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Abstract 

This thesis explores the integration of data-driven methodologies into material 

science and chemical engineering, focusing on the design and optimization of 

energy materials and industrial processes. The research is structured into three 

interconnected areas: catalyst design, energy material synthesis, and industrial 

process optimization. Chapter 4 investigates the structure-activity relationship of 

Pt-based alloys for oxygen reduction reaction (ORR) catalysis using high-

throughput density functional theory (DFT) and the SISSO algorithm, 

demonstrating how computational techniques can predict optimal catalyst 

candidates. Chapter 5 extends the data-driven approach to optimize the synthesis of 

lithium iron phosphate (LFP) using machine learning (ML) models, where active 

learning-based optimization enhances the electrochemical performance of battery 

materials. Finally, Chapter 6 shifts focus to macro-scale industrial process 

monitoring, applying long short-term memory (LSTM) networks and multivariate 

statistical process control (MPCA) for real-time monitoring and prediction of steam 

boiler operations in industrial settings. 

While these three chapters address distinct aspects of material science and chemical 

engineering, they share a unified methodological framework that employs data-

driven techniques to solve complex problems across different scales. From micro-

scale catalyst design to material synthesis at the meso-scale and real-time process 

optimization at the macro-scale, the common philosophy of iterative optimization, 
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integration of computational predictions with experimental validation, and data-

driven innovation provides a cohesive strategy. By seamlessly bridging the scales 

and methodologies, this work demonstrates the broad-reaching impact of data-

driven tools in the fourth paradigm of material science and chemical engineering. 

This thesis highlights the transformative potential of data-driven approaches, 

underscoring their applicability in accelerating the design of advanced materials, 

improving process efficiency, and contributing to the advancement of green 

chemical technology and sustainability. 
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Chapter 1 Introduction 

Introduction 

  



Chapter 1   University of Nottingham 

 

2 

 

1.1 Background 

Data-driven innovation has transformed all aspects of our life. It typically involves 

the invention of novel products and systems based on the knowledge extracted from 

data by using advanced analysis tools. The adoption of data-driven approaches has 

led to data-based decision-making innovations in commerce and technology, such 

as autonomous vehicles, MuZero, and Alphafold (artificial intelligence for 

mastering games and predicting protein folding, respectively) (Senior et al., 2020, 

Silver et al., 2018, Vinyals et al., 2019, Schrittwieser et al., 2020). In particular, the 

massive amounts of data generated by employing both computational and 

experimental methods, in combination with advanced machine-learning (ML) 

techniques, have led the field of materials science and chemical engineering into the 

fourth paradigm of scientific research (Figure 1.1) (Schleder et al., 2019). This data-

driven paradigm has resulted in the advancement of experimental tools, 

computational techniques, and big-data analysis (de Pablo et al., 2014, Green et al., 

2017). The transformation from the trial-and-error to the data-driven paradigm 

requires a combination of authoritative and updated knowledge from the three 

domains of mathematics and statistics, computer science, and materials science and 

chemical engineering (Sun et al., 2016). The advancement and appropriate 

integration of these three domains will contribute to chemical data generation and 

analysis, uncertainty characterization, and efficient exploration of structure-

property relationships, providing insights and promoting innovations in material 

science and chemical engineering. 
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Figure 1.1 The four paradigms of science evolved along with time, including 

empirical science, theoretical science, computational science and data-driven 

science. 

 

Data-driven innovations are essential and indispensable to breakthroughs in 

numerous applications, from energy conversion and storage to flexible electronics 

and optoelectronics (Chen et al., 2020a, Wexler et al., 2018a, Zhang et al., 2020a, 

Back et al., 2019, Tran and Ulissi, 2018, Dondapati and Chen, 2020, Ma et al., 2019, 

Zhang et al., 2020b). For instance, novel photovoltaic materials that are cheap, 

stable, and environmentally friendly, easy to synthesize, and exhibit a high power 

conversion efficiency are being investigated (Jin et al., 2020). Moreover, 

researchers are identifying highly active electrocatalysts that are selective towards 
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the reduction of carbon dioxide (Zhong et al., 2020b). The development of effective 

data-driven approaches is essential to meet the rapidly growing demand for 

innovative materials with improved and robust performance (Rück et al., 2020, 

Ulissi et al., 2017). A basic data-driven framework involves three fundamental 

stages: employment of data-intensive strategies and ML algorithms (Elton et al., 

2019, Lee et al., 2020), development of a comprehensive database and data 

generation approaches (Kirklin et al., 2015c, Jain et al., 2013), and construction of 

descriptors that can link data-intensive and experimental strategies (Chen et al., 

2019a, Ouyang et al., 2018).  

Data-driven approaches for enabling material science and chemical engineering 

have certain advantages: (1) they outperform conventional trial-and-error 

approaches in terms of efficiency and accuracy (Zunger, 2018, Hautier et al., 2012, 

Liu et al., 2017b); (2) they can rapidly learn and extract the complex and implicit 

inner correlations and knowledge from the massive amounts of chemical data (Chen 

et al., 2020b, Schleder et al., 2020, Jablonka et al., 2020, Ward et al., 2016a); (3) 

they can achieve tailored material design based on desired functionalities because 

of their ability to obtain composition-structure-process-property relations (Zunger, 

2018, Sanchez-Lengeling and Aspuru-Guzik, 2018); (4) they use ML models and 

descriptors to utilize complex features such as electron density and molecular 

graphs for improving the performance of combinatorial generalization and 

relational reasoning (Tabor et al., 2018, Chen et al., 2019a). Because of these 

advantages, many data-driven approaches exhibit high accuracy and efficiency in 

the prediction of properties and the exploration of property relationships (Lu et al., 
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2018). Furthermore, the potential of dynamic and iterative meta-optimization data-

driven processes, which represent an active learning loop that incorporates the 

fundamental stages, has been shown in some recent studies (Zhong et al., 2020b, 

Yuan et al., 2018). Comprehensive reviews have detailed the applicability of data-

driven approaches to energy materials (Chen et al., 2020b, Gu et al., 2019, Chen et 

al., 2020a), structural materials (Sparks et al., 2020), polymeric materials(Cencer et 

al., 2021), and porous materials(Jablonka et al., 2020), with the help of high-

throughput approaches such as density functional theory (DFT) and ML (Schleder 

et al., 2019). The applications of ML in synthetic chemistry (Strieth-Kalthoff et al., 

2020) and the prediction of material properties (Liu et al., 2017b) have also been 

published.  

The development of effective data-driven approaches is essential to meet the rapidly 

growing demand for superior materials and intelligent technologies with improved 

and robust performance. The main objective of the thesis is about exploring and 

developing methodology for applying data-driven approaches for rapid and efficient 

discovery of high-performance innovative materials at micro level and the effective 

establishment of intelligent and reliable system at macro level, thereby prompting 

and enhancing the development of material science and chemical engineering. To 

achieve this goal, the fundamental stages of the data-driven framework must be 

utilized and integrated, highlighting and the relationships between raw data and 

target properties or functions. Besides, those applications are mainly about energy 

materials design and discovery at micro level, and energy saving and efficiency 

improvements at macro level. 
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1.2 Thesis Outline 

Chapter 2 provides an overview of data-driven innovation in material science and 

chemical engineering, covering four key areas: commonly used frameworks such as 

direct design, inverse design, and active learning; an introduction to widely used 

chemical databases; an exploration of descriptors that transfer chemical data to ML 

models; and a discussion on the application of data-driven techniques in areas like 

ORR, CRR, and battery materials. 

Chapter 3 details the methodologies used throughout the thesis, including data 

generation, preparation, and collection. The chapter starts with the DFT calculation 

method for designing ORR catalysts, followed by the synthesis of LFP materials 

and associated characterization techniques. It concludes with a discussion on using 

data-driven techniques for real-time process monitoring, including control limits for 

fault detection. 

Chapter 4 integrates high-throughput DFT and ML techniques to identify innovative 

descriptors for screening Pt-based alloy catalysts for ORR. This data-driven strategy 

highlighted five promising candidates from 77 materials, with further refinement 

through active learning. The use of the SISSO algorithm created highly predictive 

feature combinations, contributing to both ORR performance predictions and the 

rational design of electrocatalysts. 
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Chapter 5 develops an active learning framework to optimize lab-scale LFP 

synthesis via the solid-state reaction. A dataset of 80 LFP samples was used to train 

ensemble ML models, which successfully identified synthesis parameters that led 

to high-performance LFP samples. This study demonstrates the potential of 

integrating machine learning into material synthesis to enhance battery material 

properties. 

Chapter 6 presents a generalized data-driven framework combining LSTM and 

MPCA for real-time fault detection in batch steam boilers. Using historical data, the 

system predicts future behavior and detects faults early, preventing failures and 

economic loss. This framework, validated with simulated data, paves the way for 

more intelligent monitoring systems in chemical engineering. 

Chapter 7 summarizes the research findings and outlines potential future research 

directions. 

 

1.3 Aims and Objectives 

This thesis represents the studies on enhancing and improving the collaboration and 

integration between data-driven tools and material science and chemical 

engineering, recognizing this as a key strategy to advance green chemical 

technology and enable carbon neutrality. Specifically, this research focused on 

implementing data-driven innovation at various scale, from micro to macro level, 

and across different sub-disciplines in material science and chemical engineering: 
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from DFT computation validation, to experimental synthesis optimization, to 

industrial operation monitoring. Chapter 4 proposes a strategy combining high-

throughput DFT calculations and machine learning to explore the descriptor used 

for screening Pt-based alloy catalysts with high Pt utilization and low Pt 

consumption. Moreover, Chapter 5 demonstrates a novel data-driven active learning 

framework to optimize the synthesis of high-performance lithium iron phosphate 

(LFP) materials. Furthermore, Chapter 6 develops a generalized framework 

incorporating conventional long-short-term memory (LSTM) network and multi-

way principal components analysis (MPCA) is developed to apply fault detection 

and monitoring techniques to the dynamical steam boiler operation process. These 

data-driven based applications are worthy to be concerned for advancing the design 

and discovery of energy materials and optimizing industrial operations, thereby 

shed light on enabling energy saving and using efficiency, and reducing CO2 

emissions. The details of the exploration about innovations in collaboration and 

integration between data-driven tools and material science and chemical 

engineering are as follows: 

1. The research in Chapter 4 aims to employ data-driven-based strategy in 

micro level material design and discovery. By integrating high-throughput 

DFT computations and ML techniques, innovative descriptors that can 

effectively screen Pt-based alloy catalysts with high Pt utilization and low 

Pt consumption for oxygen reduction reaction (ORR), are identified. By 

employing the data-driven strategy, 5 out of 77 materials are discovered as 

potential candidates that can catalytic ORR with low overpotential. 
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Moreover, with the established structure-property relationship, second and 

third round of active learning further recommend Pt-based alloys with high 

activity. Additionally, the utilized ML algorithm highlighted the critical 

features, as well as their combinations, which can be effectively employed 

for predicting the activity of Pt-based alloys. 

2. The research in Chapter 5 aims to utilize data-driven active learning 

framework to optimize the lab-scale synthesis parameters of high-

temperature solid-state reaction for the preparation of LFP materials. By 

learning from the dataset that contains the synthesis data of 80 LFP samples, 

an active learning-based framework incorporating with two ensemble ML 

models is developed. Specifically, a classification model works in series 

with a regression model. For a given synthesis recipe, the classification 

model will first predict the potential category of the sample: low, medium, 

and high compacted density of LFP under 30000N (ρ30kN). If the classifier 

identifies that the synthesis parameter will results a sample with high ρ30kN, 

the recipe is further sent into the regressor to accurately predict the value of 

initial discharge capacity at 1C rate of LFP samples (C1C). The recipe will 

be used as the synthesis parameter of the next experiment and therefore 

newly generated data will augment the original dataset, dynamically 

updating the ML models for giving next-round recommendations.  

3. The research in Chapter 6 aims to employ data-driven techniques on macro-

level chemical industrial processes. Specifically, a method based on the 



Chapter 1   University of Nottingham 

 

10 

 

integration between deep learning model and MPCA is proposed to conduct 

fault detection and online monitoring for steam boilers work in batches in 

the real industry. The proposed deep-learning-based method in this work can 

predict the future behavior of steam boilers, evaluate the process condition, 

prevent further fault development, and avoid safety issues and economic loss, 

only using a historical database of past normal operations. The proposed 

method employed simulated operation data to establish a framework with 

several critical stages including data pre-processing, establishment of a 

historical database, calculation of statistical control limit, fault detection and 

online monitoring, which are intuitive and straightforward to understand and 

identify faults. 

As is shown in Figure 1.2, the three main parts of this thesis: catalyst design 

(Chapter 4), material optimization (Chapter 5), and process monitoring (Chapter 

6), may seem distinct in their application, yet they are unified by a shared 

methodological framework rooted in data-driven innovation. Each chapter 

employs computational and experimental approaches, iterative optimization, 

and feature analysis to refine material properties and industrial processes at 

different scales. Specifically, data-driven methodologies underpin each part: 

high-throughput DFT calculations and the Sure Independence Screening and 

Sparsifying Operator (SISSO) algorithm for catalyst screening (Chapter 4), 

ensemble machine learning models for active learning-driven LFP synthesis 

optimization (Chapter 5), and LSTM-MPCA frameworks for real-time 

industrial process monitoring (Chapter 6). These approaches highlight the 
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scalability of data-driven techniques, from atomistic modeling at the micro-level 

to industrial-scale process optimization at the macro-level. 

 

Figure 1.2 The research framework of data-driven innovation employed in this 

thesis. 

 

Despite their differing applications, the three parts are connected by their shared 

focus on integrating computational predictions with experimental validation, 

and their commitment to iterative optimization. This unified approach 

demonstrates the transformative potential of data-driven methodologies in 

addressing complex challenges within material science and chemical 

engineering. By systematically bridging theory and experiment, the research not 

only advances material performance, such as in electrocatalysis and battery 

materials, but also enhances operational efficiency in industrial settings. These 

interconnections reinforce the overarching goal of advancing green chemical 
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technology and supporting carbon neutrality, ensuring a more structured and 

coherent presentation of the research. 
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2.1 Synopsis 

This chapter begins with a discussion of the recent advances in data-driven 

discovery in material science and innovation in chemical engineering. First, the 

various components of the conceptual framework, including the important stages 

that guide the data-driven process, are introduced. The typical data-driven 

frameworks and workflow, such as direct design, inverse design and active learning, 

as well as their critical stages, including data preparation, feature engineering and 

model training and applications, are described. Then for each critical stage, the 

chapter proceeds to give a more detailed review. The most wildly used databases, 

including computational and experimental databases, are introduced. Then this 

chapter critically reviews and summaries the commonly descriptors used in data-

driven applications, and the discussed the descriptors’ importance and the 

mechanism about how they transfer chemical information into the language that ML 

model can understand. Then this chapter also presents a critical discussion on how 

data-driven processes are applied in relevant material science and chemical 

engineering fields, including ORR, CRR and rechargeable alkali-ion batteries. 

Finally, this chapter ends with the description of the aims and objectives of the thesis, 

along with a brief outline of the thesis chapters. 

 

2.2 Overview of Data-Driven Innovations and Frameworks in 

Material Science and Chemical Engineering 
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The development of the data-driven framework for material innovation has been 

extensively studied by using ML algorithms (Chen et al., 2020b), material databases 

(Grazulis et al., 2009, Kirklin et al., 2015c, Jain et al., 2013), and molecular 

descriptors (Yap, 2011, Ward et al., 2016a). A classical data-driven framework for 

innovative material discovery typically consists of five fundamental stages: goal 

identification, data processing, feature engineering, ML and analysis, and 

application (Wang et al., 2020a). This section describes commonly used 

frameworks for data-driven processes, including direct design (Liu and Yu, 2020, 

Zunger, 2018), inverse design (Zunger, 2018, Sanchez-Lengeling and Aspuru-

Guzik, 2018), and active learning (Yuan et al., 2018, Zhong et al., 2020b, Zunger, 

2018). Critical stages such as data processing, feature engineering, and ML model 

training facilitate the utilization and processing of material data and molecular 

descriptors and the effective implementation of ML algorithms (Barnard, 2020, 

Kotsiantis; et al., 2007). 

The design and selection of the data-driven framework depend on the application 

and the material. Although ML can be potent and effective in a data-driven process, 

it is not the panacea to solve all challenges in materials science (Barnard, 2020). ML 

models cannot find solutions to questions that are ill-posed or not appropriately 

expressed. An in-depth and comprehensive understanding of the chemistry 

phenomena is necessary to accurately describe the question and relate it to a clear goal. 

The goal of a data-driven process should be specific, measurable, attainable, relevant, 

and timely (Schleder et al., 2019). Different ways of defining the goal will lead to 

varying outcomes of the data-driven process. For example, for the discovery of high-
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performance photovoltaic materials, Lu et al. (Lu et al., 2018) employed ML to predict 

the bandgap of candidate materials, whereas Padula et al. (Padula et al., 2019) 

predicted the power conversion efficiency. The nature of the question is also vital for 

designing the data-driven framework; using a classification model to explore the 

correlation between target properties and input features or a regression model to 

distinguish between several categories of materials is difficult. For instance, Jin et al. 

(Jin et al., 2020) applied a classification ML model to screen two-dimensional 

photovoltaic materials with suitable power conversion efficiencies, whereas Sahu et al. 

(Sahu et al., 2019) employed a regression ML model to predict the power conversion 

efficiency of candidate photovoltaic materials. Thus, the design of a suitable data-

driven framework requires the customization of data processing, feature engineering, 

and ML model deployment based on the questions being posed. 

 

2.2.1 Frameworks for the Overall Data-Driven Process 

The data-driven process framework organizes and integrates the fundamental stages 

of processing data (Pankajakshan et al., 2017), generating molecular descriptors 

(Ward et al., 2016a) and deploying the ML model (Wang et al., 2020a). Such 

frameworks determine the data flow and the interaction style between the theory 

and experiments or computations (Zunger, 2018, Sanchez-Lengeling and Aspuru-

Guzik, 2018, Gu et al., 2019). In this section, we introduced the most commonly 

employed frameworks to support the discovery of innovate materials including 

direct design, inverse design and active learning. As illustrated in Figure 2.1a and 
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b, direct and inverse design differ from one another in terms of the direction 

assumed by predictions between material structure and target functionality. Active 

learning (Figure 2.1c) focuses primarily on data flow in the dynamic iteration loop 

to improve and accelerate the search and prediction process (Zhong et al., 2020b, 

Yuan et al., 2018). Alternative data-driven frameworks have also been reported in 

light of specific material phenomena to be addressed. For example, regression and 

classification models could be assembled into a single framework to enable high-

throughput materials screening (Schleder et al., 2020). A transfer learning model 

could also be integrated into the framework to solve for a small data problem data 

within the broader the data-driven process (Frey et al., 2020).  

It is worth noting that the ML techniques in such data-driven frameworks extend far 

beyond property prediction and pattern recognition (Ouyang et al., 2018, Shenai et 

al., 2012, Maaten and Hinton, 2008). They can be utilized in other fundamental 

stages to generate features,(Yosipof et al., 2015) evaluate feature importance 

(Wexler et al., 2018a), and visualize data (Zhong et al., 2020b), In both direct and 

inverse design, the selection of ML algorithms influences the framework 

architecture (Sanchez-Lengeling and Aspuru-Guzik, 2018). 

 

 

 

2.2.1.1. Direct Design 
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Direct design is the conventional approach to material discovery and primarily 

involves measurement and theoretical interpretation of the target property (Zunger, 

2018). This trial-and-error approach involves searching for the material 

demonstrating the targeted functionality within the chemical space, which the prior 

knowledge can help constrain (Schleder et al., 2019). Analogous to the structure-

property relations derived by data-driven approaches, the direct design approach 

typically employs the structural features of known materials to predict target 

properties. Though direct design is widely employed, it presents obstacles to 

deliberate discovery. For example, as the direct design initiates from a known 

structure, it is unable arrive at materials whose structure is not known a priori but 

may possess the desired properties (Zunger, 2018). The case-by-case searching 

characteristic of direct design is both time- and cost-intensive when extensive 

structure screening is employed to involve as many materials as possible (Weymuth 

and Reiher, 2014, Freeze et al., 2019). 

As asserted by Zunger (Zunger, 2018), the direct design could be classified into 

descriptive and predictive approaches. Descriptive direct design employs both 

modeling and theory to interpret and confirm experimental observations. The 

predictive direct design, however, can be sub-divided into property prediction for a 

specific material, or candidate material search in a material space. For example, Jin 

et al. (Jin et al., 2020) applied a data-driven predictive direct design framework, 

screening 26 out of 187,093 inorganic crystal structures as potential photovoltaic 

candidates. The blue squares at the bottom of the graph of Figure 2.1a illustrate 

known compounds with specified compositions (presented by atom numbers ZA and 
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ZB), while question mark-labeled region corresponds to unreported compounds. The 

upper plot of Figure 2.1a represents the value of specific material properties as a 

function of ZA and ZB. In a direct-design-based data-driven framework, the 

materials discovery journey follows the path from the bottom part of the graph to 

the top part. 

 

2.2.1.2. Inverse Design 

Inverse design can be regarded as the opposite of direct design.(Freeze et al., 2019) 

In an inverse-design-based data-driven framework, the workflow is initiated in the 

functional space and terminates in the chemical space (Zunger, 2018). Its objective 

is to discover tailored materials with desired properties without the exploration of 

large material space (Freeze et al., 2019). In the inverse design framework, the target 

functionality is used as the input to predict the corresponding material structure. 

Rather than arriving at a unique structure with the desired functionality, the goal is 

to determine a distribution of probable structures. For instance, Dudiy et al. (Dudiy 

and Zunger, 2006a) employed inverse design in conjunction with specified target 

properties (e.g. deepest nitrogen level), followed by a search for a desirable material 

structure.  

High-throughput virtual screening (HTVS) is one of the earliest employed methods 

in inverse design. However, HTVS analysis is generally applied to a smaller number 

of structures in the course of exploring various functionalities (Zunger, 2018). More 

recently, generative models, a class of ML method involving the implementation 
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advanced algorithms, including variational autoencoders (VAEs),(Kramer, 1991) 

generative adversarial networks (GANs) (Goodfellow et al., 2014), recurrent neural 

network (RNN) (Abiodun et al., 2018), and reinforcement learning (Sutton and 

Barto, 2018), are commonly employed in inverse design to determine the molecular 

structure and the probability distribution both of material elemental parameters and 

desired target properties (Figure 2.1b). For example, Jin et al. (Jin et al., 2018) 

propose a VAE-based inverse design framework to generate graphs of molecular 

structure. Inverse design represents an advanced, effective data-driven framework 

for the discovery of novel materials; open research questions remain, including 

formulation of the molecular presentation in the inverse design process (Sanchez-

Lengeling and Aspuru-Guzik, 2018). 
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Figure 2.1 (a) Direct and inverse methods for the design and discovery of materials. 

Reproduced with permission (Zunger, 2018). Copyright 2018, Springer Nature 

Publications. (b) The schematic of direct design and inverse design with different 

targets in material design and discovery. Reproduced with permission (Sanchez-

Lengeling and Aspuru-Guzik, 2018). Copyright 2018, AAAS Publications. (c) The 

active learning framework for the discovery of materials with high electrostrains. 

Reproduced with permission (Yuan et al., 2018). Copyright 2018, Wiley 

Publications. 

 



Chapter 2  University of Nottingham 

24 

 

2.2.1.3. Active Learning 

The essential idea of active-learning-based data-driven frameworks is to provide 

high-performance ML models with less training; the machine selects its own 

training dataset(Settles, 2012) In an active learning framework, the stages of ML 

training, data processing, and the generation of new training sets are iteratively 

combined (Yuan et al., 2018, Smith et al., 2018, Zhong et al., 2020b). For instance, 

Zhong et al. (Zhong et al., 2020b) proposed a random-forest-based active ML 

framework that iteratively trained more than 300 ML models to predict the binding 

energy of carbon monoxide on the surface of catalyst for the carbon dioxide 

reduction reaction (CRR). The trained ML model indicated promising adsorption 

sites during their active learning workflow, which guided the DFT computation for 

the subsequent iteration. The DFT results evaluated in the latest iteration were 

combined with the original data to construct a new training dataset, which would 

yield an updated ML model.  

In general, an active learning framework contains an inquiry loop to guide further 

experiments or computations (Settles, 2012, Smith et al., 2018). Active learning is 

most applicable when numerous data instances and their labels are easily collected, 

synthesized or computed to address queries in iterative training (Settles, 2012). In 

an active learning framework proposed by Yuan et al. (Yuan et al., 2018), the 

electrostrain of piezoelectric candidates were iteratively queried. Such active 

learning frameworks are suitable for dynamic optimization problems and sequential 

design in innovative material discovery. 
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2.2.2 Fundamental Stages in Data-Driven Framework 

A complete data-driven material discovery framework involves fundamental stages 

including raw data processing (Jablonka et al., 2020, Pankajakshan et al., 2017), 

feature engineering (Ward et al., 2016a), and ML model training (Wang et al., 2020a). 

In the data processing stage, there are two major steps: data acquisition and data pre-

processing (Cai et al., 2020). Generally, there are two types of data utilized in a data-

driven material discovery process: experimental data and computational data 

(Schleder et al., 2019). Both could be either self-generated or queried from existing 

databases. Relevant, sufficient, consistent and complete data is the foundation of a 

successful data-driven process (Jablonka et al., 2020). Collected data may contain a 

number of issues including missing, redundant, abnormal or imbalanced data 

(Jablonka et al., 2020). Data pre-processing ensures that the ML model performs 

satisfactorily. Data pre-processing generally consists of four main stages: outlier 

detection, data complementation, discretization, and normalization (Kotsiantis; et al., 

2007). Data may exist in various forms, including numerical values, structure graphs, 

images, text, or signals. For example, Lee et al. (Lee et al., 2020) trained a deep 

learning model to predict potential defects in electron microscopy images with 

aberration-corrected scanning transmission taken as the model input. Both the quantity 

and quality of data influence the selection and performance of ML models. For 

instance, neural network models typically require more data to be reliably 

implemented (Wang et al., 2020a). It is critical to acquire material data from reliable 
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sources; commonly used material databases and relevant data management tools are 

systematically discussed in following sections. 

Feature engineering is the process of constructing the descriptor space, which mainly 

consists of two steps: the selection or generation of descriptors; construction of the 

descriptor space (Wei et al., 2019). The selection of descriptors depends on the goal of 

the data-driven process and is characterized by the greatest extent of human 

intervention. The target of this step is to identify and extract the most appropriate and 

critical descriptors from the pre-processed data to construct descriptor space. Problem-

specific domain knowledge is essential here, for example, to specify the relevant 

properties and determine the proper scale length (atomistic, coarse-grained, and global) 

(Jablonka et al., 2020). However, there may be situations in which no suitable 

descriptor is available, or the basic descriptors are not sufficient to describe the 

environment or frame the materials with respect specific targets. Thus, an 

alternative is to generate high-performance descriptors from the original ML 

training dataset. A good descriptor space is one that is sufficient for the prediction and 

resolution of the target functional space (Schleder et al., 2019). Therefore, an in-depth 

review of molecular descriptors is presented in Section 5 to offer insights on the 

construction of descriptor space.  

ML model training, which follows the construction of the descriptor space, includes 

model selection, evaluation, and optimization (Yin et al., 2021). The 

implementation of the majority ML algorithms requires the specification of 

hyperparameters which determine the ML model configuration of ML (Raschka, 

2018). Various hyperparameters result in different model formulations; model 
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selection aims at identifying with the appropriate hyperparameter formulation 

which results in the best model performance. Therefore, hyperparameter tuning is 

critical to model optimization; it controls the complexity and flexibility of the model 

to identify the balance between overfitting and underfitting by handling the 

variance-bias trade-off (Jablonka et al., 2020). More complex models tend to fit 

training data better but also exhibit a higher variance on the test data, whereas a 

simpler models (such as regularized linear regression) tends to exhibit a higher bias 

on the test data. Hyperparameter tuning and model selection can be classified as a 

meta-optimization task (Raschka, 2018), where validation techniques are employed 

to evaluate the performance in terms of the ML algorithm objective function.  

 

2.2.3 Model Performance Evaluation and Uncertainty Quantification 

The ultimate goal of the ML model deployment stage is to train the model such that 

offers accurate predictions for both test and unseen data; therefore, it becomes 

essential to effectively assess the performance while characterizing the inherent 

uncertainty of the model (Morgan and Jacobs, 2020, Jablonka et al., 2020). A review 

by Morgan and Jacob (Morgan and Jacobs, 2020) gives an excellent overview and 

sample cases of best practices in ML model development, assessment and 

uncertainty quantification. In this subsection, we will discuss model performance 

evaluation methods and uncertainty quantification in the context of model 

deployment, focusing on commonly employed validation techniques and 

performance evaluation metrics. 
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2.2.3.1. Performance Evaluation Techniques 

Three techniques are commonly employed for model performance evaluation: 

holdout (Raschka, 2018), cross-validation (CV) (Hawkins et al., 2003), and 

bootstrap (Jablonka et al., 2020). In most ML deployment processes, the data are 

divided into training data, validation data, and test data (Morgan and Jacobs, 2020). 

The holdout approach statically splits the available data for training, validation, and 

testing at a fixed ratio. Though the holdout approach is straightforward, it may 

introduce pessimistic bias when the size of the original dataset is small; such 

splitting further reduces the size while potentially impacting the statistics of the 

training data. CV represents a continuous, iterative, crossing-over training and 

validation process that can be regarded as the ensemble of the holdout approach, 

sampling data without replacement (Raschka, 2018). For a typical k-fold CV 

process, the dataset is divided equally into k parts, one of which is adopted as the 

validation set; the remaining k – 1 parts are combined into a new training subset. 

When the number of folds is equal to the data points (k = n), a special case of CV 

is manifested (the leave-one-out cross-validation (LOOCV), which, though 

computationally expensive, is useful when the dataset is small (Jablonka et al., 

2020). Sahu et al. (Sahu et al., 2018a) applied the LOOCV to 280 data points of 

small molecule OPV systems to evaluate ML model predictions of power 

conversion efficiency. Unlike CV, bootstrap samples data with replacement result 

in only approximately 63.2% of the data points being sampled (Efron and Tibshirani, 

1986) and potentially a high bias given that the sampled data is not representative 
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of the complete dataset. To correct this bias, Efron (Efron and Tibshirani, 1997) has 

proposed a 0.632(+) bootstrap approach. In general, CV provides a nearly unbiased 

estimator with high variance, while bootstrap approaches tend to yield estimators 

with low variance for small datasets (Kim, 2009, Efron and Tibshirani, 1997). 

 

2.2.3.2. Performance Evaluation Metrics 

The determination of performance metrics is essential for ML model evaluation and 

optimization. For regression models, commonly employed metrics are the mean 

absolute error (MAE), mean square error (MSE), root mean square error (RMSE) 

and coefficient of dependence (𝑅2), which are expressed as follows (Schleder et al., 

2019, Liu et al., 2017b):  

 𝑴𝑨𝑬 =
𝟏

𝑵
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𝑵
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where 𝑁  refers to the number of sample data points, 𝑦𝑖, �̂�𝑖, 𝑎𝑛𝑑 �̅�  represent the 

actual value, predicted value, and mean value, respectively. The MAE treats the 

errors equally, whereas larger errors are allocated a higher weight in the MSE and 

RMSE. The MSE and RMSE are differentiable and commonly used to identify 

minima optimization processes. 𝑅2 represents the proportion of the variance in true 

values relative to the predicted values.  
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The predictivity of classification models can be described by the value of four 

indicators: true positive (TP), true negative (TN), false positive (FP), and false 

negatives (FN) (Lever et al., 2016). Frequently employed evaluation metrics, 

including Accuracy, Precision, Recall, and F1, can be derived based on the four 

indicators. Numerous misjudgments resulting in false positives contribute to low 

precisions, whereas missing of positives correspond to low recalls. A combined 

metric, called the F1 score, balances these two metrics and is beneficial for cases in 

which the data is imbalanced. 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
  (2-4) 

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
  (2-5) 

The receiver operating characteristic (ROC) curve and the area under the curve 

(AUC) are also effective performance metrics in binary classification. The ROC 

represents the plot of the true positive rate (TPR) versus the false positive rate (FPR), 

where the formulas for TPR and FPR are presented as follows: 

 𝑻𝑷𝑹 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
  (2-6) 

 𝑭𝑷𝑹 =  
𝑭𝑷

𝑭𝑷+𝑻𝑵
.  (2-7) 

A perfect binary classifier would demonstrate an AUC=1; AUC = 0.5 indicates that 

the binary classifier is no better than random guessing (Chen et al., 2020b). 

 

2.2.3.3. Domain of Applicability and Uncertainty Quantification 
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The reliability and accuracy of the trained models must be evaluated by considering 

domain applicability and quantifying uncertainties (Morgan and Jacobs, 2020). to 

the determination of domain applicablity relates to distance metrics between the 

potential  and training data points. Though many methods have been proposed to 

measure such distances (Sahigara et al., 2012, Schwaighofer et al., 2009), they are 

relatively difficult to implement to obtain qualitative guidance on model 

applicability. All such methods rely upon calculated distance metrics whose validity 

has not been determined for the particular problem, while also requiring the 

definition of suitable thresholds (Morgan and Jacobs, 2020). 

Predicted value uncertainties are more intuitive and readily quantified to enable the 

evaluation of model performance. Evaluating error bars is an important tool to 

support model comparisons, stability estimation and of the reliability of model 

predictions (Jablonka et al., 2020). Ensemble approaches are commonly employed 

to quantify uncertainties; a popular methodology involves training the same model 

via bootstrap or CV, and then treating the ensemble variance as a surrogate for the 

error bars (Peterson et al., 2017). An alternative approach involves utilizing the 

same training data while refitting the model by adjusting the model architecture 

(Morgan and Jacobs, 2020). A large variance between these predictions in a specific 

chemical domain indicates that the ML models are still tangling and require 

additional training data (Behler, 2014). The two types of ensemble methods can also 

be combined in random forest decision tree models, for which Morgan and Jacobs 

provide an in-depth example (Morgan and Jacobs, 2020). The ensemble approaches 
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are more computationally expensive; however, their flexibility enables them to be 

employed in numerous models. 

Prediction uncertainty can also be quantified by distance-based approaches, which 

are based on the concept that such uncertainties correlate with the distance between 

the potential corresponding training data points. Hirschfeld et al. (Hirschfeld et al., 

2020) employed log-scaled Tanimoto distance (Bajusz et al., 2015) and Euclidean 

distance (Janet et al., 2019) to quantify the displacement between potential points 

from training data and predictions of molecular properties, respectively. Bayesian 

approaches (Smith, 2013) can also automatically quantify uncertainty while 

potentially avoiding iterations, though this requires the adoption of specific ML 

models making it less generally applicable (Morgan and Jacobs, 2020, Jablonka et 

al., 2020). 

 

2.3 Overview of Chemical Database for Material Science and 

Chemical Engineering 

Recent developments in data-centric approaches are expected to dramatically 

accelerate the progress in materials science because experimental and 

computational methods generate massive amounts of data, causing increasing 

complexity (Draxl and Scheffler, 2020). Databases pertaining to both computational 

and experimental materials have been established to serve various specialized 

activities, rather than for dissemination or to enable contributions from the broader 

community (Hill et al., 2018). The primary challenge in choosing and comparing 
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databases is identifying the specific function that the database uniquely support, 

while also being able to compare various databases on the same structural basis 

(Hegde et al., 2020b). Error! Reference source not found. lists the properties of 

dominant databases and their various attributes including data types, materials of 

focus, number of entries, data source, license, and a simple database descriptor.  

Relatively simple analytical tasks pose challenges unique to the data-driven era 

because we are unable to capture, curate, store, search, share, analyze, and visualize 

the data in the absence of proper tools (Zhou et al., 2017). Thus, the identification 

of large numbers of correlations and patterns complex datasets has necessarily been 

carried out by high-throughput implementations of ML algorithms for decades to 

generate predictive and classification models for targeted physical properties. We 

have summarized representative high throughput tools (pymatgen (Ong et al., 2013), 

qmpy (Kirklin et al., 2015b), ASE (Larsen et al., 2017), and atomate (Mathew et al., 

2017)) and workflow management tools (FireWorks (Jain et al., 2015), AFLOWπ 

(Supka et al., 2017), matminer (Ward et al., 2018a), and AiiDA (Yakutovich et al., 

2021, Huber et al., 2020)). This class of high-throughput and workflow management 

tools is generally available in an open-source, Python infrastructure, with data 

connectivity implemented in RESTful API. These components aid in automating, 

managing, persisting, sharing, and reproducing the complex workflows associated 

with modern computational science and all associated data, reducing the cost and 

enhancing the efficiency of data summarization approaches with respect to the 

popular “five V’s”: volume, velocity, variety, veracity, and value (Nguyen, 2018). 

Representative databases and the high-throughput management toolkits have been 
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summarized in Figure 2.2.  

More specifically, individual databases each solve one specific problem by relaying 

the specific descriptors which have been extracted from other existing databases. 

For instance, database formulation may be motivated by the need to synthesize 

specific materials for a specific application, such as the accelerated discovery of 

stable lead-free hybrid organic-inorganic perovskites (HOIP) (Lu et al., 2018), 

accurate prediction of battery life (Severson et al., 2019), and various catalysis 

applications (Kitchin, 2018). The potential of data-driven strategies to uncover 

complex phenomena and design novel, high-performance materials is dependent on 

the quality and accessibility of databases and high-throughput tools, and which 

would otherwise not be possible with conventional trial-and-error approaches. 

 

Figure 2.2 The representative (a) theoretical dominant databases (b) experimental 

dominant databases, (c) high-throughput tools with (d) workflow management tool.
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Table 2.1 The database including the name, data type,  materials types, number of the entries, and data sources. 

Database Types Materials No. Entries Data Source Ref. 

Open Quantum Materials 

Database (OQMD) 
Computational Inorganic Solids ~300,000 

ICSD, Hypothesis 

(Kirklin et al., 

2015b, Saal et 

al., 2013, 

Kirklin et al., 

2015a) 

Materials Project (MP) Computational 
Inorganic Solids; Nanoporous Materials 

>130,000 

~530,000 ICSD 
(Jain et al., 

2013) 

Automatic-FLOW (AFLOW) Computational 
Inorganic Solids, Alloys 

3,312,125 ICSD 
(Curtarolo et al., 

2012) 

Novel Material Discovery 

(NOMAD) 
Computational Inorganic Solids -- Literarues 

(Draxl and 

Scheffler, 2018) 

The Computational Materials 

Repository (CMR) 
Computational Perovskites, 2D Materials -- OQMD 

(Landis et al., 

2012) 

Inorganic Crystal Structure 

Database (ICSD) 
Experimental Inorganic Crystal Structures >232.012 Literarues 

(Belsky et al., 

2002) 

Cambridge Structural Database 

(CSD) 
Experimental 

Metal Organic Frameworks, Orgaincs 

Molecure 
>800.239 

Literatures, ICDD (Groom et al., 

2016a) 

Crystallography Open Database 

(COD) 
Experimental, Computational  >385,000 Literatures, 

(Grazulis et al., 

2009) 

The Computational 2D 

Materials Database (C2DB) 
Computational 2D Materials ~4,000 

MP, CMR (Haastrup et al., 

2018) 
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Database Types Materials No. Entries Data Source Ref. 

Clean Energy Project (CEP) Computational Organic Photovoltaics >2,000,000 
Literatures, Hypothesis (Hachmann et 

al., 2011) 

Organic Materials Database 

(OMDB) 
Computational Organic Materials ~12,500 COD 

(Borysov et al., 

2017) 

Joint Automated Repository For 

Various Integrated Simulations 

(JARVIS)-DFT 

Computational 2D/Solid Inorganics ~40,000 
MP, OQMD, AFLOW, 

Literatures. 

(Choudhary et 

al., 2020a) 

Citrination Experimental, Computational 
Inorganic Solids, Molecules 

-- 
Literatures, (Hill et al., 

2018) 

Materials Cloud Experimental, Computational All Materials -- 
ICSD, COD, Literatures (Mounet et al., 

2018) 

Alloy Database Computational Intermetallics -- ISCD 

(Widom and 

Mihalkovic, 

2005) 

CatApp Computational Molecules on Surfaces -- -- 
(Hummelshoj et 

al., 2012) 

Computational Chemistry 

Comparison and Benchmark 

DataBase (CCCBDB) 

Computational Atoms, Moleculres ~2069 -- 
(Johnson III, 

1999) 

Computational Electronic 

Structure Database (CompES-X) 
Computational Inorganic Solids >100 -- -- 

Crystalium Computational Elemental Solids >145 Literatures 
(Tran et al., 

2016) 

Phonondb Computational Inorganic Solids -- MP  
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Database Types Materials No. Entries Data Source Ref. 

TE Design Lab Computational Semiconductors ~2701 Literatures 
(Gorai et al., 

2016) 

AIST Research Information 

Databases 
Experimental General Materials Data -- Literatures 

(Kouchi and 

Mochimaru, 

2005) 

American Mineralogist Crystal 

Structure Database 
Experimental Minerals 2627 Literatures 

(Downs and 

Hall-Wallace, 

2003) 

ASM Alloy Center Database Experimental Alloys -- Literatures -- 

ASM Phase Diagrams Experimental Alloys 6200 Literatures -- 

CALPHAD databases Experimental Alloys -- Literatures -- 

ChemSpider Experimental Chemical Materials 99,000,000 Literatures 
(Pence and 

Williams, 2010) 

CINDAS High-Performance 

Alloys Database 
Experimental Alloys 298 Literatures -- 

CRC Handbook Experimental General Materials Data -- -- -- 

CrystMet Experimental Metals 70,000 Literatures 
(White et al., 

2002) 

DOE Hydrogen Storage 

Materials Database 
Experimental General Materials Data -- Literatures -- 

Granta CES Selector Experimental 
Metals, Polymers, Composites, Medical 

Materials, Coatings, Aerospace Materials 
>4000 Literatures -- 
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Database Types Materials No. Entries Data Source Ref. 

Handbook of Optical Constants 

of Solids, Palik Experimental General Materials Data -- Hard-copy sources (Palik, 1998) 

International Glass Database 

System (INTERGLAD) 
Experimental Glass 350,000 -- -- 

Knovel Experimental General Materials Data -- Literatures 

(Kress-Rogers 

and Brimelow, 

2000) 

Matbase Experimental General Materials Data -- Literatures -- 

MatDat Experimental General Materials Data >4000 Literatures -- 

MatNavi (NIMS) Experimental Polymers, Inorganic and Metallic Materials -- Literatures 

(Ogata and 

Yamazaki, 

2012) 

MatWeb Experimental 

Carbon, Ceramis, Fluid, Metal, 

Polymer, Wood and Natural Products 

140,000 Literatures (MatWeb, 1996) 

Mindat Experimental Minerals, rocks, Meteorites -- Literatures -- 

NanoHUB Experimental Nanomaterials -- Literatures 
(Klimeck et al., 

2008) 

NIST Materials Data Repository 

(DSpace) 
Experimental, Computational General Materials Data -- Literatures -- 

NIST Interatomic Potentials 

Repository 
Computational 

Metals, Semiconductors, Oxides, and Carbon-

containing systems 
-- Literatures 

(Becker et al., 

2013, Hale et 

al., 2018) 
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Database Types Materials No. Entries Data Source Ref. 

NIST Standard Reference 

Database 3 (NIST SRD 3) 
Experimental, Computational Inorganic Solids 210,000 Literatures -- 

Open Knowledge Database Of 

Interatomic Models (Open KIM) 
Computational Molecular -- -- 

(Tadmor et al., 

2011) 

Pauling File Experimental, Computational Inorganic Solids 357,612 Literatures 
(Villars et al., 

2004) 

Pearson’s Crystal Data (PCD) Experimental Inorganic Solids 350,000 Literatures 
(Villars and 

Cenzual, 2009) 

Pearson’s Handbook: 

Crystallographic Data 
Experimental Intermetallic phases -- Hard-copy sources -- 

Powder Diffraction File (PDF) Experimental Inorganic Solids -- Literatures 
(Faber and 

Fawcett, 2002) 

PubChem Experimental Molecules 32,000 Literatures 
(Kim et al., 

2019) 

Reaxys Experimental Chemical data >118,000 
Literatures, Patents (Goodman, 

2009) 

SciFinder Experimental Chemical data 47,000,000 
Literatures, Patents (Gabrielson, 

2018) 

SciGlass Experimental Glasses 360,293 
Literatures, Patents 

-- 

SpringerMaterials Experimental General Materials Data -- 
Literatures, Patents 

-- 

Total Materia Experimental Metallic Materials Data 350,000 
Literatures, Patents 

-- 

UCSB-MRL thermoelectric 

database 
Experimental Thermoelectric Materials 18,000 Literatures 

(Gaultois et al., 

2013) 
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Database Types Materials No. Entries Data Source Ref. 

NRELMatDB Computational Inorganic Solids -- 
Literatures, Patents (Stevanović et 

al., 2012) 

Metallurgical Thermochemistry, 

Kubaschewski 
Experimental Thermoelectric Materials -- Hard-copy sources -- 

3D Materials Atlas Experimental General Materials Data -- -- -- 

Inorganic Material Database 

(AtomWork) 
Experimental 

Inorganic Solids, Metals 
82,000 

Literatures, 
-- 

Mineralogy Database Experimental Minerals 4714 Literatures 
(Barthelmy, 

2007) 

CSD Teaching Database Experimental Organic Materials >750 CSD -- 

Database of Zeolite Structures Computational zeolites -- 
Literatures, Hypothesis (Baerlocher, 

2008) 

RCSB Protein Data Bank 
Experimental 

biological macromolecular structures 
>173,005 

Literatures,  
 

 

 



Chapter 2  University of Nottingham 

41 

 

2.3.1 Computational Databases  

2.3.1.1. Open Quantum Materials Database (OQMD) 

The OQMD (Saal et al., 2013, Kirklin et al., 2015a) is a DFT database containing 

calculated thermodynamic and structural properties of 815,654 materials, developed 

by Chris Wolverton’s group at Northwestern University. The OQMD contains 

approximately 300,000 calculated structures, mainly from two sources: ~10% from 

the Inorganic Crystal Structure Database (ICSD) (Belsky et al., 2002) and ~90% 

from the iteration of many chemistries for some of simple prototypes. For the crystal 

structures in the ICSD, ~44,000 structures are calculable, of which the OQMD 

contains DFT calculations of 32,559 ICSD structures. The remaining calculable 

ICSD structures are continually being calculated and added to the OQMD. 

Additionally, 259,511 hypothetical compounds have been generated based on 16 

elemental prototypes, 12 binary prototypes with their compositions, and three 

ternary prototypes with their compositions (Emery et al., 2016, Wang et al., 2018, 

Kirklin et al., 2015a). Moreover, OQMD provides a qhull algorithm for establishing 

DFT ground-state phase diagrams at ambient (high) pressure and Grand Canonical 

Linear Programming (GCLP) to analyze the complex ground state thermodynamics 

of metal hydrides (R. Akbarzadeh et al., 2007, Hegde et al., 2020a, Amsler et al., 

2018). The OQMD provides the entirety of the underlying database to be freely 

downloaded at oqmd.org/download/, in addition to a Representational State 

Transfer (REST) Application Programming Interface (RESTful API) for 

programmatic access, which allows scientists and engineers to use simple Hyper 

Text Transfer Protocol (HTTP) requests to access all living data (Hegde et al., 

http://icsd.fiz-karlsruhe.de/
http://oqmd.org/download/
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2020b). For instance, Hu et al. (Hu et al., 2020) used the Wasserstein GAN model 

in conjunction with the OQMD database to generate novel hypothetical materials 

(Figure 2.3a). Fung et al. (Fung et al., 2021) predicted adsorption energies using 

the density of state data from the OQMD and Materials Project (MP) database 

combined with CNNs, targeting the accelerated discovery of catalytic materials 

(Figure 2.3b).  

 

Figure 2.3 (a) The Wasserstein Generative Adversarial Network (WGAN) model 

using the OQMD database to generate novel hypothetical materials. Reproduced 

with permission (Hu et al., 2020). Copyright 2020, MDPI Publications. (b) Using 

the density of state data from the OQMD and MP database by convolutional neural 

networks (CNNs) for the accelerated discovery of catalytic materials. Reproduced 

with permission (Fung et al., 2021). Copyright 2021, Springer Nature Publications.  

 

2.3.1.2. Materials Project (MP) 

The Materials Project (MP) provides open web-based access to computed 

information on known and predicted materials to inspire and design novel materials 

(Jain et al., 2013). Most of the MP data pertain to chemical compounds in the ICSD 



Chapter 2  University of Nottingham 

43 

 

(Belsky et al., 2002, Bergerhoff et al., 1983). A significant challenge is the 

generation of novel compositions and compounds to perform calculations (Jain et 

al., 2013) even though there already exist multiple algorithmic, e.g., Optimization-

based (Bergerhoff et al., 1983, Dudiy and Zunger, 2006b, Oganov and Glass, 2006, 

d'Avezac et al., 2012), and data-driven approaches (Hautier et al., 2011b, Hautier et 

al., 2010, Fischer et al., 2006) to tackle this problem. For materials included in the 

MP database, selected properties such as total energies (Jain et al., 2011a), 

electronic structure (Jain et al., 2011a), thermodynamic equations of state 

parameters (Latimer et al., 2018), phonons (Petretto et al., 2018), piezoelectricity 

(de Jong et al., 2015b), elasticity (de Jong et al., 2015a), dielectricity (Petousis et 

al., 2017), and thermoelectricity (Chen et al., 2016) have been calculated and 

included. In addition, MP includes apps to visualize phase diagrams (Jain et al., 

2011c, Ong et al., 2008) and Pourbaix diagrams (Persson et al., 2012). Several other 

convenient applications such as Materials Explorer (de Jong et al., 2015a, de Jong 

et al., 2015b), Battery Explorer (Zhou et al., 2004), Reaction Explorer(Jain et al., 

2011c), Structure Predictor (Hautier et al., 2011a), Crystal Toolkit (Ong et al., 2013), 

Nanoporous Materials Explorer (Ong et al., 2013), Molecules Explorer (Qu et al., 

2015, Cheng et al., 2015b), Redox Flow Battery Dashboard (Dmello et al., 2016), 

X-Ray Absorption Spectra (XAS) (Mathew et al., 2018), Interface Reactions 

(Richards et al., 2016), and Synthesis Description Explorer (Kim et al., 2017) have 

also been included in MP. Both Python Materials Genomics (pymatgen) (Ong et al., 

2013) and FireWorks (Jain et al., 2015) open-source libraries are available for 

materials analysis and high-throughput application. Note that all the underlying data 
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for the calculations of ~530,000 nanoporous materials and 130,000 inorganic 

compounds are accessible via the Materials API (Ong et al., 2015) based on REST 

principles. Although the MP database was originally developed to predict the 

adsorption energy of the catalytic materials (Fung et al., 2021), it has supported 

many other applications such as the accelerated discovery of stable spinel material 

(Wang et al., 2021c) and carbon dioxide electrocatalysis (Zhong et al., 2020b). 

Additionally, the MP and OQMD databases' magnetization properties are nearly 

comparable (Hegde et al., 2020b). 

 

 

 

2.3.2 Experimental Database 

2.3.2.1. ICSD 

The ICSD (Belsky et al., 2002) is the world's largest database of fully evaluated and 

published data containing inorganic crystal structures primarily derived from 

experimental results. Currently, the ICSD (Zagorac et al., 2019) has more than 

232,012 entries, including ~2,902 elemental crystal,  ~38,506 binary compounds, 

~73,048 ternary compounds, and ~73,688 quarternary and quintenary compounds. 

The database is updated twice a year based on over 80 leading scientific journals 

and more than 1,400 other scientific journals; data sources have been expanded to 
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include experimental inorganic structures, experimental metal-organic structures, 

and theoretical inorganic structures. 

To be included in the database, the structure must be fully characterized. For 

instance, atomic coordinates can be determined or derived from known structure 

types, and the composition must be fully specified. Typical entries include chemical 

names, formulas, unit cells, space groups, complete atomic parameters (including 

atomic displacement parameters if available), site occupancy, titles, authors, and 

literature citations. For published data, many items (such as Wykov sequences, 

molecular formulas, weights, ANX formulas, and mineral groups) are introduced 

through expert evaluation or generated by computer programs.  

The keyword-based search in the ICSD can be specified in terms of physical 

properties, analytical methods used, and technical application. Note that the ISCD 

data has been used to indicate promising novel applications of new ionic conductors, 

solar cell adsorbers, advanced ceramic materials, nature’s missing compounds, and 

structural relations between the crystalline compounds. In addition, ICSD data have 

been included in almost all other computational databases, such as OQMD, MP, and 

AFLOW. Organic and inorganic compounds are two of the main categories of 

chemical materials. Thus, we introduce the Cambridge Structural Database (CSD) 

for organic materials. 

 

2.3.2.2. CSD 
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The CSD (Groom et al., 2016b) is the world’s largest and most comprehensive 

collection for small-molecule organic and organometallic crystal structures, 

containing over one million structures from X-ray and neutron diffraction analyses. 

For comprehensive coverage of single-crystal data, cell parameters and all available 

data are included even if no coordinates are available. Similarly, powder structures 

are available from the International Centre for Diffraction Data (ICDD) 

(Kabekkodu et al., 2002) even though the coordination information is missing. Note 

that there is a slight overlap between the CSD and the ICSD in the area of molecular 

inorganics, but that purely inorganic structure is not contained in the CSD.  

The CSD database has provides data in two distinct ways. The first is pertains only 

to structural aggregation and standardization, making it easier to access individual 

entries. The second is based on further study of data collection and the discovery of 

new knowledge transcending the results from individual experiments. Python-based 

API (Cole et al., 2019) has also been introduced to enable end-users to query CSD 

using customized script. Accessing data via scripts in conjunction with other 

packages such as RDKit (Coley et al., 2019) is very useful for more advanced 

structural data analysis. For instance, users will be able to use ML more 

conveniently in conjunction with APIs for solvate prediction, implementing 

fragment pocket analysis using structural information, and supporting crystal (co-

crystal) structure prediction (Connor et al., 2019). More detailed insights could be 

developed as the scale of data increased, having a profound impact across the 

scientific community with specific consequences for drug discovery and 

development (Cole et al., 2019). However, the ICSD and CSD have paid licenses 



Chapter 2  University of Nottingham 

47 

 

(as shown in Error! Reference source not found.), affecting a number of 

institutions or members who cannot access the data.  

 

2.4 Overview of Key Descriptors Bridging Data Intensive 

Discoveries and Experimental Strategies for Material 

Science and Chemical Engineering 

The key premise of the ML framework is that learning can be viewed as a reasonable 

model to explain the observed data (Ghahramani, 2015). Descriptors are the carriers 

of information exchange between humans and machines. In the context of materials 

science, they deliver information about molecular properties to machines in digital 

form. Key to the efficient use of ML in the field of chemical materials is the 

"descriptor selection" tool, which takes the entire descriptor set as an input, or 

combines it into a new reduced, but more reliable, descriptor set through correlation 

analysis while providing a mapping to a Key Performance Indicator (KPI) 

fingerprint (Pankajakshan et al., 2017). In this section, the strategy of transforming 

material data to ML through descriptors is introduced; descriptors can be divided 

into five main types: constitutional descriptors (Zhong et al., 2020a, Zhu et al., 

2019a, Wexler et al., 2018b, Friederich et al., 2020, Sun et al., 2020b, Davies et al., 

2019, Lu et al., 2018, Ward et al., 2016b, Hu et al., 2019, Ulissi et al., 2017, Ruck 

et al., 2020); geometric descriptors (Hu et al., 2019, Wexler et al., 2018b, Sun et al., 

2020b, Ge et al., 2020b, Pankajakshan et al., 2017, Ma et al., 2015b, Ruck et al., 

2020, Ward et al., 2016b, Friederich et al., 2020, Davies et al., 2019, Lu et al., 2018); 
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quantum chemistry descriptors (Ward et al., 2016b, Zhu et al., 2019a, Artrith et al., 

2020, Friederich et al., 2020, Sun et al., 2020b, Zhong et al., 2020a, Lu et al., 2018, 

Davies et al., 2019, Pankajakshan et al., 2017, Ma et al., 2015b, Bai et al., 2019, 

Sahu et al., 2018b, Ge et al., 2020b, Fathinia et al., 2016, Ma et al., 2015a, Peterson 

and Nørskov, 2012, Hussain et al., 2018, Bagger et al., 2017, Ulissi et al., 2017, 

Ruck et al., 2020, Kang et al., 2018b, Zhang et al., 2020a, Hu et al., 2019, Wexler 

et al., 2018b, Back et al., 2019, Hammer and Nørskov, 2000, Masood et al., 2019); 

electrostatic descriptors (Pankajakshan et al., 2017, Ma et al., 2015a, Kang et al., 

2018b, Sun et al., 2020b, Hammer and Nørskov, 2000, Ma et al., 2015b, Lu et al., 

2018, Zhu et al., 2019a, Sahu et al., 2018b); combinational descriptors. These will 

be elaborated upon in the relevant subsections. Finally, we describe some of the 

extension packages of descriptors in the field of AI for materials science. 

 

2.4.1 Information Bridging: from Chemical Structures to ML Models 

2.4.1.1. Descriptor Importance 

The selection of descriptors directly determines the feasibility of introducing ML to 

solve the posed question. When the scientific connection between the descriptor and 

the actuation mechanism is not clear, the causal relationship of the learned 

descriptor-attribute relationship is uncertain. Therefore, the reliable prediction, 

identification, and scientific development of new materials are called into question. 

Analyzing the problem and defining a suitable descriptor is a meaningful and 

necessary step (Ghiringhelli et al., 2015). 
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A number of studies have emphasized the importance of material descriptors in 

accelerating the calculation of material properties or material design. Ghiringhelli, 

L. M. et al. (Ghiringhelli et al., 2015) detail the required characteristics of a set of 

descriptors:  the calculation of descriptors should not be as intensive as that of KPIs; 

they uniquely characterize materials and the basic processes which pertain to 

properties; very different materials should be characterized by very different 

descriptor values (and vice versa); their size should be as small as possible. Sahu et 

al. (Sahu et al., 2018a), utilized 13 microscopic properties of organic materials as 

descriptors to build a PCE prediction model. The results indicated that such 

descriptors can effectively be applied in the context of promising high-throughput 

virtual screening of new donor molecules for efficient organic photovoltaics. 

Implementing descriptors with appropriate features plays an important role in 

accelerating outcomes of material design, or the study of material characteristics. 

 

2.4.1.2. Bridging and Transferring Process 

Data bridging and transfer processes often introduce uncertainty to ML predictions. 

The evaluation of this uncertainty indicates whether the required prediction 

accuracy has been satisfied. The MGI (Jain et al., 2013) aims to capture, manage, 

and utilize material structure/property information on a large scale to enable the 

rapid, cost-effective, and efficient development of new materials with predictable 

properties. Although the use of such "genome" methods (to promote attribute 

prediction, virtual design, and material discovery) is relatively new, the concepts 
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driving the development of materials informatics are firmly grounded previous 

lessons learned from the fields of chemoinformatics and bioinformatics.  

The management and utilization of material structure/attribute information have 

increased the significance of cheminformatics to ML; a number of new methods 

have emerged for information and data conversion. Behler describes some of the 

ways in which chemoinformatics and ML methods have been adapted for materials 

science and engineering applications, including methodologies to create, verify, and 

use material quantitative structure and property relationship (MQSPR) models 

(Behler, 2011). Friederich et al. (Friederich et al., 2020) used full autocorrelation 

(FA) functions to transfer the features of chemical complexes. Combining DFT and 

ML methods, the obtained predictions of reactivity within large chemical spaces 

containing thousands of complexes. Affordable descriptors were transferred as 

functions and demonstrated as fingerprints for each complex by considering a 

specified product of atomic properties (PiPj) calculated in terms of all atoms. 

Compound compositions were guided by the properties of atoms i and j (Figure 

2.4a). These atomic properties include electronegativity, atomic number, identity 

topology, and size. Each descriptor is multiplied as a function of Diracδδ to encode 

the structure and properties of the compound. 
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Figure 2.4 (a) Schematic diagram of molecular graph in the calculation of 

autocorrelation and deltametric functions. Reproduced with permission.(Friederich 

et al., 2020) Copyright 2020, RSC Publications. (b) The schematic diagram of 

designing lead-free HOIP based on ML combined with DFT. The blue box 

represents the process of screening through the ML algorithm from the HOIP 
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database. The green box indicates the use of DFT to calculate the electronic 

performance and stability evaluation of the candidate. Reproduced with 

permission.(Lu et al., 2018) Copyright 2018, Springer Nature Publications. 

The selection of the descriptor, removal of redundant features, and establishment of 

relationships are crucial to the process of transferring information. As shown in 

Figure 2.4b, the prediction strategy integrates input HOIP data with the ML 

algorithm and DFT calculation (Lu et al., 2018). Based on the ML program, an input 

HOIP dataset is established; each input item is described by a signature that is used 

to train and test the ML model. Element design analysis is required as a prerequisite 

to remove redundant features and establish structure-attribute relationships. After 

the input feature set is fixed, grid search technology and 5-fold CV are utilized to 

select the best descriptor. The network is subsequently trained to predict the 

electronic performance and stability of the HOIPs. In this work, the 14 most 

important descriptors were sorted and selected to collectively describe HOIPs in the 

chemical space. These descriptors included structural features and elemental 

properties of A-, B-, and X-site ions. Based on linear correlations for features 

analysis, redundant or irrelevant features could to improve the accuracy and 

efficiency of the ML model and achieve accurate predictions based on relatively 

small training datasets. This work successfully predicted the bandgaps of thousands 

of HOIPs by using the trained ML model. The evaluation of the bridging and 

transfer process of characteristic information represented by the descriptor is key to 

successful ML model predictions. n the process of information transfer, it is also 

essential to provide more accurate descriptors without losing the original 
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information characteristics. Some descriptors, though assigned a large weight, do 

not contribute to reliable model predictions (i.e. the phenomenon of over-egging the 

pudding). 

 

2.4.1.3. Properties of Ideal Descriptors 

Descriptors that can train predictive models to adapt to target attributes are highly 

desirable. Figure 2.5a presents a representative graphical summary of the workflow 

of the descriptor design, which is usually applicable throughout the development of 

a novel strategy. This summary represents a general processing method suitable for 

any application involving the main dataset, descriptor, training model, etc. 

Traditional methods rely on chemical intuition to determine the key descriptors for 

a specific application and develop a relationship which best represents observed 

material properties. It is more desirable, however, to automate the generation of 

interesting chemical insights through a rational design approach which does not rely 

chemical intuition. 
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Figure 2.5 (a) The relationship between data, descriptors, and models. Reproduced 

with permission (Pankajakshan et al., 2017). Copyright 2017, ACS Publications. It 

involves the following steps: preprocessing, data analysis, fingerprinting descriptors, 

statistical model or linear/nonlinear model building and validations, and insights 

from a subject matter expert. (b) Heat map of the Pearson correlation coefficient 

matrix among the selected features for DMSCs. (c) Comparison of DFT-computed 

ΔGOH* values with those predicted by GBR algorithm. (d) Feature importance based 
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on the Mean Impact Value (MIV). (b-d) Reproduced with permission (Zhu et al., 

2019b). Copyright 2019, ACS Publications. 

Regression fitting, correlation coefficient statistics, dataset partitioning, the 

establishment of new functions, and other methods have been widely applied to 

locate and rank ideal descriptors which correspond to the most relevant performance 

features. Meredig and Wolverton (Meredig and Wolverton, 2014) introduced a 

"cluster ranking model" (CRM) framework to identify unique descriptors that can 

predict the properties of new dopants. They used the X-means algorithm to cluster 

various dopants together, followed by regression fitting to rank the descriptors, 

ultimately utilizing the unique descriptors to model the behavior within each cluster. 

The existence of clusters in various sample datasets (four dopant clusters were 

present in this study) improves the effectiveness of the method. Given that all 

descriptors are ranked by using a regression model, they must necessarily fit to the 

prediction model of the target attribute. Selected descriptors are those that can best 

predict the target attributes; they are not necessarily indicative of the 

phenomenological mechanism. Ward et al (Ward et al., 2016a). generated an 

extensible set of attributes that can be used for materials with any number of 

constituent elements. This set of attributes can broadly capture enough diverse 

physical/chemical properties of materials to form the basis of accurate predictive 

models. The group used a total of 145 attribute sets, including stoichiometric 

attributes, elemental property statistics, electronic structure attributes, and ionic 

compound attributes. They proved that these attributes are sufficient for describing 

various properties, while also proposing a novel method to divide the dataset into 
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groups of similar materials to improve prediction accuracy. This work demonstrated 

the applicability of this novel method to the prediction of various physical properties 

of crystalline and amorphous materials. Zhu et al.(Zhu et al., 2019b) employed DFT 

calculations, with the assistance of ML, to screen highly efficient dual-metal-site 

catalysts (DMSCs) for oxygen reduction reaction (ORR). They evaluated the 

correlation coefficient for selected DMSC features, as shown in Figure 18b. The 

performance of the ML model can be significantly improved by selecting features 

that are independent from one another (i.e., not redundant), based on an analysis of 

linear correlations of several features. The speed at which ML-based approaches 

can be used to arrive at valuable material property insights, including the 

identification of descriptors, has significantly improved in recent years. To obtain 

accurate descriptor relevant to the catalytic activity of DMSC, this work reported 

the seven characteristics which were deemed most relevant to the catalytic 

performance of DMSCs in terms of Mean Impact Value (MIV) (Figure 18d). These 

characteristics include: the electron affinity between two metal atoms; Van der 

Waals radius; Pauling electronegativity difference; the product of ionization energy 

and the distance between two metal atoms; the relationship between Pauling 

electronegativity and atomic distance. 

 

2.4.2 Categories of Descriptors  

In recent years, a large number of articles have demonstrated the importance of 

material descriptors in accelerating the discovery and design of novel materials. 

When identifying descriptors which are compatible with ML methods for material 
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discovery, the initial set of descriptors should generally be broad/diverse. Both the 

choice of fingerprint descriptors and the methods employed to discover/estimate 

unique mappings are critical, especially when dealing with small datasets. From the 

perspective of ML, fingerprint descriptors are a subset (or offspring) of a superset 

of parent descriptors; they are unique to attributes and materials. The dimensionality 

or cardinality of the descriptor should be kept as low as possible, while the original 

descriptor space should be sufficient. This mathematical mapping is also unique to 

the construction model that maps fingerprint descriptors to attributes or KPIs 

(Pankajakshan et al., 2017). The key descriptors used in recent studies for training 

models in materials science are summarized in Table 2.2 and are detailed further in 

subsequent sections. 

Table 2.2 Key descriptors used for the model training in material science and 

chemical engineering 

Description Class Ref 

Atomic Number Constitutional 

(Zhong et al., 2020a, Zhu et 

al., 2019a, Wexler et al., 

2018b, Friederich et al., 

2020, Sun et al., 2020b, 

Davies et al., 2019) 

Atomic Weight Constitutional 

(Ward et al., 2016b, Wexler 

et al., 2018b, Davies et al., 

2019) 

Numbers of  and  orbital electron Constitutional 

(Lu et al., 2018, Zhu et al., 

2019a, Sun et al., 2020b) 

Numbers of  and  valence electron Constitutional 

(Ward et al., 2016b, Zhu et 

al., 2019a, Wexler et al., 

2018b, Sun et al., 2020b, 
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Description Class Ref 

Davies et al., 2019) (Lu et 

al., 2018)  

Mendeleev number Constitutional 

(Ward et al., 2016b, Davies 

et al., 2019) 

Melting Temperature  

(Ward et al., 2016b, Davies 

et al., 2019) 

Bond Number Constitutional (Hu et al., 2019) 

Space Group Number Constitutional 

(Ward et al., 2016b, Davies 

et al., 2019) 

the number of atoms of that element coordinated  Constitutional 

(Zhong et al., 2020a, Ulissi 

et al., 2017, Ruck et al., 

2020, Friederich et al., 2020) 

Pauling electronegativity Quantum chemical 

(Zhong et al., 2020a) (Lu et 

al., 2018, Davies et al., 

2019) 

(Ward et al., 2016b, Zhu et 

al., 2019a, Artrith et al., 

2020, Friederich et al., 2020, 

Sun et al., 2020b) 

The median monometallic adsorption energy Quantum chemical (Zhong et al., 2020a) 

Ionic Charge Quantum chemical (Lu et al., 2018) 

Electron Affinity Quantum chemical 

(Lu et al., 2018, 

Pankajakshan et al., 2017, 

Ma et al., 2015b, Zhu et al., 

2019a, Bai et al., 2019, Sun 

et al., 2020b) 

Ionization Energy Quantum chemical 

(Lu et al., 2018, 

Pankajakshan et al., 2017, 

Ma et al., 2015b, Zhu et al., 

2019a, Bai et al., 2019, Sahu 

et al., 2018b) 

The highest occupied molecular orbital  Quantum chemical 
(Lu et al., 2018, Davies et 

al., 2019, Sahu et al., 2018b) 
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Description Class Ref 

The lowest unoccupied molecular orbital  Quantum chemical 
(Lu et al., 2018, Davies et 

al., 2019, Sahu et al., 2018b) 

Bandgap Energy Quantum chemical 

(Ward et al., 2016b, Ge et 

al., 2020b, Fathinia et al., 

2016, Davies et al., 2019) 

Work Function Quantum chemical 

(Pankajakshan et al., 2017, 

Ma et al., 2015b) 

Binding Energy Quantum chemical 

(Pankajakshan et al., 2017, 

Ma et al., 2015a, Peterson 

and Nørskov, 2012, Hussain 

et al., 2018, Bagger et al., 

2017, Ulissi et al., 2017, 

Artrith et al., 2020, Sahu et 

al., 2018b) 

Adsorption Energy Quantum chemical 

(Pankajakshan et al., 2017, 

Ma et al., 2015a, Peterson 

and Nørskov, 2012, Hussain 

et al., 2018, Bagger et al., 

2017, Ulissi et al., 2017, 

Ruck et al., 2020, Kang et 

al., 2018b, Artrith et al., 

2020, Zhang et al., 2020a, 

Hu et al., 2019, Wexler et 

al., 2018b, Sun et al., 2020b) 

Local Pauling electronegativity Quantum chemical 
(Pankajakshan et al., 2017, 

Ma et al., 2015b) 

Cohesive energy Quantum chemical (Sun et al., 2020b) 

Density of states Quantum chemical 

(Hammer and Nørskov, 

2000, Masood et al., 2019) 

Partial Density of states Quantum chemical (Hu et al., 2019) 

Bader Charge Transfer Quantum chemical (Sun et al., 2020b) 
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Description Class Ref 

Fermi Energy Quantum chemical 

(Pankajakshan et al., 2017, 

Hammer and Nørskov, 2000, 

Masood et al., 2019) 

Gibbs Free Energy Quantum chemical 

(Back et al., 2019, Hu et al., 

2019, Wexler et al., 2018b, 

Sun et al., 2020b) 

Surface Energy Density Quantum chemical  

Total energy of surface slab obtained Quantum chemical (Back et al., 2019) 

Bulk energy per atom Quantum chemical (Back et al., 2019) 

Over potential Quantum chemical 

(Back et al., 2019, Hoar et 

al., 2020b, Hammer and 

Nørskov, 2000, Ge et al., 

2020b) 

Current density  (Hoar et al., 2020b) 

Activation energy Quantum chemical 

(Artrith et al., 2020, 

Friederich et al., 2020, 

Hammer and Nørskov, 

2000) 

Transition-state energy Quantum chemical 

(Artrith et al., 2020, 

Friederich et al., 2020, 

Hammer and Nørskov, 2000, 

Sahu et al., 2018b) 

Atomic nearest-neighbor distances  (Artrith et al., 2020) 

Optical gap energy Quantum chemical 

(Bai et al., 2019, Sahu et al., 

2018b) 

Width of a  band Electrostatic 
(Pankajakshan et al., 2017, 

Ma et al., 2015a) 

Centre of a  band Electrostatic 

(Pankajakshan et al., 2017, 

Ma et al., 2015a, Kang et al., 

2018b, Sun et al., 2020b, 

Hammer and Nørskov, 

2000) 
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Description Class Ref 

Skewness of a  band Electrostatic 
(Pankajakshan et al., 2017, 

Ma et al., 2015a) 

Kurtosis of a  band Electrostatic 

(Pankajakshan et al., 2017, 

Ma et al., 2015a) 

Filling of a  band Electrostatic 

(Pankajakshan et al., 2017, 

Ma et al., 2015a) 

Spatial Extent of -orbitals Electrostatic 
(Pankajakshan et al., 2017, 

Ma et al., 2015b) 

Adsorbate-metal  coupling matrix element Electrostatic 

(Pankajakshan et al., 2017, 

Ma et al., 2015b, Hammer 

and Nørskov, 2000) 

Metal -metal  coupling matrix element Electrostatic 

(Hammer and Nørskov, 

2000) 

Partial distribution function Geometric (Ruck et al., 2020) 

Polarizability Electrostatic 

(Lu et al., 2018, Sahu et al., 

2018b) 

First ionization potential  Electrostatic 

(Lu et al., 2018, Zhu et al., 

2019a, Sun et al., 2020b) 

Magnetic Moment Electrostatic (Ward et al., 2016b) 

Bond Length Position Geometric (Hu et al., 2019) 

Atomic Identity Geometric (Friederich et al., 2020) 

Optical Transmittance  (Bai et al., 2019) 

Lattice parameters Geometric (Sun et al., 2020b) 

Molar Ratio  (Sun et al., 2020b) 

Dipole moment Electrostatic (Sahu et al., 2018b) 

Atomic Radius Geometric 

(Pankajakshan et al., 2017, 

Ma et al., 2015b, Wexler et 

al., 2018b, Sun et al., 2020b) 

Rotational angles Geometric (Ge et al., 2020b) 

Distance between two layers Geometric (Ge et al., 2020b) 

Bond Length Geometric 

(Hu et al., 2019, Wexler et 

al., 2018b, Sun et al., 2020b, 

Ge et al., 2020b) 
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Description Class Ref 

Bond Angle Geometric (Wexler et al., 2018b) 

Distance to alloy atoms Geometric (Ruck et al., 2020) 

Estimation for the interatomic distance using 

Vegard’s law 

Geometric (Ruck et al., 2020) 

Covalent Radius Geometric 

(Ward et al., 2016b, 

Friederich et al., 2020, 

Davies et al., 2019) 

Specific Volume Geometric 

(Ward et al., 2016b, Davies 

et al., 2019) 

Van der Waals radii Geometric (Zhu et al., 2019a) 

Tolerance Factor Geometric (Lu et al., 2018) 

Octahedral Factor  Geometric (Lu et al., 2018) 

Iron Radii Geometric (Lu et al., 2018) 

Sum of the of  and  orbital radii Geometric (Lu et al., 2018) 

Atomic Radius Geometric 

(Pankajakshan et al., 2017, 

Ma et al., 2015b, Wexler et 

al., 2018b, Sun et al., 2020b) 

Cutoff radius  

(Zhang et al., 2020a, Jäger et 

al., 2018) 

Bond distance  

(Zhang et al., 2020a, 

Friederich et al., 2020) 

Atom pair distance  (Zhang et al., 2020a) 

 

2.5 Applications of Data-Driven Innovative Materials 

The success of a large number of ML applications in materials science and chemical 

engineering has preliminarily demonstrated the capability of data-driven 

approaches in the discovery of innovative materials. By appropriately integrating 

ML techniques, databases, descriptors, target material properties, and engineering 

parameters, predictions for the focused design of materials and chemical processes 
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can be efficiently and accurately made. Such approaches represent a synergy 

between materials science, chemical engineering, computer science, and 

mathematics. Recent advances in the applications of such synergies to the 

development of chemical innovation for energy conversion and storage (Chen et al., 

2020a, Wexler et al., 2018a, Zhang et al., 2020a, Back et al., 2019, Tran and Ulissi, 

2018, Xu et al., 2020, Ge et al., 2020a), environmental decontamination (Dondapati 

and Chen, 2020), flexible electronics (Zhang et al., 2020b), optoelectronics (Saeki, 

2020) superconductors (Stanev et al., 2018), metallic glasses (Ward et al., 2016a), 

and magnet materials are investigated.  

An overview of the applications of data-driven, innovative material discovery and 

chemical engineering is represented in Table 2.3. The integration of ML in the 

development of materials for key electrochemical reactions such as the oxygen 

reduction reaction (ORR) (Rück et al., 2020, Zhu et al., 2019b, Kang et al., 2018a, 

Groenenboom et al., 2020), carbon dioxide reduction reaction (CRR) (Zhong et al., 

2020b, Ulissi et al., 2017, Batchelor et al., 2019), hydrogen evolution reaction (HER) 

(Wexler et al., 2018a, Zhang et al., 2020a), and oxygen evolution reaction (OER) 

(Back et al., 2019, Xu et al., 2020) is vital for advancing green chemical engineering. 

These reactions, along with the optimization of battery technologies (Sendek et al., 

2017, Ahmad et al., 2018), are fundamental to sustainable energy systems, aiming 

to reduce reliance on fossil fuels and minimize environmental impact. A specific 

overview about Some typical examples will be discussed in the subsequent sections. 

cases where ML has been successfully applied will be discussed in detail, followed 

by an overall future outlook. 
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Table 2.3 Data-driven innovative applications for material design and chemical processes 

Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

HER Ni3P2(0001) of Ni2P 
Adsorption free energy of H* 

(ΔGH) 
RRFs DFT computation 

Ni-Ni bond length 

Ni-Ni-Ni bond angle 

Hollow site area 

Hollow site perimeter 

(Wexle

r et al., 

2018a) 

 Amorphous Ni2P 

Frozen adsorption energy 

(Efrozen) 

Relax adsorption energy 

(Erelax) 

ANN 

GB DT 

GA 

DFT computation 
Bond length 

Symmetry functions 

(Zhang 

et al., 

2020a) 

OER 
IrO2 and IrO3 

Polymorphs  

Biding free energy (ΔG) for 

coverage calculations 

Biding free energy (ΔG) for 

OER calculations 

CNN 
DFT computation 

Material Project 
Atomic structures 

(Back 

et al., 

2019) 

 
Doped RuO2 and 

IrO2 

Identify new descriptors for 

calculation of adsorption 

enthalpy of O* (EO*) 

SISSO DFT computation 

SISSO Features 

Width of the d-band  

Charge transfer energy  

Filling of the d-band  

Kurtosis of the d-band 

(Xu et 

al., 

2020) 

OWS 

Transition Metal 

Dichalcogenides 

(TMDC): MoS2, 

WS2, WSe2, MoSe2, 

MoTe2, and WTe2 

HER Overpotentials (ηHER) 

OER Overpotentials (ηOER) 
LASSO DFT computation 

Cosine of the rotational angle 

The distance between two secondary parts 

The average mx2 bond length 

The bandgap ratio of the two components 

(Ge et 

al., 

2020a) 

PVs 

Lead-free hybrid 

organic-inorganic 

perovskites 

Bandgap 
GBR 

 
ICSD 

Tolerance factor 

Number of ionic charges 

Octahedral factor 

p-orbital electron 

(Lu et 

al., 

2018) 



Chapter 2  University of Nottingham 

66 

 

Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

 

Small molecule 

organic photovoltaic 

materials 

Power conversion efficiency 

(PCE) 

LR 

kNN 

ANN 

RF 

GBRT 

Experiment data 

DFT computation 

Hole–electron binding energy in donor molecules 

The reorganization energy for holes in donor molecules 

The unsaturated atom number in the main conjugation 

path of donor molecules 

Polarizability of donor molecules 

(Sahu 

et al., 

2018a) 

 
Organic photovoltaics 

materials 
PCE 

ANN 

kNN 

GBRT 

Experiment data 

DFT computation 

Hole–electron binding energy in donor molecules 

The reorganization energy for holes in donor molecules 

The unsaturated atom number in the main conjugation 

path of donor molecules 

The number of hetero atoms 

(Sahu 

et al., 

2019) 

 
Organic photovoltaics 

materials 

PCE 

Open circuit voltage (VOC) 

Short circuit current (JSC) 

kNN 

KRR 

DFT computation 

Literature data 

HOMO energy for the donor 

LUMO energy for the donor 

LUMO energy for the acceptor 

The total internal reorganisation energy 

Daylight fingerprint 

Morgan fingerprint 

(Padula 

et al., 

2019) 

 
Metal oxides 

photovoltaic materials 

VOC  

JSC  

Internal quantum efficiency 

(IQE) 

PCA 

kNN 

Genetic programming 

Literature data 

Experiment data 

The thickness of the absorber layer 

Thickness of the window layer 

Bandgap of abosorb layer 

The distance between the cell and the center of 

deposition plume 

Resistance of the absorber layer 

Maximum value of calculated theoretical photocurrent 

(Yosip

of et 

al., 

2015) 

 
Two-dimensional 

photovoltaic materials 

Applicability in PV 

applications 

GBC 

SVM 

RFC 

Ada boosting (Ada),  

LR 

SGDC,  

ICSD 

Packing factor (Pf),  

Average sublattice neighbour count (SNC), 

Mulliken electronegativity maximum and minimum 

value  

average atomic volume 

Lattice parameter 

(Jin et 

al., 

2020) 
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Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

DT Average bond ionicity of sublattice 

Anion framework coordination 

 

Kesterite I2-II-IV-V4 

quaternary 

compounds 

Bandgap 

LR 

SVR-linear kernel 

SVR-radial bias 

function kernel 

Boosted regression 

tree 

RF 

Logistic regression  

DFT computation 

MP 

Electronegativity 

Ionic radius 

Row in the periodic table 

(Westo

n and 

Stampf

l, 

2018) 

 

16-atom constructed 

wurtzite nitrides in an 

orthorhombic cell 

Bandgap 

Band offset 

LR 

SVR-linear kernel 

SVR-poly kernel 

SVR-radial kernel 

ANN 

DNN 

DFT computation 

Electronegativity 

Covalent radius 

Valence 

First ionization energy 

(Huang 

et al., 

2019) 

ORR 
Dual-metal-site 

catalysts(DMSC) 

Adsorption free energy of 

OH* (ΔGOH) 

Gradient Boosted 

Regression (GBR) 
DFT computation 

Electron affinity 

Electronegativity 

Sum of the van der Waals (vdW) radius of the two 

transition-metal atoms. 

Absolute value of the difference between the two 

transition-metal atoms  

Sum of the Pauling negativity of the two transition-

metal atoms. 

(Zhu et 

al., 

2019b) 

 

Binary and ternary 

nanocatalysts: PtCu, 

PtNi, CuNi, PtCuNi 

Energy contribution of atom i. 

(Ei) 

Neural Network 

Potential (NNP) with 

Monte Carlo  

DFT computation 

Molecular 

dynamics 

simulations 

Gaussian descriptor on the symmetry functions of radial 

(G2) 

Gaussian descriptor on the symmetry functions of 

angular (G4) 

(Kang 

et al., 

2018a) 
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Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

Broyden-Fletcher-

Goldfarb-Shanno 

(BFGS) algorithm 

 
Bimetallic Pt core-

shell nanocatalysts  

Strained coordination number 

(cn*(j)) 
KRR 

DFT computation 

EMT Calculations 

Coordination number 

Generalized coordination number 

Partial distribution function 

Distance to alloy atoms 

Interatomic distance from Vegard’s law 

(Rück 

et al., 

2020) 

 
Titanium alloys: 

TiAl2O5 

Kohn–Sham density functional 

theory energy of TiAl2O5 

structures per atom (EBPNN) 

Kohn–Sham density functional 

theory force of TiAl2O5 

structures (FBPNN) 

Behler−Parrinello 

neural networks 

(BPNNs) 

DFT computation 

 
Behler−Parrinello descriptors (Behler, 2011) 

(Groen

enboo

m et 

al., 

2020) 

CRR Intermetallics 
CO and H adsorption energy 

on active sites 

RFR 

PCA 

t-SNE 

Materials Project  

DFT computation 

 

Atomic number, 

Coordinated number 

Electronegativity 

Adsorption energy 

(Tran 

and 

Ulissi, 

2018) 

 
Bimetallic: Ni, NiGa, 

Ni3Ga, Ni5Ga3 

CO adsorption energy on 

active sites 
NNP 

Materials Project 

DFT computation 

 

Adsorption energy relative to the unrelaxed slab 

The gas-phase CO energy 

(Ulissi 

et al., 

2017) 

 

Bimetallic or 

multimetallic: Cu-Al 

alloy 

ΔECO 
RF 

t-SNE 

Materials Project  

DFT computation 

 

Atomic number, 

Coordinated number 

Electronegativity 

Adsorption energy 

(Zhong 

et al., 

2020b) 

 
Bimetallic or 

multimetallic: (100)-

ΔECO ANN 
DFT computation 

 

Filling (f) of d-band 

Center (εd) of d-band 

Width (wd) of d-band 

(Ma et 

al., 

2015c) 
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Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

terminated Cu 

multimetallic alloys 

Skewness (γ1) d-band  

Kurtosis (γ2) of d-band,  

Local Pauling electronegativity (χl)  

 

High-entropy alloys 

CoCuGaNiZn and 

AgAuCuPdPt 

ΔECO 

ΔEH 
GPR DFT computation 

CO and H adsorption energy on local atomatic 

environment 

(Batch

elor et 

al., 

2019) 

NRR IrO2, MoS2 
Free energy of all possible 

adsorbate coverages 
GPR 

DFT computation 

 
Surface coverage configurations 

(Ulissi 

et al., 

2016) 

 
NRR electrocatalytic 

electrode 

Total current density (|itotal|) 

Faradaic efficiency (F.E) 
ANN Self-generation 

Overpotential 

Electrode morphorlogy 

The kinetic predisposition of NRR 

(Hoar 

et al., 

2020a) 

Thermoelectricity 

Ba(MgX)2, (X = P, 

As, Bi), X2YZ6 (X = 

K, Rb, Y=Pd, Pt, Z = 

Cl, Br), K2PtX2 (X = 

S, Se), NbCu3X4 (X 

= S, Se, Te), 

Sr2XYO6 (X = Ta, 

Zn, Y=Ga, Mo), 

TaCu3X4 (X = S, Se, 

Te), and XYN (X = 

Ti, Zr, Y=Cl, Br). 

Types of Seebeck factors (S) 

Types of Power factors (σS2) 

GBDT 

DT 

RF 

kNN 

ANN 

JARVIS-DFT 

BoltzTrap 

calculations 

CFID descriptors 

Chemical descriptor 

Radial distribution function 

Angle-distribution up to first neighbourDihedral angle 

distribution 

(Choud

hary et 

al., 

2020b) 

 
100 single crystal 

inorganic materials 

The lattice thermal 

conductivity (kl) 
GPR MP 

Bulk modulus 

Space group number 

Maximum atomic radius 

Volume per atom 

(Chen 

et al., 

2019b) 
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Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

 

Off-stoichiometric 

samples (namely, 

Al23.5+xFe36.5Si40–

x) of the Al2Fe3Si3 

compound 

σS2 GPR 
Experiment 

measurements 

Al/Si Ratio 

Temperature 

(Hou et 

al., 

2019) 

Piezoelectricity Pb-free BaTiO3 Electrostrains 
GB 

 

Experiment 

measurements 

Electronegativity  

Ionic radius, volume 

Ionic displacements 

Polarization and  

Dopant effects on transition 

(Yuan 

et al., 

2018) 

 

(Ba0.50Ca0.50)TiO3-

Ba(Ti0.70Zr0.30Sn0.

30)O3 

Morphotropic phase boundary 

Bayesian learning 

SVR radial bias 

function 

SVR linear regression 

LR 

Experimental 

measurements 

Unit cell volume difference 

The ratio of average ionic radii  

Ionic displacements 

The ratio of the effective nuclear charge 

Ratio of electronegativities 

(Xue et 

al., 

2016) 

Rechargeable 

Alkali-Ion 

Battery 

Li containing 

crystalline solids 
Is it a superionic material Logistic regression 

MP 

ICSD 

The average number of Li neighbors for each Li 

The average sublattice bond ionicity 

The average anion coordination number in the anion 

framework 

The average shortest Li–anion and Li-Li distance in 

angstroms 

(Sende

k et al., 

2017) 

 Li metal anode 

Shear moduli  

Bulk moduli  

Elastic constants C11 

Elastic constants C12 

Elastic constants C44 

Graph convolutional 

neural network 

GBR 

KRR 

DFT computation 

MP 

Crystal structure 

Mass density 

Ratio of bond iconicity between Li and sublattice 

Sublattice electronegativity 

Volume per atom 

(Ahma

d et al., 

2018) 

 Electrolyte solvents Coordination energy (Ecoord) 
MLR 

LASSO 

KISHIDA 

Chemical 

Database 

Ionic radius 

NBO charge of O atom 

Atomic weight 

(Ishika

wa et 



Chapter 2  University of Nottingham 

71 

 

Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

Exhaustive search with 

linear regression 

Experiment 

measurements 

Bolling point of solvent 

HOMO 

LUMO 

al., 

2019) 

 

Silicate-based 

cathodes with the 

composition of Li–Si–

(Mn, Fe, Co)–O. 

Types of crystal system 

ANN 

SVM 

k-NN 

RF 

MP 

Formation energy 

Energy above the hull 

Bandgap 

Number of sites 

(Attari

an 

Shandi

z and 

Gauvin

, 2016) 

 
Electrode materials 

for metal-ion batteries 
Electrode voltage 

ANN 

SVM 

KRR 

MP 

Working ion in the battery  

The concentration of the active metal ion in a given 

compound crystal lattice types 

Space group numbers. 

(Joshi 

et al., 

2019) 

Supercapactior 
Carbon-based 

electrodes 
Capacitance 

LR 

LASSO 

ANN 

Published 

literature 

pore size,  

ID/IG,  

Specific surface area  

N-doping level 

(Zhu et 

al., 

2018) 

Environmental 

Decontamination 
TiO2 Degradation rate MLR 

Experiment 

measurements 

Bond Lipophilicity 

Dipole 

Bond dipole 

Bond molar refractivity 

(Donda

pati 

and 

Chen, 

2020) 

Flexible 

Electronics 

Ag/poly amic acid 

(Ag/PAA) composites 

Sheet resistance 

Processing time 
ANN 

Experiment 

measurements 

Concentration of PAA  

Concentration of NaBH4, 

 Reduction time of NaBH4,  

The ion exchange time of AgNO3. 

(Zhang 

et al., 

2020b) 
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Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

Optoelectronics 
2D octahedral 

oxyhalides 
Bandgap 

GBR 

PCA 
DFT computation Distorted stacked octahedral factors 

(Ma et 

al., 

2019) 

Superconductors 
12,000+ known 

superconductors 
Critical temperature (TC) RF 

SuperCon 

ICSD 

Stoichiometric descriptors 

Elemental property statistics  

Electronic structure descriptors 

Ionic compound descriptors 

(Stanev 

et al., 

2018) 

 
Superconductors in 

the SuperCon data set 
TC DNN 

SuperCon 

COD 

Published 

literature 

Composition of materials 

(Konno 

et al., 

2021) 

Metallic glasses 
Ternary amorphous 

alloys 

Volumen per atom 

Fromation energy 

Bandgap energy 

RF 

LR 

RF 

Reduced-errpr Pruning 

Tree 

Nonequilibrium 

Phase Diagram of 

Ternary 

Amorphous 

Alloys 

Stoichiometric descriptors 

Elemental property statistics  

Electronic structure descriptors 

Ionic compound descriptors 

(Ward 

et al., 

2016a) 

 Bulk metallic glasses 

The existence ability in an 

amorphous state: glass-

forming ability (GFA) 

The critical casting diameter 

(Dmax) 

The supercooled liquid range 

(ΔTx) 

RF 
Experiment 

measurements 
Composition of materials 

(Ward 

et al., 

2018b) 

Magnetic 

materials 

Ferromagnetic 

materials and 

antiferromagnetic 

Curie temperature 

Magnetic ground state 
RF AtomWork 

Magpie descriptors 

SOAP 

Space group number 

(Long 

et al., 

2021) 
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Applications  Materials/Processes Target Properties ML Model/Algorithms Data Source Most Related Descriptors Ref. 

 Permanent magnets 

Uniaxial magneto-crystalline 

anisotropy constant (K1) 

The magnetization (μ0M) 

The relative phase stability 

energy (Ef) 

SVR 

DT 

Published 

literature 
Crystal configuration 

(Möller 

et al., 

2018) 

 
Soft magnetic 

materials 

Magnetic saturation 

Coercivity 

Magnetostriction 

GBDT 

LR 

SVM 

DT, RF, kNN 

Published 

literature 

Annealing temperature 

Annealing Time 

Primary Crystallization Onset 

Primary Crystallization Peak 

(Wang 

et al., 

2020b) 
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2.5.1 Data-Driven Innovtion for ORR 

Using data-driven technology to discover innovative, economical and efficient 

electrocatalysts has gradually become the focus of oxygen reduction reaction (ORR) 

research. ORR plays a vital role in chemical-electrical energy conversion in fuel 

cells and metal-air batteries, which is a promising and indispensable field in the 

development of renewable energy (Kulkarni et al., 2018). Recently, a new frontier 

ORR catalyst has emerged referred to as dual-metal-site catalysts (DMSCs). By 

employing ML techniques, Zhu et al. (Zhu et al., 2019b) identify the origin of ORR 

activity and reveal design principles that offer a universal description of the activity 

in relation to intrinsic properties for graphene-based DMSCs. In this research, they 

used DFT simulations to screen potential catalyst candidates by considering the two 

criteria of geometric structure and free energy for the reaction. Each candidate’s 

catalytic performance was quantified based on the theoretical potential of the rate-

limiting step (UL); a value larger than 0.7V was regarded as favorable ORR activity. 

Their UL of such DMSCs can only be higher than 0.7V when the rate-limiting step 

is either the first or fourth electrochemical step. A linear scaling relationship 

between ΔGOOH* and ΔGOH* for the evaluated DMSCs were determined via 

regression (ΔGOOH* = 0.92 ΔGOH*+ 3.01); thus, the trends in ORR activity with the 

variations in ΔGOOH* and ΔGOH* can be plotted (Figure 2.6a). Based on the DFT 

computations, numerous primary physiochemical parameters were enumerated as 

possible descriptors for ML training. As the activity of catalysts is essentially 

dominated by electronic strictures, properties of localized d-orbital and continuum 

s- and p- orbitals were selected as the primary descriptors. Additionally, considering 
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interactions between two transition-metal atoms, some geometric structure-related 

properties were set as descriptors. The Person correlation coefficient matrix was 

used to identify the inner correlation between random descriptor pairs to eliminate 

redundant descriptors. With some simple mathematical transformations, the 

descriptor space was extended and optimized in accordance with the ML model’s 

prediction accuracy. Finally, a gradient boosting regression (GBR) model with an 

R2 of 0.993 and RMSE of 0.036 eV was obtained. The mean impact value (MIV) 

(Jiang et al., 2013) method was coupled with the trained ML model to evaluate each 

descriptor’s influence on the ORR activity. The seven most related descriptors are: 

the electron affinity (EA1 and EA2); the sum of the van der Waals (vdW) radius (R1 

+ R2); the absolute value of the difference between and the sum of the Pauling 

negativity (|P1-P2|, P1+P2) of the two transition-metal atoms; the product (IE1L) of 

the ionization energy of the first transition-metal atom (IE1); the distance (L) 

between the two transition-metal atoms; the average distance between the two 

transition-metal atoms and the surrounding N atoms ((d1+d2+d3+d4+d5+d6)/6). 

Among the seven descriptors, five are electronics properties. However, isolated 

individual descriptors may have their limitations and may not be sufficient to 

describe the effects of atoms on catalytic performance. In contrast, too many 

descriptors would lead to the dimensionality curse and disrupt the model’s 

predictive performance. Hence, it is essential to discover and identify new, high-

dimensional descriptors which are highly related to the target results and carry the 

most information. Based on the data generated from DFT computations and 
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microkinetic simulations, the trained ML model can accurately describe the ORR 

catalytic activity of DMSCs via fundamental parameters with acceptable error. 

To study the electrocatalytic performance of more complex, larger structures, 

traditional DFT calculations are limited due to their large computational expense 

and time. Researchers have gradually developed new strategies that combine ML 

with DFT and other computing methods. Kang et al. (Kang et al., 2018a) used 

Gaussian descriptors (Behler and Parrinello, 2007, Behler, 2011) to characterize 

local atomic structure. The authors applied an ML-based framework to explore the 

thermo-electrochemical properties of ternary nano-electrocatalysts. A model of 

high-dimensional neural network potentials (NNPs) was trained with the 

employment of the atomistic ML package (AMP)(Khorshidi and Peterson, 2016) to 

describe the interactions between components (Figure 2.6b). The NNP method was 

then implemented in conjunction with Monte Carlo (MC) methods and molecular 

dynamics (MD) simulation to identify the effect of strain originating from surface 

segregation of selective components at the surface of the catalyst. 13,877 DFT 

calculated data for PtNi, PtCu, CuNi, and PtCuNi nanoparticles were used for the 

training sample. The training set of the model system was composed of nanoscale 

icosahedrons with transition-metal species mixed randomly. To distinguish the local 

structural environment, Gaussian descriptors on radial (G2) and angular (G4) 

symmetry functions were employed as the main parameters. The RMSE of the NNP 

model on the prediction of single-atom energy contribution converged to less than 

7 meV with the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm (Broyden, 1970, Fletcher, 1970). The proposed candidate PtCuNi ternary 
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that contains 60% Pt possesses a size of 2.6 nm demonstrates outstanding 

electrocatalytic ability toward ORR. According to the thermal-electrochemical 

stability analysis via MC and MD simulations under the canonical ensemble, the 

candidate is also consistently more stable than binary nanoparticle and pure Pt. The 

design principle which emerges from the ML model is that those ternary 

nanoparticles with 60% Pt composition and icosahedron configurations in which 

Cu/Ni and Pt as assume the core and shell, respectively, possess superior ORR 

catalysis performance in terms of both activity and stability.  

The electrocatalytic performance of the core-shell catalysts is very attractive, but 

due to their impractical size, there still remain an insufficient number of mechanism 

studies having been reported. ML could further support the future development and 

exploration of core-shell catalysts. Rück(Rück et al., 2020) and his co-workers have 

further studied strained Pt-based core-shell electrocatalysts. They propose an ML-

based framework for the prediction, with site-specific strain precision, to investigate 

how effect of strain on Pt core-shell nanocatalysts towards the ORR activity. The 

strained coordination number (cn*(j)), which describes the compressive and tensile 

strain on atom j with the variation of atomic coordination, was set as the target 

property of the ML model. The ML model was trained with a kernel ridge regression 

(KRR) algorithm, which applies a radial basis function (RBF) kernel to test 

nanoparticles whose structures are optimized for the minimum energy. The effective 

medium theory (EMT)(Jacobsen et al., 1996) was used to calculate the structure 

energy by employing the ASAP calculator in the Atomic Simulation Environment 

(Hjorth Larsen et al., 2017). The EMT-calculated energy was validated by DFT 
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calculations on 1.9 nm sized core-shell nanoparticles. As is shown in Figure 2.6c, 

for each core, the ML model was trained with nanoparticle sizes from 1.6 nm to 5.4 

nm at 0.2nm intervals. Five descriptors were selected: the coordination number 

(cn(j)) and generalized coordination number(CN(j)) to describe local-site structure, 

which has significant impact on the adsorption energy of the intermediates; the 

partial distribution function (PDF(j, r)); distance to alloy atoms(dalloy(j)); the 

interatomic distance from Vegard’s law (dveg(j)). The MAE of the ML prediction of 

the strain on single atoms varied from 0.0007 to 0.0159 with respect to different 

catalyst cores.  In this study, the relation established by the ML model indicates that 

the size of the nanoparticle determines the optimal strain. The mass activities could 

be enhanced by weakening compressive strain on PtAg and PtAu of sizes of 2.83 

nm or by strengthening compressive strain on PtCu and PtNi of sizes of 1.92 nm.  

To summarize, data-driven techniques are primarily implemented to establish the 

relation between the intrinsic properties and catalytic activity in the field of ORR. 

Some fundamental factors, including electronegativity, electron affinity and radii of 

the embedded transition-metal atoms, exhibit a high correlation with the ORR 

activity of DMSCs. Furthermore, in the design of core-shell ORR nanocatalysts, 

ML models indicate that the bimetallic material composition, size, and shell 

thickness of nanoparticles control the mass activity. In addition to catalytic activity, 

the thermal-electrochemical properties could also be predicted by ML models 

trained on descriptors generated by symmetric functions. 
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Figure 2.6 (a) The trends plot of ORR activity with the variation of ΔGOOH* and 

ΔGOH* of DMSCs. Reproduced with permission (Rück et al., 2020). Copyright 

2020, ACS Publications. (b) The scheme of the high dimension NNP method. The 

symmetry functions are transformed from the Cartesian to represent chemical 

environments. The NN then predicts the contribution of energy based on the 

symmetry functions and the total energy is obtained by adding up all of the energy 

contributions. (c) The size of nanoparticles used for training, testing and ML 

prediction, which are represented in green, red and blue colour, respectively. (b-c) 

Reproduced with permission (Kang et al., 2018a). Copyright 2018, RSC 

Publications. 

 

2.5.2 Data-Driven Innovtion for CRR 

CRR is considered to be a promising, clean, and environmentally friendly strategy 

to reduce greenhouse gas emissions and resolve the energy crisis; it has been broadly 

studied to improve reaction efficiency and selectivity (Liu et al., 2017a, Lu et al., 

2014). The introduction of ML for accelerating the discovery of CRR catalysts has 
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been widely implemented in this domain, including the prediction of adsorption 

energies (Zhong et al., 2020b), identification of active sites on the surface of 

catalysts (Ulissi et al., 2017), optimization of reaction conditions for improving 

selectivity (Siebert et al., 2019), carbon dioxide capture ability, and design of 

catalysts. 

Tran and Ulissi (Tran and Ulissi, 2018) employed an active ML model to guide the 

DFT simulation to identify optimal intermetallic electrocatalysts for CO2 reduction 

and H2 evolution. A workflow was established to screen a chemical space of 1499 

candidates across 31 different elements (33% p-block and 50% d-block) of 

intermetallic materials acquired from the Materials Project. The open-source code 

pymatgen was implemented, by which 17,507 adsorption surfaces and 1,684,908 

adsorption sites were enumerated. The vector employed to represent the 

environment of the coordination site contained four descriptors: atomic number (Z), 

Pauling electronegativity (χ) of the element, number of atoms of the element that 

coordinate (CN) with CO, and crude estimate of the adsorption energy on the site 

(ΔE) (Figure 2.7a). A framework of continuous, alternating iterations between ML 

screening and DFT computation was constructed, where the results of DFT 

simulation were fed back to the ML model, and newly predicted potential adsorption 

sites with near-optimal values (ΔECO = -0.67 eV and ΔEH = -0.27 eV) were sent 

back for DFT calculations to generate new training data. Figure 2.7b represents the 

normalized distribution for the low coverage, DFT computed CO adsorption 

energies (ΔECO) of all of the DFT researched surfaces. The low coverage ΔECO 

computed by DFT for surface (131) and predicted by the ML model for surface 
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(844) are shown in Figure 2.7c and d, respectively. The RMSE, MAE, and MAD 

of the active learning model’s prediction were 0.46, 0.29 and 0.17 eV, respectively. 

One reason for this considerable error could be the use of ideal structures rather than 

relaxed structures for DFT calculation, as it is faster and less computationally 

expensive, though with the trade-off of the prediction accuracy. 

Zhong et al. (Zhong et al., 2020b) used an ML model to predict the CO adsorption 

energies (ΔECO) on the adsorption sites of copper-containing intermetallic crystals, 

among which Cu-Al alloy was found to be the most promising electrocatalyst. The 

ML-predicted CO adsorption energy combined with the volcano scaling 

relationships (Liu et al., 2017a) revealed the highest number of catalytic adsorption 

sites, where the CO adsorption value energies were near the optimal value of -0.67 

eV (Figure 2.7e) (Zhong et al., 2020b, Tran and Ulissi, 2018). A similar descriptor 

space was applied for each element type-coordinate with CO to characterize the first 

and second neighbouring shell of CO for each active site, with the difference that 

ΔE is replaced by the median adsorption energy (ΔẼ) between the pure element and 

CO, yielded from the prior DFT simulation. The constructed vector space was then 

sent to an automated ML tool called the Tree-based Pipeline Optimization Tool 

(TPOT)(Olson et al., 2016) to implement the random forest regression (RFR) model. 

By using 19,644 DFT simulated data points of ΔECO and an extra tree regressor with 

5-fold CV, the RFR model demonstrated both a median absolute deviation (MAD) 

and mean absolute error (MAE) of about 0.1 eV in predicting the ΔECO on the test 

data (5% of the whole data size), which is comparable to the accuracy of DFT 

simulation. The trained ML model was then coupled with the quantum chemical 
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computation framework to construct an active ML system. The ML model predicted 

the ΔECO of all the adsorption sites enumerated by the DFT framework from 

Materials Project (MP); those sites whose predicted ΔECO was close to -0.6 eV were 

automatically collected and sent to the next stage. DFT simulations of ΔECO were 

subsequently executed for these sites, and the additional yielded data of ΔECO were 

then added in the training dataset to iterate a new ML model. The further optimized 

and improved ML model would identify new promising adsorption sites based on 

the value of predicted ΔECO, which could be fed back to the DFT framework to 

provide new ML training data. Thus an automatically, iteratively and systematically 

active ML workflow was established and a DFT database of ΔECO on promising 

adsorption sites was constructed. In this work, the structures established from MP 

were managed by Atomic Simulation Environment (ASE); (Hjorth Larsen et al., 

2017) the Python Materials Genomics (pymatgen), which currently powers the MP, 

was used to enumerate all the surfaces and adsorption sites. DFT calculations were 

performed with VASP, while software including Lungi and FireWorks were used to 

manage the computation framework and workflow. The active ML workflow finally 

trained more than 300 RFR models, and the guided DFT simulations were 

ultimately conducted for 4000 different candidates of adsorption sites with a near-

optimal value of ΔECO on the Cu-containing surface quarter of which the majority 

were on Cu-Al Surfaces (Figure 2.7f). The integration of the volcano relationship, 

DFT simulation, and active ML achieved efficient and accurate prediction ideal 

electrocatalysts for active and selective CO2 reduction to C2H2. Based on the ML 

results, the author concluded that those Cu-Al alloys that contain higher Cu 
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composition are more promising for CRR. A follow-up experimental validation was 

performed and the CO2-to-C2H4 performance achieved ~55% PCE under 150 mA 

cm-2 at the cathode side. Although numerous DFT-calculated adsorption energies 

are required for the training of ML model, this approach reveals the importance of 

the data-driven and active-ML-guided experimental exploration in overcoming the 

limitations of the conventional single-component catalysts in CRR. 

 

Figure 2.7 (a) The sample of the numerical encoding for the adsorption site. The 

constructed descriptor space is employed as model input by the Tree-based Pipeline 

Optimization Tool (TPOT) to predict ΔECO. (b) The normalized distribution of the 

low coverage, DFT derived ΔECO for all of the DFT computed surfaces. The sub-

distribution for cooper containing surface is marked in orange, and the black dashed 

lines indicate the range of for the optimal ΔECO (-0.67 eV). (c) The low coverage 
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ΔECO computed by DFT for surface (131) and (d) predicted by ML model for 

surface (844). (a-d) Reproduced with permission (Tran and Ulissi, 2018). Copyright 

2018, Springer Nature Publications. (e) A two-dimensional activity volcano plot for 

CO2 reduction. TOF, turnover frequency. (f) t-SNE representation of approximately 

4,000 adsorption sites on performed DFT calculations with Cu-containing alloys. 

The Cu-Al clusters are labelled numerically. (e-f) Reproduced with permission 

(Zhong et al., 2020b). Copyright 2020, Springer Nature Publications. 

Pedersen et al.(Pedersen et al., 2020) have explored a probabilistic and unbiased 

method to research high-entropy alloy performance as the electrocatalysts for the 

reduction of CO2 and CO. The authors integrated the quantum chemical simulations 

and ML model to predict the ΔECO and adsorption energy of hydrogen (ΔEH) of all 

the adsorption sites on the surface of the disordered CoCuGaNiZn and AgAuCuPdPt 

HEAs. The disordered surface consists of different metal atoms that would naturally 

provide many distinct adsorption sites with each adsorbate’s unique adsorption 

properties, as determined by the site’s microstructure. Hence, a Gaussian process 

regression (GPR) model was established that uses the adsorption energy of CO and 

H in the local atomic environment around the adsorption sites (computed by DFT) 

to predict the ΔECO and ΔEH. The training data size was ca. 1000, where 5-fold CV 

was applied with MAEs of 46-64 meV (Figure 2.8a). The predictive model allows 

the optimization of HEA compositions to increase the probability of catalyzing 

performance improvement. Every local adsorption site contributes to the HEAs’ 

global catalytic properties; some of the local optimal compositions such as 

Co9Ga42Ni7Zn42, Ga83Ni17, Ag69Cu31, and Ag84Pd16/Au84Pd16 were predicted. The 
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best five-metal alloy candidates that contain at least of 10% of each elements are 

Co10Cu10Ga60Ni10Zn10 and Ag30Au33Cu17Pd10Pt10. A concurrent and independent 

work published by Nellaiappan et al.(Nellaiappan S; Kumar N; Kumar R; Parui A, 

2019) have experimentally investigated the CRR performance on the AgAuCuPdPt 

HEA, where the results are in favorable agreement with the predictions in this work. 

Important descriptors for the performance of CRR catalysts are also a necessary 

means to improve the accuracy of ML. Ma et al.(Ma et al., 2015c) pioneered the use 

of a feed-forward ANN ML model via open-source PyBrain code to establish a 

nonlinear correlation between the descriptor vector and the ΔECO. The descriptor 

vector consisted of 13 electronic properties which were determined theoretically, 

among which characterize the properties of the clean adsorption surface (such as d-

states distribution) including the filling (f), center (εd), width (Wd), skewness (γ1) 

and kurtosis (γ2) of a d-band, in conjunction with the local Pauling electronegativity 

(χl) determined by delocalized sp-states, were taken as the primary descriptors. The 

secondary descriptors such as work function (W), atomic radius (r0), the spatial 

extent of d-orbitals (rd), ionization potential (IE), electron affinity (EA), Pauling 

electronegativity (χ) and the square of adsorbate-metal interatomic d coupling 

matrix element (V
2 

ad), were also fed into the ML model. All the input features were 

standardized to improve the performance of the ANN model, and a 10-fold CV was 

performed; the ML-predicted adsorption energy of CO was shown to agree well 

with the DFT simulations, where the average RMSE achieved a value of 0.13 eV 

(Figure 2.8b). The outperformed candidate [100]-terminated Cu multimetallic 

alloys were discovered to have lower overpotentials but potentially higher 
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selectivity towards the reduction of CO2 to C2 species. After a perturbation to the 

input descriptors was performed and the model responses were compared, the 

importance of the descriptors was examined (Figure 2.8c). The developed ML 

model demonstrated a novel methodology for capturing complexity in 

electrocatalytic CRR and acquiring accurate values of adsorption energies without 

expensive quantum chemical computations, providing in-depth understanding and 

strategies for catalysts design. 

The majority of applications of data-driven innovation in CRR are for predicting 

the adsorption energy of CO and H to evaluate the activity and selectivity of the 

catalyst candidates. The atom environment of the local adsorption site plays a 

dominant role in the catalyst performance, and descriptors, such as electronegativity 

and coordination numbers, have high impact on adsorption energy. The exploration 

of the catalytic performance and material structure by using data-driven techniques 

provides the possibility of a rational design of high-performance materials to boost 

the CRR. 
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Figure 2.8 (a) The performance of the GBR ML model for adsorption energy 

prediction. The ML predicted and DFT computed adsorption energies for on-top 

CO (i,iv), fcc-hollow H (ii,v) and hcp-hollow H (iii,vi) on the CoCuGaNiZn (i-iii) 

and AgAuCuPdPt (iv-vi) HEAs. Reproduced with permission (Pedersen et al., 

2020). Copyright 2020, ACS Publications. (b) The performance of the NN ML 

model for adsorption energy prediction Cu monolayer alloys. (c) The nominalized 

sensitivity coefficient of the d-band descriptors. Reproduced with permission (Ma 

et al., 2015c). Copyright 2015, ACS Publications. 
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2.5.3 Rechargeable Alkali-Ion Battery 

This sub-section will discuss the accelerated discovery of potential material 

candidates for electrolytes and electrodes based on data-driven strategies. As a key 

component of electrochemical energy storage, rechargeable batteries are extremely 

vital for various applications, including new energy vehicles, consumer electronics, 

and aerospace. To meet the growing needs of these applications, larger volumes of 

rechargeable batteries are being demanded with higher energy density, higher power 

density, longer cycle life, greater safety, and at an acceptable cost. Thus, it is 

essential to develop key rechargeable battery materials, including those for 

electrodes and electrolytes, to improve the performance of rechargeable batteries. 

Data-driven screening of electrolytes often quickly identifies promising electrolytes 

through indicators such as chemical and structural stability (Sendek et al., 2017), 

electronic properties (Sendek et al., 2017), mechanical properties (Ahmad et al., 

2018), and coordination energy (Ishikawa et al., 2019). For electrodes, voltage 

(Joshi et al., 2019), volume (LeCun et al., 2015) and redox potential (Attarian 

Shandiz and Gauvin, 2016) are essential for ML to successfully predict and evaluate 

the performance of electrodes. 

 

2.5.3.1. Electrolytes 

Electrolytes are vital components of rechargeable batteries; it is essential to find 

high-performance electrolytes in the development of advanced rechargeable 

batteries (Xu, 2004, Bhatt and O'Dwyer, 2015). With the significant advance of 
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quantum chemical computations and ML learning techniques, some researchers 

have applied high-throughput data-driven approaches to discover innovative, next-

generation battery electrolytes (Cheng et al., 2015a, Halls and Tasaki, 2010, Hautier 

et al., 2012, Curtarolo et al., 2013, Korth, 2014, Husch et al., 2015). Sendek et al. 

(Sendek et al., 2017) have proposed a workflow of large scale computational 

material screening for solid electrolytes in lithium-ion batteries (Figure 2.9a-c). The 

authors first acquired atomistic and electronic structure parameters for 12,831 

lithium-containing candidates from the MP database, including the equilibrium 

atom position, the energy above the convex hull, the bandgaps, and the Gibbs free 

energy, utilizing the Python package Pymatgen (Ong et al., 2013). This was 

followed by a primary screening stage using four prerequisite criteria: low 

electronic conductivity, high chemical and structural stability, and low material cost. 

A logistic regression model was trained to identify the structures that are most likely 

to exhibit excellent lithium conduction based on five features including the average 

number of Li neighbors for each Li, the average sublattice bond ionicity, the average 

anion coordination number in the anion framework, the average shortest Li–anion 

and Li–Li distance in angstroms. The training set consisted of 40 crystal structures 

whose ionic conductivity values were available in the literature. The threshold of 

superionic conductive behavior was set as 0.1 mS/c; finally, 21 structures 

demonstrated potential as high-performance electrolytes, some of which have been 

experimentally investigated (Wada et al., 1983, Tomita et al., 2008, Yamada et al., 

2006, Court-Castagnet et al., 1993). This method is applicable to confirming the 

ionic conductivity of unreported inorganic materials. 
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Similarly, Ahmad et al. (Ahmad et al., 2018) conducted a high-throughput data-

driven search over for solid electrolytes with outstanding dendrite suppression 

capability of Li on the anode. A crystal graph-based convolutional neural network 

(CGCNN) (Xie and Grossman, 2018) was trained to predict the moduli of shear and 

bulk given a large, available, low noise dataset obtained from low uncertainty first-

principle-calculated values. The CGCNN model was trained by only structural 

descriptors, which bypass first-principles calculations. Additional ML models based 

on GBR and KRR were also employed to predict the elastic constants of cubic 

materials (Figure 2.9d). Those predicted mechanical properties are critical in 

stabilizing the interface and computationally expensive to obtain via first-principle 

methods. Those properties were taken as the input of the theoretical framework 

utilizing the stability parameter (Ahmad and Viswanathan, 2017b, Ahmad and 

Viswanathan, 2017a) to figure out the dendrite initiation on the Li metal anode. The 

stiffness of the material was found to be positively correlated with the mass density 

and the ratio of bond iconicity between Li and the sublattice, whereas a negative 

correlation was obtained with the sublattice electronegativity and volume per atom. 

Further investigations of thermodynamic stability and electronic conductivity were 

performed. Additionally, the method proposed by Sendek et al. (Sendek et al., 2017) 

was employed to confirm the ionic conductivity. Over 20 mechanically anisotropic 

interfaces and 4 electrolytes including Li2WS4-P4
_

2m, Li2WS4-I4
_

2m, LiBH4-P
_

1 and 

LiOH-P4/nmm were predicted as promising to be employed to suppress dendrite 

growth. The screened candidates were highly anisotropic and generally soft, which 

indicate opportunities for acquiring innovative solid electrolytes with both high 
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ionic conductivity and dendrite suppression. The R2 on the predictions of elastic 

constants C11, C12, and C44 were 0.60, 0.79, and 0.6, respectively; this might be due 

to the uncertainty inherent in the DFT-calculated values (Ahmad and Viswanathan, 

2016, Deng et al., 2015); the use of low uncertainity might improve the model 

performance. With the ability of data handling and feature generation, the proposed 

methodology in this study is readily applicable the screening of other inorganic 

materials for properties of interest. 

Existing studies have mainly concentrated on solid electrolytes. Investigations of 

liquid electrolytes hav barely been reported (Chen et al., 2018b, Chen et al., 2018a), 

mainly because the molecular structure of a liquid system is more flexible, which 

makes it challenging to extract structural information. Ishikawa et al. (Ishikawa et 

al., 2019) integrated a data-driven method with quantum chemistry computations to 

predict the coordination energy (Ecoord) (Okoshi et al., 2013, Okoshi et al., 2016) of 

alkali group metal ions (Li, Na, K, Rb, and Cs) in battery electrolyte solvents. The 

Ecoord is closely related to ion transfer at the interface of electrolyte/electrode, which 

is first obtained by quantum chemical computations. The calculated Ecoord for 5 

alkali ions is shown in Figure 2.9e. Three ML regression methods, namely, MLR, 

LASSO, and exhaustive search with linear regression (ES-LiR),(Sodeyama et al., 

2018, Igarashi et al., 2016, Igarashi et al., 2018) were implemented to identify the 

relationship between Ecoord and selected descriptors. The descriptor space consists 

of both ion and solvent properties, such as the ions’ atomic weight and boiling point 

of the solvents. The results revealed that the most critical descriptors are the ionic 

radius and the oxygen atom’s charge connected to the metal ion. The ES-LiR model 
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yielded a CV error (Sodeyama et al., 2018, Igarashi et al., 2016, Igarashi et al., 2018) 

of 0.127 eV for the prediction accuracy of Ecoord (Figure 2.9f). By implementing 

the exhaustive search with Gaussian process (ES-GP) (Figure 2.9g), a further 

improvement of the prediction accuracy with a CV error of 0.016 eV was achieved. 

This study demonstrated that the integrated data-driven techniques and quantum 

chemistry calculations can accurately predict Ecoord of any alkali metal ion 

coordination. The trained ML model could be employed to search for battery 

electrolyte materials, where several descriptors including ionic radius and NBO 

charge of the O atom are identified as critical in developing next-generation post-

Li batteries. 
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Figure 2.9 (a) Flow diagram of the ML assisted material screening process for Li-

contained candidates. (b) (top) The training misclassification rate (TMR) and cross-

validation misclassification rate (CVMR) via LOOCV. The dashed lines in the top 

diagram describe the mean value of the performed X-randomization analysis which 

is applied to ensure the model is not built on chance correlation. (bottom) The 

performance of ML models compare with chance correlations, the black dashed line 

indicates the threshold. (c) The performance of the training data using logistical 

regression with LOOCV. (a-c) Reproduced with permission (Sendek et al., 2017). 

Copyright 2017, RSC Publications. (d) The comparison diagram of elastic 

properties between the ML predicted and DFT computed value: (i) shear modulus 
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and elastic constants (ii) C11 (iii) C12 and (iv) C44. Reproduced with permission 

(Ahmad et al., 2018). Copyright 2018, ACS Publications. (e) Ecoord of 70 solvents 

and the five alkali metal ions. (f) The performance of the ES-GP model for the 

prediction of Ecoord. (g) The performance of the ES-LiR model for the prediction of 

Ecoord. Reproduced with permission (Ishikawa et al., 2019). Copyright 2019, RSC 

Publications. 

 

2.5.3.2. Electrodes 

Accelerating the discovery of suitable materials for high-power, safe, and stable 

electrodes is essential for developing improved rechargeable batteries. Because of 

the development of first-principles computations, the properties of unknown 

electrode materials can be obtained to support the research of complex phenomena 

(Meng and Arroyo-de Dompablo, 2009, Nishijima et al., 2014, Meng and Arroyo-

de Dompablo, 2013, Yan et al., 2014). Nevertheless, the advancement of ML 

techniques can enable more efficient discovery of innovative materials to identify 

the complex, implicit correlations between crystal structure and various properties 

of electrode materials such as voltage, capacity, ionic and electronic mobility, 

stability, redox potential, and volume changes in the battery (Meng and Arroyo-de 

Dompablo, 2009, Nishijima et al., 2014, Meng and Arroyo-de Dompablo, 2013, 

Yan et al., 2014, Liu et al., 2020b). 
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Figure 2.10 The plot of different properties pairs of Li–(Mn, Fe, Co)–Si–O cathodes 

according to the extracted data from MP database. The red, yellow and blue dots 

indicate the monoclinic, orthorhombic and triclinic crystal systems, respectively. 

Reproduced with permission (Attarian Shandiz and Gauvin, 2016). Copyright 2016, 

Elsevier Publications. 

Five ML classification models, including ANN, SVM, k-NN, RF, and extremely 

randomized trees (ERT) were implemented by Shandiz et al. (Attarian Shandiz and 

Gauvin, 2016) to categorize the crystal systems of silicate-based cathodes with the 

composition of Li–Si–(Mn, Fe, Co)–O into three major types: monoclinic; triclinic; 

orthorhombic. The training dataset contained 339 cathode material data points 
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obtained from MP (Jain et al., 2013, Jain et al., 2011b), with 5 descriptors including 

formation energy (Ef), energy above hull (EH), bandgap (Eg), number of sites (Ns), 

and volume of unit cell (Vuc) (Figure 2.10). The prediction results indicated that the 

ensemble methods (RF and ERT) gave the highest accuracy of over 75% under 

Monte Carlo validation (Xu et al., 2004), where the Ns and Vuc were dominant in 

determining the crystal system type. More recently, Joshi et al. (Joshi et al., 2019) 

developed an ML-based tool to predict the voltage of electrode materials in metal-

ion batteries. A total of 3,977 samples were collected from the MP database, where 

237 features, such as the elemental properties of their constituents(Ward et al., 

2016a) and properties of chemical compounds (Ghiringhelli et al., 2015), were 

initially added to the descriptor vector. A PCA (Pearson, 1901, Jolliffe, 2011) model 

was then performed to reduce the dimensionality of the descriptor vector to 80. The 

deep neural network (Figure 2.11a) (LeCun et al., 2015), SVM(Noble, 2006), and 

KRR(Vovk, 2013) model yield an R2 value of 0.84, 0.86, and 0.86, respectively, on 

the prediction of voltage, therefore offering an alternative way to generate voltage 

profile diagrams instead of DFT methods (Zhang et al., 2018) (Figure 2.11b). 

Additionally, nearly 5,000 electrode material candidates were proposed for Na- and 

Ki-ion batteries via these ML models, some of which were comparable with 

published experimental and DFT values (Ong et al., 2011, Billaud et al., 2014, Nisar 

et al., 2018). Further improvement of the model performance could be implemented 

via the employment of different algorithms, more data, and novel ways of 

characterizing intercalation reactions. 
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Figure 2.11 (a) Schematic diagram of the neural network employed in this study. xi 

represents the input of the NN and Hi represents the nodes in the hidden layers. (b) 

The obtained voltage profile diagram from several ML models and DFT 

computation for NaxCo2SbO6. a-b) Reproduced with permission (Joshi et al., 2019). 

Copyright 2019, ACS Publications. (c) The scheme of crystal structures for (left) 

spinel LiX2O4 and (right) layered LiXO2. (d) (top) The model coefficient plot and 

(bottom) variable importance plot of the independent variables for the modeling 

PLS. (c-d) Reproduced with permission (Wang et al., 2017). Copyright 2017, 

Elsevier Publications. 
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Small volume changes of cathodes are critical for extending the cycle life of 

batteries.(Chen et al., 2003) Wang et al. (Wang et al., 2017) reported a methodology 

integrating first-principles calculations and partial least square (PLS) regression to 

formulate the quantitative structure-activity relationship (QSAR) of the volume 

change for cathode materials in Li-ion batteries. The scheme of crystal structures of 

the material is shown in Figure 2.11c. A total of 34 descriptors in five types, 

including element, crystal structure, composition, local distortion and electronic 

level, were selected to acquire the QSAR formulation (Figure 2.11d). It was found 

that the radius of X4+ ion and the octahedron descriptors of X contributed the most 

to cathode volume change. The established QSAR could be applied to a broader 

range of real or simulated materials. It is still challenging to design the low-strain 

cathode with the determined optimal combination of the descriptors, which might 

be realized via codoping at various atomic sites. 

Data-driven innovation has emerged as a significant driver of material discovery 

and fundamental knowledge exploration in rechargeable alkali-ion batteries. This is 

typically accompanied by the integration of first-principles computation and ML 

techniques, which reveal implicit structure-property correlations and accelerate the 

high-throughput screening of electrolyte and electrode materials (Ahmad et al., 

2018). Although some of the trained ML models discussed earlier might have 

relatively weak prediction accuracy (Ahmad et al., 2018), which might be caused 

by the uncertainty of DFT computation (Ahmad and Viswanathan, 2016), they still 

reflect the correct trends in target properties with with respect to material parameters. 

The selection of descriptors is of great significance to model performance. In some 
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cases, geometric attributes and electronic properties can sufficiently describe the 

material and are relatively (computationally) cheap to obtain (Wang et al., 2017, 

Sendek et al., 2017, Ahmad et al., 2018). 

 

2.6 Conclusion 

In conclusion, this chapter provides a critical review of the recent advances in data-

driven innovation of materials science and chemical engineering are elaborated. 

First, several data-driven frameworks, along with direct design, inverse design, and 

active learning, are discussed based on the flow of data and information in the data-

driven process. Then, the chemical databases that store and manage material data 

are systematically discussed. Furthermore, the descriptors that carry the chemical 

information in the data-driven process are introduced. Finally, a critical discussion 

on how the data-driven approach is applied for various energy materials innovation 

and green chemical engineering is provided. The development of novel and 

intelligent algorithms, the capability of computational and experimental material 

databases to generate and store data, and the design and validation of accurate and 

efficient descriptors have many outcomes. Their synergistic integration is promising 

and effective for material discovery and industrial optimization. This thesis aims to 

provide a deeper understanding of these advanced technologies and to explore 

innovative approaches for enhancing the synergistic integration in this community 

at various scale, from micro to macro level, and across different sub-disciplines in 

material science and chemical engineering to enable carbon neutrality. 
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3.1 Synopsis 

Chapter 3 details the methodology used in this thesis. The chapter starts with a 

section on the method of DFT calculations for ORR, generating the necessary data 

for the ML training in Chapter 4. This is followed by the information of raw 

materials and their corresponding suppliers, which were taken for LFP synthesis in 

Chapter 5. This chapter then describes the synthesis process of LFP materials using 

the high-temperature solid-state method. Next, various characterization 

measurements conducted on LFP materials are briefly described, including the 

characterization of the LFPs’ electrochemical and physicochemical properties. Then, 

a discussion on the data simulation process and the ML training strategy used in 

Chapter 6, as well as the real-time monitoring methodology applied in the research, 

is presented. 

 

3.2 DFT Calculations for ORR  

All DFT calculations were performed using the Vienna ab initio simulation program, 

along with projected augmented wave (Blöchl, 1994) pseudopotentials and the 

Perdew–Burke–Ernzerhof functional (Perdew et al., 1996). According to the 

different crystal systems screened by the critera, the (111), (100), and (211) surfaces 

were cleavaged to simulate the planar and step sites. Neighboring slabs were 

separated by a vacuum of 15 Å to avoid spurious self-interactions. The surface 

irreducible Brillouin zone was sampled on the k-point mesh generated by the 

Monkhorst–Pack scheme. An energy cutoff of 400 eV was employed for the plane-
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wave basis set. The convergence threshold for electronic steps in geometry 

optimization was 1 × 10−5 eV. Geometries were deemed converged when the forces 

on each atom were below 0.02 eV Å−1. A frequency analysis was carried out on the 

stable states to confirm that these represent genuine minima. All the electronic 

energies were corrected for zero-point energy contributions. 

 

3.3 Materials for the synthesis of LFP 

Table 3.1 The suppliers of the mainly used materials 

Materials Suppliers 

FePO4 Sichuan Development Lomon Co., Ltd 

LiCO3 Aorislithium Co., Ltd 

Glucose Aladdin Co., Ltd 

PEG Jilin Ruiji Co., Ltd 

TiO2 Ningbo Xinfu Co., Ltd 

APG Aladdin Co., Ltd 

 

3.4 Preparation Process of LFP 

The preparation method for lithium iron phosphate (LFP) is the high-temperature 

solid-state method. The main chemicals, including FePO4, Li2CO3 (LC), glucose, 

polyethylene glycol (PEG), TiO2, and alkyl polyglucosides (APG) with a total 

carbon content of 0.05wt%, are added to a ball milling jar. Zirconia beads, 3-5 times 

the amount of the material, are also added for ball milling. After ball milling, the 

mixture undergoes spray drying to obtain a yellow pre-mixed precursor. This pre-
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mixed precursor is then sintered at 800°C for 8 hours under an inert atmosphere to 

produce the APG-modified LFP. The final step involves air jet milling to achieve 

the desired particle size and distribution.  

 

3.5 Characterizations of LFP 

3.5.1 Characterization of electrichemical properties 

The electrochemical performance characterization of the prepared LFP was 

conducted using coin cells and the LANHE battery testing system (Wuhan, China). 

During the characterization process, the active material LFP, conductive agent 

Super P, and binder were mixed in a weight ratio of 80:10:10. These three 

substances were dissolved in N-methyl-2-pyrrolidone (NMP) and homogenized 

using a THINKY mixer. After homogenization, the slurry was coated onto 

aluminum foil and vacuum dried at 120 °C for 3 hours to obtain the electrode. 

Lithium metal (RoHS) was used as the counter electrode, Celgard 2325 

polypropylene membrane (Celgard) served as the separator, and the electrolyte 

consisted of 1 mol/L LiPF6 dissolved in a mixture of ethylene carbonate (EC) and 

dimethyl carbonate (DMC) in a 1:1 volume ratio. The entire battery assembly 

process was carried out in an argon-filled Mikrouna glove box. The constant current 

charge-discharge curves and rate performance tests were conducted using the 

LANHE battery testing system (Wuhan, China) at a temperature of 25°C and a 

voltage range of 2.25-3.75V (vs. Li/Li+). 
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3.5.2 Characterization of physicalchemical properties 

The phase and crystal structure of the four materials were determined using X-ray 

diffraction (PANalytical). The microstructure was characterized by field emission 

electron microscopy (Bruker). The powder compaction density of the materials was 

characterized using an electronic pressure testing machine (UTM7305). 

 

3.6 The Simulation of Steam Boiler Operation Data for Fault 

Detection and Real-Time Monitoring 

For the generation of the simulation dataset, Aspen Plus V10 and Aspen Plus 

Dynamic V10 were used as the simulator for fault simulation of the boiler. 

Components of the boiler were simulated using blocks, as shown in Figure 3.1, 

such as mixer (as MIXER), RGibss reactor (as combustor), pump (as soft water 

pump), separator (as flash drum), and three heat exchangers (as smoke tube, 

economizer, and condenser) and were denoted as MIXER, COMB, PUMP, DRUM, 

SMKTUBE, ECOMM, and COND, respectively. Assumptions of the simulation 

includes no heat loss for all equipment except COMB.  
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Figure 3.1 The schematic of the simulated boiler operation system. 

 

3.7 ML-Based Data-Driven Techniques for Fault Detection and 

Real-Time Monitoring 

3.7.1 Principal Components Analysis (PCA) 

PCA is an unsupervised ML algorithm, which is regarded as a linear multivariate 

statistic technique and an exploratory data analysis tool for dimensionality reduction, 

decorrelation, denoising, and pattern recognition of a dataset. PCA seeks a linear 

transformation to map the original data to low-dimension latent variables, regarded 

as principal components (PCs), with the least loss of information (Wang et al., 2022). 

The target of PCA on a given dataset 𝑿 ∈ 𝐑𝑞×𝑝 which has q sample points with p 

observed variables, is to determine the linear combination 𝑿𝒂 of the p variables 

given by ∑ 𝑎𝑖𝑿𝑖 = 𝑿𝒂𝑝
𝑖=1  that provides the maximum variances where a is a vector 

that is consisted of constants ai. The variance of the linear combination var(𝑿𝒂) 

can be calculated from the covariance matrix 𝑪 ∈ 𝐑𝑝×𝑝 of the original dataset 𝑿: 

 𝐯𝐚𝐫(𝑿𝒂) = 𝐜𝐨𝐯(𝑿𝒂, 𝑿𝒂) = 𝒂𝑻𝑪𝒂  (3-1) 
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The problem of seeking the Xa with maximum variance is equivalent to finding the 

specific 𝑝 × 1 vector a that maximum 𝒂𝑇𝑪𝒂. With the additional restriction that a 

is a unit-norm vector, the maximum problem could be written as:(Jolliffe and 

Cadima, 2016) 

 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒂

[𝒂𝑻𝑪𝒂 − 𝝀(𝒂𝑻𝒂 − 𝟏)]  (3-2) 

where the 𝜆 is the Lagrange multiplier of the constrained optimization problem. The 

maximum value of variance occurs when the differentiation of equation  (3-2) is 

equal to the null vector: 

 𝑪𝒂 − 𝝀𝒂 = 𝟎  (3-3) 

and the a is the eigenvector of C, and 𝜆 is the corresponding eigenvalue whose value 

is equal to var(𝑿𝒂). The application of the Lagrange approach obtains all of the p 

eigenvalues as the solution of new linear combinations: 

 𝑿𝒂𝒏 = ∑ 𝒂𝒏𝒊𝑿𝒊
𝒑
𝒊=𝟏 , 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝒑  (3-4) 

where these linear combination 𝑿𝒂𝑛 are regarded as PCs, whose elements are called 

PC scores. Those PCs are uncorrelated with each other due to the orthogonality of 

eigenvectors of an, whose elements are called PC loadings. 

For a dataset denoted as 𝑿∗, where each column of the variables has a mean of zero, 

its covariance matrix can be calculated by: 

 𝑪 =
𝟏

𝒒−𝟏
𝑿∗𝑻𝑿∗  (3-5) 
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The eigendecomposition of 𝑪  could be transformed into the singular value 

decomposition of 𝑿∗. Let 𝑿∗ = 𝑼𝜮𝑨𝑇, the eigenvectors of 𝑿∗𝑿∗𝑇 and 𝑿∗𝑇𝑿∗are the 

columns of unitary matrices 𝑼 ∈ 𝐑𝑞×𝑞  and 𝑨 ∈ 𝐑𝑝×𝑝 , respectively. The main 

diagonal of the non-negative diagonal matrix 𝜮2 ∈ 𝐑𝑝×𝑝 are the squared singular 

values (𝜎𝑛
2) in decreasing order, which are also the real eigenvalues (𝜆𝑛) of the 

(𝑞 − 1)𝑪. The right singular vector 𝑨 is the loading matrix, and the score matrix 

𝑿∗𝑨 can be expressed as: 

 𝑿∗𝑨 =  𝑼𝜮𝑨𝑻𝑨 = 𝑼𝜮  (3-6) 

The mth PC is the mth column of 𝑿∗𝑨 and var(𝑿∗𝑨𝑚) = 𝜆𝑚 , which is the mth 

largest eigenvalue of (𝑞 − 1)𝑪. The tr(𝜮2) is the total sum of the variances of the p 

original variables, which equals to the total variances of the p PCs. For the mth PC, 

its proportion of tr(𝜮2) is regarded as its contribution 𝑐𝑚 to the total variance and 

the accumulated contribution 𝑎𝑐𝑚 of the top m PCs are normally the pre-defined 

hyperparameters to specify how many PCs are expected to be retained. The dataset 

𝑿∗ could be expressed as the sum of residuals and the outer products of their score 

matrix and loading matrix (Figure 3.2): 

 𝑿∗ = �̂� + �̃� = ∑ 𝒕�̂�𝒑�̂�
𝒎
𝒊=𝟏 + ∑ 𝒕�̃�𝒑�̃�

𝒑−𝒎
𝒊=𝟏 = �̂��̂�𝑻 + �̃��̃�𝑻 (3-7) 

where �̂� ∈ 𝐑𝑝×𝑚 stand for the loading matrix in the PC space and consist of the 

largest 𝑚 eigenvalues of (𝑞 − 1)𝑪; �̂� ∈ 𝐑𝑞×𝑚  is the corresponding score matrix 

whose columns are the selected PCs. The matrix �̃� is the residual matrix, and the 

columns of the �̃� and �̃� are the left (𝑝 − 𝑚) PCs and eigenvectors, respectively.  
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Figure 3.2 The typical PCA decomposition on a dataset with J variables of K 

samples. 

 

3.7.2 Multiway PCA (MPCA) 

The MPCA is an extension of traditional PCA to analyze a multi-dimensional 

dataset. Traditional PCA can only analyze a single two-dimensional matrix (Figure 

3.2) containing plenty of features, generating a small number of principal 

components (PCs). For a series of batch processes, the data is normally collected in 

a three-dimensional form 𝑿 (I×J×K), where 𝐼 is the number of batches the boiler 

completed, 𝐽 is the observed variables, and 𝐾 is the time intervals (Figure 3.3a). To 

process the batch dataset, MPCA unfolds 𝑿  along with one of three possible 

directions (𝑿𝟏(𝐽 × 𝐼𝐾), 𝑿𝟐(𝐼 × 𝐽𝐾) and 𝑿𝟑(𝐼 × 𝐾𝐽)) and arranges it into a two-

dimensional dataset to perform projection and decomposition. Every horizontal 

slice of the 𝑿 is a (𝐽 × 𝐾) matrix (Figure 3.3b) that records the 𝐽 observed variables 
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during the time period 𝐾 of a single batch 𝑖. Similarly, a vertical slice along the 

variables is a (𝐼 × 𝐾) matrix (Figure 3.3c) that records the variation of a single 

variable 𝑗  during the time period 𝐾  in 𝐼  different batches, and a (𝐼 × 𝐽)  matrix 

(Figure 3.3d) is a vertical slide alone another direction that records the values of 𝐽 

variables of 𝐼 batches at time point 𝑘. In this study, with the consideration of the 

variations of variables among different batches, the matrix 𝑿 is unfolded in the form 

of 𝑿𝟑, where each (𝐼 × 𝐽) vertical slice of 𝑿 is put side by side along with the time 

series.  

 

Figure 3.3 The graphic presentation of the decomposition of the three-dimensional 

data tensor. (a) The illustration of three-dimension data tensor 𝑋 of the steam boiler 

working in batches. (b) Unfolding 𝑋 along with batches, 𝑋1(𝐽 × 𝐼𝐾). (c) Unfolding 

𝑋  along with variables, 𝑋2(𝐼 × 𝐽𝐾) . (d) Unfolding 𝑋  along with time points, 

𝑋3(𝐼 × 𝐾𝐽). 

The 𝑿𝟑  unfolding allows the analysis of the variabilities among batches via 

arranging the data with respect to variables and time points. Figure 3.4 illustrates 
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the relationship between the MPCA on 𝑿 and by PCA on the unfolded 𝑿𝟑. In the 

𝑿𝟑 unfolding, each score vector element characterizes a single batch's behavior and 

its variability compared to other batches in X over time. Loading vectors, on the 

other hand, signify the maximum variance direction and offer a clear view of the 

batch data. Each loading vector outlines the variable changes at each time point, 

with its elements used as weights applied to batch variables when calculating the 

batch score. With the joint covariance matrix detailing variable deviations, MPCA 

can track variable shifts in magnitude and their correlations within batches over time. 

 

Figure 3.4 The graphic presentation of the decomposition on the three-dimensional 

batch data by MPCA (top) and the equivalent form of PCA on the unfolded data to 

obtain the �̂� and �̂�. 

 

3.7.3 Long-Short Term Memory (LSTM) 
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Developed from the recurrent neural network (RNN), LSTM is proposed with the 

addition of a forgetting mechanism to overcome the gradient explosion and 

vanishing problem.(Man et al., 2022, Liu et al., 2020a, Hochreiter and Schmidhuber, 

1997) The architecture of LSTM is shown in Figure 3.5, where a particular memory 

cell similar to an accumulator and a gated neuron is encoded in. The weight of next 

time step is computed parallelly and the actual value of the state is copied and 

accumulated. A self-connection mechanism controlled by a multiplication gate 

which is employed to determine the moment to clear the memory content by another 

unit, is added in LSTM. A typical LSTM architecture consists of input gate, output 

gate and forget gate. Denote time interval as subscript 𝑘, input as 𝑥, cell state as 𝐶, 

activation function as 𝜎, the hidden state as ℎ, layer weights as 𝑊, bias as 𝑏, the 

output of input gate, output gate, forget gate and the reserved portion of the original 

loop layer as 𝑖, 𝑓, 𝑜 and �̂�, respectively. The forward propagation process of LSTM 

can be expressed as: 

 𝒊𝒌 = 𝝈(𝑾𝒊[𝒉𝒌−𝟏, 𝒙𝒌] + 𝒃𝒊)  (3-8) 

 𝒇𝒌 = 𝝈(𝑾𝒇[𝒉𝒌−𝟏, 𝒙𝒌] + 𝒃𝒇)  (3-9) 

 𝒐𝒌 = 𝝈(𝑾𝒐[𝒉𝒌−𝟏, 𝒙𝒌] + 𝒃𝒐)  (3-10) 

and the update of cell information and hidden information are presented by: 

 �̂�𝒌 = 𝐭𝐚𝐧𝐡(𝑾𝑪[𝒉𝒌−𝟏, 𝒙𝒌] + 𝒃𝑪)  (3-11) 

 𝑪𝒌 = 𝒇𝒌 × 𝑪𝒌−𝟏 + 𝒊𝒌 × �̂�𝒌  (3-12) 

 𝒉𝒌 = 𝒐𝒌 × 𝐭𝐚𝐧𝐡(𝑪𝒌)  (3-13) 
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Different from RNN, the LSTM does not process all historical data but only selected 

length of data backward within the forgetting mechanism, and add the input 

information of the next time point to the backward transfer.(Man et al., 2022) Then 

the backpropagation will be employed to updated the hyperparameter to optimize 

the model.(Rumelhart et al., 1986) The LSTM have been widely applied to process 

sequence data such as natural language processing,(Gers and Schmidhuber, 2001) 

river daily runoff,(Man et al., 2022) and heart rate signals.(G et al., 2018) 

 

Figure 3.5 The Architecture of LSTM. 𝑪𝒌−𝟏 and 𝒉𝒌−𝟏 represent the state of the cell 

and hidden layer of last time point, respectively. 

 

3.7.4 ML-Assisted Real-Time Monitoring of Industrial Process. 

The loading matrix (�̂�) from the previous MPCA analysis encapsulates the data 

structure information, highlighting deviations of process variables from the mean 

trajectories under standard operating conditions. By capturing the pattern of the data 
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at each time point, it enables the real-time examination of device behavior, making 

it possible to identify and respond to deviations as they occur. When testing a new 

batch for abnormal behavior detection, the existing loading matrix will be utilized 

to derive corresponding PCs and residuals for the test batch 𝑿𝑡𝑒𝑠𝑡(1 × 𝐾 × 𝐽). The 

𝑿𝑡𝑒𝑠𝑡  could then be pre-processed and unfolded into a one-dimension vector 

𝑥𝑡𝑒𝑠𝑡
∗ (1 × 𝐾𝐽) and the corresponding PC vector 𝑡𝑡𝑒𝑠𝑡 and residuals  �̃�𝑡𝑒𝑠𝑡 could be 

calculated by: 

 𝒕𝒕𝒆𝒔𝒕 = 𝒙𝒕𝒆𝒔𝒕
∗ �̂� (3-14) 

 �̃�𝒕𝒆𝒔𝒕 = 𝒙𝒕𝒆𝒔𝒕
∗ − 𝒕𝒕𝒆𝒔𝒕�̂�𝑻 (3-15) 

For an ongoing test batch, only 𝒌 rows exist in 𝑿𝒕𝒆𝒔𝒕 due to the absence of future 

measurements. Several solutions are proposed to address this, such as assuming the 

variables are multi-normally distributed and then using T2 statistics to perform an F 

test, or establishing a series of PCA models at each time point (Nomikos and 

MacGregor, 1995). The 𝒕𝒕𝒆𝒔𝒕,𝒌  can be expressed as the cross product of the 

observation vector 𝒙𝒕𝒆𝒔𝒕,𝒌
∗  and the corresponding rows of the loading matrix �̂�𝒌. The 

use of �̂�𝒌 assumes that the future data will maintain a consistent data structure due 

to the inner correlation encoded by the MPCA model. Therefore, the problem 

becomes finding the value of 𝒕𝒕𝒆𝒔𝒕,𝒌 that provides the least squared error of: 

 𝒙𝒕𝒆𝒔𝒕,𝒌
∗ = 𝒕𝒕𝒆𝒔𝒌,𝒌�̂�𝒌

𝑻
 (3-16) 

whose the least square solution could be expressed as:  
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 𝒕𝒕𝒆𝒔𝒌,𝒌 = 𝒙𝒕𝒆𝒔𝒕,𝒌
∗ �̂�𝒌

𝑻
(�̂�𝒌�̂�𝒌

𝑻
)

−𝟏

  (3-17) 

where 𝒙𝑡𝑒𝑠𝑡,𝑘
∗  is the scaled and centralized data according to the reference dataset.  

The matrix �̂�𝑘  has the dimensionality of (𝑘 × 𝐽 × 𝑚), including all the loading 

vectors of 𝐽  variables up to time point 𝑘  with 𝑚  selected PCs. Due to the 

orthogonality property of loading vectors, the matrix �̂�𝑘�̂�𝑘
𝑇

 is well-

conditioned.(Nomikos and MacGregor, 1995) Similar to the MPCA implementation, 

the score plot and residual of the test batch are used to determine whether it is 

normal. The 𝒕𝑡𝑒𝑠𝑘,𝑘  represents the project of 𝒙𝑡𝑒𝑠𝑡
∗  to the reduced 𝑚-dimensional 

space determined by the MPCA model.  

 

3.7.5 LSTM-MPCA employed for Real-Time Monitoring and Early 

Warning 

While MPCA is effective for real-time monitoring, it has limitations in predicting 

future behavior. To address this, MPCA is enhanced with Long Short-Term 

Memory (LSTM) networks for time series forecasting. The proposed ensemble 

method combines four LSTM sub-models, each with three hidden layers, to predict 

the next time step of a given time series. Each hidden layer consists of an LSTM 

unit with 256 memory cells, selected activation functions, and dropout layers. The 

four models have different activation functions and dropout rates and are trained 

independently. A dense layer with the same number of neurons as the input features 

is added to the output of the third LSTM layer to make the final prediction. 
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During the prediction phase, the outputs of the model are concatenated, and the 

average of the outputs is computed as the final prediction using a voting mechanism. 

This voting mechanism leverages the strengths of each individual model and 

mitigates their weaknesses. By integrating LSTM with MPCA, the system not only 

performs real-time monitoring but also effectively predicts future boiler behaviors, 

combining MPCA's strengths for immediate anomaly detection with LSTM's 

capabilities for forecasting, providing a comprehensive solution for steam boiler 

fault detection and monitoring. 

The proposed model architecture was employed on the simulated dataset, with the 

training, validation, and testing sets split in a ratio of 8.5:1:0.5. During training, each 

LSTM sub-model takes in a sequence of 16 timesteps to predict the variables and 

MPCA score values of the next time points. The model was trained using the Mean 

Squared Error (MSE) loss function and the Adamax optimizer with a learning rate 

of 0.001 (Kingma and Ba, 2014). The performance of the model was evaluated using 

the R-squared metric, which measures the proportion of the variance in the target 

variable explained by the model. 

 

3.8 Statistics and Control Limits for Fault Detection and Real-

Time Monitoring 

Once the MPCA model is developed based on the historical reference batch data, 

the structural information of the reference data is contained in the generated �̂�, 

which can indicate how the measured variables would vary at one specific time 



Chapter 3  University of Nottingham 

117 

 

point. For a new batch sample, its deviation information over the time history is 

contained by the corresponding �̂� and residuals 𝒆, which will be compared against 

the reference distribution to evaluate its behavior. If the future behavior of the new 

batch predicted by LSTM is consistent with the reference distribution, its 

corresponding �̂� should fall in the control region with acceptable variation and the 

𝒆 is sufficiently small (Nomikos and MacGregor, 1994). In this study, Hotelling's 

T2 statistics (Anderson, 2003, Tracy et al., 1992), squared prediction error and a 

combined statistic(Yue and Qin, 2001) are applied to define the control range and 

evaluate the behavior of samples.  

 

3.8.1 Hotelling’s T2 statistics 

Hotelling's T2 statistics are used to measure the variability of the observation vectors 

by evaluating the distance between the sample points and the origin of the PC space. 

It can be calculated by: 

 𝑻𝟐(𝒙) = 𝒙�̂�𝜮𝒎
−𝟐�̂�𝑻𝒙𝑻 = �̂�𝜮𝒎

−𝟐�̂�𝑻  (3-18) 

where 𝜮𝑚
2 ∈ 𝐑𝑚×𝑚is a diagonal matrix that concludes the mth row and column of 

𝜮2 and 𝒙 is a 1 × 𝑝 observation vector that represents a sample point of the dataset 

𝑿∗ . Based on the assumption that the variables of the samples follow the 

multivariable normal distribution, the corresponding T2 statistics of normal samples 

follow the chi-square (𝜒2) distribution with 𝑚 degrees of freedom and should not 

be greater than the threshold. Therefore, the control limit related to �̂� is based on 



Chapter 3  University of Nottingham 

118 

 

multivariate distribution and the threshold 𝑇𝛼 of T2 statistics with a given level of 

significance 𝛼 could be computed as (Anderson, 2003):  

 𝑻𝟐(𝒙) ≤ 𝑻𝜶
𝟐 =

𝒎(𝒒𝟐−𝟏)

𝒒(𝒒−𝒎)
𝑭𝒎,𝒒−𝒎;𝜶  (3-19) 

where 𝐹𝛼(𝑚, 𝑞 − 𝑚) is the critical value of F-distribution with m and q-m under 𝛼 

significance level. 

 

3.8.2 Q statistics 

In the context of multivariate process control, the residual term 𝒆 of a batch sample 

indicates the degree of unexplained variability that remains after the MPCA model 

has been applied. To effectively monitor the residual term, the Q statistics, also 

known as squared prediction error (SPE), is often utilized. This approach quantifies 

the variation of the observation vectors projected onto the residual space, and is 

widely recognized for its accuracy and effectiveness, it can be expressed as: 

 𝑸(𝒙) = ‖𝒆‖𝟐 = ‖𝒙�̃��̃�𝑻‖
𝟐

= ‖𝒙(𝑰 − �̂��̂�𝑻)‖
𝟐
  (3-20) 

If their Q statistics are under the threshold for observation vectors, then the process 

could be regarded as a normal state. Jackson and Mudholkar (Jackson and 

Mudholkar, 1979) give out the formula to calculate the threshold 𝑄𝛼 when the 

residual vector follows the normal distribution at a given significance level 𝛼: 

 𝑸𝜶
𝟐 = 𝜽𝟏 [

𝒄𝜶√𝟐𝜽𝟐𝒉𝟎
𝟐

𝜽𝟏
+ 𝟏 +

𝜽𝟐𝒉𝟎(𝒉𝟎−𝟏)

𝜽𝟏
𝟐 ]

𝟏/𝒉𝟎 

  (3-21) 
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where 

 𝜽𝒊 = ∑ 𝝀𝒋
𝒊𝒒

𝒋=𝒎+𝟏 , 𝒇𝒐𝒓 𝒊 = 𝟏, 𝟐, 𝟑  (3-22) 

 𝒉𝟎 = 𝟏 −
𝟐𝜽𝟏𝜽𝟑

𝟑𝜽𝟐
𝟐  (3-23) 

and 𝜆𝑗 is the eigenvalue of the covariance matrix of the original dataset 𝑿∗, 𝑐𝛼 is the 

critical value of a standard normal deviate at the (1 − 𝛼) percentile, m is the number 

of the selected PCs and q is the dimension of the original dataset. Besides, Qin (Joe 

Qin, 2003) gives a simplified form of the 𝑄𝛼
2： 

 𝑸𝜶
𝟐 = 𝒈𝝌𝒉; 𝜶

𝟐   (3-24) 

where 𝑔 = 𝜃2/𝜃1  and ℎ = 𝜃1
2/𝜃2 . Besides, Nomikos et al.(Nomikos and 

MacGregor, 1995) gives the control limit on the SPE at significance level a for time 

point k: 

 𝑸𝜶,𝒌
𝟐 = (𝒗/𝟐𝒎)𝒌𝝌

(𝟐𝒎𝟐/𝒗),𝒌; 𝜶
𝟐   (3-25) 

where 𝑚 and 𝑣 are the mean and variance of observation vector 𝒙𝑡𝑒𝑠𝑡,𝑘
∗  of the test 

batch, respectively. Figure 3.6 illustrates the case where PCA is applied to a dataset 

with three variables, generating a two-dimensional PC space, and the control limits 

defined by T2 and Q statistics, respectively. 
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Figure 3.6 The control limits defined by T2 and Q statistics in the scenario where 

PCA is applied to a dataset with three variables, generating two principal 

components. 

 

3.8.3 The combined index 𝝋 

In practice, the T2 and Q statistics may yield inconsistent outcomes when used 

together to detect faults, as they evaluate different aspects of data deviation. To 

address this issue, Yue and Qin (Yue and Qin, 2001) introduced a new index (𝜑), 

which combines the T2 and Q statistics for more effective fault detection. As 𝜑 is 

utilized for online monitoring, for the data recorded at time point k at a test batch, 

its index 𝜑(𝒙𝑡𝑒𝑠𝑡,𝑘
∗ ) could be expressed as: 

 𝝋(𝒙𝒕𝒆𝒔𝒕,𝒌
∗ ) =

𝑺𝑷𝑬(𝒙𝒕𝒆𝒔𝒕,𝒌
∗ )

𝑸𝜶,𝒌
𝟐 +

𝑻𝟐(𝒙𝒕𝒆𝒔𝒕,𝒌
∗ )

𝑻𝜶,𝒌
𝟐 = 𝒙𝒕𝒆𝒔𝒕,𝒌

∗ 𝜱𝒌𝒙𝒕𝒆𝒔𝒕,𝒌
∗ 𝑻

 

 (3-26) 
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where  𝜑(𝒙𝑡𝑒𝑠𝑡,𝑘
∗ ) is a quadratic function with respect to the observation vector 

𝒙𝑡𝑒𝑠𝑡,𝑘
∗ , and 𝜱𝑘 is a symmetric and positive definite matrix and could be expressed 

as: 

 𝚽𝒌 =
𝑰−�̂�𝒌�̂�𝒌

𝑻

𝑸𝜶,𝒌
𝟐 +

�̂�𝒌𝜮𝒎,𝒌
−𝟐 �̂�𝒌

𝑻

𝑻𝜶,𝒌
𝟐   (3-27) 

The computation of 𝚽𝑘 requires the corresponding thresholds of both 𝑇𝛼,𝑘
2  and 𝑄𝛼,𝑘

2  

statistics for a given confidence limit 𝛼. The �̂�𝑘 stand for the loading matrix in the 

principal components space at the specific time point, which contains the structure 

information of the historical reference dataset about how would the variable 

measurement varies from the average trajectories under normal operation. Based on 

the assumption that the quadratic form of 𝒙𝑡𝑒𝑠𝑡,𝑘
∗  is multi-normally distributed. The 

corresponding threshold  𝜑𝛼,𝑘 is given by:(Yue and Qin, 2001) 

 𝝋𝜶,𝒌 = 𝒈𝒌𝝌𝒉𝒌; 𝜶,𝒌
𝟐   (3-28) 

and the coefficient 𝑔 and degree of freedom ℎ could be expressed as: 

 𝒈𝒌 =
𝒕𝒓((𝑪𝒌𝚽𝒌)𝟐)

𝒕𝒓(𝑪𝒌𝚽𝒌)
    𝒂𝒏𝒅    𝒉𝒌 =

(𝒕𝒓(𝑪𝒌𝚽𝒌))
𝟐

𝒕𝒓((𝑪𝒌𝚽𝒌)𝟐)
  (3-29) 

where the 𝑪𝑘  denotes the covariance matrix of the historical dataset  𝑿𝑘
∗ . For a 

confidence level of 𝛼, a fault is detected by 𝜑 if 

 𝝋(𝒙𝒕𝒆𝒔𝒕,𝒌
∗ ) ≥ 𝝋𝜶,𝒌 = 𝒈𝒌𝝌𝒉𝒌; 𝜶,𝒌

𝟐   (3-30) 

where 𝜒2  denotes the chi-square distribution. Despite the higher computational 

demand of the combined index, which generates a large covariance matrix for every 
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time point during online monitoring, this study chose to use it because it provides a 

simplified means to detect outliers, and control lines can be calculated offline in 

advance. 

 

3.9 Conclusion 

This chapter has outlined the comprehensive methodology employed throughout 

this thesis. The chapter provided a detailed description of the DFT calculations used 

to generate essential data for machine learning training in Chapter 4, forming the 

foundation for catalyst optimization. Additionally, it covered the sourcing of raw 

materials and their suppliers for the synthesis of LFP, setting the stage for the 

experimental work discussed in Chapter 5. The high-temperature solid-state method, 

utilized for LFP synthesis, was also explained, along with the corresponding 

characterization techniques employed to evaluate the electrochemical and 

physicochemical properties of the materials. 

Furthermore, this chapter introduced the data simulation process and machine 

learning strategy that were crucial for optimizing LFP synthesis parameters, as 

discussed in Chapter 6. Lastly, the real-time monitoring methodology, based on 

machine learning tools, was presented, highlighting its significance for the broader 

goal of industrial process optimization. 

The methodologies described in Chapter 3 provide the technical framework for 

advancing the understanding of material properties and the application of data-

driven tools to optimize energy materials and industrial processes, integrating 
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computational, experimental, and ML techniques to contribute to innovations in 

material science and chemical engineering. 
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Chapter 4 Data-Driven Structural Descriptor for Predicting Platinum-Based Alloys as Oxygen Reduction Electrocatalysts  
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4.1 Synopsis 

Due to the increasing global demand for carbon-neutral and fossil-free energy 

systems, extensive research is being conducted on efficient and inexpensive 

electrocatalysts for catalyzing the kinetically sluggish oxygen reduction reaction 

(ORR) at the cathode of fuel cells. Platinum (Pt)-based alloys are considered 

promising candidates for replacing expensive Pt catalysts. However, the current 

screening process of Pt-based alloys is time-consuming and labor-intensive, and the 

descriptor for predicting the activity of Pt-based catalysts is generally inaccurate. A 

strategy was proposed combining high-throughput first-principles calculations and 

machine learning to explore the descriptor used for screening Pt-based alloy 

catalysts with high Pt utilization and low Pt consumption. Among the 77 

prescreened candidates, 5 potential candidates were identified for catalyzing ORR 

with low overpotential. Furthermore, during the second and third rounds of active 

learning, more Pt-based alloy ORR candidates were identified based on the 

relationship between the structural features of Pt-based alloys and their activity. The 

role of structural features in Pt-based alloys was highlighted, and it was found that 

the difference between the electronegativity of Pt and the heteroatom, the number 

of valence electrons of the heteroatom, and the ratio of heteroatoms around Pt are 

also the main factors affecting the activity of ORR. More importantly, the 

combination of these structural features can be used as a structural descriptor for 

predicting the activity of Pt-based alloys. It is believed that the findings of this study 

will provide new insights for predicting ORR activity and contribute to exploring 
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Pt-based electrocatalysts with high Pt utilization and low Pt consumption 

experimentally. 

 

4.2 Introduction 

The oxygen reduction reaction (ORR) at the cathode of proton exchange membrane 

fuel cells presents a significant challenge due to its slow electrochemical kinetics. 

To address this issue, a robust and effective catalyst that can enhance the 

electrochemical kinetics of ORR is necessary (Wang et al., 2019). Currently, 

platinum (Pt) is regarded as a promising catalyst; however, its high cost limits its 

widespread application. A key strategy to mitigate this limitation involves the 

nanostructuring or alloying of pure Pt-based catalysts with nonprecious metals 

(Jaouen et al., 2011, Beermann et al., 2017). Pt-based alloys have exhibited 

remarkable stability and excellent electrocatalytic performance, making them a 

viable alternative to pure Pt catalysts (Chung et al., 2015, Fan et al., 2022, Gong et 

al., 2022, Hwang et al., 2011, Liu et al., 2022a, Stamenkovic et al., 2006, Vej-

Hansen et al., 2017, Wu et al., 2020). Nonetheless, the presence of different 

elements with varying mixing ratios in alloyed catalysts introduces numerous 

chemical features and adsorption sites, which are absent in their pristine form (Li et 

al., 2022b, Peng et al., 2022). Furthermore, the dynamic chemical space of these 

alloyed catalysts complicates the screening process for functional catalysts 

(Goldsmith et al., 2018). 
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The trial-and-error method is commonly used to design ORR catalysts in traditional 

experiments. However, this approach is limited by cumbersome synthetic 

procedures and the need for in situ characterization (Wang et al., 2021b). With 

advancements in first-principles methods and computational resources, theoretical 

modeling offers new opportunities for rational catalyst design (Chen et al., 2020a, 

Wei et al., 2019). Creating extensive databases based on first-principles results and 

identifying materials with desired properties from these databases is an efficient and 

powerful approach for material design. Nevertheless, this method typically requires 

a reliable descriptor model that can easily evaluate and correlate a candidate 

material's intrinsic properties with target properties such as activity and selectivity 

(Wu et al., 2022). Thus, accurately identifying such descriptors can accelerate and 

improve the catalyst selection process. 

Extensive research has been conducted to identify and utilize descriptors for 

establishing property correlations in materials. For instance, the linear relationship 

between the reaction free energy and activation energy in heterogeneous catalysis 

(van Santen et al., 2010), and the linear relationship between the d-band center of a 

clean surface and the adsorption energy of molecules on that surface (Nørskov et 

al., 2009, Hammer and Norskov, 1995), are examples of such descriptors. Although 

these descriptors are well-studied and widely used due to their simplicity and clear 

physical meaning, they can be imprecise. Consequently, an increasing number of 

researchers are focusing on overcoming the limitations imposed by these 

approximations (Zhang et al., 2019, Ding et al., 2021). 
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Furthermore, structural factors such as the diversity of catalyst structures and the 

local environment around adsorption sites have become significant in determining 

catalyst performance (Yang et al., 2023, Kim et al., 2022). In real-world conditions, 

the intricate relationship between catalyst performance and structure complicates 

the reliable characterization of catalytic performance (Xu et al., 2022, Wu et al., 

2021). Fortunately, ML techniques and high-throughput calculations can uncover 

this complex relationship between catalytic activity and structure. These techniques 

not only enable accurate and efficient structure optimization (Chen et al., 2022) but 

also offer insights into the catalytic properties of materials and predict the catalytic 

properties of unknown materials (Li et al., 2017b, Noh et al., 2018, Andersen et al., 

2017, Chen et al., 2021, Zhong et al., 2020b). Therefore, for precise modeling of 

alloyed catalyst properties, more reliable methods should be employed, 

incorporating data-driven descriptors and chemical descriptors (e.g., adsorption 

energy, coordination numbers) (Andersen and Reuter, 2021, Jinnouchi and Asahi, 

2017, Zhou et al., 2020, Weng et al., 2020, Andersen et al., 2019). 

This chapter adopts a workflow that utilizes ML and high-throughput calculations 

to accelerate the discovery of Pt-based alloy catalysts. By combining first-principles 

calculations with compressed-sensing data-analytics methodology, Pt-based alloys 

for ORR applications are prescreened by identifying descriptors based on the 

properties of their different compositions and structures. The ratio of heteroatoms 

around Pt, the difference in electronegativity between Pt and heteroatoms, and the 

valence electrons of Pt and heteroatoms are predicted to be indicative of the ORR 

activity in the alloy. The recently developed Sure Independence Screening and 
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Sparsifying Operator (SISSO), a state-of-the-art compressed-sensing-based 

approach, is used to identify key descriptive parameters (Ouyang et al., 2019). 

Through this method, the ratio of heteroatoms around Pt, the difference in 

electronegativity between Pt atoms and heteroatoms, and their valences were 

identified as structural descriptors capable of predicting the ORR activity in alloyed 

catalysts. These results are expected to provide a valuable dataset for 

experimentalists to further investigate the predicted ORR activity and for data 

scientists to construct ML models for ORR performance predictions. 

 

4.3 Results and Discussion 

4.3.1 Data Collection and Material Prescreening 

A data-driven scheme is proposed to explore potential Pt-based alloys as highly 

efficient ORR electrocatalysts. Initially, datasets of Pt-based alloys are curated from 

the created materials database (ICSD and MP). High-throughput screening 

techniques are then employed to identify Pt-based binary alloys exhibiting highly 

efficient ORR performance. High-throughput density functional theory (DFT) 

calculations are utilized to study the ORR reaction mechanism and identify the rate-

determining step. Based on the redox potential of this step, machine learning is used 

to derive descriptors capable of identifying and classifying highly efficient catalysts 

from the datasets, utilizing SISSO to pinpoint the best low-dimensional descriptors 

from numerous candidates. Finally, a structure–activity relationship and prediction 

model are established, which can be used to screen candidate materials with suitable 
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properties for ORR. Active learning and reverse design are included for subsequent 

rounds of screening. Figure 4.1 summarizes this process. The overall goal is to 

identify PtnMm alloys that are stable and possess good ORR activity. 

 

Figure 4.1 A workflow for constructing machine learning (ML) models for 

predicting Platinum-based alloys as oxygen reduction reaction (ORR) 

electrocatalysts. Four major steps are involved in this workflow: (a) material 

prescreening, (b) high-throughput density functional theory (DFT) calculation, (c) 
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machine learning, and (d) material interface genome. Based on these steps, the data 

are generated and collected, as well as featured and trained to produce the deep 

theory and further application. Various databases and model packages have enabled 

a much easier experience of model construction. 

To curate the PtnMm alloys datasets, a high-throughput screening approach is 

adopted to screen elements from the periodic table that should be alloyed with Pt 

while being as stable as possible. We focus on only the materials that have been 

reported at the current stage from experiments and theoretical calculations. There 

are ~160 000 and ~140 000 materials in ICSD and MP, respectively. And ~1500 Pt-

based binary alloys were found in the database. As shown in Figure 4.2, five criteria 

were applied to prescreen alloy formation by Pt and the other metal elements in the 

ICSD and the MP database based on the radius, orbital configuration of the 

transition metal atom, formation energy, crystal system, and the atom ratio between 

the transition metal and Pt atom of the compounds. These criteria are considered 

while training ML models based on the label of suitability for catalyzing ORR. The 

difference of atomic radius between Pt and the other elements is the first 

prescreening criterion, which can be used to evaluate the stability of an alloy during 

the ORR reaction process (Deshmukh et al., 2018, Guo et al., 2011). In this step, 

the upper bound for the screening is set to 0.3 Å; a higher difference of atomic radius 

would make it difficult to keep the morphology of the alloy during the 

electrochemical tests. The second criterion is the atom orbital of the metal elements, 

where the 3d-5d metals are chosen. The selection of 3d and 4d transition metals in 

the alloy formation with platinum was based on their unique electronic properties, 
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which are crucial in optimizing the catalytic performance of Pt-based alloys. 

Transition metals, particularly from the 3d and 4d series, have distinct d-orbitals 

that interact with platinum, modifying its electronic structure and improving its 

catalytic activity. These metals are known to influence the binding energies of 

intermediates, which is especially important in catalytic reactions like the oxygen 

reduction reaction (ORR). The use of these transition metals, as well as their atomic 

orbitals, has been supported by numerous computational and experimental studies 

that demonstrate their effectiveness in tuning the catalytic properties of platinum 

alloys. 

Furthermore, the formation energy of the alloy is the third criterion, because a stable 

material is needed for high-performance electrochemical catalysts. Considering the 

possible uncertainties/errors of the formation energy associated with DFT in the 

database, we slightly loosen the restriction to 50 meV as the threshold value. The 

fourth criterion is the crystal system, and cube crystal is chosen, which is the same 

as that of Pt unit cell. By restricting our calculations, the PtM, Pt3M, and PtM3 alloys 

are screened since they are widely studied and experimental evidence suggests that 

more excellent activity of ORR over the surfaces of these alloys was observed than 

that over the pure Pt surface (Li et al., 2017a, Bing et al., 2010, Greeley et al., 2009). 

The atom ratios between platinum and transition metals, 1:3, 1:1, and 3:1, were 

chosen based on their representation of well-established ordered alloy phases 

observed in Pt-based alloys. These ratios cover a range of compositional extremes, 

each offering distinct catalytic behaviors that are ideal for exploring alloy properties 

in catalytic applications. The 1:3 ratio (Pt₃M) represents platinum-rich alloys, which 
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typically exhibit high stability and durability, making them suitable for long-term 

catalytic processes like oxygen reduction reaction (ORR). The 1:1 ratio (PtM) 

corresponds to equiatomic alloys, which balance catalytic activity and stability by 

optimizing the electronic interaction between platinum and the transition metal, 

enhancing the catalyst's performance. The 3:1 ratio (PtM₃) focuses on transition-

metal-rich alloys, where the transition metal plays a dominant role in modifying the 

alloy's electronic structure. While these alloys may have lower stability, they offer 

unique catalytic properties that are valuable for investigating the upper limits of 

electronic modification in platinum. Together, these ratios represent a 

comprehensive approach to studying the catalytic behavior of Pt-based alloys, 

enabling a broad exploration of their performance across different phases. It is 

noteworthy that the Pt alloy containing lanthanide and actinide metals is not 

excluded in this chapter. 
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Figure 4.2 The approach for materials prescreening. From a large number of 

possible compounds with the criteria of (i) the radius and (ii) the orbital 

configuration of the transition metal atom, (iii) formation energy, (iv) crystal system, 

and (v) the atom ratio between the transition metal and the Pt atom, the materials 

considered to be calculated by density functional theory (DFT) are generated. Using 

machine learning techniques, we classify materials based on the decision tree. 

The trained models are designed to make predictions and classify unknown 

materials into two categories. The training dataset consists of 555 potential material 
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candidates with various structural configurations, divided into training and test data 

in a 9:1 ratio. Due to the small quantity of training data and to prevent distribution 

variation during validation, a 10-fold cross-validation scheme is chosen for 

hyperparameter tuning. In the cross-validation stage, the training data are evenly 

split into 10 groups, with each group used as the validation data to assess and 

evaluate the model trained on the remaining 9 groups of data. The performance of 

each validation is recorded, and the mean value of these 10 performances is 

considered the final score of the trained model. Decision tree (DT) and random 

forest classifiers are selected to implement the classification application. Using the 

aforementioned prescreening criteria, 77 materials are identified as catalyst 

candidates for ORR. It should be noted that in the prescreening procedure, the 

reference values of the prescreening criteria are tunable parameters, which can be 

adjusted to achieve different sizes of screened datasets. Loosening these criteria may 

allow for the inclusion of more materials, such as PtBi, which has relatively low 

stability (Zhang et al., 2008). Considering the requirement on the formation energy, 

decreasing the Eformaiton criteria threshold from 0.01 to 0.001 eV would filter out only 

three more 2D materials. For an alloy, the more open the surfaces, the stronger the 

intermediates bind, and eventually the surface get blocked. Although the utilization 

efficiency of step sites is much higher compared to the conventional basal plane, 

the basal plane sites are dominant. Therefore, another implicit assumption is that 

these dominate the activity of polycrystalline Pt, and the step sites and basal sites 

are considered. All surfaces are shown in Figure 4.3.  
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Figure 4.3 The unite cell of the platinum (Pt)-based alloy and surface structures 

used in this study. (a–d) The crystal structures of the Pt-based alloy prescreened 

from the database. (e) The (111), (211), (100) surfaces of crystal structure (a). (f) 

The (111), (211), (100) surfaces of crystal structure (b). (g) The (111), (211), (100) 

surfaces of crystal structure (c). 

In Figure 4.3, the (111), (211), and (100) crystal planes were selected for their 

stability and well-known catalytic properties in Pt-based alloys. These low-index 

surfaces were chosen to simplify the computational model and align with common 

experimental results. While higher-index planes like (110) could also be effective 
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catalytically, they were not included due to computational limitations. In data-

driven high-throughput screening, the surface planes are typically predefined and 

cannot be dynamically adjusted to account for varying alloy compositions. This 

constraint standardizes the approach but also limits the exploration of all possible 

catalytic surfaces. Experimental work would be necessary to validate these 

predictions and investigate the role of higher-index planes. 

 

4.3.2 First-Principal Calculations and Feature Engineering 

The overall ORR can be described as the following equation: 

 𝑶𝟐(𝒈) + 𝟒𝒆− + 𝟒𝑯+ → 𝟐𝑯𝟐𝑶(𝒍) (4-1) 

The four-electron reaction pathway (2–5) of O2 reduction in acidic media is 

considered (pH = 0) (Nørskov et al., 2004): 

 𝑶𝟐(𝒈) + 𝒆− + 𝑯+ → 𝑶𝑶𝑯∗ (4-2) 

 𝑶𝑶𝑯∗ + 𝒆− + 𝑯+ → 𝑶∗ + 𝑯𝟐𝑶(𝒍) (4-3) 

 𝑶∗ + 𝒆− + 𝑯+ → 𝑶𝑯∗  (4-4) 

 𝑶𝑯∗ + 𝒆− + 𝑯+ → 𝑯𝟐𝑶(𝒍) + ∗  (4-5) 

where the asterisk denotes an adsorbed site on the surface, (g) and (l) refer to the 

gas and liquid phases, respectively. The ORR mechanism on more than 62 Pt-based 

alloys is calculated; this large dataset comprised the adsorption energy of the 

intermediates and the free energy of the element steps at the surfaces of the Pt 
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alloyed with 62 transition metal. The intermediates are placed at different sites and 

the energy for the most favorable site is included in the dataset. The changes of the 

free energy calculated by DFT during the ORR show that two reaction steps are 

sluggish that involve a positive change in free energy: the third electron and proton 

transfer for forming the adsorbed OH (ΔG3) and the last transfer for removing OH 

from the surface to form water (ΔG4). To screen the Pt-based alloy more easily, we 

use the values of overpotential (η) transferred from the ΔG for these steps and 

equilibrium potential as a measure of the activity. The overpotential for ORR is 

calculated by the equation: 

 𝜼 =
𝐦𝐚𝐱{𝚫𝑮𝟏,𝚫𝑮𝟐,𝚫𝑮𝟑,𝚫𝑮𝟒}

𝒆
+ 𝟏. 𝟐𝟑 (4-6) 

where ΔG1, ΔG2, ΔG3, and ΔG4 denote the reaction free energies in (4-2), (4-3) (4-4), 

and (4-5), respectively. According to thermodynamics, the smaller the overpotential, 

the higher the corresponding activity of ORR is; therefore, the performance of 

candidates is better for catalyzing ORR. The implicit assumption in this analysis is 

that the kinetic relationship is closely related to thermodynamics and can be 

simplified by thermodynamics. Because there will be an activation free energy in 

four elemental steps at the equilibrium potential of 1.23 eV, which is at least equal 

to the largest of the reaction free energies and the corresponding step is therefore 

likely the rate-limiting step (Chen et al., 2020a, Nørskov et al., 2004, Parada et al., 

2019, Mayer, 2011). Forming a Pt alloy is one way to modify the electronic structure 

of the Pt surface to tune the stability of these critical intermediates. The stabilities 

of OH intermediates (Eads(OH)), in turn, scale roughly with the stability of adsorbed 

O (Eads(O)). Therefore, this parameter is particularly useful for characterizing both 
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ΔG1 and ΔG2. The ORR activity trends on different metal surfaces are summarized 

in Figure 4.4a. Plotting measured activities (overpotential of the rate-determining 

step) for a series of different catalysts as a function of the calculated OH adsorption 

energy results in a simple “volcano” relationship (Figure 4.4a). If ΔEOH becomes 

increasingly positive, adsorbed H2O is destabilized and can desorb from the surface 

more easily. However, if ΔEOH keeps increasing in the positive range, it becomes 

easier to break the Pt-OH bonds, which makes the OH* formation difficult. This 

appears to be a reasonable conjecture, given that more open surfaces tend to bind 

intermediates considerably stronger and become blocked.  

As shown in Figure 4.4a, a surface that binds OH with the adsorption energy of 

1.1 eV exhibits an optimal ORR activity. The decreasing of overpotential indicates 

the increasing ORR activity and the activity is closely related to the behavior of OH 

adsorption. The weaker OH adsorption on the surface results in the lower ORR 

activity. The rate-determining step of the left half branch is H2O formation. In this 

branch, the ORR activity becomes better as the adsorption strength of OH decreases. 

When the OH adsorption is too strong, the H2O formed after OH hydrogenation is 

difficult to desorb from the catalyst surface; therefore, weaker OH adsorption 

strength is beneficial for ORR. The rate-determining step of the right half branch is 

OH formation. In this branch, the ORR activity becomes worse as the OH 

adsorption strength decreases. When the OH adsorption is too weak, it is difficult 

to form OH from O hydrogenation. With the calculated overpotential for the catalyst 

candidates, it is desirable to leverage such data to examine whether the OH 

adsorption is simply correlated with a certain intrinsic property of a given material. 
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Such simple correlations are usually established on a series of adsorption systems 

bearing similar atomic structures, leading to the predominance of the electronic 

effect. Although all computational results are perfect on the monocrystalline 

surfaces in experiments, a mixture of single crystal, vacuum-annealed 

polycrystalline and Ar-sputtered polycrystalline surfaces is always used. The 

resulting structural differences introduce deviations from our single-crystal models, 

thereby indicating modest changes in the ORR activity. However, despite on the 

polycrystalline of the Pt-based alloy, the site corresponding to the most stable 

configuration can always be model on the single crystal surface and the differences 

do not substantially alter the trends described above (Stamenkovic et al., 2007, Tian 

et al., 2007). Although computationally based electrocatalyst discovery is the 

principal aim of this approach, more generally and, perhaps, more importantly, we 

probe our present understanding of the ORR. In the field of catalysis, there is no 

stronger evidence for accuracy of a theoretical framework than the ability to use that 

framework to identify new active materials. 
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Figure 4.4 The activity of oxygen reduction reaction (ORR) and potential features. 

(a) The ORR activity trends on different metal surfaces, (b) the in-pair Pearson 

correlation coefficients of the selected potential features and the overpotential, and 

(c) a violin plot of the distribution of the variables after min–max normalization. 

Every colorful area is the density plot of corresponding variables. The black box in 

each density plot represents the range from 25% to 75% percentiles where the white 

point marks the mean value, and the whiskers denote 95% and 5%. 

Additionally, a correlation study was conducted on all the factors affecting O2 

reduction activity on Pt-based alloys. These factors include the coordination number 

of Pt, the number of heteroatoms around Pt, the electronegativity difference between 
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Pt and heteroatoms, the atomic number and period of the heteroatoms, the ratio of 

Pt to heteroatoms, the number of valence electrons (d and s electrons) of the 

heteroatoms, and the differences in relative mass and atomic radius between Pt and 

the heteroatoms. All the abbreviations of the features are summarized in Table 4.1, 

which indicate various important or typical factors of a catalyst to influence the 

activity of ORR. It should be noted that the structure features are based on the final 

optimized structures by DFT calculation. The electronegativity difference and 

valence electron number showed the greatest correlation with the ORR activity 

(Figure 4.4b). For the 12 features, we showed a violin plot of the distribution of the 

variables after min–max normalization in Figure 4.4c and the in-detail calculation 

is provided in the Supporting Information. The violin plot synergistically combines 

the box plot and the density trace (or smoothed histogram) into a single display that 

reveals structure found within the data, which can provide us a quick overview of 

the combination of the box plot and density trace. According to the density plot, we 

observed that the material with higher CN (CN = 8 and 9) and lower MN (MN = 3 

and 4) tend to be more promising as candidates. Furthermore, materials with 1:3 

and 3:1 ratios of Pt atom over transition metal atom are dominant in the screening 

stage, which is in agreement with the distribution of the MN/CN value. Variables 

such as ΔEnPt-M, VEM-d, and ΔrPt-M show a relatively even distribution. The VEM-s 

and relative atomic mass of most materials are 2 and approximately 140, 

respectively. 

Table 4.1 A set of the 11 least-correlated primary features used for the descriptor 

construction 
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Features Description 

CN Coordination number of Pt 

MN Number of heteroatom around Pt 

MN/CN Ratio of heteroatom around Pt 

ΔEnPt-M Difference of the electronegativity between Pt and heteroatom 

Pt/M Atomic ratio of Pt and heteroatom in the alloy 

ZM Atomic number of the heteroatom 

PM Period of a heteroatom in the periodic table 

VEM-d Number of valence electrons in the d orbital 

VEM-s Number of valence electrons in the s orbital 

ΔAPt-M Difference of relative atomic mass between Pt and heteroatom 

ΔrPt-M Difference of atomic radius between Pt and heteroatom 

 

4.3.3 ML Discovery of Descriptors And Establishment of Structure–

Activity Relationship 

To obtain the best low-dimensional descriptors using SISSO, the descriptors with 

lower Root Mean Square Error (RMSE) are chosen. Here, the descriptor can be one 

feature or the combination of various features, which is used in a model of the 

relationship between the activity and the feature(s) of a catalyst. As shown in Figure 

4.5a, the three-dimensional (3D) models were found to be more accurate. Therefore, 

we chose 3D descriptors. From the 3D model's descriptors, we obtained the 

following relationships as the formula: 

For the rate-determining step of H2O formation, 

 𝟎. 𝟐𝟑𝟕 ×
𝚫𝐄𝐧𝐏𝐭−𝐌

𝟐 ×(𝐕𝐄𝐌−𝐝+𝐕𝐄𝐌−𝐬)

𝐌𝐍/𝐂𝐍
+ 𝟎. 𝟔𝟒𝟓  (4-7) 
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For the rate-determining step of OH formation, 

 𝟖. 𝟗𝟗𝟓 ×
(𝐌𝐍/𝐂𝐍)×∆𝐄𝐧𝐏𝐭−𝐌

𝐕𝐄𝐌−𝐝+𝐕𝐄𝐌−𝐬
− 𝟎. 𝟎𝟎𝟎𝟑𝟕𝟐𝟒 × 𝒆𝑷𝐌 × (𝐌𝐍/𝐂𝐍) × ∆𝒓𝐏𝐭−𝐌 +

𝟏. 𝟏𝟕𝟔𝟓In this work, the hold-out validation method was used to verify the model 

due to the relatively small and imbalanced training dataset for the SISSO model. 

The use of cross-validation might introduce extra bias if the random 10-fold splitting 

is uneven, despite efforts to ensure the data of every type of material is included in 

the training set. The trained SISSO model achieved an RMSE on the validation set 

far below 0.001 eV (Sun et al., 2020a). The activity predicted by this model was 

found to be consistent with the model calculated by DFT, regardless of whether H2O 

formation or OH formation was the rate-determining step (Figure 4.5b, c). 

 

Figure 4.5 Validation of the model by machine learning. (a) Training and validation 

RMSE from descriptor dimension for all tested Sure Independence Screening and 

Sparsifying Operator (SISSO) parameters, (b) the calculated activity based on our 

density functional theory (DFT) model as well as a dashed line indicating predicted 

activity for the left branch with the rate-determining step of H2O formation, and (c) 

the calculated activity based on our DFT model as well as a dashed line indicating 

predicted activity for the left branch with the rate-determining step of OH formation. 
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Based on the above model, 11 structures were added as the second active learning. 

The new data followed the general trends well (Figure 4.6a), indicating that the 

model exhibited true predictive ability in describing the trends of ORR activity on 

Pt-based alloys. Furthermore, Pt3Co (211) showed more optimized performance 

with the OH formation as the rate-determining step. Then, the third active learning 

was carried out, and the four structures were calculated. It was found that Pt3Ni(111) 

was upshifted to the top along the left branch with H2O formation as the rate-

determining step. As the volcano plot shows, the Pt3Co(211) showed the most 

optimized performance among the 77 structures. In Figure 4.6b, more detailed 

calculations on the Pt3Co(211) surface were included. The free energy changes of 

the elemental steps were found to be negative at 0 V versus Standard Hydrogen 

Electrode (SHE). At the equilibrium potential of 1.23 V, the OOH formation, OH 

formation and H2O formation were endothermic and the OH formation exhibited 

the highest free energy change. Therefore, the energy level diagram of ORR on the 

Pt3Co(211) surface is the rate-determining step. The activity predicted by this model 

is still consistent with the model calculated by DFT, irrespective of whether H2O 

formation or OH formation was the rate-determining step (Figure 4.6c, d). Here, 

|η| ≤ 1 eV was used as the final screening criterion and identified five potential 

catalyst candidates: Pt3Co(211) (0.38 V), PtPd3(211) (0.74 V), Pt3Ni(111) (0.85 V), 

PtPd3(111) (0.86 eV), and PtAu(111) (0.870 eV), on which OH adsorption is nearly 

thermoneutral for ORR at low overpotential. It is worth noting that Pt3Co has been 

experimentally proven with an efficient ORR activity. 
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Figure 4.6 The active learning for platinum (Pt)-based alloy. (a) Active learning for 

another 11 (second round, orange squares) and 4 structures (third round, red stars); 

(b) the energy diagram of oxygen reduction reaction (ORR) on Pt3Co (211) at 0 and 

1.23 V versus SHE; (c) the calculated activity based on our DFT model as well as a 

dashed line indicating predicted activity for the left branch with the rate-determining 

step of H2O formation; and (d) The calculated activity based on our DFT model as 

well as a dashed line indicating the predicted activity for the left branch with the 

rate-determining step of OH formation. 
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It was observed that based on the model, the difference between the 

electronegativity of Pt and heteroatom, the valence electrons number of the 

heteroatom, and the ratio of heteroatoms around Pt have the most obvious effects 

on the ORR performance. This is because the difference in the electronegativity 

between Pt atoms and heteroatoms and the number of valence electrons of 

heteroatoms can distinguish the types of alloys, the coordination number of Pt atoms 

can reflect the different surfaces, and the ratio of heteroatoms around Pt atoms can 

reflect the doping ratio of the heteroatoms. The three factors in the model are scaled 

as x, y, and z, respectively. The 3D plot and cross-sectional view in the middle of 

each axis are shown in Figure 4.7, where the blank part is ascribed to the negative 

overpotential. As for the strong OH adsorption, when the electronegativity of Pt is 

lower than that of the heteroatom, the more the number of valence electrons of 

heteroatom is, and the lower the ratio of the number of heteroatoms around the Pt 

is, the higher the activity is. As for the weak OH adsorption, its activity is mainly 

determined by the electronegativity difference between Pt and heteroatoms, which 

is within 0.5; therefore, the activity is higher. It is worth noting that the activity can 

be predicted from the structural information for a given structure, which is very 

convenient and direct for new materials prediction without the need for tedious 

electronic structure calculations. 
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Figure 4.7 The representation of descriptors and the relationship of the structure–

activity. (a) Schematic of descriptors on Pt-based alloys. The three-dimensional plot 

of oxygen reduction reaction (ORR) activity with the three descriptors scaled in x, 

y, z and the cross-sectional view at the middle of each axis, where (b) the rate-

determining step is H2O formation and (c) the rate-determining step is OH formation. 

 

4.4 Conclusion 

In summary, high-throughput first-principles calculations were conducted to screen 

high-performance catalysts for ORR, and the structure–activity relationship was 

determined. Based on this relationship, additional excellent Pt-based alloys were 

identified through the second and third rounds of active learning. Among the 77 

prescreened candidates, five candidates demonstrated the thermodynamic capability 
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for ORR with the lowest overpotential, indicating their potential for catalyzing ORR. 

Furthermore, the difference in electronegativity between Pt and heteroatoms, the 

number of valence electrons of the heteroatoms, and the ratio of heteroatoms around 

Pt were found to have the most significant effect on ORR performance according to 

the model. The results of this study are expected to provide a useful dataset for 

experimentalists to further examine the predicted ORR activity and for data 

scientists to develop ML models for ORR performance predictions. Additionally, 

this study may aid in the exploration of catalysts for other electrocatalytic processes, 

such as water electrolysis. 
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5.1 Synopsis 

Lithium iron phosphate (LFP) has attracted significant interest due to its abundant 

raw materials, non-toxicity, environmental friendliness, and high theoretical 

capacity. However, its intrinsic low electrical conductivity and slow ion diffusion 

rate adversely impact its rate performance and low-temperature capabilities, 

limiting its broader application. This study proposes a novel data-driven active 

learning framework to optimize the synthesis of high-performance LFP materials. 

The framework integrates two ensembled ML models to iteratively refine synthesis 

parameters, aiming to enhance the physicochemical properties and electrochemical 

performance of the resulting LFP samples. The active learning loop not only guides 

the synthesis process but also significantly reduces the number of experiments 

required to identify optimal formulations. The approach begins with the creation of 

a dataset comprising various synthesis parameters and their corresponding material 

properties. Initial synthesis is performed, and data from these experiments are used 

to train the ML models. These models then predict the optimal synthesis conditions, 

which are tested experimentally. The results of these tests are fed back into the 

models, continuously improving their predictive accuracy. Electrochemical 

characterization of the synthesized samples, including those recommended by the 

ML models, reveals that the addition of alkyl polyglucosides (APG) significantly 

reduces polarization and enhances cycling performance. The second-round 

recommended sample (RR2) demonstrates the highest discharge capacities, best 

cycling stability, and highest compaction density, validating the efficacy of the 

active learning framework. This study underscores the potential of integrating 
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machine learning into the material synthesis process, leading to the discovery of two 

high-performance LFP materials. The findings highlight the effectiveness of the 

active learning loop in identifying and optimizing critical synthesis parameters, 

paving the way for the development of advanced battery materials with enhanced 

properties. 

 

5.2 Introduction 

Lithium iron phosphate (LFP) has garnered significant attention due to its abundant 

raw materials, non-toxicity, environmental friendliness, and high theoretical 

capacity (170 mAh/g). However, its intrinsic low electrical conductivity and slow 

ion diffusion rate significantly limit its performance, particularly in high-rate and 

low-temperature conditions. To address these challenges, several modification 

strategies have been developed, including element doping (Zhang et al., 2020c, 

Wang et al., 2021a, Li et al., 2009), surface carbon coating (Hsieh et al., 2012, Liu 

et al., 2022b, Xi and Lu, 2020), particle nanization (Chen et al., 2013, Huang et al., 

2018), and material compositing (Zhang et al., 2014, Medvedeva et al., 2019). 

Among these, surface coating has proven particularly effective in enhancing ionic 

conductivity and reducing electrode polarization. Common coatings, such as 

graphite, graphene, metal powders, and conductive polymers, can prevent 

agglomeration, inhibit particle growth, and improve overall electrochemical 

performance (Prosini et al., 2001, Wang et al., 2010, Croce et al., 2002, Liu et al., 

2008, Wang et al., 2005). Xie et al. (Xie and Zhou, 2006) explored Al doping in 
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LiFePO₄/C cathodes, finding that Al³⁺ reduced particle size and shortened lithium-

ion transport pathways, resulting in improved discharge capacity. Similarly, Ti 

doping has shown to enhance performance, as demonstrated by Li et al. (Li et al., 

2009) and Wang et al. (Wang et al., 2012b).  

Carbon coatings, particularly from organic sources like glucose and inorganic 

sources like carbon black, have been found to significantly improve the conductivity 

of LiFePO₄ (Armand et al., 2009), with composite carbon sources offering enhanced 

conductivity and particle size control (Liu et al., 2012). Advanced coatings like 

multi-walled carbon nanotubes (MWCNTs) (Qin et al., 2014). and graphene (Xu et 

al., 2015, Geng and Ohno, 2013, Song et al., 2016) further enhance performance by 

increasing electronic conductivity and structural flexibility. Graphene, in particular, 

improves the electrochemical performance due to its high conductivity and stability 

when bonded with the LFP surface (Fei et al., 2014). Wang et al. (Wang et al., 2016) 

demonstrated that combining Mn-doped LFP with graphene enhanced the material's 

electrochemical performance, as the graphene increased electronic conductivity and 

facilitated Li+ migration at the interface.  

Despite the progress made using traditional methods, there is limited research on 

integrating machine learning (ML) to improve LFP performance. This study 

introduces a novel data-driven active learning framework to optimize the synthesis 

of high-performance LFP materials. The framework combines two ensembled ML 

models to iteratively refine synthesis parameters, enhancing both the 

physicochemical and electrochemical properties of the resulting LFP samples. By 

using this approach, we aim to reduce the number of experimental trials needed, 
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speeding up the discovery of optimal synthesis conditions and facilitating the 

development of advanced LFP materials. 

This active learning methodology represents a significant step forward in material 

synthesis, offering a more efficient, data-driven approach to optimizing LFP 

performance and accelerating innovation in battery technology. 

 

5.3 Results and Discussion 

5.3.1 Data PrePartion and Model Training 

Although machine learning techniques have rapidly advanced in materials science 

and chemical engineering recently, fundamental challenges must be addressed 

before selecting specific algorithms. These include determining the workflow, 

establishing the datasets to learn from, choosing the vitally concerned properties as 

the target, preliminarily identifying the highly related features, and defining the type 

of tasks (Yin et al., 2021). In this chapter, a data-driven enabled LFP synthesis 

strategy is proposed, utilizing two ensembled ML models working in series within 

an active learning loop. The first step is to create a dataset that allows ML models 

to learn from. More specifically, in the first 4 months, 80 LFP samples are 

synthesized, with reaction conditions and mass of added chemicals varying. Then, 

a screening process is conducted on the raw dataset to exclude some samples: those 

with significant gaps in the target property values, those using different devices such 

as tube furnaces, and those with abnormal data. More specifically, in the current 

production of lithium iron phosphate (LFP) cathode materials, the two most critical 
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performance metrics are the initial discharge capacity at a 1C rate (C1C) and the 

compacted density under a pressure of 30,000 N (𝜌30𝑘𝑁). In addition to these, other 

key performance indicators include cycling performance, which measures the 

material’s ability to maintain capacity over multiple charge-discharge cycles, and 

rate capability, which evaluates the performance at various discharge rates. These 

metrics significantly influence the energy density, long-term stability, and overall 

performance of batteries manufactured with this material. The screened sample 

dataset underwent further feature engineering, including feature selection and 

representation (Wang et al., 2022). Fixed or slightly varied parameters such as ball 

milling time and speed, as well as high-temperature sintering reaction time, were 

removed. The sample dataset with selected features are then sent to the first ML 

model to classify whether they have high, medium, or low 𝜌30𝑘𝑁. Following this 

classification, a regression model is trained to accurately establish the relationship 

between the synthesis parameters and C1C. By utilizing the established parameter-

performance relationship, the screening and recommendation of potential synthesis 

recipes can be conducted to identify the optimal reaction conditions and chemical 

quantities for synthesizing LFP with desired properties. Furthermore, by employing 

active learning, the results of the recommended recipes can be added back to the 

dataset to iteratively augment it and dynamically update the model, enhancing its 

accuracy and providing better suggestions. The workflow of the data-driven assisted 

LFP synthesis is shown in Figure 5.1. The overall goal is to identify the recipe that 

maximizes both the C1C and 𝜌30𝑘𝑁 of LFP.  
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Figure 5.1 The workflow for utilizing ML models to suggest potential synthesis 

recipes via an active learning loop involves five main stages: (a) material synthesis 

and characterization, (b) data collection, augmentation, and dataset construction, (c) 

data preprocessing, feature engineering, and model selection, (d) classification for 

different categories of LFPs based on 𝜌30𝑘𝑁, (e) regression for the prediction of C1C. 

(f) Utilizing the well-trained model to make recommendations for the next 

experiment. Based on these stages, the synthesis of LFP is guided, their properties 

are characterized and added to the original dataset, and the model is further trained 

to update hyperparameters, thereby improving model performance. 

The synthesis recipe primarily focuses on the properties of raw chemicals, including 

the Fe/P ratio and BET surface area of the FPs, the mass or volume of additives, and 

the set reaction conditions. During the synthesis of the 80 samples, all these 
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synthesis parameters are recorded and stored in the primary dataset as potential 

features. Although there are numerous parameters that can be adjusted and influence 

the properties of the samples, only a subset of these parameters was selected as 

features. These were chosen because they can be easily adjusted and have a direct 

influence on the properties of LFPs based on preliminary experiments. These 

critical parameters were shown in Table 5.1 and selected as features and used for 

subsequent ML training.  

Table 5.1 The selected features for ML learning 

Features Description 

Ts The highest temperature reached during the sintering process. 

mLC The mass of LC added 

mCHO The mass of Glucose added 

mPEG The mass of Polyethylene Glycol added 

mTiO2 The mass of TiO2 added 

mAPG The mass of Alkyl Polyglucosides added 

mH2O The mass of Deionized Water added 

BETFePO4 BET Specific Surface Area of FePO4 

D10S The particle diameter at which 10% of the slurry's particles are smaller. 

D50S 

The median particle diameter, where 50% of the particles are smaller and 

50% are larger. 

D90S The particle diameter at which 90% of the slurry's particles are smaller. 

DmaxS The maximum particle diameter observed in the sample. 

 

The characterization of the LFPs includes recording a series of properties such as 

physicochemical properties, electrochemical properties, and morphological 

properties. In this study, 𝜌30𝑘𝑁 and C1C are selected as the target properties, and the 
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samples are labeled accordingly based on task type for further training. Specifically, 

the first step of the workflow involves reviewing the dataset and excluding outlier 

samples. As each ML model has its own domain of applicability, sample points that 

are significantly far from the desired target property values are excluded for better 

training performance. For this research, the ideal LFPs typically have a ρ30kN higher 

than 2.55 g/cm³ and a C1C higher than 135 mAh/g. Therefore, samples with ρ30kN 

values lower than 2.3 g/cm³ and C1C values lower than 135 mAh/g are excluded 

from the dataset. Additionally, samples that were sintered in different tube furnaces 

were removed to eliminate system errors. Figure 5.2 provides a visual summary of 

the distribution of the scaled features in the dataset. The line in the middle of each 

box represents the median value of the corresponding feature. It should be noted 

that the added mass of glucose remains almost constant, influencing the carbon 

residue of the products and resulting in only limited variation in this feature. 
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Figure 5.2 The box plot of the distribution of the features after min–max 

normalization. Every colorful area is the density plot of corresponding variables. 

The black box in each density plot represents the range from 25% to 75% percentiles 

where the line in the middle of the box represents the median value of the feature, 

and the whiskers denote 95% and 5%. 

 

5.3.2 ML Training Strategy and Performance 

The remaining LFP samples are labeled into three categories based on ρ30kN values: 

high, medium, and low compacted density. LFPs with a ρ30kN greater than 2.5 g/cm³ 

are labeled as "High" compacted density. Those with a ρ30kN less than 2.4 g/cm³ are 

labeled as "Low" compacted density. The LFPs with ρ30kN values between 2.4 and 

2.5 g/cm³ are classified as having "Medium" compacted density. At this stage, the 
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raw dataset consists of 60 samples, which are divided into a training set and a test 

set with a ratio of 9:1.  

A classification model leveraging a sophisticated architecture that combines 

multiple ensemble methods through a stacking classifier is designed to handle the 

small-sized data. This design aims to enhance predictive performance by utilizing 

the strengths of various algorithms while mitigating their individual weaknesses. 

More specifically, the architecture comprises three primary components: base 

models, a meta-model, and a stacking classifier. The base models include a 

“Random Forest Classifier (RFC)”, a “Gradient Boosting Classifier (GBC)”, and an 

“Ada Boost Classifier (ABC)”. The RFC constructs multiple decision trees during 

training and aggregates their outputs to determine the final classification, thus 

reducing overfitting and improving generalization. The GBC builds models 

sequentially, each correcting errors made by the previous ones, effectively reducing 

bias and variance. The ABC adjusts instance weights based on classification 

accuracy, focusing on difficult-to-classify instances in subsequent iterations. At the 

heart of the stacking classifier is the meta-model, a Logistic Regression model 

configured for multinomial classification with the 'lbfgs' solver. This logistic 

regression model combines the predictions of the base models to make the final 

decision. The overall stacking classifier integrates these base models and the meta-

model to enhance the overall predictive performance. The ensemble model is 

encapsulated within a Pipeline, which ensures consistent preprocessing and model 

training. The pipeline comprises a preprocessing step, denoted as preprocessor, 



Chapter 5  University of Nottingham 

161 

 

which likely includes transformations such as scaling, encoding, and imputation, 

followed by the stacking classifier.  

The receiver operating characteristic (ROC) curve for the ρ30kN classification model 

is shown in Figure 5.3a, presenting the model's true positive rate (TPR) against the 

false positive rate (FPR) with varying thresholds. Since the model addresses a multi-

class classification problem, three ROC curves, calculated using the one-vs-all 

method, are generated. The curves for the low compacted density (red), medium 

compacted density (yellow), and high compacted density (green) categories achieve 

AUC scores of 1.00, 0.80, and 0.83 on the test set, respectively, indicating a 

significant degree of classification ability. As expected, the classification ability for 

identifying the medium compacted density is lower due to the nature of particle 

growth. Specifically, LFP particles tend to grow into larger particles once the energy 

absorbed or temperature is sufficiently high, creating significant boundaries 

between the low and medium compacted density classes. However, there are no 

clear features or phenomena to distinguish between the medium and high compacted 

density classes, resulting in overlapping boundaries between these categories. Upon 

completing the classification training, the hyperparameters of the model are 

determined, allowing for the evaluation of each feature's contribution. Figure 5.3b 

illustrates the importance of the 12 selected features. As anticipated, Ts plays the 

most critical role in influencing the compacted density. Additionally, the mass of 

the added carbon source such as Glucose, PEG and APG, and mLC potentially affects 

the maximum particle size of LFPs at a fixed temperature. Therefore, the synergy 
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between sintering temperatures and the mass of the added lithium source and carbon 

source should be carefully considered in future experiments. 

 

Figure 5.3 (a) The true positive rate (TPR) against the false positive rate (FPR) of 

the classfication model (b) The feature importance of the classification model. 

Once the compacted density of an LFP sample is classified, its C1C value is another 

critical property that influence the overall energy density. In the following 

regression task, the C1C of each sample in the training set was designated as the 

target variable. This step involved reorganizing the training dataset to focus 

specifically on the C1C values, thereby creating a new training set tailored for this 

purpose. The newly prepared dataset was then employed to train a regression model, 

aiming to accurately predict the C1C values based on the given features. Specifically, 

a stacking regressor was employed to enhance predictive performance through the 

combination of multiple base models and a meta-model. The base models utilized 

included a Random Forest Regressor (RFR) and a Gradient Boosting Regressor 

(GBR). The RFR, an ensemble method, aggregates multiple decision trees (DTs) 
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trained on different subsets of the data to improve predictive accuracy and mitigate 

overfitting. Similarly, the GBR sequentially builds models where each model 

corrects the errors of its predecessor, thereby enhancing overall prediction accuracy. 

The meta-model chosen was again an RFR, which integrates the predictions from 

the base models to generate the final output. A comprehensive hyperparameter grid 

was defined to optimize the performance of both the base models and the meta-

model. This grid included parameters such as the number of estimators and 

maximum depth for the Random Forest, and the learning rate and maximum depth 

for the GBR To streamline the process, a pipeline was constructed that encompassed 

both data preprocessing steps and the stacking regressor, ensuring a systematic and 

efficient workflow. ‘GridSearchCV’ was utilized to conduct an exhaustive search 

over the specified hyperparameter grid, employing CV to evaluate model 

performance across different subsets of the training data.  

 

Figure 5.4 (a) The prediction performance of C1C on test set. (b) The feature 

importance of the regression model. 
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For the regression model, the training set and test set were randomly generated with 

a ratio of 9:1. The model achieved an R-squared value of 0.90 and an RMSE of 0.79 

mAh/g, indicating high predictive accuracy and low prediction error, respectively. 

The representative correlation plot of the predicted C1C values is illustrated in 

Figure 5.4a, demonstrating the model's good prediction ability on the test set. 

Furthermore, the feature importance of the regression model in predicting C1C, as 

shown in Figure 5.4b, highlights that Ts plays a dominant role in influencing the 

C1C of LFPs. This is attributed to the tendency of high Ts to produce larger LFP 

particles, resulting in higher compacted density but a reduction in C1C. Additionally, 

the impact of mPEG on C1C was relatively significant, which could be due to the 

improved suspension system facilitated by PEG during the wet ball milling and 

spray drying processes, leading to a more uniform precursor. 

The two trained machine learning models constitute the core component of the 

recommendation stage within the active learning loop. In this process, a series of 

synthesis recipes, informed by feature importance, are input into the workflow. The 

recipe yielding the best predicted results is selected for the subsequent experiment. 

The first round of recommendations resulted in the synthesis of LFPs denoted as 

RR1, with the corresponding data detailed in the subsequent sections. The recipe 

and characterization data from RR1 are then incorporated into the dataset to 

augment it and update the hyperparameters of the models, facilitating the second 

round of recommendations. This iterative process yields the sample designated as 

RR2. It is important to note that both RR1 and RR2 were synthesized with the 

addition of APG. Corresponding control groups, RR1B and RR2B, were 
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synthesized without the addition of APG, allowing for a comparative analysis of the 

impact of APG on the synthesis outcomes. 

 

5.3.3 Morphology Characterization 

The LFPs were synthesized according to the recipes recommended by the first and 

second rounds of the active learning loop (RR1 and RR2), while the corresponding 

blank samples without APG added were also synthesized as a control group (RR1B 

and RR2B). In the synthesis process, the RR1 and RR1B groups were sintered at 

790°C, while the RR2 and RR2B groups were synthesized at a sintering temperature 

of 800°C. The primary difference between RR1 and RR1B, as well as between RR2 

and RR2B, is the inclusion of APG in the RR1B and RR2B groups, which allows 

for a direct comparison of the influence of APG addition on the synthesis process 

and the resulting electrochemical performance. The crystal structures of the four 

materials were characterized using X-ray diffraction (XRD). The XRD patterns of 

the four samples are shown in Figure 5.5. As can be seen from the figure, the 

characteristic diffraction peaks of all four samples are consistent with the standard 

lithium iron phosphate (LFP) pattern (PDF 81-1173) with no impurity peaks, 

indicating a high purity of the LFP samples. All four samples exhibit narrow and 

strong diffraction peaks, suggesting high crystallinity, which is attributed to the 

orthorhombic structure of the material (Kadoma et al., 2010). Furthermore, the two 

samples with added APG also showed no significant impurity peaks, indicating that 

the addition of APG does not affect the crystallinity of LFP. The APG acts as a 
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carbon source providing hard carbon rather than graphitized carbon, thus not 

introducing new impurities. 

 

Figure 5.5 X-ray diffraction profiles of RR1, RR1B, RR2, and RR2B. 

The ρ30kN of RR2, RR2B, RR1, and RR1B are 2.599, 2.547, 2.588 and 2.587 g/cm3, 

respectively. The SEM images of these four samples are shown in Figure 1 at 

magnifications of 10,000x and 50,000x. It can be observed that the particles exhibit 

a certain gradation in size, which helps enhance compaction density while ensuring 

electrochemical performance. In all four samples, micron-sized particles of LFP can 

be seen with nanosized particles growing on them. The boundaries between the 

different-sized particles are distinct, and the crystal structure is well-formed. The 

small particles range in size from 100 to 350 nm and exhibit high sphericity, which 

facilitates the extraction and insertion of Li+ ions, thereby improving the effective 

utilization of the LFP material. These small particles adhere together to form larger 
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secondary particles, significantly reducing particle agglomeration. In contrast, the 

large particles range from 1 to 4 μm in size and are morphologically regular, with 

smooth, rounded surfaces and no sharp edges. Additionally, the particle surfaces 

have a uniform carbon coating that forms a more complete carbon network between 

particles. This ensures good contact between particles and increases conductivity, 

resulting in excellent electrochemical and processing performance for the samples. 

The BET surface area of these four sample groups ranges between 14 and 16 m²/g, 

which is moderate and conducive to sufficient contact between the active material 

and the electrolyte, thereby enhancing reaction efficiency. 

 

Figure 5.6 SEM images of the (a) the second-round-recommended sample RR2, (b) 

the control group RR2B, (c) the first-round-recommended sample RR1, and (d) its 

corresponding control group RR1B at magnifications of 10,000x. SEM images of 

the (e) the second-round-recommended sample RR2, (f) the control group RR2B, 

(g) the first-round-recommended sample RR1, and (h) its corresponding control 

group RR1B at magnifications of 50,000x. 
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Moreover, the SEM images reveal differences between the products prepared using 

the first-round recommended recipe and those from the second round. The number 

of micron-sized primary particles in the second-round products (RR2 and RR2B) is 

significantly higher than in the first-round products (RR1 and RR1B). An 

appropriate gradation of micron-sized primary particles with nanosized primary 

particles can yield high-compaction lithium iron phosphate products. The particle 

size distribution of the second-round products aligns with high-compaction 

gradation, which accounts for their superior performance compared to the first-

round products. Additionally, the presence of nanosized primary particles in RR2 

and RR2B ensures the stability of their electrochemical performance. The presence 

of APG tends to play a crucial role, as it potentially inhibits the growth of LFP 

primary particles. The two control groups (RR2B and RR1B) exhibit an excessive 

number of micron-sized primary particles, which fail to achieve optimal particle 

gradation for higher ρ30kN. The excessive number of micron-sized particles in RR2B 

and RR1B increases the Li+ extraction/insertion distance, reducing the 

electrochemical performance of LFP products. Conversely, the presence of APG 

potentially inhibits the growth of some LFP particles, allowing for better particle 

gradation and shorter Li+ extraction/insertion distances. This assumption has a high 

possibility of resulting in products with both higher ρ30kN and C1C. The varying 

carbon source environments ensure that the micron-sized large particles do not grow 

excessively, maintaining them within a certain range and exhibiting an olivine 

structure, which further improves electrical performance. 
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In addition to the addition of APG forming a composite carbon source, which 

provides different carbon coating conditions resulting in more complete coverage 

of LFPs, metal doping also plays a vital role in the modification of LFPs. 

Specifically, all four samples were doped with aluminum (Al) to enhance the rate 

performance of LFPs. The test results indicated that the discharge capacity of the 

Al-doped cathode material initially increased and then decreased. This behavior can 

be attributed to the fact that an appropriate amount of Al³⁺ can enhance the material's 

conductivity, while excessive inert Al³⁺ occupying Li sites can reduce the active Li⁺ 

content and discharge capacity. The Al³⁺ doping potentially improves the high-rate 

charge/discharge performance of LFP by inhibiting particle agglomeration. 

Additionally, doping at Li and Fe sites promotes the formation of mixed Fe³⁺/Fe²⁺ 

redox couples and inhibits the formation of a single-phase FePO4, both of which 

further enhance the material's conductivity (Zou et al. 2024). Besides Al, Ti was 

also added to the four samples to dope the LFPs and improve the discharge capacity 

and rate performance. This is because Ti⁴⁺ might occupy Li⁺ sites, reducing 

interplanar spacing and particle size, and forming mixed-valence Fe²⁺/Fe³⁺ states 

within the lattice, thus improving charge/discharge and cycling performance. 

However, excessive Ti⁴⁺ would lead to the formation of impurity phases like Li₄P₂O₇ 

and reduce the amount of active Li⁺. This optimizes crystal morphology and 

prevents the growth of large LFP particles, thereby enhancing electrical 

performance.  
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5.3.4 Electrochemical Characterization 

The electrochemical performance of the 4 samples is shown in Figure 5.7. Figure 

5.7a shows the constant current and constant voltage (CC-CV) charge-discharge 

curves of the four samples at a rate of 0.2C, within the voltage range of 2.25-3.75V. 

The figure reveals that all four samples exhibit long and stable charge-discharge 

plateaus, indicating good stability. Among the samples with added APG (RR2 and 

RR1), the initial discharge capacity at 0.2C is slightly lower than the blank sample 

RR2B. However, the latter displays the largest voltage plateau difference, indicating 

the most severe polarization and the poorest cycling performance. Sample RR2, 

with added APG, has the smallest voltage plateau difference, indicating the least 

polarization and the best cycling performance, consistent with the machine learning 

model's second-round recommendations. Furthermore, the voltage plateau 

differences for the glycoside-added samples (RR2 and RR1) are smaller than those 

of the blank samples, suggesting that the addition of APG can reduce polarization 

and enhance battery performance. 

 

Figure 5.7 The initial voltage profiles of the four LFPs under (a) 0.2C and (b) 1.0C. 

(c) The discharge capacities of the four LFPs in continuous cycling at various rates 

of 0.1, 0.2, 0.5, and 1.0C. 
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Figure 5.7b presents the CC-CV charge-discharge curves at a rate of 1C, within the 

voltage range of 2.25-3.75V. The second-round recommended samples (RR2 and 

RR2B) exhibit similar 1C discharge capacities of 145.91 mAh/g and 145.68 mAh/g, 

respectively, which are higher than those of the first-round recommended samples 

(RR1 and RR1B), with 1C discharge capacities of 145.01 mAh/g and 143.36 mAh/g, 

respectively. Additionally, the second-round recommended samples have smaller 

voltage plateau differences and longer voltage plateaus than the first-round 

recommended samples, indicating smaller polarization values and better cycling 

performance, further validating the accuracy of the machine learning 

recommendations. The APG-added sample RR1 shows a higher 1C discharge 

capacity than the blank sample RR1B, with a smaller voltage plateau difference, 

proving that the addition of APG can reduce polarization and improve 

electrochemical performance. 

Figure 5.7c illustrates the rate capability cycling curves for the four samples at 0.1C, 

0.2C, 0.5C, and 1C rates. RR2 shows the highest discharge capacities at 0.5C and 

1C, with values of 153.31 mAh/g and 145.91 mAh/g, respectively, indicating its 

suitability for use in power batteries. This sample also has a high powder 

compaction density of 2.58 g/cm³, further demonstrating its potential for producing 

high energy density LFP. The second-round recommendations of ML model 

resulted in higher 1C discharge capacities of 145.91 mAh/g and 145.68 mAh/g, 

significantly outperforming the first-round recommendations, thus proving the 

feasibility of the machine learning approach for selecting optimal synthesis recipes. 

Additionally, RR1 shows higher discharge capacities at 0.1C, 0.2C, 0.5C, and 1C 
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rates (159.91 mAh/g, 157.62 mAh/g, 151.5 mAh/g, and 145.01 mAh/g, respectively) 

compared to the blank sample RR1B with corresponding values of 158.91 mAh/g, 

157.02 mAh/g, 150.6 mAh/g, and 143.36 mAh/g. This demonstrates that the 

addition of APG can optimize the electrochemical performance of LFP. 

 

5.4 Conclusion 

In summary, a data-driven active learning framework was proposed to recommend 

synthesis recipes for high-performance LFP material. This framework integrated 

two ensembled ML models to iteratively refine the synthesis parameters, aiming to 

enhance the physicochemical properties (ρ30kN) and electrochemical performance 

(C1C) of the resulting LFP samples. By employing this data-driven methodology, 

the synthesis process was guided, leading to the identification of high-performing 

samples in both the first and second rounds of active learning. The electrochemical 

characterization revealed that these samples, synthesized according to the machine 

learning recommendations, displayed superior properties. The addition of APG was 

found to significantly reduce polarization and improve cycling performance. 

Notably, the second-round recommended sample, RR2, demonstrated the highest 

discharge capacities, the best cycling stability, and the highest compaction density, 

validating the efficacy of the active learning loop. In conclusion, the active learning 

loop proposed in this study successfully identified and optimized critical synthesis 

parameters, resulting in the discovery of two high-performance LFP samples. This 

study underscores the potential of integrating machine learning into the materials 
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synthesis process, paving the way for the development of advanced battery 

materials with enhanced properties.
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Chapter 6 A Deep-Learning-Assisted Approach for Fault Detection and Real-Time Monitoring for Steam Boilers 
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6.1 Synopsis 

Fault detection and online monitoring for steam boilers in the real industry are 

challenging tasks due to the complexity and nonlinearity of the operation process. 

As critical industrial equipment works at high temperatures and pressures, steam 

boilers are prone to faults such as leakage and break. Some of the faults are not 

obvious at the start but might cause severe issues without proper and timely 

maintenance, where the development of those faults would consume additional 

energy and lower the combustion efficiency, leading to extra carbon emissions and 

diminishing carbon neutrality. In this study, a generalized framework incorporating 

conventional long-short-term memory (LSTM) network and multi-way principal 

components analysis (MPCA) is developed to apply fault detection and monitoring 

techniques to the dynamical steam boiler operation process. The proposed deep-

learning-based method in this work can predict the future behavior of steam boilers, 

evaluate the process condition, prevent further fault development, and avoid safety 

issues and economic loss, only using a historical database of past normal operations. 

The proposed method employed simulated operation data to establish a framework 

with several critical stages including data pre-processing, establishment of a 

historical database, calculation of statistical control limit, fault detection and online 

monitoring, which are intuitive and straightforward to understand and identify faults. 

The framework exhibited excellent fault prediction ability using actual data 

acquired from real industrial operations, indicating that accurate and timely support 

and suggestions could be effectively provided for monitoring and maintaining the 

operation of steam boilers in real industry. 
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6.2 Introduction 

In the previous two chapters of this thesis, we focused on enhancing the 

effectiveness and efficiency of material design and synthesis through data-driven 

strategies. While these techniques have rapidly gained traction in recent micro-level 

research, their application in real industrial operations remains relatively 

underexplored. Specifically, steam boilers are integral to the power, chemical, and 

manufacturing sectors, where they convert water into steam for applications such as 

electricity generation (Król and Ocłoń, 2018), oil refinery (Yi et al., 1998), and food 

industry (Biglia et al., 2017). Operating at high temperatures and pressures with 

combustion processes, faults during steam boiler operation can lead to severe safety 

issues, significant economic losses, reduced combustion efficiency, excessive 

greenhouse gas emissions, and negative impacts on carbon neutrality (Swiercz and 

Mroczkowska, 2020, Xi et al., 2021, Wiryadinata et al., 2019, Li et al., 2022a).  

The inefficiencies and pollution of small- and medium-sized boilers in 

underdeveloped regions are particularly severe. These boilers often suffer from high 

exhaust temperatures, low thermal efficiency, and lack automation, leading to poor 

performance and difficulty in adapting to changing conditions. Due to scattered 

geographical locations and limited data infrastructure, remote monitoring is a 

challenge, and existing systems struggle with processing real-time data that is 

nonlinear and influenced by operational load. This chapter introduces a deep-

learning-based framework for fault detection and real-time monitoring of steam 

boilers operating in batches. 
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The community has widely investigated the method of processing batch data. 

Pioneering works by Jackson and Mudholkar (Jackson and Mudholkar, 1979), 

proposed residuals associated with PCA as control statistics for researching 

multivariate processes, while Kourti and MacGregor (MacGregor and Kourti, 1995) 

and Nomikos and MacGregor (Nomikos and MacGregor, 1994) introduced MPCA 

to handle high-dimensional, multi-way data structures for a defined duration. 

Subsequent studies led to numerous improvements and refinements, including 

dynamic PCA and dynamic PLS models by Chen and Liu (Chen and Liu, 2002) for 

real-time monitoring, and robust PCA by Hubert et al. (Hubert et al., 2005) for 

addressing outliers, and multi-phase MPCA by Wang et al. (Wang et al., 2012a) for 

specific injection molding processes.  

Aside from MPCA, various other tensor decomposition techniques have been 

applied to fault detection in batch processes. For instance, Wise et al.(Wise et al., 

2001) employed a model named parallel factor analysis 2 for detecting the fault 

induced by the changing of control variables such as chamber pressure and plasma 

power in semiconductor etch, and Deng et al.(Deng et al., 2019) proposed an outlier 

detection method based on tensor Tucker factorization. A Bayesian temporal 

factorization framework proposed by Chen et al.(Chen and Sun, 2022) showed 

superiority in processing large-scale and multi-dimensional spatiotemporal data sets. 

To comprehensively exam timely research on data-based process monitoring, please 

refer to the recent critical review.(Ge et al., 2013, Lu et al., 2006, van Sprang et al., 

2002) Besides, various techniques employed in steam boiler fault detection and real-

time monitoring have been proposed, such as model-based methods (Addel-Geliel 
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et al., 2012), programming logical control and supervisory control and data 

acquisition (Mohod and Raut, 2019), which rely on pre-defined rules and expert 

knowledge, and data-driven approaches, including bagged auto-associative kernel 

regression-based fault detection for steam boilers in thermal power plants (Yu et al., 

2017), and artificial neural network-based method for modeling complex 

relationships between process variables (Rakhshani et al., 2009). Sun et al. (Sun et 

al., 2005) applied PCA to leak detection in boilers, demonstrating its effectiveness 

in reducing data dimensionality but also revealing limitations in handling multi-

batch and multi-way data structures.  

Although advanced techniques for steam boiler fault detection and real-time 

monitoring have been proposed, they often face limitations such as high 

computational complexity, low interpretability, and the need for specific data 

structures. Supervised methods, for example, require pre-processed data, while 

tensor decomposition methods demand extensive hyperparameter tuning. 

Steam boiler operation is a complex, nonlinear process with time-varying features 

and disturbances. While MPCA has been widely used for fault detection in batch 

processes, its application to steam boilers is limited. LSTM, a type of recurrent 

neural network (RNN), can handle vanishing gradients and selectively output 

information, offering great potential for accurately predicting steam boiler states in 

both current and future time steps. 

This study proposes a generalized framework combining LSTM and MPCA for 

early fault detection and real-time monitoring of horizontal steam boilers operating 
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in batches. Unlike supervised methods, this framework requires only historical 

operational data and does not depend on fault-specific data, which is often hard to 

obtain. LSTM-MPCA outperforms traditional MPCA by processing time-series 

data and predicting future behavior, allowing for faster, more sensitive fault 

detection with dynamically adjusted thresholds and low computational cost. The 

framework demonstrated effectiveness using both simulated and industrial datasets, 

identifying anomalous batches and fault locations with high accuracy. Overall, the 

LSTM-MPCA framework offers a practical, interpretable method for detecting 

faults in steam boiler operations, helping operators prevent severe industrial failures. 

6.3 Data Generation and Collection  

6.3.1 The Generation of Simulation Dataset. 

The design parameters and equipment sizing (Table 6.1) were set in Aspen Plus. 

Subsequently, the process variables were transferred to Aspen Plus Dynamic to 

determine the dynamic effect of each stream from time 0 minute up to 720 minutes. 

To evaluate the feasibility of the proposed generalized MPCA framework for fault 

detection and real-time monitoring in steam boilers, a simulated dataset consisting 

of 160 normal batches, each with 145 time points and 135 variables, is selected. 

Employing a dataset with a relatively large number of variables for training an 

MPCA model offers several advantages, such as enhanced feature capturing, 

identification of higher-order correlations between variables, improved robustness 

of the MPCA model to noise and outliers, and potentially increased generalization. 

These benefits ultimately result in superior performance and stability, ensuring the 
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framework's effectiveness in detecting and monitoring industrial data. At the base 

case, the soft water input and heat loss of COMB were 2000 kg/h and -7000 W, 

respectively. The load is varied from 1200 kg/h to 3000 kg/h with a step size of 200 

kg/h, and the heat loss is changed from 0 W to -15000 W with a step size of 1000 

W. Fault data was generated for the machine learning algorithm to learn and identify 

possible future faults. Faulty situations are defined as abnormal values of input 

variables which may lead to variation in boiler output. The faults in the boiler were 

simulated by varying the natural gas inlet flow rate for cases L1H1 and L10H16 

(Table S1). The increment in natural gas was set at 50% and 100% higher than the 

initial value. The specifications of these sets of abnormal data generation are shown 

in Table S2. 

In total, 135 variables (Table S3) obtained from Aspen Plus Dynamic for streams 

after combustor include molar flow, mass flow, volume flow, temperature, pressure, 

mole fraction and mass fraction of all components (CH4-methane, O2-oxygen, N2-

nitrogen, CO-carbon monoxide, CO2-carbon dioxide, N2O-nitrous oxide, NO2-

nitrogen dioxide, H2O-water, NO-nitrogen oxide). Similarly, results for three heat 

exchangers include duty, LMTD correction temperature, hot side and cold side 

pressure drop; for the combustor include temperature, pressure, and heat loss; for 

drum include temperature, pressure, and liquid level. 

Table 6.1 The design parameters of the steam boiler in Aspen Plus for the 

generation of the simulated dataset 
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6.3.2 Real Industrial Data Collection 

For the preparation of the real industrial dataset, the specific industrial operation 

2021/22 dataset for a steam boiler is utilized to perform the analysis, and several 

process variables measured during the control process are used. Figure 6.1 

illustrates the structure of the one-drum and three-pass horizontal steam boiler 

researched in this work, and the description of the recorded process parameters is 

shown in Table 6.2. The dimensions of this unit are 5.2 meters long, 3.3 meters 

wide, and 2.5 meters high, with a total weight of 7551 kg and a full water volume 

of 4.65 m³. The rated amount of evaporated steam is two tons per hour with a rated 

pressure of one MPa. This steam boiler is fired with natural gas and equipped with 

a burner operating between 1100 kW and 1950 kW. 

The core parts of the horizontal steam boiler include the drum, the burner, the flue, 

the combustion chamber, the steam-water system, meters, the economizer, and the 

Parameters Value Unit Parameters 

SMK 

TUBE 
ECOMM COND 

Work Capacity 2000.00 kg/hr Shell Inner Diameter (in) 19.25 23.25 23.25 

Steam Pressure  1.25 MPa Shell Outer Diameter (in) 22.31 25.79 24 

Steam Temperature  190.00 °C Length (in) 98.00 29.81 47.24 

Air to Natural Gas Ratio 10.38 - Baffle spacing (in) 8.00 3.50 5.12 

Excess Air % 9 - Tube Outer Diameter (in) 0.75 0.75 0.75 

Flue Gas Economizer 

Outlet Temperature 

113.00 °C 
Tube Pitch (in) 0.9375 0.9375 0.9375 

Number of tubes  300 570 250 

Flue Gas Condenser  

Outlet Temperature 

62.00 °C 

Number of passes 1 1 1 

Location of hot fluid Tube side Tube side Tube side 

Pump Efficiency 75 % Area for heat exchange (m2) 31.30 22.30 16.44 
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supporting base. The steam from the drum is supplied directly to the demand end, 

and the air and natural gas are supplied together to the combustion chamber. An 

economizer is located at the exhaust gas outlet to collect heat and pre-heat the water 

supply. 

 

Figure 6.1 The schematic view of the horizontal steam boiler. 𝑻𝒇, 𝑷𝒔, 𝑻𝒆 and 𝑾𝑳 

represent (1) the temperature of the inlet fuel (2) the pressure of the generated steam, 

(3) the fuel temperature at the inlet of the economizer and (4) the water level of the 

drum, respectively. 

Table 6.2 The process parameters recorded by the installed sensors for the 

generation of the real industrial dataset. 

Parameters Unit Type Description 

𝑇𝑓 °C Continuous The temperature of the inlet fuel 

𝑃𝑠 MPa Continuous The pressure of the generated steam 

𝑇𝑒 °C Continuous The fuel temperature at the inlet of the economizer 

𝑊𝐿 % Discrete The water level of the drum 
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In the specific plant where the data was collected, only a limited number of sensors 

were installed, allowing for the recording of only three continuous variables and 

one discrete variable. For each time point, there are four variables measured: (1) the 

temperature of the inlet fuel (𝑇𝑓), (2) the pressure of the generated steam (𝑃𝑠), (3) 

the fuel temperature at the inlet of the economizer (𝑇𝑒) and (4) the water level of the 

drum (WL). The first three variables are collected in the form of continuous values, 

whereas the water level data is collected discretely as the sensor only has seven 

levels from 0 to 100 (0, 1/6, 1/3, 1/2, 2/3, 5/6 and 1). Table 6.2 shows the type and 

unit of the collected process parameters. 

The first stage involves creating a reference database and training MPCA models 

on twelve operation batches, each containing 4 variables and 3200 time points, to 

identify abnormal batches. Eleven normal batches (Batch 1, 3-12 in Figure 6.2) 

display consistent variable variations, establishing the baseline for tolerance 

amplitude. The scatter plot of pairwise correspondence between variables are shown 

in Figure 6.3, whose diagonal plot shows the distribution of the variables. The 𝑇𝑒 

of batch 2 is higher than that of the rest eleven batches and the 𝑃𝑠 of batch 8, 9, and 

10 are relatively lower. Although batches 8, 9, and 10 exhibit lower steam pressure, 

they are still considered normal but with different loads. In the validation stage, 

batch 2 and 4 served as the test batch, while batch 2, characterized by higher and 

irregular fluctuations and significant shifts in all variables occurring between time 

points 1750 and 1950, is labeled abnormal. The batch data is organized into a tensor 

and then unfolded along the time series. Standardization is applied to the dataset, 

ensuring that each column has a mean of 0 and a standard deviation of 1. This pre-
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processing step helps to normalize the data and improve the performance of the 

MPCA models during the training and fault detection process. 

 

Figure 6.2 The trajectories of the four variables of the selected 12 batches of the 

real industrial data. Batch 2 has a relatively higher fluctuation amplitude in 𝑻𝒇, 𝑷𝒔 

and 𝑻𝒆 . The fluctuation range of batch 8, 9, and 10 in 𝑷𝒔  are lower than other 

batches. 
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Figure 6.3 The scatter plot of pairwise correspondence between the four variables. 

The diagonal plot is the distribution of the variables. 

 

6.4 Results and Discussion 

6.4.1 Abnormal Batch Detection with MPCA 

To deploy the proposed framework to a new system, the primary step is to learn the 

data patterns from the historical database of normal batches. The statistics 

mentioned in Chapter 3 will determine the confidence region, where batches within 
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this region can be regarded as normal batches. Therefore, it is essential first to 

identify the normal batches for learning and exclude the abnormal batches from the 

database. This step can be efficiently executed using MPCA individually, which 

clusters and classifies the batches to indicate whether the score vectors contain 

sufficient information to measure the similarity of a batch to typical normal batch 

operations. This determination is based on the statistical consistency of variable 

measurements of the test batch with the statistical benchmark from normal batches, 

as summarized by the MPCA model. 

 

6.4.1.1. Abnormal Batch Detection on Simulated Data 

Utilizing MPCA on 160 normal batches allows for the summarization of data 

patterns and information essential for confident limits determination. The results 

show that only two PCs can explain over 85% total variance of the simulated dataset. 

More specifically, the plane of the first two principal components (PC1, PC2) 

demonstrates that there are discrete variables that contribute the most variance 

(Figure 6.4a), which caused the layer-by-layer arrangement of the points on the plot, 

with each layer containing 16 points, reflecting that the data is generated with 10 

levels of load and 16 levels of heat loss, representing 16 batches with the same load. 

The confidence ellipses (Figure 6.4a), based on T2 statistics, reveal that batches 

with higher heat loss are positioned closer to the ellipse edge, while abnormal 

batches are distant from the score plane origin.  
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The Q statistics of the batches falling (Figure 6.4b) below the confident limits 

indicate that the model adequately explains the normal batches in an academic 

context. Moreover, the Q statistics of the four abnormal batches (161-164) are far 

above the confidence limits, further validating the model's ability to differentiate 

between normal and abnormal batches. As the MPCA seeks to explain all the 

predictable variable variations in the normal batch dataset, it is informative to 

investigate the percentage of the explained variation in each variable and at each 

time point. The importance of principal components (PCs) in explaining process 

variability is highlighted by the significant contribution of PC1 (as indicated by the 

blue bar) in Figure 6.4c, while PC2 and PC3 exhibit a more dominant impact on 

specific variables, with the three PCs combined explaining over 80% of the variance 

in 90% of the simulated process measurements. Therefore, in the process that 

employs MPCA on simulated data, three PCs are selected based on the percentage 

of explained variance to comprise the PC space. Figure 6.4d uses the terms PC1, 

PC1+2, and PC1+2+3 to show the ability of PCs to explain variable variance as a 

function of time, with the diagram plotted on a cumulative basis. The amount of 

variance accounted for over time, shown in Figure 6.4d, indicates that PC1 

consistently plays a dominant role in variability throughout the simulated process.  
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Figure 6.4 (a). The 164 batches on the plane of the first two PCs. The 160 normal 

batches define the normal operation region in the PC space. (b). The sum of squares 

of the residual of the 164 batches, with the defined 95% and 99% confident limits. 

The red bar represents the four abnormal batches. Percentage of the explained 

variance with respect to (c). variables (blue, green, and yellow represent PC1, PC2, 

and PC3, respectively) and (d) time, plotted on a cumulative basis. 

 

6.4.1.2. Abnormal Batch Detection on Industrial Data 

The MPCA model is then applied to the industrial dataset. The projection of the 12 

batches onto the plane of PC1 and PC2 is shown in Figure 6.5a, where the suspected 

abnormal batch is located far from the cluster of normal batches. This clustering 

clearly indicates that batches with similar process parameters will cluster closer 
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together on the PC plane, reflecting different operating conditions. More 

specifically, as shown in Figure 6.2, batches 8, 9, and 10 have slightly higher 𝑷𝒔 

are closer to each other on the PC plane. The 90%, 95%, and 99% Hotelling 

confidence ellipsoids in Figure 6.5a highlight that batch 2 exhibits relatively 

unusual behavior. Besides the T2 statistics, the Q statistics for each batch are 

illustrated in Figure 8b, representing the squared distance of each batch in the 

principal space to the plane. 

 

Figure 6.5 (a) The 12 batches on the plane of the first two PCs. Batch 2 is located 

far away from others. (b) The plot Q statistics of the 12 batches, with 90%, 95% and 

99% confidence limits. The percentage of the variance explained with respect to (c) 
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the measured variables and (d) the time points for each of the three PCs, plotted on 

a cumulative basis. 

Figure 6.5c demonstrates that three PCs are capable of explaining 70% of the 

variance of the first three variables of the industrial data. As the last process 

parameter, water level (WL) is recorded discretely, the ability of the PCs to explain 

its variation is relatively lower. More specifically, steam pressure plays the 

dominant role in PC1. All three PCs explain the variation of temperature at the fuel 

(𝑻𝒇) and the inlet of the economizer (𝑻𝒆), while PC2 and PC3 mostly explain the 

WL. The results in Figure 6.5c indicate that three PCs are sufficient to retain the 

data structure and explain the variance of variables. The amount of variance 

explained by each PC with respect to time points is plotted in Figure 6.5d. It can be 

concluded that PC1 explains much of the variability at most time points, while at 

some time points, PC2 also captures significant variability. 

 

6.4.2 Real-Time Monitoring of Boiler Behaviors  

The essence of early warning and real-time monitoring is the ability to predict the 

PC value of the next time point, allowing control limits to determine its state. 

However, as mentioned above, the real measurements of the future haven't been 

taken, and hence accurate prediction is critical. The LSTM-MPCA model 

demonstrates excellent prediction ability for both variable and PC values of the next 

time point, with R-squared values of 0.9204 and 0.9645 on the testing set, 

respectively. A data comparison between the real and predicted PC1 and PC2 in one 
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test simulated batch is shown in Figure 6.6, indicating high accuracy. This high 

accuracy suggests that the predicted PCs can be used to determine the process 

behavior of the next point. 

 

Figure 6.6 The comparison between the real MPCA (a) PC1 and (b) PC2 values 

and predictive values by the ensemble LSTM model. 

While the LSTM model can make accurate predictions in time series, it requires a 

sequence of time points and, therefore, cannot fully replace MPCA at the starting 

stage of a batch process. Furthermore, the R-squared values indicate that the LSTM 

model for predicting MPCA scores performs better than only predicting variable 

values. This suggests that MPCA captures important data features and has the 

potential to improve LSTM performance. However, when handling data from 

different processes, the hyperparameters of the LSTM should be adjusted 

accordingly. 
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6.4.2.1. Real-Time Monitoring of Simulated Steam Boiler Behaviors 

The LSTM-MPCA model is then employed for investigating the state of boilers 

along with the time series, which is helpful for early warning and pinpointing the 

time point when faults might occur. The predicted future behavior of the operation 

process is compared against the reference distribution defined by the historical 

normal batch dataset. The results of applying such a time-series-based fault 

detection strategy to a normal batch (blue scatter) and an abnormal batch (red scatter) 

are illustrated in Figure 6.7. The control limits shown in Figure 6.7 are derived 

based on Q and T2 and statistics, respectively. A normal batch should behave 

similarly to the batches in the reference database. The red scatter located below the 

control limit before the time point of 240 minutes aligns well with the generated 

fault data, indicating that the LSTM-MPCA model can effectively detect faults and 

trace the specific time point where abnormal behavior occurs. 

Given that multivariate statistical process control incorporating LSTM-MPCA can 

detect simulated faults, the employed method uses joint covariance and is sensitive 

to finding not only magnitude shifts of variables but also breaks in the inner 

correlations among variables. The LSTM-MPCA model detects faults by capturing 

large shift variables and extracting the relationship information among them during 

the multivariate process. By using only a historical dataset of normal batches, the 

LSTM-MPCA model is capable of detecting abnormal behaviors in new batches. 
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Figure 6.7 Fault detection charts with 95% and 99% confidence limits based on (a) 

Hottling's T2 and (b) SPE. The fault occurs at the 49th time point (240 minutes) of 

batch 164 (red scatter). 

6.4.2.2. Prediction of Future Industrial Steam Boiler Behaviors 

The result of implementing this monitoring strategy on real industrial data is shown 

in Figure 6.8. The variable measurements of the abnormal batch (batch 2) are first 

pre-processed and then unfolded to obtain the observation vector 𝒙𝑡𝑒𝑠𝑡,𝑘
∗ . Figure 

6.8a shows a dynamic plot of the combined index of batch 2 at every time point 

with 90%, 95%, and 99% confidence limits. The combined index plot can detect 

faults correlated with both PCs and residuals in a complementary way. Although 

the sudden shutdown around time point 1800 can be easily detected via the 

significant shift of single variables, the monitoring scheme can also detect abnormal 

time points where the inner correlations of variables are broken without introducing 

considerable deviation. For example, from the start to time point 2000, more than 

10% of sample points are determined as abnormal points, which are difficult to 

detect by measuring the deviation of 𝑇𝑒. Figure 6.8b shows the monitoring process 

of a normal batch. It can be observed that there are several single points located 
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above the control limit, caused by sensor offset, indicating that the LSTM-MPCA 

model is also capable of detecting abnormal behaviors at specific time points in a 

normal batch. 

 

Figure 6.8 The performance of LSTM-MPCA-based real-time monitoring on real 

industrial data. Confidence limits (90%, 95%, and 99%) of the combined index for 

(a) an abnormal batch (batch 2), and (b) a normal batch (batch 4). 

The proposed generalized MPCA model incorporates implicit constraints, 

considering both the magnitude and trends of deviations of variables and the 

correlations among all variables derived from the historical benchmark. The 

encoded information about data structure and relationships is crucial for fault 

detection. When the relationships among the deviations of variables change during 

the process, the likelihood of fault occurrence is typically high, even if the 

fluctuation magnitude is not substantial. It is important to note that analyzing 

historical benchmark data is essential for estimating confidence limits in monitoring 
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plots and defining the normal region. The calculation algorithm is not complex but 

computationally intensive, as a series of covariance matrices must be generated and 

stored. However, once a sufficiently large benchmark database is established and 

the resource-intensive offline processing is completed, the online monitoring 

scheme demands relatively low computational resources. 

The efficacy of this deep learning-based, data-driven approach lies in its 

multivariate consideration of measurements, where fluctuations of deviations and 

trends are meticulously accounted for, and inter-variable correlations are accurately 

evaluated. The primary aim of this method is early fault detection to prevent severe 

batch performance disruption or shutdown. 

 

6.5 Conclusion 

This chapter introduces a LSTM-MPCA framework for fault detection and real-time 

monitoring of steam boiler operations. Developed using simulated boiler operation 

data and validated with actual industrial data, the framework utilizes LSTM to 

forecasting future behavior and MPCA to effectively distinguish and categorize 

different batch types through clustering patterns in a reduced space, achieved by 

unfolding the three-dimensional data tensor of completed normal batches along the 

time sequence. Upon establishing a benchmark database of standard batches, the 

statistical reference control limits can be determined for normal operation at each 

time point.  



Chapter 6  University of Nottingham 

196 

 

Despite the progress made, there remain opportunities for further research and 

enhancement. These include using specific decomposition techniques tailored to 

dataset characteristics for more efficient and accurate fault detection, and 

incorporating advanced machine learning techniques for fault diagnosis and 

prevention. Moreover, the approach presented leverages machine learning to predict 

the time point of a potential future anomaly based on the monitoring data from the 

four parts of the steam boiler system. While the model successfully predicts when 

an anomaly may occur, it does not currently identify the specific part of the system 

responsible for the anomaly. However, this methodology can be further enhanced 

to provide more detailed feedback by integrating fault detection and classification 

models into the predictive framework. By analyzing sensor data from each 

individual component of the boiler, machine learning techniques could be used to 

pinpoint which part is most likely to cause the impending failure. This would allow 

for more targeted maintenance efforts and early interventions, ultimately improving 

system reliability and safety. Future work will focus on refining the model to isolate 

and identify critical failure points within the system, thereby extending the utility 

of this approach for both predictive and diagnostic purposes. 

This study demonstrates the remarkable adaptability and generalizability of the 

LSTM-MPCA framework in monitoring batch steam boiler processes when 

integrated with advanced data-driven techniques, which shed light on potential to 

broaden its application for fault diagnosis in various scenarios. 
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Chapter 7 Conclusion 

Conclusion 
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7.1 Conclusion 

This thesis has demonstrated the successful integration of data-driven innovations 

into material science and chemical engineering, showcasing significant 

advancements in catalyst design, material synthesis, and industrial process 

monitoring. Our results show that employing data-driven technologies can 

significantly promote the efficiency catalytic ORR, which plays a vital role in 

chemical-electrical energy conversion in fuel cells and metal-air batteries and is a 

promising and indispensable field in the development of renewable energy. Besides, 

the combination of two ensemble ML models in an active learning loop can 

dynamically optimize the synthesis parameters of LFP materials, recommending 

two LFP samples with superior energy density. Furthermore, the incorporation of 

LSTM and MPCA can effectively predict the behavior of steam boiler, achieving 

early warning and fault detection, preventing low energy efficiency and serve safety 

issue, and lowing CO2 emissions. 

In the first part of this work, the structure-activity relationship of Pt-based alloy 

catalysts for ORR was determined using high-throughput DFT computations 

combined with the SISSO algorithm. This integration enabled the identification of 

innovative descriptors based on primary structural features, facilitating the 

screening of materials without the need for time-consuming electronic structure 

calculations. Out of 77 potential candidates, five alloys—Pt₃Co(211), PtPd₃(211), 

Pt₃Ni(111), PtPd₃(111), and PtAu(111)—were identified as the most promising for 

ORR, demonstrating nearly thermoneutral OH adsorption at low overpotentials. The 
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use of structural information as a predictor for catalytic activity marks a significant 

advance in catalyst design. It provides a direct and efficient approach for identifying 

new materials with enhanced performance potential, which can greatly accelerate 

the development of new electrocatalysts for ORR and other energy-related 

processes. 

The second part of this thesis focuses on optimizing the lab-scale synthesis 

parameters for LiFePO₄ (LFP) materials using a data-driven framework built on 

active learning. Through two rounds of active learning (RR1 and RR2), the system 

recommended optimal synthesis parameters that led to the production of LFP 

samples with exceptional electrochemical properties. Specifically, the C₁C value of 

the RR2 sample exceeded 145 mAh/g with a ρ₃₀kN of 2.599 g/cm³, outperforming 

all other samples in the original dataset. Feature importance analysis revealed that 

sintering temperature (Ts) was the most influential factor, guiding future LFP 

material design by focusing on synthesis conditions that maximize performance. 

This approach demonstrates the power of integrating machine learning techniques 

into the material synthesis process, enhancing both the quality and efficiency of 

energy material development. The successful optimization of LFP synthesis via 

active learning highlights the potential of data-driven methodologies to 

revolutionize material design, providing a pathway to more efficient and cost-

effective battery materials. 

The third part of this work explores the integration of data-driven tools, specifically 

LSTM (Long Short-Term Memory) networks and MPCA (Multivariate Process 

Control Analysis), into traditional chemical engineering systems, with a focus on 
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batch steam boiler operations. The results of this case study illustrate how data-

driven techniques, such as deep learning models and statistical control limits, can 

be leveraged to enhance the safety, reliability, and efficiency of industrial processes. 

The LSTM-MPCA model demonstrated outstanding predictive performance, with 

R-squared values of 0.9204 and 0.9645 for the variable and principal component 

(PC) values, respectively, on the testing set. These results show the exceptional 

capability of the framework to predict and monitor system behavior, providing real-

time insights that can preemptively address potential faults and prevent costly 

downtimes. The approach offers a scalable solution for optimizing a wide range of 

non-linear industrial processes, making it highly adaptable to other batch operations 

in the chemical and manufacturing sectors. 

In conclusion, this thesis illustrates the significant impact of integrating data-driven 

innovations into material science and chemical engineering. By optimizing 

electrocatalyst design for ORR, enhancing the synthesis of LFP energy materials, 

and improving the operational efficiency of conventional chemical processes, this 

research demonstrates the potential of data-driven tools to advance the development 

of green chemical technologies. These findings provide valuable insights for future 

research in energy materials, green chemical engineering, and industrial process 

optimization, and they underscore the transformative role of data science in 

accelerating the transition towards a more sustainable, efficient, and 

environmentally friendly chemical industry. The integration of data-driven 

frameworks in these domains will continue to promote innovation and pave the way 
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for more intelligent, automated, and scalable solutions in materials and industrial 

processes. 

 

7.2 Major Contributions 

The major contributions of this thesis lie in the successful application of data-driven 

innovations to material science and chemical engineering, aimed at enhancing 

energy material design and improving energy efficiency and safety in conventional 

chemical industrial processes. 

1. Chapter 4 focused on high-throughput first-principles calculations to screen 

high-performance catalysts for ORR. The study established a structure–

activity relationship, identifying five promising catalyst candidates: 

Pt3Co(211), PtPd3(211), Pt3Ni(111), PtPd3(111), and PtAu(111) alloys were 

identified. Key factors influencing ORR performance, such as the 

electronegativity difference between Pt and heteroatoms, the number of 

valence electrons, and the ratio of heteroatoms around Pt, were determined. 

This work provides valuable data for experimentalists to validate ORR 

activity and offers insights for data scientists to refine ML models for 

catalyst performance prediction. 

2. Chapter 5 proposed a data-driven active learning framework to recommend 

optimal synthesis recipes for high-performance LFP material. The 

framework utilized two ensembled ML models to iteratively refine synthesis 

parameters, targeting enhanced physicochemical properties (ρ30kN) and 
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electrochemical performance (C1C) of the resulting LFP samples. The RR2 

and RR1 sample, synthesized according to the parameters suggested by 

second and first round active learning, exhibit high C1C (145.91 and 145.01 

mAh/g) and high ρ30kN (2.599 and 2.588 g/cm3), outperforming all 80 

synthesized LFP samples. Besides, by comparing RR2 and RR1 with their 

APF-free control groups, it can be observed that APG have a positive 

promoting effect on both ρ30kN and C1C. Further, the feature importance 

analysis also reveals that Ts is the most critical reaction condition that has 

significant impact on the two target properties. The framework highlighted 

the positive impact of APG on both properties, and feature importance 

analysis confirmed the critical role of Ts as the most influential reaction 

condition. 

3. Chapter 6 introduced a combined deep learning model, LSTM and MPCA, 

to improve fault detection and real-time monitoring in traditional chemical 

industrial processes. Trained initially on simulated data, the framework was 

validated using a real industrial dataset, achieving R-squared values of 

0.9204 and 0.9645 for predicting variable and PC values, respectively. The 

LSTM-MPCA method demonstrated significant potential for application in 

various industrial batch processes, requiring only historical normal data for 

training. 

In summary, this thesis presents a comprehensive workflow for applying data-

driven techniques to advance energy material design and discovery, as well as to 

enhance energy efficiency and safety in conventional chemical processes. The 
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proposed strategies span from micro to macro levels, incorporating stages such as 

data collection, feature engineering, ML model selection and training, and 

innovative applications. 

 

7.3 Future Work 

1. The results of Chapter 4 are expected to provide a useful dataset for 

experimentalists to further examine the predicted ORR activity and for data 

scientists to develop ML models for ORR performance predictions. While 

only one of the discovered 5 potential candidates was experimentally 

examined, further experiments would be necessary to eventually validate the 

suggested material. Besides, the proposed data-driven workflow only 

considered binary Pt-based alloys, while more complex material systems are 

worthy of being further explored. Additionally, this study may aid in the 

exploration of catalysts for other electrocatalytic processes, such as water 

electrolysis. 

2. In Chapter 5, while the synthesized sample recommended by developed 

active learning show superior performance on ρ30kN and C1C, more properties 

such as the cycle number, constant current charge ratio and initial 

Coulombic efficiency should be focused as well. Besides, appropriate 

descriptors that can transfer all chemical information of additives including 

APG, Glucose and PEG are yet to be further explored. Due to the nature of 

data generation of this study, only one sample can be collected, leading to 
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the limited size of dataset and potential system errors of data. High-

throughput experimentation is worthy to be designed for the future study. 

3. Despite the progress made in Chapter 6, opportunities for further research 

and enhancement remain. These include using specific decomposition 

techniques tailored to dataset characteristics for more efficient and accurate 

fault detection and incorporating advanced machine learning techniques for 

fault diagnosis and prevention. The adaptability and generalizability of the 

LSTM-MPCA framework in monitoring batch steam boiler processes, when 

integrated with advanced data-driven techniques, suggest its potential for 

broader application in fault diagnosis across various scenarios. 
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