 269].

Our design, featuring fully analog computing components, has demon-
strated its capabilities in efficiently performing tasks related to detection or clas-
sification with minimal time and energy consumption utilising a limited number
of elements that align with industry standards as noted previously. In the analysis
conducted to determine the maximum operating frequency and energy consump-
tion required, the design has demonstrated the capability to attain performance
levels that are considered SOTA for functional blocks systematically as intro-
duced. Additionally, our network design offers the advantage of maintaining
quick response times without being hindered by the number of layers, unlike
other designs that incorporate mixed-signal or digital implementations. Thus,
it is convincing that it could meet the design specification and objective of the
TinyML approach systems.

The inherent analog nature of the design also ensures the direct commu-
nication between sensors or crucial elements with transfer function connecting
external physical or chemical reactions to electronic interfaces compared to the
commonly used field-programmable gate array (FPGA) platform or other digital
systems. This advantage also minimises the space needed for converters bridging
analog and digital signals. When considering the conversion necessary for inter-
acting with other devices as a multi-output classification or regression task, the
system could form an interface between the elements and computing systems
with customised functions including dimensionality reduction and fault detec-
tion. To conclude, the system we have implemented has the potential to serve as
a reliable edge computing apparatus.

Among the various applications associated with the concept of TinyML, a
notable area of research focuses on the interaction with sensor systems and their
integration into IoT frameworks. This encompasses straightforward tasks such
as comparing input patterns with pre-established models or compressing input
dimensions to facilitate more efficient data transmission. Furthermore, it may
be feasible to regard each network within an interconnected IoT framework as
capsules within the aforementioned capsule network, thus improving decision-
making and control capabilities. The applications typically necessitate neural
networks of minimal size, and the operation of the implemented network must
be both space and energy-efficient to ensure compatibility with sensor and data
exchange devices. This approach aligns with the specifications of our proposed
design, positioning it as a viable application opportunity.

The challenge identified in the realm of TinyML lies in the absence of a
universally accepted standard and benchmark for assessing and predicting per-
formance. However, this challenge does not act as a definitive obstacle to our

138 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

implementation efforts. As previously suggested, our criteria of HNNs for evalu-
ation of their performances should be established based on a meticulously trained
and finely-tuned implementation that delivers satisfactory performance aligned
with the specific task requirements.

In light of the requirements outlined, it is necessary to prioritise efficiency
in time, energy, and space utilisation over focussing solely on accuracy or model
performance. Furthermore, it is essential to make necessary alterations to guar-
antee the scalability of our technology across various tasks, as stated in Chap-
ter 6. The evaluation should be impartial and unbiased, taking into account over-
all performance rather than specific cases.

An example proposed for testing purposes in this field involves creating a
refractometer without the use of a lens. In this scenario, we can determine the
ratio of refractive indices of two media by observing the position of the image
formed by a refracted incident beam at the interface. The receiver can be cre-
ated using an array of photoresistors. This setup allows us to use the electronic
signal output as inputs to create a composite function, or we can approach the
problem by separately considering the non-polynomial transfer function of the
photoresistor array and a ratio determined by a sine function. In our assessment,
we may consider employing a divide-and-conquer philosophy in our design ap-
proach. Initially, it would be prudent to develop a network that translates the
signals obtained from the photoresistor array into the angle of emergence. Sub-
sequently, a separate network could facilitate the conversion of this angle into
the refractive index ratio. Furthermore, the design could be optimised to allow
for direct mapping between the signal array and the refractive ratio.

Regarding system communication, constructing potential dividers using
linear resistors and photoresistors, while employing transistors for biasing and
amplification, would provide a voltage-based interface. In scenarios where the
angle of incidence remains uncertain, the input may be represented by the differ-
ence vector between readings taken with and without the presence of the medium
under examination.

The benefits of this experiment include its clear definition and the ability
to quickly assess results against predetermined targets. It is a relatively straight-
forward experiment to conduct, as all components are easily accessible. The
experiment also involves a manageable number of variables, including the angle
of the incident beam, the distance between the interface and the array, and the
properties of the two media involved.

The experiment aims to enhance our understanding of the system’s ca-
pacity to model a function through the assigning, training and fine-tuning of
parameters. Additionally, it will facilitate the measurement of power consump-
tion in real-world scenarios. The results of the experiment will demonstrate the
viability of integration into a smart sensor design, a foundational component of
the IoT system. The system’s capacity to effectively manage non-linear input
responses and mitigate noise interference serves as critical proof of its potential
utility [271].

7.3. POTENTIAL APPLICATIONS 139

7.3.2 Neuron decision tree and mixture of experts

As evidenced in our previous chapters, even minor inaccuracies in indi-
vidual components can rapidly magnify throughout the system. A significant
contributor to the accumulation of errors is articulated as θr = θPX

Z
, as demon-

strated in Eq. (6.6). This expression is associated with the local gradient at the
point where the pre-activation value is fed into the activation function and the
ratio between the pre-activation value of the activation function and the resulting
activated output. In instances where discrete values represent digital signals, it
is feasible to reduce the local gradient to approximately zero. Furthermore, the
ratio between pre-activation and activated values can be constrained with an up-
per limit. This enables us to effectively block the propagation of error during the
feed-forward decision-making process.

A similar principle has been demonstrated in a study that developed and
optimised a neural network consisting of 13.96 million neurons on a photonic
analog platform [272]. This supports our hypothesis that by partitioning a neu-
ral network into multiple sub-networks, named as capsules, and discretising the
inputs and outputs of each capsule network, we can enhance the scalability of
the neural network while maintaining its robustness against noise in signals and
device tolerances.

The ML algorithm decision tree (DT) is one of the potential topology capa-
ble to block the error accumuation path. The algorithm has attracted significant
research interest since its inception, notable for its versatility in classification,
robustness and transparency [273]. Its impressive achievements, akin to the fa-
mous AlphaGo case, illustrate its untapped potential when integrated with neural
network frameworks [274]. Recent research has not only examined its generali-
sation and efficiency, but also explored its applications in Industry 4.0 [275] and
conducted large-scale comparison studies [276]. The idea of integrating neural
networks with the system to improve precision while preserving interpretability
has been extensively explored [277].

A novel framework, named NDT, combines the widely used concept neu-
ral network and DT to create a versatile algorithm. The NDT algorithm has the
ability to classify data with a logarithmically increasing number of justifications
versus the number of classes, as seen in DT, while also being able to fit any func-
tion like artificial neural networks (ANNs). This system has been shown to learn
more efficiently than either of the two individual algorithms in various scenarios,
including supervised, semi-supervised, or unsupervised cases. [278].

The hierarchical structure of neural networks presents challenges for re-
searchers in providing explanations for the decisions made during training or
when used in applications. The depth of layers in neural networks results in a
decreasing trend in explainability, as the information of input vectors gets mixed
and transformed [179]. In contrast, DT, while not as capable in complex classifi-
cation tasks with high-dimensional inputs as neural networks, offer clearer rela-
tionships between the input and output of each classifier (referred to as ”nodes”)
in their decision paths.

Recent studies have shown that the NDT systems can be trained using
methods similar to those used for neural networks [279], indicating the potential
to reach reliable local minima using Hebbian-based algorithms or local search
algorithms. Furthermore, it is possible to extend the algorithm to function as a

140 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

random forest with a gradient descent-based approach [280]. Research by Frosst
and Hinton has shown that an 8-layer soft NDT can achieve an impressive accu-
racy of 96.8% in validation on the MNIST dataset [179], making it a promising
benchmark for future work.

In the realm of electronics, there have been advances in the use of molec-
ular memristor crossbars to produce DTs. This study explores the possibility of
using the multi-state transfer function that occurs between the applied voltage
and the current flow, to serve as a decision-making system. The experiment in-
volved implementations to simulate the outputs of various logic gates to assess
the efficacy of this technique [281].

The focus on the area, as seen from the perspective of this work, has the
potential not only to streamline decision-making processes for researchers but
also to address the issue of error accumulation in practical scenarios. As can be
known from the related literature, the structure of DTs disrupts this accumulation
by using the original input data at each layer, rather than the cascading output.
This approach enhances modularity, allowing for independent testing and tuning
of each module. Additionally, the manageable size of each sub-network ensures
the algorithm’s effective application. Thus, this topology presents a viable strat-
egy for scaling the proposed HNN design in terms of complexity while hence
improving decision-making capabilities.

In order to rigorously assess the implementation and optimisation of the
HNN system, it is imperative not only to replicate the results reported in previ-
ous studies utilising the MNIST dataset [179], but also to develop an HNN-based
analog-digital converter (ADC) for preliminary validation of the design’s feasi-
bility. This proposed example exhibits well-defined characteristics and demon-
strates a significant degree of linear separability. Even not being able to achieve a
expected learning outcome with optimisers, it is conducive to analytically assign
parameters to the neural network, thereby ensuring the reliability of the hardware
design whilst utilising these examples as benchmarks.

For the ADC application, one can deduce that the resulting output is con-
tingent upon both the input and the preceding output, with each output being
distinctly quantized. Consequently, it would be straightforward to design a tree
structure to encapsulate all potential outcomes. Furthermore, it is advisable
to consider the self-similarity and repetitive patterns present in the branches to
streamline the overall topology. Our research indicates that the resultant design
will closely align with conventional ADC in practise.

The MoE employs a top-down approach that effectively models complex
and diverse data generation processes. This methodology is designed to meet
the criteria necessary for enabling digitized outputs within its sub-networks. It
is commonly used for tasks like classification, clustering, and regression in vari-
ous industries such as business, science, and technology. Different variations of
this framework have been proposed, each offering unique advantages tailored to
specific fields [282].

This system consists of multiple Gate-controlled sub-modules referred to
as “Experts”. Each Expert, along with its corresponding “Gate”, receives a du-
plicate of the original input data vector. The Gates uses the softmax function to
determine which Expert is best suited to address the specific problem at hand.
These Experts, which are multi-layer perceptrons, focus on processing a sub-

7.3. POTENTIAL APPLICATIONS 141

set of the task based on the Divide and Conquer approach. The sub-division of
tasks can either be implicitly determined through stochastic partitioning initially
and refined by Gates during training, or explicitly pre-defined using clustering
methods [283].

The training procedure for this method follows a similar structure to tra-
ditional neural networks, utilising back-propagation to adjust the parameters of
each Expert based on their respective loss function. The loss functions utilised
for training each component of the system are variants of the MSE function.
However, the key distinction lies in the fact that in optimising the Experts, the
loss term is influenced by a normalised output from the corresponding Gate.

As discussed previously, building a back-propagation system that inte-
grates a fuzzy system on hardware or software platforms poses a significant
challenge. However, the implementation of this design remains a feasible goal in
practical applications. The design of the multiplier connecting Gates to its cor-
responding Expert and the accumulator in the final stage can both be simplified
using a multiplexer (MUX) and applying the modifications of the max functions
as an alternative to the softmax function applied for enhanced simplicity. The
training process can also be adjusted and streamlined accordingly. To be more
specific, the loss functions of Experts can be reverted to a standard MSE function
for the examples within their designated sub-regions.

In a similar vein, in addition to employing the illustrative examples pre-
sented in related research, it is advisable to initially develop a basic arithmetic
logic unit (ALU) as a foundational step towards the hardware realisation of MoE
structure. While it is standard practice for modern devices to utilise ALUs with
32 or 64 bits in terms of command sets and inputs, for the purposes of verifica-
tion within this study, it is strongly recommended to utilise 4-bit structure as the
starting point, and accordingly estimate the power and footprint consumption for
practical-case systems.

Regarding the design of the 4-bit ALU, it is logical to conceptualise the
command as the Gate required in the MoE configurations, with each functional
block consisted by neural networks serving as specialised Experts. This frame-
work allows for the efficient progression of optimisation and analytical assign-
ment processes. The operational procedures to be implemented within the HNN-
based ALU may incorporate a synergistic blend of both analog and logic opera-
tions, enabled through the utilisation of neural networks.

To demonstrate the reliability and generalisation ability of the system and
associated optimisers, we propose utilising the MNIST dataset as a benchmark
for testing purposes. Given the complexities associated with the high-dimensionality
of this dataset, constructing a demonstration system manually may present cer-
tain challenges. Therefore, our primary objective is to modify the layer-cascading
topology through a combination of various sub-networks featuring binary or
ternary inputs and outputs. This objective can be effectively achieved by train-
ing multiple filters to categorise the dataset into two roughly balanced classes,
thereby facilitating the creation of a Gate to optimise a network that classifies
data pieces corresponding to these categories as Experts and subsequent Gates.

Moreover, to enhance the optimisation processes for the Gates, we recom-
mend employing low-resolution input derived from the original [28× 28] pixel
input. This approach aims to reduce parameter usage while ensuring that the

142 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

Experts are optimally configured with a maximum number of parameters as-
signed to zero or set to a low-resolution mode, consistent with the MAC spec-
ifications. Consequently, within this architecture, it is advisable to design dis-
tinct sub-networks for each pixel output, integrating edge-detection capabilities
through a series of convolution layers.

Furthermore, leveraging the outputs from each sub-network as inputs to
other sub-networks can significantly strengthen the system’s self-correction ca-
pabilities. It is advisable to design the architecture of each sub-network with a
maximum of one hidden layer to facilitate optimisation through Hebbian learn-
ing algorithms in scenarios where advancements in the optimiser are not feasible.

The topologies under discussion exhibit a markedly increased number of
connections in comparison to a single neural network. In particular, all nodes
within the NDTs and all Experts and Gates in the MoE models necessitate full
connections to the input, resulting in a notably complex hardware implementa-
tion.

To address this challenge, one proposed strategy involves leveraging the
Hebbian learning principle to evaluate the influence of each pixel on the outputs
based on its variability. For the initial layer, the weight update process can be
articulated as follows:

∆w = (xi − ⟨xi⟩) (tj − xj) , (7.4)

where ⟨xi⟩ denotes the average activation level of the input neuron xi.
The methodology employed has undergone thorough analysis utilising the

MNIST dataset within a single-layer perceptron structured as [784× 10]. Re-
sults from this experimentation indicate that the optimised parameters success-
fully highlight the unique attributes of each class while also identifying pixels
exhibiting minimal alterations in the training datasets. The single-layer archi-
tecture achieved a validation accuracy rate marginally below 90%. In contrast,
a convolutional neural network (CNN) can reach an output accuracy exceed-
ing 99% [179], thereby providing a basis for assessing the relative performance
decline of the current system under development, as well as facilitating a funda-
mental comparison regarding the utilisation of parameters and neurons.

7.4 Conclusion
We analyzed the proposed HNN system and identified the necessity for

a new optimisation algorithm that operates without explicit knowledge of the
system’s internal workings including the magnitude of each of its parameter and
behaviour of activation functions involved.

We identified several technical approaches from the literature, including
back-propagation approximations, local search algorithms, and Hebbian optimi-
sation methods. Although some have been tested in our experiments (e.g. the
local searching algorithm and Hebbian-related algorithms), they have not con-
sistently yielded satisfactory results, necessitating further performance analysis.

We recognize the need to design an interface between the proposed HNN
circuit and optimisers built on software or hardware, as its performance depends
on circuit implementation and optimisation methods. The interface should up-

7.4. CONCLUSION 143

load datasets to the HNN circuit, interpret outputs to compute error terms, and
update the circuit’s memory with revised parameters. However, this step can
only be proceed after verifying the feasibility of optimisation algorithm and neu-
ral network topology.

Furthermore, we have delineated two prospective applications informed by
recent developments in the field. The first application focuses on the integration
of TinyML as it interfaces with IoT systems. This approach emphasizes the util-
isation of embedded neural networks to enhance smart sensor systems capable
of executing non-polynomial transformations and self-calibration. The second
application pertains to advancements in NDT or MoE systems aimed at facil-
itating complex decision-making processes. This application seeks to improve
topology to sustain decision-making efficacy while mitigating the risks of failure
associated with error accumulation during analog computing process. Alterna-
tively, we could also explore the implementation of more advanced technologies
to expand the system’s applicability across diverse industries. By synergising
these research trajectories, we are confident that our proposed system can be
rigorously validated and effectively applied to real-world scenarios.

144 CHAPTER 7. POTENTIAL ADJUSTMENTS AND APPLICATIONS

Chapter 8

Conclusion

In light of the premise that analog computing schemes and their hardware
implementations may prove to be more effective than conventional methods of
using servers to solve neural networks, this study has undertaken a comprehen-
sive examination of recent advancements in this field. It has successfully intro-
duced and verified a novel activation function circuit (AFC) to address existing
research gaps, as well as enhanced the multiply accumulate circuit (MAC) using
the latest technological processes. As a result, efficiency in terms of power con-
sumption and response time has improved significantly, reaching a cutting-edge
level of performance.

In Chapter 4, we have verified the systematic robustness of our proposed
push-pull linear follower in producing a stable transfer function. The transfer
function produced has been found to be a well-performing activation function
when compared to commonly used activation functions such as Rectified Lin-
ear Unit (ReLU) and tanh (·) in terms of learning efficiency and final perfor-
mance according to our validations. Furthermore, the behaviour of the pro-
posed activation function based on this transfer function is similar to the function
tanhH (·), which enhances the neural network’s capacity to solve practical prob-
lems with self-similarity in a recursive manner. Additionally, we have identified
an Achilles’ Heel of this design when utilised as an AFC in terms of output
impedance and fan-out capability.

We have developed a novel weighting circuit that addresses the limitations
of the AFC discussed in Chapter 5. This circuit has demonstrated scalability
in terms of bit resolutions and boasts exceptional efficiency, reaching a state-
of-the-art (SOTA) level. Moreover, the manufacturing process for this circuit is
compatible with current industrial technology. Building upon this innovation,
we have also designed two summation circuits that prioritise stability and effi-
ciency, respectively. Additionally, we have discussed the scalability in terms of
neural network topology with the incorporation of a two-stage MAC. Our simu-
lations indicate that the push-pull circuit proposed as AFC will greatly enhance
scalability and performance.

Based on the previous chapters, a detailed analysis has been conducted
on the performance of the hardware neural network (HNN) system comprising
the modules discussed in Chapter 6. By carefully considering inaccuracies and
potential failures, a model has been developed to depict the accumulation of er-
rors throughout the sequential operations. The analysis of non-idealities encom-

145

146 CHAPTER 8. CONCLUSION

passes the potential variations in each element and noise present in the signal
channels, establishing a new and comprehensive foundation in an underexplored
area. Furthermore, adjustments have been made to the modules in response to the
system’s non-ideal nature, with an assessment of the additional system’s impact
on robustness and efficiency.

Based on our previous analysis, it appears that the primary challenge fac-
ing the system is an optimisation issue related to inaccuracies in both the feed-
forward and back-propagation processes. Addressing this issue is crucial for
future implementations and practical applications. With this in mind, we have
reviewed the literature on optimisation techniques and identified approximation,
local search, and Hebbian learning as the most promising methods that could
potentially be implemented efficiently, even on a stand-alone chip. Furthermore,
we have identified two specific areas where our proposed system could be ben-
eficial. Given the model we have developed, the characteristics of the proposed
network are outlined in Chapter 7. Furthermore, Chapter 7 suggests potential
experiments for the two topics that have not yet met our expectations.

To summarize, the work primarily established the following key objec-
tives:

• Developed circuits capable of integration into implementations of hard-
ware neural network.

• Presented a model for predicting final stage output error through system
perturbations.

• Proposed an optimisation scheme to facilitate on-chip learning in HNNs.
• Identified potential applications for neural networks with fuzzy character-

istics.

8.1 Summary of Contributions
It is worth noting that, according to Mhaskar’s conclusion, any non-polynomial

function can be utilised as an activation function in neural networks [10]. It is
also important to highlight that non-polynomial transfer functions can be created
through basic analog or digital circuits. Therefore, it is possible to design a cir-
cuit with specific input and output requirements, assuming the transfer function
is non-polynomial within the operational range, to act as an activation function
generator. Instead of replicating existing activation functions found in literature,
it may be more effective to design a custom circuit and emphasis its learning
efficiency compared to other commonly used functions.

The primary focus should be on the efficiency and reliability of generating
the function through physical implementations in various working conditions
for HNNs. The mathematical expressions of transfer functions in circuits may
appear intricate, but they are actually straightforward to achieve with hardware.
This is in contrast to popular functions like ReLU or tanh (·), which may appeal
to be effort-consuming during implementations.

With the insightful information gained, we are able to underscore the sig-
nificance of the topics covered in Chapter 7. Using a black box transfer func-
tion as an activation function poses challenges in the efficiency of utilising well-
researched and commonly used derivative-based optimisation algorithms. How-
ever, it is still possible to view linear transforming circuits as finite-state ma-

8.2. LIMITATIONS AND CHALLENGES 147

chines and implement specific searches or optimisations on their foundation.
Despite not yet achieving optimal results, we have observed promising signs
of untapped potential within these algorithms.

If our hypothesis that these algorithms can effectively reach a local min-
imum like gradient descent-based algorithms proves correct, a significant ob-
stacle in implementing and on-chip training of HNNs will be overcome. By
understanding the principles and theorems behind these algorithms, particularly
those based on the Hebbian method, we can gain insight into the behaviour of
the neural networks they produce. Combined with discussions on the topology
of the neural decision tree (NDT) or mixture of experts (MoE), we may be able
to develop a transparent and reliable system that is also highly resilient and easy
to troubleshoot. Therefore, we can address concerns related to precision in this
field.

Based on the findings of our conducted experiments, particularly within
the context of the regression problem utilising neural network-based Gray Code
analog-digital converter (ADC)it can be asserted that a methodical examination
of issues and the precise allocation of parameters has the potential to greatly
enhance the overall performance of the system. This approach may result in im-
proved systematic efficiency and a reduction in unnecessary duplications. Fur-
thermore, this assertion could be extrapolated to other unresolved issues, offering
a clearer insight into the processing advances that may not have been previously
understood. As per the assertion, enhancing the functionality of capsule neural
network, NDT or MoE system has the potential to enhance the comprehensive
systematic performance in terms of accuracy and efficiency in this capacity.

Although the previous assertion may not hold true in its entirety, the sys-
tem we have devised demonstrates potential as a viable solution for edge devices
and stand-alone smart sensor systems seeking to execute intricate calculations.
Impressively, the system has been proven to deliver optimal efficiency in terms of
both response time and power consumption. Furthermore, the required chip area
for implementing neural network is noticeably reduced compared to alternative
designs offering a similar resolution for the corresponding network. This sys-
tem also boasts ease of implementation using existing technologies, presenting a
significant advantage.

8.2 Limitations and Challenges
The research conducted has some limitations, as the experiments were

mainly conducted in a simulated environment and the study is a combination
of two loosely related fields of research interest. These limitations may affect
the representativeness, reliability, and applicability of the study, as well as the
quality, diversity, and validity of the data.

From a methodological perspective, the simulation program with inte-
grated circuit emphasis (SPICE) and the predictive technology model (PTM)
utilised can be seen as an analytical approximation of the real behaviour of the
system being studied. As a new design of the complementary metal oxide semi-
conductor (CMOS) circuit, adjustments may need to be made to the model in
certain parameters that differ from the typical range. This could include exam-
ining performance with depletion mode transistor pairs or in cases of significant

148 CHAPTER 8. CONCLUSION

mismatch. The complexity of the system being analyzed also creates challenges
in reaching a static solution. While we can theoretically predict the final out-
come, in practice, manual adjustments to initial conditions may be necessary to
expedite the process. Given the multiple free parameters involved, there is a con-
cern about whether the solved output is the only stable transfer function of the
system or if there are other stable or unstable solutions to the transfer function.

Furthermore, in conducting both the theoretical and empirical aspects of
this research, it is plausible to uncover substantial variances in terminology and
emphasis within the realms of electronic engineering and computer science, as
well as mathematics and physics. This situation leads to the recognition that
there exists a gap in the current body of knowledge, with only a limited amount
of literature delving into the foundational components of this area of study.

As detailed in Chapter 2, , the predominant focus of investigations into
systematical robustness primarily revolves around what is known as local robust-
ness. That is, the system’s sensitivity to perturbations within specific examples.
Regrettably, there seems to be a tendency to overlook the potential existence of
errors in system operation, which could occur universally across all potential
inputs. Similarly, individuals researching hardware implementations of neural
networks seem to disregard the essential principles of neural networks and in-
stead, direct their energies towards replicating specific mathematical functions
without establishing a comprehensive framework delineating the system’s over-
arching traits.

Consequently, the absence of a standardized benchmark raises questions
about the validity of claims regarding a system’s distinctive features or advan-
tages. The absence of empirical testing also renders the study less responsive to
possible unpredictable outcomes in real-world applications. Therefore, the ex-
peditious creation of independent circuits and chips for authentication purposes
may be a critical point of consideration.

During our research, we have proposed an alternative method of linking
the transfer function of both linear and non-linear systems to their corresponding
equivalents in neural network applications. By doing so, we can evaluate effi-
ciency and robustness effectively. Our hypothesis suggests that a circuit’s ability
to mimic neural network operations only depends on the individual abilities of
its sub-modules to perform equivalent tasks independently. we may thus be able
to simplify the overall simulation boundary and analyse the performance accord-
ingly. If our hypothesis is valid, the approach allows for a simplified simulation
boundary and performance analysis. Additionally, by establishing mathematical
equivalences, we can potentially estimate final-stage errors based on input and
output errors at each stage.

It is advisable to create and assess a circuit utilising predefined tasks to
confirm the validity of our assertions. The criteria can be established according
to the standards outlined in this project, focusing on the effectiveness at both
the systematic and component levels, along with assessing its robustness against
any randomized signal distortions and element variabilities. This should be done
assuming the system with proper modifications and fine-tuning can achieve an
output that aligns with the system’s specifications, or attains a certain level of
accuracy when compared to the current cutting-edge practices in the field.

Bibliography

[1] V. S. Dave and K. Dutta, “Neural network based models for software ef-

fort estimation: a review,” Artificial Intelligence Review, vol. 42, no. 2,

pp. 295–307, 2014.

[2] A. Bulsari, “Some analytical solutions to the general approximation prob-

lem for feedforward neural networks,” Neural networks, vol. 6, no. 7,

pp. 991–996, 1993.

[3] N. Izeboudjen, C. Larbes, and A. Farah, “A new classification approach

for neural networks hardware: from standards chips to embedded systems

on chip,” Artificial Intelligence Review, vol. 41, pp. 491–534, 2014.

[4] A. Mozaffari, M. Emami, and A. Fathi, “A comprehensive investigation

into the performance, robustness, scalability and convergence of chaos-

enhanced evolutionary algorithms with boundary constraints,” Artificial

Intelligence Review, vol. 52, pp. 2319–2380, 2019.

[5] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hard-

ware acceleration for neural networks: A comprehensive survey,” Pro-

ceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[6] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,

and H. Arshad, “State-of-the-art in artificial neural network applications:

149

150 BIBLIOGRAPHY

A survey,” Heliyon, vol. 4, no. 11, 2018.

[7] G. B. Kingston, H. R. Maier, and M. F. Lambert, “Calibration and valida-

tion of neural networks to ensure physically plausible hydrological mod-

eling,” Journal of Hydrology, vol. 314, no. 1-4, pp. 158–176, 2005.

[8] V. Camus, C. Enz, and M. Verhelst, “Survey of precision-scalable

multiply-accumulate units for neural-network processing,” in 2019 IEEE

International Conference on Artificial Intelligence Circuits and Systems

(AICAS), pp. 57–61, 2019.

[9] H. N. Mhaskar and C. A. Micchelli, “Approximation by superposition of

sigmoidal and radial basis functions,” Advances in Applied mathematics,

vol. 13, no. 3, pp. 350–373, 1992.

[10] H. N. Mhaskar and C. A. Micchelli, “How to choose an activation func-

tion,” Advances in neural information processing systems, vol. 6, 1993.

[11] C. Reams, Modelling energy efficiency for computation. PhD thesis, Uni-

versity of Cambridge, 2012.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[13] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” Ad-

vances in neural information processing systems, vol. 20, 2007.

[14] M. Horowitz, “1.1 computing’s energy problem (and what we can do

about it),” in 2014 IEEE international solid-state circuits conference di-

gest of technical papers (ISSCC), pp. 10–14, IEEE, 2014.

[15] C. Latotzke and T. Gemmeke, “Efficiency versus accuracy: a review of

design techniques for dnn hardware accelerators,” IEEE Access, vol. 9,

BIBLIOGRAPHY 151

pp. 9785–9799, 2021.

[16] S. Mittal, “A survey of fpga-based accelerators for convolutional neural

networks,” Neural computing and applications, vol. 32, no. 4, pp. 1109–

1139, 2020.

[17] R. Machupalli, M. Hossain, and M. Mandal, “Review of asic accelerators

for deep neural network,” Microprocessors and Microsystems, vol. 89,

p. 104441, 2022.

[18] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb in-

memory-computing cnn accelerator employing charge-domain compute,”

IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799, 2019.

[19] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “Xnor-sram: In-memory comput-

ing sram macro for binary/ternary deep neural networks,” IEEE Journal

of Solid-State Circuits, vol. 55, no. 6, pp. 1733–1743, 2020.

[20] J. Dean, “1.1 the deep learning revolution and its implications for com-

puter architecture and chip design,” in 2020 IEEE International Solid-

State Circuits Conference-(ISSCC), pp. 8–14, IEEE, 2020.

[21] R. Nägele, J. Finkbeiner, V. Stadtlander, M. Grözing, and M. Berroth,

“Analog multiply-accumulate cell with multi-bit resolution for all-analog

ai inference accelerators,” IEEE Transactions on Circuits and Systems I:

Regular Papers, 2023.

[22] B. Murmann, “Mixed-signal computing for deep neural network infer-

ence,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 29, no. 1, pp. 3–13, 2020.

[23] B.-E. Verhoef, N. Laubeuf, S. Cosemans, P. Debacker, I. Papistas,

152 BIBLIOGRAPHY

A. Mallik, and D. Verkest, “Fq-conv: Fully quantized convolution for ef-

ficient and accurate inference,” arXiv preprint arXiv:1912.09356, 2019.

[24] J. Han and M. Orshansky, “Approximate computing: An emerging

paradigm for energy-efficient design,” in 2013 18th IEEE European Test

Symposium (ETS), pp. 1–6, IEEE, 2013.

[25] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek, and

J. Han, “Improving the accuracy and hardware efficiency of neural net-

works using approximate multipliers,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328, 2019.

[26] H. Graf, L. Jackel, R. Howard, B. Straughn, J. Denker, W. Hubbard,

D. Tennant, and D. Schwartz, “Vlsi implementation of a neural network

memory with several hundreds of neurons,” in AIP Conference Proceed-

ings 151 on Neural Networks for Computing, pp. 182–187, 1987.

[27] A. Muthuramalingam, S. Himavathi, and E. Srinivasan, “Neural network

implementation using fpga: issues and application,” International Journal

of Electrical and Computer Engineering, vol. 2, no. 12, pp. 2802–2808,

2008.

[28] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist:

Efficient data encoding for deep neural network training,” in 2018

ACM/IEEE 45th Annual International Symposium on Computer Architec-

ture (ISCA), pp. 776–789, IEEE, 2018.

[29] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W. Keck-

ler, “Compressing dma engine: Leveraging activation sparsity for training

deep neural networks,” in 2018 IEEE International Symposium on High

BIBLIOGRAPHY 153

Performance Computer Architecture (HPCA), pp. 78–91, IEEE, 2018.

[30] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,

N. Sun, et al., “Dadiannao: A machine-learning supercomputer,” in 2014

47th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 609–622, IEEE, 2014.

[31] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter perfor-

mance analysis of a tensor processing unit,” in Proceedings of the 44th an-

nual international symposium on computer architecture, pp. 1–12, 2017.

[32] I. A. Papistas, S. Cosemans, B. Rooseleer, J. Doevenspeck, M.-H. Na,

A. Mallik, P. Debacker, and D. Verkest, “A 22 nm, 1540 top/s/w, 12.1

top/s/mm 2 in-memory analog matrix-vector-multiplier for dnn acceler-

ation,” in 2021 IEEE Custom Integrated Circuits Conference (CICC),

pp. 1–2, IEEE, 2021.

[33] X. Guo, F. M. Bayat, M. Bavandpour, M. Klachko, M. Mahmoodi,

M. Prezioso, K. Likharev, and D. Strukov, “Fast, energy-efficient, robust,

and reproducible mixed-signal neuromorphic classifier based on embed-

ded nor flash memory technology,” in 2017 IEEE International Electron

Devices Meeting (IEDM), pp. 6–5, IEEE, 2017.

[34] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,

D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration

of deep neural networks,” in 2018 ACM/IEEE 45Th annual international

symposium on computer architecture (ISCA), pp. 383–396, IEEE, 2018.

[35] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Bren-

154 BIBLIOGRAPHY

nan, and Y. Xie, “Scope: A stochastic computing engine for dram-based

in-situ accelerator,” in 2018 51st Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), pp. 696–709, IEEE, 2018.

[36] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neu-

ral networks hardware implementation on fpga,” arXiv preprint

arXiv:1511.05552, 2015.

[37] S. Draghici, “Neural networks in analog hardware—design and imple-

mentation issues,” International journal of neural systems, vol. 10, no. 01,

pp. 19–42, 2000.

[38] S. Jain, A. Ankit, I. Chakraborty, T. Gokmen, M. Rasch, W. Haensch,

K. Roy, and A. Raghunathan, “Neural network accelerator design with re-

sistive crossbars: Opportunities and challenges,” IBM Journal of Research

and Development, vol. 63, no. 6, pp. 10–1, 2019.

[39] H. El-Rewini and M. Abd-El-Barr, Advanced computer architecture and

parallel processing. John Wiley & Sons, 2005.

[40] F. Bistouni and M. Jahanshahi, “Scalable crossbar network: a non-

blocking interconnection network for large-scale systems,” The Journal

of Supercomputing, vol. 71, pp. 697–728, 2015.

[41] F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang, J. J. Yang,

W. Lu, M.-F. Chang, D. Ielmini, Y. Yang, et al., “Hardware implementa-

tion of memristor-based artificial neural networks,” Nature Communica-

tions, vol. 15, no. 1, p. 1974, 2024.

[42] J. H. Yoon, Z. Wang, K. M. Kim, H. Wu, V. Ravichandran, Q. Xia, C. S.

Hwang, and J. J. Yang, “An artificial nociceptor based on a diffusive mem-

BIBLIOGRAPHY 155

ristor,” Nature communications, vol. 9, no. 1, p. 417, 2018.

[43] E. H. Lee and S. S. Wong, “Analysis and design of a passive switched-

capacitor matrix multiplier for approximate computing,” IEEE Journal of

Solid-State Circuits, vol. 52, no. 1, pp. 261–271, 2016.

[44] Y. Zhang and D. El-Damak, “A reconfigurable passive switched-capacitor

multiply-and-accumulate unit for approximate computing,” in 2020 IEEE

63rd International Midwest Symposium on Circuits and Systems (MWS-

CAS), pp. 921–924, IEEE, 2020.

[45] Z. Wang, M. Rao, J.-W. Han, J. Zhang, P. Lin, Y. Li, C. Li, W. Song, S. As-

apu, R. Midya, et al., “Capacitive neural network with neuro-transistors,”

Nature communications, vol. 9, no. 1, p. 3208, 2018.

[46] K.-U. Demasius, A. Kirschen, and S. Parkin, “Energy-efficient memca-

pacitor devices for neuromorphic computing,” Nature Electronics, vol. 4,

no. 10, pp. 748–756, 2021.

[47] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of

two decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239–255,

2010.

[48] S. Hwang, J. Yu, G. H. Lee, M. S. Song, J. Chang, K. K. Min, T. Jang,

J.-H. Lee, B.-G. Park, and H. Kim, “Capacitor-based synaptic devices for

hardware spiking neural networks,” IEEE Electron Device Letters, vol. 43,

no. 4, pp. 549–552, 2022.

[49] C. Rasche and R. Douglas, “An improved silicon neuron,” Analog inte-

grated circuits and signal processing, vol. 23, no. 3, pp. 227–236, 2000.

[50] A. Van Schaik, “Building blocks for electronic spiking neural networks,”

156 BIBLIOGRAPHY

Neural networks, vol. 14, no. 6-7, pp. 617–628, 2001.

[51] M.-K. Park, W.-M. Kang, R.-H. Koo, J.-H. Kim, J. Hwang, J.-H. Bae,

J.-J. Kim, and J.-H. Lee, “Cointegration of the tft-type and flash synap-

tic array and cmos circuits for a hardware-based neural network,” IEEE

Transactions on Electron Devices, vol. 70, no. 1, pp. 93–98, 2023.

[52] W. Maass, “Networks of spiking neurons: the third generation of neural

network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[53] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,

populations, plasticity. Cambridge university press, 2002.

[54] J. Wu, X. Lin, Y. Guo, J. Liu, L. Fang, S. Jiao, and Q. Dai, “Analog optical

computing for artificial intelligence,” Engineering, vol. 10, pp. 133–145,

2022.

[55] Y. Toyama, K. Yoshioka, K. Ban, S. Maya, A. Sai, and K. Onizuka,

“An 8 bit 12.4 tops/w phase-domain mac circuit for energy-constrained

deep learning accelerators,” IEEE Journal of Solid-State Circuits, vol. 54,

no. 10, pp. 2730–2742, 2019.

[56] Y. Van De Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria,

S. Agarwal, M. J. Marinella, A. Alec Talin, and A. Salleo, “A non-volatile

organic electrochemical device as a low-voltage artificial synapse for neu-

romorphic computing,” Nature materials, vol. 16, no. 4, pp. 414–418,

2017.

[57] S. Kuninti and S. Rooban, “Backpropagation algorithm and its hardware

implementations: A review,” in Journal of Physics: Conference Series,

vol. 1804, p. 012169, IOP Publishing, 2021.

BIBLIOGRAPHY 157

[58] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga-based

neural network accelerator,” arXiv preprint arXiv:1712.08934, 2017.

[59] T. Hirtzlin, M. Bocquet, B. Penkovsky, J.-O. Klein, E. Nowak, E. Vianello,

J.-M. Portal, and D. Querlioz, “Digital biologically plausible implementa-

tion of binarized neural networks with differential hafnium oxide resistive

memory arrays,” Frontiers in neuroscience, vol. 13, p. 1383, 2020.

[60] S. Yin, X. Sun, S. Yu, and J.-s. Seo, “High-throughput in-memory comput-

ing for binary deep neural networks with monolithically integrated rram

and 90-nm cmos,” IEEE Transactions on Electron Devices, vol. 67, no. 10,

pp. 4185–4192, 2020.

[61] Z. Wang, S. Joshi, S. Savel’Ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan,

S. Asapu, Y. Zhuo, et al., “Fully memristive neural networks for pat-

tern classification with unsupervised learning,” Nature Electronics, vol. 1,

no. 2, pp. 137–145, 2018.

[62] F. Kiani, J. Yin, Z. Wang, J. J. Yang, and Q. Xia, “A fully hardware-based

memristive multilayer neural network,” Science advances, vol. 7, no. 48,

p. eabj4801, 2021.

[63] S. Oh, Y. Shi, J. Del Valle, P. Salev, Y. Lu, Z. Huang, Y. Kalcheim, I. K.

Schuller, and D. Kuzum, “Energy-efficient mott activation neuron for full-

hardware implementation of neural networks,” Nature nanotechnology,

vol. 16, no. 6, pp. 680–687, 2021.

[64] B. Li and G. Shi, “A CMOS rectified linear unit operating in weak inver-

sion for memristive neuromorphic circuits,” Integration, vol. 87, pp. 24–

28, 2022.

158 BIBLIOGRAPHY

[65] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu,

S. Deiss, P. Raina, H. Qian, B. Gao, et al., “A compute-in-memory chip

based on resistive random-access memory,” Nature, vol. 608, no. 7923,

pp. 504–512, 2022.

[66] L. Li, S. Zhang, and J. Wu, “An efficient hardware architecture for ac-

tivation function in deep learning processor,” in 2018 IEEE 3rd Interna-

tional Conference on Image, Vision and Computing (ICIVC), pp. 911–918,

IEEE, 2018.

[67] E. van Keulen, S. Colak, H. Withagen, and H. Hegt, “Neural network

hardware performance criteria,” in Proceedings of 1994 IEEE Interna-

tional Conference on Neural Networks (ICNN’94), vol. 3, pp. 1885–1888,

IEEE, 1994.

[68] T. Cornu and P. Ienne, “Performance of digital neuro-computers,” in Pro-

ceedings of the Fourth International Conference on Microelectronics for

Neural Networks and Fuzzy Systems, pp. 87–93, IEEE, 1994.

[69] A. Krishna, S. R. Nudurupati, D. Chandana, P. Dwivedi, A. van Schaik,

M. Mehendale, and C. S. Thakur, “Raman: A re-configurable and sparse

tinyml accelerator for inference on edge,” IEEE Internet of Things Jour-

nal, 2024.

[70] M. Liu, B. Zhou, Z. Zhao, H. Hong, H. Kim, S. Suh, V. F. Rey, and

P. Lukowicz, “Fieldhar: A fully integrated end-to-end rtl framework for

human activity recognition with neural networks from heterogeneous sen-

sors,” in 2023 IEEE 34th International Conference on Application-specific

Systems, Architectures and Processors (ASAP), pp. 110–118, IEEE, 2023.

BIBLIOGRAPHY 159

[71] P. Toupas, C.-S. Bouganis, and D. Tzovaras, “Fmm-x3d: Fpga-based

modeling and mapping of x3d for human action recognition,” in 2023

IEEE 34th International Conference on Application-specific Systems, Ar-

chitectures and Processors (ASAP), pp. 119–126, IEEE, 2023.

[72] P. Toupas, C.-S. Bouganis, and D. Tzovaras, “fpgahart: A toolflow for

throughput-oriented acceleration of 3d cnns for har onto fpgas,” in 2023

33rd International Conference on Field-Programmable Logic and Appli-

cations (FPL), pp. 86–92, IEEE, 2023.

[73] Z. Que, S. Liu, M. Rognlien, C. Guo, J. G. Coutinho, and W. Luk,

“Metaml: Automating customizable cross-stage design-flow for deep

learning acceleration,” in 2023 33rd International Conference on Field-

Programmable Logic and Applications (FPL), pp. 248–252, IEEE, 2023.

[74] M. T. L. Aung, D. Gerlinghoff, C. Qu, L. Yang, T. Huang, R. S. M. Goh,

T. Luo, and W.-F. Wong, “Deepfire2: A convolutional spiking neural net-

work accelerator on fpgas,” IEEE Transactions on Computers, vol. 72,

no. 10, pp. 2847–2857, 2023.

[75] S. Dey, P. Dasgupta, and P. P. Chakrabarti, “Dietcnn: Multiplication-free

inference for quantized cnns,” in 2023 International Joint Conference on

Neural Networks (IJCNN), pp. 1–8, IEEE, 2023.

[76] B. Noory and V. Groza, “A reconfigurable approach to hardware imple-

mentation of neural networks,” in CCECE 2003-Canadian Conference

on Electrical and Computer Engineering. Toward a Caring and Humane

Technology (Cat. No. 03CH37436), vol. 3, pp. 1861–1864, IEEE, 2003.

[77] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, “Piecewise linear ap-

160 BIBLIOGRAPHY

proximation applied to nonlinear function of a neural network,” IEE

Proceedings-Circuits, Devices and Systems, vol. 144, no. 6, pp. 313–317,

1997.

[78] A. Agrawal, M. Kar, K.-H. Kim, S. Rylov, J. Jung, S. Munetoh, K. Ho-

Sokawa, X. Zhang, B. Hekmatshoartabari, F. Carta, et al., “A switched-

capacitor integer compute unit with decoupled storage and arithmetic for

cloud ai inference in 5nm cmos,” in 2023 IEEE Symposium on VLSI Tech-

nology and Circuits (VLSI Technology and Circuits), pp. 1–2, IEEE, 2023.

[79] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang,

T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, et al., “15.4 a 22nm 2mb

reram compute-in-memory macro with 121-28tops/w for multibit mac

computing for tiny ai edge devices,” in 2020 IEEE International Solid-

State Circuits Conference-(ISSCC), pp. 244–246, IEEE, 2020.

[80] Y. Chen, L. Lu, B. Kim, and T. T.-H. Kim, “A reconfigurable 4t2r reram

computing in-memory macro for efficient edge applications,” IEEE Open

Journal of Circuits and Systems, vol. 2, pp. 210–222, 2021.

[81] H. Jiang, W. Li, S. Huang, and S. Yu, “A 40nm analog-input adc-free

compute-in-memory rram macro with pulse-width modulation between

sub-arrays,” in 2022 IEEE Symposium on VLSI Technology and Circuits

(VLSI Technology and Circuits), pp. 266–267, IEEE, 2022.

[82] K. Prabhu, A. Gural, Z. F. Khan, R. M. Radway, M. Giordano, K. Koul,

R. Doshi, J. W. Kustin, T. Liu, G. B. Lopes, et al., “Chimera: A 0.92-tops,

2.2-tops/w edge ai accelerator with 2-mbyte on-chip foundry resistive ram

for efficient training and inference,” IEEE Journal of Solid-State Circuits,

BIBLIOGRAPHY 161

vol. 57, no. 4, pp. 1013–1026, 2022.

[83] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.-H.

Wang, W.-C. Wei, T.-Y. Huang, T.-W. Chang, et al., “Embedded 1-mb

reram-based computing-in-memory macro with multibit input and weight

for cnn-based ai edge processors,” IEEE Journal of Solid-State Circuits,

vol. 55, no. 1, pp. 203–215, 2019.

[84] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao,

C.-X. Xue, W.-H. Chen, et al., “33.2 a fully integrated analog reram

based 78.4 tops/w compute-in-memory chip with fully parallel mac com-

puting,” in 2020 IEEE International Solid-State Circuits Conference-

(ISSCC), pp. 500–502, IEEE, 2020.

[85] B. J. MacLennan, “A review of analog computing,” Department of Electri-

cal Engineering & Computer Science, University of Tennessee, Technical

Report UT-CS-07-601 (September), pp. 19798–19807, 2007.

[86] A. Dembo and T. Kailath, “Model-free distributed learning,” IEEE Trans-

actions on Neural Networks, vol. 1, no. 1, pp. 58–70, 1990.

[87] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “The robustness of

deep networks: A geometrical perspective,” IEEE Signal Processing Mag-

azine, vol. 34, no. 6, pp. 50–62, 2017.

[88] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin, “When nas meets robust-

ness: In search of robust architectures against adversarial attacks,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 631–640, 2020.

[89] K. Cao, M. Liu, H. Su, J. Wu, J. Zhu, and S. Liu, “Analyzing the noise

162 BIBLIOGRAPHY

robustness of deep neural networks,” IEEE Transactions on Visualization

and Computer Graphics, vol. 27, no. 7, pp. 3289–3304, 2020.

[90] S. Chaudhury and T. Yamasaki, “Robustness of adaptive neural network

optimization under training noise,” IEEE Access, vol. 9, pp. 37039–37053,

2021.

[91] J. L. Holt and J.-N. Hwang, “Finite precision error analysis of neural

network hardware implementations,” IEEE Transactions on Computers,

vol. 42, no. 3, pp. 281–290, 1993.

[92] P. D. Moerland and E. Fiesler, “Neural network adaptations to hardware

implementations,” in Handbook of neural computation, pp. E1–2, CRC

Press, 2020.

[93] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-

ing applied to document recognition,” Proceedings of the IEEE, vol. 86,

no. 11, pp. 2278–2324, 1998.

[94] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint

arXiv:1312.6199, 2013.

[95] T.-W. Weng, P. Zhao, S. Liu, P.-Y. Chen, X. Lin, and L. Daniel, “Towards

certificated model robustness against weight perturbations,” in Thirty-

Fourth AAAI Conference on Artificial Intelligence (AAAI-20), 2020.

[96] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as

a defense to adversarial perturbations against deep neural networks,” in

2016 IEEE symposium on security and privacy (SP), pp. 582–597, IEEE,

2016.

BIBLIOGRAPHY 163

[97] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification

of deep neural networks,” in Computer Aided Verification: 29th Interna-

tional Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,

Proceedings, Part I 30, pp. 3–29, Springer, 2017.

[98] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and

S. W. Keckler, “Understanding error propagation in deep learning neu-

ral network (dnn) accelerators and applications,” in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, pp. 1–12, 2017.

[99] D. Wu, S.-T. Xia, and Y. Wang, “Adversarial weight perturbation helps ro-

bust generalization,” Advances in neural information processing systems,

vol. 33, pp. 2958–2969, 2020.

[100] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 2017.

[101] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the

loss landscape of neural nets,” Advances in neural information processing

systems, vol. 31, 2018.

[102] M. D. Norton and J. O. Royset, “Diametrical risk minimization: Theory

and computations,” Machine Learning, pp. 1–19, 2021.

[103] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple

and accurate method to fool deep neural networks,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 2574–

2582, 2016.

164 BIBLIOGRAPHY

[104] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin, “Fault sneak-

ing attack: A stealthy framework for misleading deep neural networks,”

in Proceedings of the 56th Annual Design Automation Conference 2019,

pp. 1–6, 2019.

[105] X. Zeng and D. S. Yeung, “Sensitivity analysis of multilayer perceptron to

input and weight perturbations,” IEEE Transactions on neural networks,

vol. 12, no. 6, pp. 1358–1366, 2001.

[106] S. Kwon, K. Lee, Y. Kim, K. Kim, C. Lee, and W. W. Ro, “Measuring

error-tolerance in sram architecture on hardware accelerated neural net-

work,” in 2016 IEEE International Conference on Consumer Electronics-

Asia (ICCE-Asia), pp. 1–4, IEEE, 2016.

[107] C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough, “Noisy

machines: Understanding noisy neural networks and enhancing ro-

bustness to analog hardware errors using distillation,” arXiv preprint

arXiv:2001.04974, 2020.

[108] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar,

C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and E. Elefthe-

riou, “Accurate deep neural network inference using computational phase-

change memory,” Nature communications, vol. 11, no. 1, p. 2473, 2020.

[109] N. Tishby and N. Zaslavsky, “Deep learning and the information bottle-

neck principle,” in 2015 ieee information theory workshop (itw), pp. 1–5,

IEEE, 2015.

[110] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,

S. Song, et al., “Going deeper with embedded fpga platform for convolu-

BIBLIOGRAPHY 165

tional neural network,” in Proceedings of the 2016 ACM/SIGDA interna-

tional symposium on field-programmable gate arrays, pp. 26–35, 2016.

[111] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design flow of

accelerating hybrid extremely low bit-width neural network in embedded

fpga,” in 2018 28th international conference on field programmable logic

and applications (FPL), pp. 163–1636, IEEE, 2018.

[112] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and

H. Yang, “Angel-eye: A complete design flow for mapping cnn onto em-

bedded fpga,” IEEE transactions on computer-aided design of integrated

circuits and systems, vol. 37, no. 1, pp. 35–47, 2017.

[113] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan, “Ternary weight networks,”

arXiv preprint arXiv:1605.04711, 2016.

[114] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”

in International Conference on Learning Representations, 2016.

[115] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Train-

ing low bitwidth convolutional neural networks with low bitwidth gradi-

ents,” arXiv preprint arXiv:1606.06160, 2016.

[116] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding,”

arXiv preprint arXiv:1510.00149, 2015.

[117] N. Cheney, M. Schrimpf, and G. Kreiman, “On the robustness of convolu-

tional neural networks to internal architecture and weight perturbations,”

arXiv preprint arXiv:1703.08245, 2017.

[118] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-

166 BIBLIOGRAPHY

tions for efficient neural network,” Advances in neural information pro-

cessing systems, vol. 28, 2015.

[119] A. P. Arechiga and A. J. Michaels, “The robustness of modern deep learn-

ing architectures against single event upset errors,” in 2018 IEEE High

Performance extreme Computing Conference (HPEC), pp. 1–6, IEEE,

2018.

[120] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Re-

luplex: An efficient smt solver for verifying deep neural networks,” in

Computer Aided Verification: 29th International Conference, CAV 2017,

Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pp. 97–

117, Springer, 2017.

[121] L. Pulina and A. Tacchella, “Challenging smt solvers to verify neural net-

works,” Ai Communications, vol. 25, no. 2, pp. 117–135, 2012.

[122] M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of feedforward neu-

ral networks to weight errors,” IEEE transactions on neural networks,

vol. 1, no. 1, pp. 71–80, 1990.

[123] A. Y. Cheng and D. S. Yeung, “Sensitivity analysis of neocognitron,”

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-

tions and Reviews), vol. 29, no. 2, pp. 238–249, 1999.

[124] L. Xiang, X. Zeng, Y. Niu, and Y. Liu, “Study of sensitivity to weight

perturbation for convolution neural network,” IEEE Access, vol. 7,

pp. 93898–93908, 2019.

[125] V. Zantedeschi, M.-I. Nicolae, and A. Rawat, “Efficient defenses against

adversarial attacks,” in Proceedings of the 10th ACM workshop on artifi-

BIBLIOGRAPHY 167

cial intelligence and security, pp. 39–49, 2017.

[126] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,

A. Kruspe, R. Triebel, P. Jung, R. Roscher, et al., “A survey of uncertainty

in deep neural networks,” Artificial Intelligence Review, vol. 56, no. Suppl

1, pp. 1513–1589, 2023.

[127] V. Gabrel, C. Murat, and A. Thiele, “Recent advances in robust optimiza-

tion: An overview,” European journal of operational research, vol. 235,

no. 3, pp. 471–483, 2014.

[128] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Mathemat-

ics of operations research, vol. 23, no. 4, pp. 769–805, 1998.

[129] U. Shaham, Y. Yamada, and S. Negahban, “Understanding adversarial

training: Increasing local stability of neural nets through robust optimiza-

tion,” arXiv preprint arXiv:1511.05432, 2015.

[130] M. N. Rizve, K. Duarte, Y. S. Rawat, and M. Shah, “In defense of

pseudo-labeling: An uncertainty-aware pseudo-label selection framework

for semi-supervised learning,” arXiv preprint arXiv:2101.06329, 2021.

[131] E. Okewu, S. Misra, and F.-S. Lius, “Parameter tuning using adaptive mo-

ment estimation in deep learning neural networks,” in Computational Sci-

ence and Its Applications–ICCSA 2020: 20th International Conference,

Cagliari, Italy, July 1–4, 2020, Proceedings, Part VI 20, pp. 261–272,

Springer, 2020.

[132] T. Kavzoglu, “Increasing the accuracy of neural network classification us-

ing refined training data,” Environmental Modelling & Software, vol. 24,

no. 7, pp. 850–858, 2009.

168 BIBLIOGRAPHY

[133] S. Chaudhury and T. Yamasaki, “Investigating generalization in neu-

ral networks under optimally evolved training perturbations,” in ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pp. 3617–3612, IEEE, 2020.

[134] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in 2017 ieee symposium on security and privacy (sp), pp. 39–

57, Ieee, 2017.

[135] Z. He, A. S. Rakin, and D. Fan, “Parametric noise injection: Trainable

randomness to improve deep neural network robustness against adversar-

ial attack,” in Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pp. 588–597, 2019.

[136] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and

A. Criminisi, “Measuring neural net robustness with constraints,” Ad-

vances in neural information processing systems, vol. 29, 2016.

[137] S. Taheri, M. Salem, and J.-S. Yuan, “Razornet: Adversarial training and

noise training on a deep neural network fooled by a shallow neural net-

work,” Big Data and Cognitive Computing, vol. 3, no. 3, p. 43, 2019.

[138] F. Juefei-Xu, V. Naresh Boddeti, and M. Savvides, “Local binary con-

volutional neural networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 19–28, 2017.

[139] F. Juefei-Xu, V. N. Boddeti, and M. Savvides, “Perturbative neural net-

works,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 3310–3318, 2018.

[140] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,

BIBLIOGRAPHY 169

and J. Martens, “Adding gradient noise improves learning for very deep

networks,” arXiv preprint arXiv:1511.06807, 2015.

[141] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smooth-

grad: removing noise by adding noise,” arXiv preprint arXiv:1706.03825,

2017.

[142] E. Dai, C. Aggarwal, and S. Wang, “Nrgnn: Learning a label noise re-

sistant graph neural network on sparsely and noisily labeled graphs,” in

Proceedings of the 27th ACM SIGKDD conference on knowledge discov-

ery & data mining, pp. 227–236, 2021.

[143] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight

uncertainty in neural network,” in International conference on machine

learning, pp. 1613–1622, PMLR, 2015.

[144] N. Pawlowski, A. Brock, M. C. Lee, M. Rajchl, and B. Glocker, “Implicit

weight uncertainty in neural networks,” arXiv preprint arXiv:1711.01297,

2017.

[145] X. He, L. Ke, W. Lu, G. Yan, and X. Zhang, “Axtrain: Hardware-oriented

neural network training for approximate inference,” in Proceedings of the

international symposium on low power electronics and design, pp. 1–6,

2018.

[146] C. Wang, L. Xiong, J. Sun, and W. Yao, “Memristor-based neural net-

works with weight simultaneous perturbation training,” Nonlinear Dy-

namics, vol. 95, no. 4, pp. 2893–2906, 2019.

[147] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: percep-

tron, madaline, and backpropagation,” Proceedings of the IEEE, vol. 78,

170 BIBLIOGRAPHY

no. 9, pp. 1415–1442, 1990.

[148] M. Jabri and B. Flower, “Weight perturbation: An optimal architecture

and learning technique for analog vlsi feedforward and recurrent multi-

layer networks,” IEEE Transactions on Neural Networks, vol. 3, no. 1,

pp. 154–157, 1992.

[149] D. Psaltis and Y. Qiao, “Iv adaptive multilayer optical networks,” in

Progress in optics, vol. 31, pp. 227–261, Elsevier, 1993.

[150] R. D. Brandt and F. Lin, “Supervised learning in neural networks without

feedback network,” in Proceedings of the 1996 IEEE International Sym-

posium on Intelligent Control, pp. 86–90, IEEE, 1998.

[151] P. Ienne, P. Thiran, and N. Vassilas, “Modified self-organizing feature map

algorithms for efficient digital hardware implementation,” IEEE Transac-

tions on Neural Networks, vol. 8, no. 2, pp. 315–330, 1997.

[152] H. Pujol, J.-O. Klein, E. Belhaire, and P. Garda, “Ra: An analog neuro-

computer for the synchronous boltzmann machine,” in Proceedings of the

Fourth International Conference on Microelectronics for Neural Networks

and Fuzzy Systems, pp. 449–455, IEEE, 1994.

[153] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining explanations in ai,”

in Proceedings of the conference on fairness, accountability, and trans-

parency, pp. 279–288, 2019.

[154] E. Dai, T. Zhao, H. Zhu, J. Xu, Z. Guo, H. Liu, J. Tang, and S. Wang, “A

comprehensive survey on trustworthy graph neural networks: Privacy, ro-

bustness, fairness, and explainability,” arXiv preprint arXiv:2204.08570,

2022.

BIBLIOGRAPHY 171

[155] J. Pizarroso, J. Portela, and A. Muñoz, “Neuralsens: sensitivity analysis

of neural networks,” arXiv preprint arXiv:2002.11423, 2020.

[156] J.-S. Jang and C.-T. Sun, “Neuro-fuzzy modeling and control,” Proceed-

ings of the IEEE, vol. 83, no. 3, pp. 378–406, 1995.

[157] P. V. de Campos Souza, “Fuzzy neural networks and neuro-fuzzy net-

works: A review the main techniques and applications used in the litera-

ture,” Applied soft computing, vol. 92, p. 106275, 2020.

[158] A. Schmid and Y. Leblebici, “Robust circuit and system design method-

ologies for nanometer-scale devices and single-electron transistors,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12,

no. 11, pp. 1156–1166, 2004.

[159] S. Mitra, H. Cho, T. Hong, Y. M. Kim, H.-H. K. Lee, L. Leem, Y. Li,

D. Lin, E. Mintarno, D. Mui, et al., “Robust system design,” IPSJ Trans-

actions on System and LSI Design Methodology, vol. 4, pp. 2–30, 2011.

[160] T.-C. Huang, J.-L. Huang, and K.-T. Cheng, “Robust circuit design for

flexible electronics,” IEEE Design & Test of Computers, vol. 28, no. 6,

pp. 8–15, 2011.

[161] Y. Pan, Z. He, N. Guo, and Z. Zhang, “Distributionally robust circuit

design optimization under variation shifts,” in 2023 IEEE/ACM Interna-

tional Conference on Computer Aided Design (ICCAD), pp. 1–8, IEEE,

2023.

[162] H.-G. Beyer and B. Sendhoff, “Robust optimization–a comprehensive sur-

vey,” Computer methods in applied mechanics and engineering, vol. 196,

no. 33-34, pp. 3190–3218, 2007.

172 BIBLIOGRAPHY

[163] B. L. Gorissen, İ. Yanıkoğlu, and D. Den Hertog, “A practical guide to

robust optimization,” Omega, vol. 53, pp. 124–137, 2015.

[164] D. Telen, M. Vallerio, L. Cabianca, B. Houska, J. Van Impe, and F. Logist,

“Approximate robust optimization of nonlinear systems under paramet-

ric uncertainty and process noise,” Journal of Process Control, vol. 33,

pp. 140–154, 2015.

[165] S. Xu, Q. Wang, X. Wang, S. Wang, and T. T. Ye, “Multiplication through

a single look-up-table (lut) in cnn inference computation,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 41, no. 6, pp. 1916–1928, 2021.

[166] F. M. Dias, A. Antunes, and A. M. Mota, “Artificial neural networks: a

review of commercial hardware,” Engineering Applications of Artificial

Intelligence, vol. 17, no. 8, pp. 945–952, 2004.

[167] G. Serpen and Z. Gao, “Complexity analysis of multilayer perceptron neu-

ral network embedded into a wireless sensor network,” Procedia Com-

puter Science, vol. 36, pp. 192–197, 2014.

[168] K. He and J. Sun, “Convolutional neural networks at constrained time

cost,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp. 5353–5360, 2015.

[169] R. Lee and I.-Y. Chen, “The time complexity analysis of neural network

model configurations,” in 2020 International conference on mathematics

and computers in science and engineering (MACISE), pp. 178–183, IEEE,

2020.

[170] J. Šı́ma, “Energy complexity of recurrent neural networks,” Neural Com-

BIBLIOGRAPHY 173

putation, vol. 26, no. 5, pp. 953–973, 2014.

[171] J. W. Carr III, “Error analysis in floating point arithmetic,” Communica-

tions of the ACM, vol. 2, no. 5, pp. 10–15, 1959.

[172] K. Kalliojarvi and J. Astola, “Roundoff errors in block-floating-point sys-

tems,” IEEE transactions on signal processing, vol. 44, no. 4, pp. 783–

790, 1996.

[173] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tatlock, “Finding root

causes of floating point error,” in Proceedings of the 39th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, pp. 256–269, 2018.

[174] D. A. Medler, M. R. Dawson, et al., “Using redundancy to improve the

performance of artificial neural networks,” in Proceedings of the Biennial

Conference-Canadian Society for Computational Studies of Intelligence,

pp. 131–138, CANADIAN INFORMATION PROCESSING SOCIETY,

1994.

[175] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver,

“How reduced data precision and degree of parallelism impact the relia-

bility of convolutional neural networks on fpgas,” IEEE Transactions on

Nuclear Science, vol. 68, no. 5, pp. 865–872, 2021.

[176] G. Ras, N. Xie, M. Van Gerven, and D. Doran, “Explainable deep learn-

ing: A field guide for the uninitiated,” Journal of Artificial Intelligence

Research, vol. 73, pp. 329–396, 2022.

[177] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial intel-

ligence: Understanding, visualizing and interpreting deep learning mod-

174 BIBLIOGRAPHY

els,” arXiv preprint arXiv:1708.08296, 2017.

[178] P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson,

“Explainable artificial intelligence: an analytical review,” Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery, vol. 11, no. 5,

p. e1424, 2021.

[179] N. Frosst and G. Hinton, “Distilling a neural network into a soft decision

tree,” arXiv preprint arXiv:1711.09784, 2017.

[180] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Adaptive

Computation and Machine Learning, The MIT Press, 2016.

[181] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[182] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of

an unknown mapping and its derivatives using multilayer feedforward net-

works,” Neural Netw., vol. 3, no. 5, pp. 551–560, 1990.

[183] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedfor-

ward networks with a nonpolynomial activation function can approximate

any function,” Neural networks, vol. 6, no. 6, pp. 861–867, 1993.

[184] D. Hernandez and T. B. Brown, “Measuring the algorithmic efficiency of

neural networks,” arXiv preprint arXiv:2005.04305, 2020.

[185] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Compute

and energy consumption trends in deep learning inference,” arXiv preprint

arXiv:2109.05472, 2021.

[186] M. Horowitz, “1.1 computing’s energy problem (and what we can do

about it),” in 2014 IEEE International Solid-State Circuits Conference Di-

BIBLIOGRAPHY 175

gest of Technical Papers (ISSCC), pp. 10–14, 2014.

[187] H. P. Graf and L. D. Jackel, “Analog electronic neural network circuits,”

IEEE Circuits and Devices magazine, vol. 5, no. 4, pp. 44–49, 1989.

[188] I. Aleksander, W. Thomas, and P. Bowden, “WISARD· a radical step for-

ward in image recognition,” Sensor review, vol. 4, no. 3, pp. 120–124,

1984.

[189] M. Weeks, M. Freeman, A. Moulds, and J. Austin, “Developing hardware-

based applications using PRESENCE-2,” in Perspectives in pervasive

computing, pp. 107–114, IET, 2005.

[190] D. Wang and D. Terman, “Image segmentation based on oscillatory cor-

relation,” Neural Computation, vol. 9, no. 4, pp. 805–836, 1997.

[191] R. Harrison, “A low-power analog VLSI visual collision detector,” Ad-

vances in Neural Information Processing Systems, vol. 16, 2003.

[192] S. Bellis, K. M. Razeeb, C. Saha, K. Delaney, C. O’Mathuna, A. Pounds-

Cornish, G. de Souza, M. Colley, H. Hagras, G. Clarke, et al., “FPGA im-

plementation of spiking neural networks-an initial step towards building

tangible collaborative autonomous agents,” in Proceedings. 2004 IEEE

International Conference on Field-Programmable Technology (IEEE Cat.

No. 04EX921), pp. 449–452, IEEE, 2004.

[193] H. Li, D. Zhang, and S. Y. Foo, “A stochastic digital implementation of a

neural network controller for small wind turbine systems,” IEEE Transac-

tions on Power Electronics, vol. 21, no. 5, pp. 1502–1507, 2006.

[194] L. M. Reyneri, M. Chiaberge, and L. Zocca, “CINTIA: A neuro-fuzzy real

time controller for low power embedded systems,” in Proceedings of the

176 BIBLIOGRAPHY

Fourth International Conference on Microelectronics for Neural Networks

and Fuzzy Systems, pp. 392–403, IEEE, 1994.

[195] M. Tommiska, “Efficient digital implementation of the sigmoid func-

tion for reprogrammable logic,” IEE Proceedings-Computers and Digital

Techniques, vol. 150, no. 6, pp. 403–411, 2003.

[196] K. Basterretxea, J. M. Tarela, and I. del Campo, “Approximation of sig-

moid function and the derivative for hardware implementation of artificial

neurons,” IEE Proceedings-Circuits, Devices and Systems, vol. 151, no. 1,

pp. 18–24, 2004.

[197] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi, “Ef-

ficient hardware implementation of the hyperbolic tangent sigmoid func-

tion,” in 2009 IEEE International Symposium on Circuits and Systems,

pp. 2117–2120, IEEE, 2009.

[198] L. Gatet, H. Tap-Béteille, and M. Lescure, “Analog neural network imple-

mentation for a real-time surface classification application,” IEEE Sensors

Journal, vol. 8, no. 8, pp. 1413–1421, 2008.

[199] G. Khodabandehloo, M. Mirhassani, and M. Ahmadi, “Analog implemen-

tation of a novel resistive-type sigmoidal neuron,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 20, no. 4, pp. 750–754,

2011.

[200] J.-M. Sallese, M. Bucher, F. Krummenacher, and P. Fazan, “Inversion

charge linearization in MOSFET modeling and rigorous derivation of the

EKV compact model,” Solid-State Electronics, vol. 47, no. 4, pp. 677–

683, 2003.

BIBLIOGRAPHY 177

[201] C. Galup-Montoro, M. C. Schneider, H. Klimach, and A. Arnaud, “A

compact model of MOSFET mismatch for circuit design,” IEEE Journal

of Solid-State Circuits, vol. 40, no. 8, pp. 1649–1657, 2005.

[202] A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, “A simple semiem-

pirical short-channel MOSFET current–voltage model continuous across

all regions of operation and employing only physical parameters,” IEEE

Transactions on Electron Devices, vol. 56, no. 8, pp. 1674–1680, 2009.

[203] J. P. Duarte, S. Khandelwal, A. Medury, C. Hu, P. Kushwaha, H. Agarwal,

A. Dasgupta, and Y. S. Chauhan, “BSIM-CMG: Standard FinFET com-

pact model for advanced circuit design,” in ESSCIRC Conference 2015-

41st European Solid-State Circuits Conference (ESSCIRC), pp. 196–201,

IEEE, 2015.

[204] F. A. Khanday, N. A. Kant, M. R. Dar, T. Z. A. Zulkifli, and C. Psy-

chalinos, “Low-voltage low-power integrable cmos circuit implementa-

tion of integer- and fractional–order fitzhugh–nagumo neuron model,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 30,

no. 7, pp. 2108–2122, 2019.

[205] B. Razavi, Design of analog CMOS integrated circuits. Tsinghua Univer-

sity Press, 2005.

[206] M. Alioto, “Understanding DC behaviour of subthreshold CMOS logic

through closed-form analysis,” IEEE Transactions on Circuits and Sys-

tems, vol. 57, pp. 1597–1607, 2010.

[207] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreeto, and A. H., “Mobilenets: Efficient convolutional neural net-

178 BIBLIOGRAPHY

works for mobile vision applications,” arXiv preprint arXiv:1704.04861,

2016.

[208] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete, “A survey on mod-

ern trainable activation functions,” Neural Networks, vol. 138, pp. 14–32,

2021.

[209] H. H. Aghdam and E. J. Heravi, “Guide to convolutional neural networks,”

New York, NY: Springer, vol. 10, no. 978-973, p. 51, 2017.

[210] Nanoscale Integration and Modeling Group, Arizona State University,

“Predictive Technology Model.” http://ptm.asu.edu/, 2008.

[211] P. Daponte, D. Grimaldi, and L. Michaeli, “A full neural gray-code-based

adc,” IEEE transactions on instrumentation and measurement, vol. 45,

no. 2, pp. 634–639, 1996.

[212] P. Pace, D. Styer, and I. Akin, “A folding adc preprocessing architecture

employing a robust symmetrical number system with gray-code proper-

ties,” IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 47, no. 5, pp. 462–467, 2000.

[213] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y.

Hou, and M. Tegmark, “Kan: Kolmogorov-arnold networks,” 2024.

[214] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired com-

puting,” Nature materials, vol. 18, no. 4, pp. 309–323, 2019.

[215] M. A. Hanif, A. Manglik, and M. Shafique, “Resistive crossbar-

aware neural network design and optimization,” IEEE Access, vol. 8,

pp. 229066–229085, 2020.

[216] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Memristor crossbar deep net-

BIBLIOGRAPHY 179

work implementation based on a convolutional neural network,” in 2016

International joint conference on neural networks (IJCNN), pp. 963–970,

IEEE, 2016.

[217] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and

D. Strukov, “Implementation of multilayer perceptron network with

highly uniform passive memristive crossbar circuits,” Nature communi-

cations, vol. 9, no. 1, p. 2331, 2018.

[218] X. Liu and Z. Zeng, “Memristor crossbar architectures for implement-

ing deep neural networks,” Complex & Intelligent Systems, vol. 8, no. 2,

pp. 787–802, 2022.

[219] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,

“Accelerator-friendly neural-network training: Learning variations and

defects in rram crossbar,” in Design, Automation & Test in Europe Con-

ference & Exhibition (DATE), 2017, pp. 19–24, IEEE, 2017.

[220] J. Hur, Y.-C. Luo, A. Lu, T.-H. Wang, S. Li, A. I. Khan, and S. Yu, “Non-

volatile capacitive crossbar array for in-memory computing,” Advanced

Intelligent Systems, vol. 4, no. 8, p. 2100258, 2022.

[221] S. Hong, H. Kang, J. Kim, and K. Cho, “Low voltage time-based ma-

trix multiplier-and-accumulator for neural computing system,” Electron-

ics, vol. 9, no. 12, p. 2138, 2020.

[222] Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma, Z. Sun, Q. Sun, L. Chen,

H. Zhu, J. Wan, et al., “An in-memory computing architecture based

on two-dimensional semiconductors for multiply-accumulate operations,”

Nature communications, vol. 12, no. 1, p. 3347, 2021.

180 BIBLIOGRAPHY

[223] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner,

N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner, et al., “A crossbar

network for silicon quantum dot qubits,” Science advances, vol. 4, no. 7,

p. eaar3960, 2018.

[224] D. Tran and C. Teuscher, “Memcapacitive devices in logic and crossbar

applications,” arXiv preprint arXiv:1704.05921, 2017.

[225] Y.-C. Luo, A. Lu, J. Hur, S. Li, and S. Yu, “Design of non-volatile capaci-

tive crossbar array for in-memory computing,” in 2021 IEEE International

Memory Workshop (IMW), pp. 1–4, IEEE, 2021.

[226] W. Kahan, “Ieee standard 754 for binary floating-point arithmetic,” Lec-

ture Notes on the Status of IEEE, vol. 754, no. 94720-1776, p. 11, 1996.

[227] W. Cody et al., “Ieee standards 754 and 854 for floating-point arithmetic,”

The IEEE Magazine MICRO, pp. 84–100, 1984.

[228] R. Tibshirani, “A comparison of some error estimates for neural network

models,” Neural computation, vol. 8, no. 1, pp. 152–163, 1996.

[229] L. Schott, J. Rauber, M. Bethge, and W. Brendel, “Towards the first adver-

sarially robust neural network model on mnist,” in Seventh International

Conference on Learning Representations (ICLR 2019), pp. 1–16, 2019.

[230] E. M. El Mhamdi, R. Guerraoui, and S. L. A. Rouault, “On the robust-

ness of a neural network,” in 2017 IEEE 36th Symposium on Reliable

Distributed Systems (SRDS), pp. 84–93, 2017.

[231] R. S. Chen, B. Lucier, Y. Singer, and V. Syrgkanis, “Robust optimization

for non-convex objectives,” Advances in Neural Information Processing

Systems, vol. 30, 2017.

BIBLIOGRAPHY 181

[232] S. Webb, T. Rainforth, Y. Teh, and P. Mudigonda, “A statistical approach

to assessing neural network robustness,” in Seventh International Con-

ference on Learning Representations (ICLR 2019), International Confer-

ences on Learning Representations, 2019.

[233] Y. Ding, W. Jiang, Q. Lou, J. Liu, J. Xiong, X. S. Hu, X. Xu, and Y. Shi,

“Hardware design and the competency awareness of a neural network,”

Nature Electronics, vol. 3, no. 9, pp. 514–523, 2020.

[234] R. Mangal, A. V. Nori, and A. Orso, “Robustness of neural networks:

A probabilistic and practical approach,” in 2019 IEEE/ACM 41st Inter-

national Conference on Software Engineering: New Ideas and Emerging

Results (ICSE-NIER), pp. 93–96, IEEE, 2019.

[235] S.-i. Yi, J. D. Kendall, R. S. Williams, and S. Kumar, “Activity-difference

training of deep neural networks using memristor crossbars,” Nature Elec-

tronics, vol. 6, no. 1, pp. 45–51, 2023.

[236] Y. Yamagishi, T. Kaneko, M. Akai-Kasaya, and T. Asai, “Holmes: A

hardware-oriented optimizer using logarithms,” IEICE TRANSACTIONS

on Information and Systems, vol. 105, no. 12, pp. 2040–2047, 2022.

[237] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random

synaptic feedback weights support error backpropagation for deep learn-

ing,” Nature communications, vol. 7, no. 1, p. 13276, 2016.

[238] A. Nøkland, “Direct feedback alignment provides learning in deep neural

networks,” Advances in neural information processing systems, vol. 29,

2016.

[239] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simu-

182 BIBLIOGRAPHY

lated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[240] L. R. Rere, M. I. Fanany, and A. M. Arymurthy, “Simulated annealing al-

gorithm for deep learning,” Procedia Computer Science, vol. 72, pp. 137–

144, 2015.

[241] M. Creutz, “Microcanonical monte carlo simulation,” Physical Review

Letters, vol. 50, no. 19, p. 1411, 1983.

[242] G. Dueck and T. Scheuer, “Threshold accepting: A general purpose op-

timization algorithm appearing superior to simulated annealing,” Journal

of computational physics, vol. 90, no. 1, pp. 161–175, 1990.

[243] I. Charon and O. Hudry, “The noising method: a new method for combina-

torial optimization,” Operations Research Letters, vol. 14, no. 3, pp. 133–

137, 1993.

[244] F. Glover, “Future paths for integer programming and links to artificial

intelligence,” Computers & operations research, vol. 13, no. 5, pp. 533–

549, 1986.

[245] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization meta-

heuristics,” Information sciences, vol. 237, pp. 82–117, 2013.

[246] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between cap-

sules,” Advances in neural information processing systems, vol. 30, 2017.

[247] M. Stern and A. Murugan, “Learning without neurons in physical sys-

tems,” Annual Review of Condensed Matter Physics, vol. 14, pp. 417–441,

2023.

[248] D. O. Hebb, The organization of behavior: A neuropsychological theory.

Psychology press, 2005.

BIBLIOGRAPHY 183

[249] M. S. Thomas and J. L. McClelland, “Connectionist models of cognition,”

The Cambridge handbook of computational psychology, pp. 23–58, 2008.

[250] T. Miconi, “Hebbian learning with gradients: Hebbian convolutional neu-

ral networks with modern deep learning frameworks,” arXiv preprint

arXiv:2107.01729, 2021.

[251] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning

through spike-timing-dependent synaptic plasticity,” Nature neuroscience,

vol. 3, no. 9, pp. 919–926, 2000.

[252] J. L. McClelland, A. G. Thomas, B. D. McCandliss, and J. A. Fiez, “Un-

derstanding failures of learning: Hebbian learning, competition for repre-

sentational space, and some preliminary experimental data,” Progress in

brain research, vol. 121, pp. 75–80, 1999.

[253] D. Zipser and R. A. Andersen, “A back-propagation programmed network

that simulates response properties of a subset of posterior parietal neu-

rons,” Nature, vol. 331, no. 6158, pp. 679–684, 1988.

[254] J. C. Whittington and R. Bogacz, “Theories of error back-propagation in

the brain,” Trends in cognitive sciences, vol. 23, no. 3, pp. 235–250, 2019.

[255] R. C. O’Reilly, “Biologically plausible error-driven learning using local

activation differences: The generalized recirculation algorithm,” Neural

computation, vol. 8, no. 5, pp. 895–938, 1996.

[256] K. Friston, “The free-energy principle: a unified brain theory?,” Nature

reviews neuroscience, vol. 11, no. 2, pp. 127–138, 2010.

[257] J. C. Whittington and R. Bogacz, “An approximation of the error back-

propagation algorithm in a predictive coding network with local hebbian

184 BIBLIOGRAPHY

synaptic plasticity,” Neural computation, vol. 29, no. 5, pp. 1229–1262,

2017.

[258] F. A. Mikulasch, L. Rudelt, M. Wibral, and V. Priesemann, “Where is

the error? hierarchical predictive coding through dendritic error computa-

tion,” Trends in Neurosciences, vol. 46, no. 1, pp. 45–59, 2023.

[259] P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal of

King Saud University-Computer and Information Sciences, vol. 34, no. 4,

pp. 1595–1623, 2022.

[260] Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and

A. S. Hafid, “A comprehensive survey on tinyml,” IEEE Access, 2023.

[261] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart ob-

jects: Challenges and opportunities,” IEEE Circuits and Systems Maga-

zine, vol. 20, no. 3, pp. 4–18, 2020.

[262] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tan-

abe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda, et al., “Description

and discussion on dcase2020 challenge task2: Unsupervised anoma-

lous sound detection for machine condition monitoring,” arXiv preprint

arXiv:2006.05822, 2020.

[263] P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Za-

slavsky, “Internet of things platform for smart farming: Experiences and

lessons learnt,” Sensors, vol. 16, no. 11, p. 1884, 2016.

[264] S. O. Ooko, M. M. Ogore, J. Nsenga, and M. Zennaro, “Tinyml in africa:

Opportunities and challenges,” in 2021 IEEE Globecom Workshops (GC

Wkshps), pp. 1–6, IEEE, 2021.

BIBLIOGRAPHY 185

[265] C. D. Căleanu, C. L. Sı̂rbu, and G. Simion, “Deep neural architectures for

contrast enhanced ultrasound (ceus) focal liver lesions automated diagno-

sis,” Sensors, vol. 21, no. 12, p. 4126, 2021.

[266] P. Randhawa, V. Shanthagiri, and A. Kumar, “A review on applied ma-

chine learning in wearable technology and its applications,” in 2017 Inter-

national Conference on Intelligent Sustainable Systems (ICISS), pp. 347–

354, IEEE, 2017.

[267] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holle-

man, X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, et al., “Bench-

marking tinyml systems: Challenges and direction,” arXiv preprint

arXiv:2003.04821, 2020.

[268] M. Quigley and M. Burke, “Low-cost internet of things digital technology

adoption in smes,” International Journal of Management Practice, vol. 6,

no. 2, pp. 153–164, 2013.

[269] L. Dutta and S. Bharali, “Tinyml meets iot: A comprehensive survey,”

Internet of Things, vol. 16, p. 100461, 2021.

[270] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,

“Patdnn: Achieving real-time dnn execution on mobile devices with

pattern-based weight pruning,” in Proceedings of the Twenty-Fifth In-

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pp. 907–922, 2020.

[271] G. Meijer, K. Makinwa, and M. Pertijs, Smart sensor systems: Emerging

technologies and applications. John Wiley & Sons, 2014.

[272] Z. Xu, T. Zhou, M. Ma, C. Deng, Q. Dai, and L. Fang, “Large-scale pho-

186 BIBLIOGRAPHY

tonic chiplet taichi empowers 160-tops/w artificial general intelligence,”

Science, vol. 384, no. 6692, pp. 202–209, 2024.

[273] V. G. Costa and C. E. Pedreira, “Recent advances in decision trees: An

updated survey,” Artificial Intelligence Review, vol. 56, no. 5, pp. 4765–

4800, 2023.

[274] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot, et al., “Mastering the game of go with deep neural networks

and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[275] M. Elsisi, K. Mahmoud, M. Lehtonen, and M. M. Darwish, “Reliable

industry 4.0 based on machine learning and iot for analyzing, monitoring,

and securing smart meters,” Sensors, vol. 21, no. 2, p. 487, 2021.

[276] T. Rusch and A. Zeileis, “Discussion of” 50 years of classification and

regression trees”,” International Statistical Review, vol. 82, pp. 361–367,

2014.

[277] C. Rudin, “Stop explaining black box machine learning models for high

stakes decisions and use interpretable models instead,” Nature machine

intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[278] R. Balestriero, “Neural decision trees,” arXiv preprint arXiv:1702.07360,

2017.

[279] Y. Yang, I. G. Morillo, and T. M. Hospedales, “Deep neural decision

trees,” arXiv preprint arXiv:1806.06988, 2018.

[280] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo, “Deep neural

decision forests,” in Proceedings of the IEEE international conference on

BIBLIOGRAPHY 187

computer vision, pp. 1467–1475, 2015.

[281] S. Goswami, R. Pramanick, A. Patra, S. P. Rath, M. Foltin, A. Ariando,

D. Thompson, T. Venkatesan, S. Goswami, and R. S. Williams, “Decision

trees within a molecular memristor,” Nature, vol. 597, no. 7874, pp. 51–

56, 2021.

[282] H. D. Nguyen and F. Chamroukhi, “Practical and theoretical aspects of

mixture-of-experts modeling: An overview,” Wiley Interdisciplinary Re-

views: Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1246,

2018.

[283] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature sur-

vey,” Artificial Intelligence Review, vol. 42, pp. 275–293, 2014.

188 BIBLIOGRAPHY

List of terms

FLOPS

floating-point operation per sec-

ond

MOSFET

metal oxide semiconductor field-

effect transistor

OPS/W

operation per second per Watt

ReLU6

Rectified Linear Unit 6

ReLU

Rectified Linear Unit

activation function

A function that calculates the

output of a node in an artificial

neural network based on its indi-

vidual inputs and their weights in

machine learning

ADC

analog-digital converter

AFC

activation function circuit

ALU

arithmetic logic unit

ANN

artificial neural network

AR

augmented reality

artificial intelligence

A field of research in computer

science that develops and studies

methods and software which en-

able machines to perceive their

environment and uses learning

and intelligence to take actions

that maximize their chances of

achieving defined goals.

ASIC

application-specific integrated

circuit

CE

cross-entropy

189

190 List of terms

CMOS

complementary metal oxide

semiconductor

CNN

convolutional neural network

CPPS

connection primitives per second

CPU

central processing unit

DRAM

dynamic random-access memory

DC

direct current

DIBL

drain induced barrier lowering

DNN

deep neural network

DPDT

double Pole double throw

DSP

digital signal processor

DT

decision tree

EMF

electromotive force

FET

field effect transistor

FLOP

floating-point operation

Fourier transform

A transform taking a function as

input and a function as output de-

scribing the extent to which vari-

ous frequencies are present in the

origin function.

FPGA

field-programmable gate array

global Lipschitz constant

The bound of a given neural net-

work’s output on the maximum

rate of change over its entire in-

put space.

GNN

graph neural network

GPU

graphics processing unit

List of terms 191

gradient descent

An optimization algorithm for

finding the local minimum of a

differentiable function.

HNN

hardware neural network

I/O

input / output

IC

integrated circuit

IoT

Internet of things

Kirchoff’s current law

The algebraic sum of currents in

a network of conductors meeting

at a point is zero.

Kirchoff’s voltage law

The directed total electromotive

force (EMF) around any closed

loop is zero.

Lagrange’s mean value theorem

For a given planar arc between

two endpoints, there is at least

one point at which the tangent to

the arc is parallel to the secant

through its endpoints.

LBCNN

local binary convolutional neural

network

loss function

A function that maps an event

or values of one or more vari-

ables onto a real number intu-

itively representing some cost as-

sociated with the event in mathe-

matical optimization.

LSB

least significant bit

LSTM

long short-term memory network

LUT

look-up table

MAC

multiply accumulate circuit

ML

machine learning

192 List of terms

MLP

multi-layer perceptron

MNIST

Modified National Institute of

Science and Technology

MoE

mixture of experts

Monte-Carlo method

An algorithm using randomness

to solve problems that might be

deterministic in principle rely on

repeated random sampling to ob-

tain numerical results.

MOS

metal oxide semiconductor

MSB

most significant bit

MSE

mean square error

MUX

multiplexer

N-MOS

N-Channel metal oxide semicon-

ductor

NDT

neural decision tree

neural network

A model inspired by the neu-

ron organization found in the bi-

ological nerve system in animal

brains in machine learning.

NLP

natural language processing

NP

non-deterministic polynomial

NP-Hard

non-deterministic polynomial-

hard

Op-Amp

operational amplifier

OPS

operation per second

P-MOS

P-Channel metal oxide semicon-

ductor

PDF

probability density function

List of terms 193

PIM

processing-in-memory

PTM

predictive technology model

PWL

piece-wise linear

RAM

random-access memory

ResNet

residual neural network

RMS

root mean square

RNN

recursive neural network

S/H

sample-and-hold

SRAM

static random-access memory

SGD

stochastic gradient descent

SI

Système International d’Unités

SNN

spiking neural network

SNR

signal-to-noise ratio

SoC

systems on a chip

SOI

silicon on insulator

SOTA

state-of-the-art

SPICE

simulation program with inte-

grated circuit emphasis

Taylor expansion

A method to present a function

by an infinite sum of terms ex-

pressing the function’s deriva-

tions at a given point.

TinyML

tiny machine learning

transfer function

A function that models the out-

put of a system for each possible

input in engineering.

194 List of terms

Turing complete

Having the ability to simulate

any Turing Machines.

VMM

vector-matrix multiplication

Appendix A

Introduction of Neural Networks

A neural network represents a sophisticated computational framework that

is inspired by the structure and function of the biological nervous system. It

is comprised of a multitude of interconnected neurons (or nodes) that facilitate

the transmission of signals through weighted connections. These neurons em-

ploy activation functions to non-linearly transform data, thereby emulating the

human brain’s information processing capabilities. Neural networks possess the

ability to learn and adjust, enabling them to execute complex tasks encompassing

classification, regression, clustering, and reinforcement learning.

A.1 Structural Composition of Neural Networks

Neural networks, known as a deep learning model, is typically composed

of multiple interconnected layers that collaboratively extract features from data

and execute specific tasks, such as classification, regression, or data generation.

Neural networks generally consist of three primary types of layers: the in-

put layer, hidden layer, and output layer. The input layer serves to receive raw

195

196 APPENDIX A. INTRODUCTION OF NEURAL NETWORKS

data, the hidden layer is responsible for processing this data and extracting per-

tinent features, while the output layer generates the final prediction or decision.

Each layer comprises multiple neurons interconnected via weights, which are

progressively fine-tuned throughout the training process.

A.1.1 Input Layer

The input layer serves as the initial layer of the model responsible for re-

ceiving the raw input data. In image recognition applications, this layer is gen-

erally a two-dimensional convolutional layer configured to process image pixel

data. Conversely, in natural language processing (NLP) tasks, the input layer

may consist of an embedding layer that converts text into numerical vector rep-

resentations.

A.1.2 Hidden Layers

Hidden layers are situated between the input layer and output layer, playing

a crucial role in extracting high-level features from the data. These layers can be

further classified into several types, including:

• Fully Connected Layer: Positioned between hidden layers or at the con-

clusion of the neural network, it utilises the activation values from the

preceding layer as inputs for classification or other tasks.

• Convolutional Layer: utilises filters or kernels to slide over the input data,

thereby extracting local features. This layer is extensively employed in

computer vision applications.

• Pooling Layer: Operates to reduce the spatial dimensions of the feature

A.1. STRUCTURAL COMPOSITION OF NEURAL NETWORKS 197

map, diminishes computational load while preserving essential informa-

tion. Typical pooling operations include Max Pooling and Average Pool-

ing.

• Activation Layer: Introduces non-linear transformations to enable the model

to learn complex function mappings. Common activation functions in-

clude Rectified Linear Unit (ReLU), Sigmoid, and tanh.

A.1.3 Output Layer

The output layer represents the final component of the model, and its ar-

chitecture is tailored to the specific task at hand. In classification tasks, this layer

typically incorporates softmax activation functions to generate a probability dis-

tribution. In regression tasks, the output layer may produce continuous value

predictions directly.

A.1.4 Layer Stacking

Layer stacking pertains to the strategic arrangement of various types of

layers in a specific order to form a comprehensive network architecture. The

output generated by each layer typically serves as the input for the subsequent

layer. During the stacking process, each layer extracts and transforms features

based on the preceding layer, progressively constructing a complex feature rep-

resentation.

In convolutional neural networks (CNNs), layer stacking generally follows

a progression from low-level features to high-level abstractions. The convolu-

tional and pooling layers alternate to systematically decrease the spatial dimen-

198 APPENDIX A. INTRODUCTION OF NEURAL NETWORKS

sions of the feature map while enhancing the feature abstraction level. The fully

connected layer is customarily positioned at the network’s end, integrating the

features across all levels and facilitating the final decision-making process.

In recursive neural networks (RNNs) and Transformer models, layer stack-

ing emphasizes the processing of sequential data, adeptly capturing dependen-

cies within the sequence through cyclic connections or self-attention mecha-

nisms.

In the design of deep learning models, the selection of appropriate layer

types and stacking strategies is paramount for optimizing the model’s perfor-

mance. By methodically adjusting the network architecture, it is feasible to

identify the optimal combination of layers and types to address a specific task

effectively.

A.2 Principle of Model Fitting

The back-propagation algorithm serves as a foundational learning mecha-

nism utilised for training artificial neural networks. This algorithm meticulously

updates the network weights by computing the gradient of the loss function con-

cerning these weights, with the objective of minimizing prediction errors.

A.2.1 Training Process of Neural Networks

The training process of neural networks encompasses the following pivotal

steps:

1. Data Pre-processing: Prior to initiating training, data typically undergoes

normalization or standardization procedures to ensure the network can ef-

A.2. PRINCIPLE OF MODEL FITTING 199

fectively learn the essential features.

2. Network Parameter Initialization: Weights and biases are generally initial-

ized randomly to disrupt symmetry and facilitate the network’s ability to

learn diverse features.

3. Forward Propagation: Input data traverses the network, with neurons at

each layer calculating their activation values based on their activation func-

tions and the outputs from the preceding layer.

4. Loss Calculation: The network’s predicted output is compared against the

actual label to derive the value of the loss function, which serves as an

indicator of prediction accuracy.

5. Back-propagation: The error is back-propagated through the network lay-

ers based on the loss function’s gradient, enabling the calculation of gradi-

ents for the weights and biases of neurons in each layer.

6. Parameter Update: Optimization algorithms such as gradient descent are

utilised to dynamically update network parameters in alignment with the

gradients to minimize losses.

7. Iterative Training: The cyclical sequence involving forward propagation,

loss calculation, back-propagation, and parameter update is reiterated until

the convergence conditions are satisfied or a predefined number of training

cycles is achieved.

8. Model Evaluation: Validation or test sets are utilised to assess the net-

work’s performance, allowing for hyper-parameter adjustments aimed at

model optimisation.

9. Model Tuning: Based on evaluation findings, modifications to the net-

200 APPENDIX A. INTRODUCTION OF NEURAL NETWORKS

work’s structure, learning rate, batch size, and other hyper-parameters may

be necessary to enhance the model’s generalization capabilities.

In practical applications, training neural networks may also necessitate

the implementation of strategies to mitigate over-fitting, which may include the

adoption of regularization techniques, dropout methods, or data augmentation

practices.

A.2.2 Fitting Principle of Neural Networks

The fitting principle of neural networks is fundamentally based on the error

back-propagation algorithm. During the forward propagation phase, input data

is transmitted through each layer of the network, where the neurons within each

layer compute activation values derived from their respective inputs and weights.

This process continues until the output layer generates a predicted result. Should

there be a discrepancy between this output and the actual label, the resultant error

is utilised to modify the weights and biases within the network.

The sequential workflow of the error back-propagation algorithm is delin-

eated as follows:

1. Output Layer Error Calculation: Initially, the error between the predicted

value from the output layer and the actual label must be computed, typi-

cally quantified using a loss function.

2. Gradient Calculation: The chain rule is applied to ascertain the error gra-

dients corresponding to each neuron’s weight and bias in the network. The

gradient indicates the rate of error change relative to the respective weights

and biases, thereby guiding the network in adjusting these parameters to

A.2. PRINCIPLE OF MODEL FITTING 201

minimize the error.

3. Weight and Bias Update: The optimisation algorithms (such as gradient

descent) are employed to update the network’s weights and biases based

on the previously calculated gradients. The update rule generally involves

subtracting the product of the learning rate and the gradient from the cur-

rent parameters to facilitate movement towards reduced error.

4. Iterative Optimization: This entire process is iteratively executed across

the training set until the network’s output aligns sufficiently with the actual

label or until a pre-established maximum number of iterations is reached.

Central to the back-propagation algorithm is the error back-propagation

mechanism, which initializes the output calculation via forward propagation and

subsequently refines the network weights through gradient descent in response

to the errors identified in the output.

The Taylor expansion represents a significant mathematical tool that fa-

cilitates the approximation of a function’s value by expanding it into an infinite

series around a designated point. In the context of optimisation challenges, the

Taylor expansion is frequently deployed to estimate the objective function, thus

aiding in identifying its minimum during iterative processes. The Newton itera-

tion method, which is predicated on the Taylor expansion, employs both the first

and second derivatives of a function—the gradient and Hessian matrix—to for-

mulate a quadratic function. The vertices of this quadratic representation are then

leveraged as approximations for the optimal solution in subsequent iterations.

The relationship between the back-propagation algorithm and both the

Taylor expansion and Newton iteration method lies in their utilization of deriva-

202 APPENDIX A. INTRODUCTION OF NEURAL NETWORKS

tive information to streamline the search for optimal solutions. Specifically, in

the back-propagation algorithm, weight updates are achieved through the cal-

culation of the gradient of the loss function, akin to the first-order approxima-

tions found in the Taylor expansion. The Newton iteration method enhances this

process by incorporating the Hessian matrix, allowing for the establishment of

second-order approximations. This refinement facilitates a more rapid conver-

gence towards the optimal solution by considering the function’s curvature. In

various optimisation strategies, notably quasi-Newton methods, direct computa-

tion of the Hessian matrix is not performed; however, these methods still con-

tribute to expediting convergence through matrix approximation updates, demon-

strating notable efficacy in the training of neural networks.

In practical implementations, the back-propagation algorithm is extensively

adopted for neural network training due to its comparatively straightforward and

user-friendly execution. While both the Newton iteration method and quasi-

Newton approaches exhibit rapid convergence, they are not as commonly em-

ployed as the back-propagation algorithm within the realm of neural network

training. Nonetheless, these methodologies may prove more advantageous for

large-scale optimisation problems, particularly in scenarios where the Hessian

matrix is sparse or nearly positive definite.

A.3. DEVELOPMENT OF NEURAL NETWORKS 203

A.3 Development of Neural Networks

A.3.1 Perceptron

Perceptrons represent the foundational structure of neural networks, ini-

tially introduced by Frank Rosenblatt in 1957. They consist of one or multiple

input nodes, a single output node, and a threshold component. Mathematically,

the perceptron can be articulated as a linear function augmented by an activa-

tion functions, typically represented as a step function. These models are adept

at learning linearly separable decision boundaries, making them appropriate for

straightforward binary classification tasks.

A.3.2 Multi-layer Perceptron

The multi-layer perceptron (MLP) builds upon the perceptron framework

by incorporating at least one hidden layer, each containing multiple neurons.

MLPs are distinguished by their use of non-linear activation functions, allowing

the network to learn and approximate complex non-linear relationships effec-

tively. The architecture of an MLP comprises an input layer, one or more hidden

layers, and an output layer, with neurons interlinked by weighted connections

across layers.

A.3.3 Convolutional Neural Network

Convolutional neural networks (CNNs) are advanced deep learning mod-

els specifically designed for the analysis of two-dimensional data, prominently

used in image and video processing applications. CNNs extract image features

204 APPENDIX A. INTRODUCTION OF NEURAL NETWORKS

through local connections and weight sharing within convolutional layers, com-

plemented by spatial reduction techniques and pooling operations. These net-

works proficiently process the spatial hierarchies inherent in images, reducing

model parameters while enhancing computational efficiency and generalization

capabilities.

A.3.4 Recursive Neural Network

Recursive neural networks (RNNs) represent a unique class of architec-

tures designed for sequential data processing, such as text and time series. RNNs

are characterized by their internal feedback loops, enabling the capture of tempo-

ral dynamics within sequential data. However, traditional RNNs can be hindered

by issues of vanishing and exploding gradients, which impede their performance

on long-distance dependencies.

A.3.5 Long Short-Term Memory Network and Gated Recur-

rent Unit

long short-term memory networks (LSTMs) and Gated Recurrent Units

are innovative adaptations of RNNs that address the limitations of traditional

configurations through the introduction of gating mechanisms. LSTMs manage

information flow via three distinct gates—forget gate, input gate, and output

gate—while GRUs streamline the architecture with only two gates: update gate

and reset gate. These models are efficient in learning and retaining long-range

dependent information.

A.4. RANGE OF APPLICATIONS 205

A.4 Range of Applications

Neural networks encompass a diverse spectrum of applications, including

but not limited to:

• Computer Vision: Encompasses image recognition, object detection, facial

recognition, etc.

• Natural Language Processing: Encompasses machine translation, senti-

ment analysis, text generation, etc.

• Speech Recognition: Refers to automatic speech recognition systems.

• Gaming: Involves the application of reinforcement learning in sectors such

as Go, video gaming, etc.

• Medical Diagnosis: Encompasses disease prediction and medical image

analysis.

• Autonomous Driving: Pertains to environmental perception and decision-

making.

• Recommendation Systems: Involves personalized content recommenda-

tions.

For instance, GoogleNet (Inception v1) exemplifies a deep CNN that achieves

multi-scale feature extraction through the innovative design of the Inception

module. This module encompasses convolutional kernels of varying sizes and

employs 1× 1 convolutions to minimize parameter count while enhancing non-

linearity. These modules can be stacked to create a profound network structure

that effectively captures diverse features of an image.

In the Transformer model, the multi-head self-attention mechanism per-

mits the model to consider global dependencies among individual elements within

206 APPENDIX A. INTRODUCTION OF NEURAL NETWORKS

a sequence during processing. This model facilitates efficient sequence process-

ing by stacking multiple identical encoder and decoder layers, each comprising

self-attention and feed-forward neural networks.

As technological advancements continue, the application domains of neu-

ral networks are rapidly expanding, accompanied by the emergence of novel

architectures and training methodologies.

Appendix B

Low Power 45nm MOS FET PTM

* PTM Low Power 45nm Metal Gate / High-K / Strained-Si

* nominal Vdd = 1.1V

.model nmos nmos level = 54

+version = 4.0 binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1

+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 0

+tnom = 27 toxe = 1.8e-009 toxp = 1.5e-009 toxm = 1.8e-009

+dtox = 3e-010 epsrox = 3.9 wint = 5e-009 lint = 0

+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1

+lwl = 0 wwl = 0 xpart = 0 toxref = 1.8e-009

+vth0 = 0.42261 k1 = 0.4 k2 = 0 k3 = 0

+k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2

+dvt2 = 0 dvt0w = 0 dvt1w = 0 dvt2w = 0

207

208 APPENDIX B. LOW POWER 45NM MOS FET PTM

+dsub = 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-010

+dvtp1 = 0.1 lpe0 = 0 lpeb = 0 xj = 1.4e-008

+ngate = 1e+023 ndep = 3.24e+018 nsd = 2e+020 phin = 0

+cdsc = 0 cdscb = 0 cdscd = 0 cit = 0

+voff = -0.13 nfactor = 1.6 eta0 = 0.0125 etab = 0

+vfb = -0.55 u0 = 0.049 ua = 6e-010 ub = 1.2e-018

+uc = 0 vsat = 130000 a0 = 1 ags = 0

+a1 = 0 a2 = 1 b0 = 0 b1 = 0

+keta = 0.04 dwg = 0 dwb = 0 pclm = 0.02

+pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout = 0.5

+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007

+fprout = 0.2 pdits = 0.08 pditsd = 0.23 pditsl = 2300000

+rsh = 5 rdsw = 210 rsw = 80 rdw = 80

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0

+prwb = 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005

+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.015211 bigc = 0.0027432

+cigc = 0.002 aigsd = 0.015211 bigsd = 0.0027432 cigsd = 0.002

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1

+xrcrg1 = 12 xrcrg2 = 5

+cgso = 1.1e-010 cgdo = 1.1e-010 cgbo = 2.56e-011 cgdl = 2.653e-010

+cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1

209

+moin = 15 noff = 0.9 voffcv = 0.02

+kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5

+ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011 prt = 0

+at = 33000

+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1

+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1

+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1

+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5

+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001

+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3

+dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0

+dwj = 0 xgw = 0 xgl = 0

+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.model pmos pmos level = 54

+version = 4.0 binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1

210 APPENDIX B. LOW POWER 45NM MOS FET PTM

+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 0

+tnom = 27 toxe = 1.82e-009 toxp = 1.5e-009 toxm = 1.82e-009

+dtox = 3.2e-010 epsrox = 3.9 wint = 5e-009 lint = 0

+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1

+lwl = 0 wwl = 0 xpart = 0 toxref = 1.82e-009

+vth0 = -0.42661 k1 = 0.4 k2 = -0.01 k3 = 0

+k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2

+dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011

+dvtp1 = 0.05 lpe0 = 0 lpeb = 0 xj = 1.4e-008

+ngate = 1e+023 ndep = 2.44e+018 nsd = 2e+020 phin = 0

+cdsc = 0 cdscb = 0 cdscd = 0 cit = 0

+voff = -0.126 nfactor = 1.8 eta0 = 0.0125 etab = 0

+vfb = 0.55 u0 = 0.021 ua = 2e-009 ub = 5e-019

+uc = 0 vsat = 90000 a0 = 1 ags = 1e-020

+a1 = 0 a2 = 1 b0 = 0 b1 = 0

+keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12

+pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008 drout = 0.56

+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 9.58e-007

+fprout = 0.2 pdits = 0.08 pditsd = 0.23 pditsl = 2300000

+rsh = 5 rdsw = 250 rsw = 75 rdw = 75

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0

211

+prwb = 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005

+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.0097 bigc = 0.00125

+cigc = 0.0008 aigsd = 0.0097 bigsd = 0.00125 cigsd = 0.0008

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1

+xrcrg1 = 12 xrcrg2 = 5

+cgso = 1.1e-010 cgdo = 1.1e-010 cgbo = 2.56e-011 cgdl = 2.653e-010

+cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02

+kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5

+ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011 prt = 0

+at = 33000

+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1

+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1

+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1

+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5

+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001

212 APPENDIX B. LOW POWER 45NM MOS FET PTM

+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3

+dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0

+dwj = 0 xgw = 0 xgl = 0

+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

	Introduction
	Motivation and Major Research Contributions
	Thesis Outline

	Summary of Related Literature
	Overview
	Development of Hardware Neural Network
	Implementations of hardware neural network systems
	Output performance of hardware neural network implementations

	Robustness Analysis and Optimisation
	Error analysis against variability and noise
	Robustness optimisation for neural networks

	Conclusion

	Methodology
	Overview
	Nomenclature and Validation Procedure
	Module design and communications
	Shared benchmark of modular system

	Performance and efficiency analysis
	Benchmark and method of analysis
	System and modular tolerance

	Conclusion

	Activation Function Circuit
	Overview
	Background: Hardware neural computing
	Motivation: Efficient Look-Up Table

	Push-Pull Linear Follower
	Circuit diagram
	Non-linear transfer function

	Activation Function Analysis
	Comparison with other activation functions
	Special applications

	Circuit Performance
	Energy consumption and responding time
	Fan-out

	Robustness Analysis
	Thermal and noise tolerance
	Tolerance in neural network system

	Conclusion

	Multiply Accumulate Circuit
	Overview
	Background: Crossbar circuit for linear transformations
	Motivation: Low-current Multiply Accumulate Circuit

	Multiply Circuit
	A scaleable quantized capacitive weighting system
	Pass-gate as the multiplexer

	Accumulate Circuit
	Linear follower and Operational Amplifier-based summing circuit
	H-bridge and charge pump-based summing circuit

	Crossbar Designed MAC
	MAC in functional blocks
	Space, time and energy efficiency

	Robustness Analysis
	Component tolerance in multiply circuit
	Parameter tolerance in neural network system

	Conclusion

	Systematic Analysis on Performance and Behaviour
	Overview
	Performance and Robustness
	Effect of variability in components
	Effect of variability on neural network level

	Limitations and Challenges
	Typical limitations for Operational Amplifier based design in hardware neural networks
	Compromise for H-bridge design in hardware neural networks

	Conclusion

	Potential Adjustments and Applications
	Overview
	Gradient-Free Robust Optimisation
	Hardware orientated optimiser
	Biology inspired optimiser

	Potential Applications
	Tiny machine learning
	Neuron decision tree and mixture of experts

	Conclusion

	Conclusion
	Summary of Contributions
	Limitations and Challenges

	Reference
	List of terms
	APPENDICES
	Introduction of Neural Networks
	Structural Composition of Neural Networks
	Input Layer
	Hidden Layers
	Output Layer
	Layer Stacking

	Principle of Model Fitting
	Training Process of Neural Networks
	Fitting Principle of Neural Networks

	Development of Neural Networks
	Perceptron
	Multi-layer Perceptron
	Convolutional Neural Network
	Recursive Neural Network
	Long Short-Term Memory Network and Gated Recurrent Unit

	Range of Applications

	Low Power 45nm MOS FET PTM

