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Abstract 

Alkali-activated concrete has become an alternative construction material to 

overcome the environmental impacts of traditional Portland cement concrete, 

with its better performance, environmental friendliness, mechanical properties, 

and durability. In recent years, advanced machine learning techniques have 

been used to predict the mechanical properties of alkali-activated concrete; 

however, prediction accuracy still needs to be enhanced. In this innovative study, 

particle packing theory was used in mechanical properties prediction through 

machine learning techniques, where packing density was introduced as a new 

input variable in machine learning models. The dataset used in machine 

learning models training was collected from an experiment study, which 

involved 99 data points of compressive strength and 33 data points of flexural 

strength test. This study presents the possibility of predicting the compressive 

strength and flexural strength of alkali-activated concrete through mix 

proportions using four machine learning algorithms: Random Forest, Extreme 

Gradient Boosting, Support Vector Machine, and K-Nearest Neighbors. The 

results showed that all machine learning models performed with reasonable 

accuracy in the training set and testing set. Within four models, Extreme 

Gradient Boosting showed the best performance. According to the influence 

analysis for input variables, packing density showed an intermediate effect of 

both compressive strength and flexural strength, proving that packing density 

can be an influential factor in the mechanical properties prediction of alkali-

activated concrete. This innovative research is able to reduce the materials, 

time, and costs in experiments, and it will also be beneficial in alkali-activated 

concrete mix design in the concrete industry. 

 

 

 



1. Introduction 

Concrete is a fundamental material in construction sites and plays a crucial role 

in developing infrastructure worldwide. Its versatile properties make it 

indispensable in various construction applications, from buildings and bridges 

to roads and dams. With its widespread usage around the world, every person 

in the world will produce approximately 1 ton of concrete on average. Modern 

concrete is a mixture of Portland cement, aggregates, and water (Aıẗcin, 2000). 

Cement's versatility is evident in its wide range of applications across various 

sectors. In residential and commercial construction, it is used to create solid and 

durable structures, including foundations, walls, and floors. In infrastructure 

projects, cement is a key component in the construction of roads, bridges, and 

tunnels, generating the necessary strength and durability to resist heavy weight 

and environmental stress. Additionally, cement is used in the production of 

precast concrete products, such as pipes, blocks, and panels, which are essential 

for efficient and cost-effective construction (Mehta and Monteiro, 2006). Its 

ability to set and harden underwater makes it ideal for marine and underwater 

construction projects as well. However, the extensive use of cement also raises 

environmental concerns, including habitat destruction due to the quarrying of 

raw materials, energy-intensive production processes, and waste generation 

(Durastanti and Moretti, 2020) (Ivanov et al., 2018). With the high speed 

development in recent decades, the negative impacts of concrete usage have 

attracted more attention from researchers, especially in the manufacturing 

process of cement concrete. 

 

The manufacturing process of cement involves several stages, each crucial in 

producing the fine, powdery material used in construction. Initially, source 

materials for instance, clay, limestone, and sand are extracted and crushed to 



form a raw mix. This mixture is then heated in a rotary kiln at high temperatures, 

around 1450°C, in a process known as calcination. During calcination, the raw 

materials undergo chemical changes, resulting in the formation of clinker. 

Finally, cement was produced by ground cooled clinker with gypsum. The clinker 

is then cooled and ground with gypsum to produce the final product, cement. 

This intricate process ensures the quality and consistency required for cement 

to perform effectively in construction applications (Taylor, 1997). However, 

cement manufacturing is also associated with significant environmental 

impacts, mainly as a result of the great energy consumption and 𝐶𝑂2 emissions 

during calcination. Cement manufacturing is highly energy-intensive, and its 

industry consumes roughly 2–5% of the world's total energy demand (Omer, 

2014). The main factors contributing to the high elevated 𝐶𝑂2  emissions 

associated with OPC production are identified as (1) the calcination process of 

limestone, a principal component, resulting in the generation and emission of 

𝐶𝑂2 ; and (2) the intensive energy requirements for manufacturing, which 

involve heating raw materials in a rotating kiln at temperatures exceeding 1400 

°𝐶  (Gartner, 2004). Ordinary Portland cements are commonly used as the 

binding agent in concrete compositions. The production of Ordinary Portland 

cement accounts for an estimated 5–7% of worldwide anthropogenic 

𝐶𝑂2 emissions (Turner and Collins, 2013). Nevertheless, the increasing demand 

for concrete, driven by rapid urbanization in recent years, brings significant 

environmental challenges and has emerged as a primary global concern. When 

cement and water are mixed together, a series of complex chemical reactions 

occur, collectively known as hydration. These reactions are essential for the 

setting and hardening of cement to form concrete. The primary compounds in 

cement, including tricalcium silicate (𝐶3𝑆)  and dicalcium silicate (𝐶2𝑆) , react 

with water to form calcium silicate hydrate (𝐶 − 𝑆 − 𝐻) and calcium hydroxide 

(𝐶𝑎(𝑂𝐻)2) . The 𝐶 − 𝑆 − 𝐻  gel is primarily responsible for the strength and 



durability of the hardened concrete. At the same time, calcium hydroxide 

contributes to its alkalinity, providing a protective environment for embedded 

steel reinforcement (Neville, 1995). The hydration process continues over time, 

leading to increased strength and reduced permeability of the concrete, which 

enhances its performance in various construction applications. Although 

cement is an efficient product for creating paste in concrete, the high emission 

of manufacturing procedures causes many environmental issues, so developing 

an alternative cementitious material is highly urgent. 

 

To reduce the environmental effects of Ordinary Portland cement concrete, 

alkali-activated concrete, also known as geopolymer concrete, is a sustainable 

replacement. Based on the superior properties and environmentally friendly 

impact of alkali-activated concrete, the researcher’s attention was attracted 

when these alternative construction materials to the traditional Ordinary 

Portland cement concrete started to be used in construction. Glkhovsky (1959) 

was the first man to investigate using low elemental or accessible calcium 

alumino-silicate sources and alkaline activators to produce binders. Alkali-

activated concrete is created by activating alumino-silicate precursor materials, 

such as fly ash, slag, or natural pozzolans, with an alkaline solution like sodium 

hydroxide or sodium silicate, leading to a binder that can rival or even surpass 

traditional cement in various applications. This reaction forms a gel that binds 

the aggregates, similar to the role of cement in traditional cement concrete. The 

chemical reaction underpinning alkali-activated concrete involves the 

dissolution of aluminosilicate materials in an alkaline solution, leading to the 

formation of a gel-like network primarily composed of sodium or potassium 

aluminosilicate hydrate. This process, known as geopolymerization, forms a 

three-dimensional network structure that provides AAC with its superior 

mechanical properties. During geopolymerization, the aluminosilicate materials 



dissolve to release silicate and aluminate species, which then react with the 

alkaline activator to form a rigid, stable matrix (Provis and Van Deventer, 2013). 

Previous research already proved that the alkali-activated has the ability to 

reduce the environmental impact of concrete manufacturing. 

 

Compared with traditional Portland cement concrete, the greatest advantage 

of alkali-activated concrete is the significant improvement in the environmental 

influence. The production of AAC generates significantly less 𝐶𝑂2 compared to 

OPC, mainly because it does not involve the calcination of limestone, a process 

responsible for substantial carbon dioxide emissions in traditional cement 

manufacturing (Habert and Ouellet-Plamondon, 2016). By utilizing industrial 

by-products such as fly ash and slag, AAC not only reduces greenhouse gas 

emissions but also helps in recycling waste materials, thereby mitigating the 

impact on landfills and conserving natural resources (Provis and Van Deventer, 

2013). The application of alternative alkali-activated binders provides a 

sustainable solution for the environmental problems above and also offers a 

significant method to dispose of industrial waste, fly ash (FA), and ground 

granulated blast-furnace slag (GGBS), for example (Khan et al., 2021). According 

to a life cycle assessment, Weil et al. reported that FA-based alkali-activated 

concrete provides about a 70% decrease in the global warming potential 

compared with Ordinary Portland cement concrete (Weil et al., 2009). Another 

life cycle assessment investigation in Australia also shows that the alkali-

activated method performed better in terms of carbon impact. McLellan et al. 

(2011) studied some cases of geopolymer concrete mixtures based on typical 

Australian feedstocks and concluded that there is a potential for a 44–64% 

decrease in 𝐶𝑂2 emissions compared with Ordinary Portland cement concrete. 

Mechanically, alkali-activated concrete demonstrates superior performance 

compared to OPC concrete. Published research has shown that alkali-activated 



concrete performs better in mechanical strength, durability, and resistance to 

chemical attacks, for example. The high compressive strength of alkali-activated 

concrete is attributed to the dense microstructure formed during the 

geopolymerization process, which is more resistant to cracking and degradation 

over time (Caijun Shi, 2006). Additionally, the durability of alkali-activated 

concrete in hazardous environments, such as exposure to acids, sulfates, and 

chlorides, and the performance of alkali-activated concrete significantly 

improved when compared with OPC. This resistance is crucial for infrastructure 

exposed to harsh conditions, resulting in lower maintenance costs and longer 

service life (Bernal and Provis, 2014b). The superior mechanical properties 

make alkali-activated concrete an attractive choice for applications that require 

high strength concrete materials, not only including structural components, but 

also marine structures, chemical containment systems, etc. Because of the 

improvements in mechanical properties and reductions in environmental 

impact, nowadays alkali-activated concrete has become an alternative material 

to traditional Portland cement concrete in many construction applications. The 

higher compressive strength and superior durability of alkali-activated concrete 

make it suitable for comprehensive applications, while its lower carbon 

footprint and use of industrial waste materials address critical sustainability 

concerns in the construction industry.  

 

Alkali-activated concrete (AAC) has emerged as a promising alternative to 

Ordinary Portland Cement (OPC) concrete, primarily due to its lower 

environmental impact and potential for utilizing industrial by-products such as 

fly ash and slag, significantly reducing 𝐶𝑂₂ emissions by more than 68% when 

compared to OPC (Habert et al., 2011). Additionally, AAC has demonstrated 

superior mechanical properties, including rapid strength development and 

higher early compressive strength, making it suitable for applications requiring 



accelerated construction schedules (Caijun Shi, 2006). Research indicates that 

AAC can achieve equivalent or even higher compressive and flexural strength 

compared to OPC, particularly when optimized mix proportions and curing 

conditions are applied (Bernal and Provis, 2014b). Furthermore, AAC is known 

for its exceptional durability, exhibiting enhanced resistance to aggressive 

environmental conditions such as sulfate attack, chloride penetration, and acid 

degradation, which are common challenges in conventional OPC structures 

(Caijun Shi, 2006). The improved chemical resistance of AAC is primarily due to 

its lower calcium content, which minimizes the risk of deleterious reactions, 

such as the formation of expansive ettringite under sulfate exposure (Bernal 

and Provis, 2014b). Despite these advantages, several challenges limit the 

widespread adoption of AAC in the construction industry. One of the most 

significant disadvantages is its cost, as the production of AAC often requires 

expensive alkali activators, leading to material costs estimated to be two to 

three times higher than OPC concrete. Moreover, the availability and quality 

control of raw materials, particularly fly ash and slag, vary significantly across 

different regions, affecting the consistency and performance of AAC mixes 

(Caijun Shi, 2006). Another critical disadvantage is the higher shrinkage and 

carbonation rate of AAC compared to OPC concrete, which can lead to increased 

cracking and long-term durability concerns if not adequately addressed through 

mix design optimization and curing techniques (Provis and Van Deventer, 2013). 

Additionally, the lack of standardized mix design procedures and long-term 

performance data hinders the acceptance of AAC as a mainstream construction 

material, as regulatory frameworks and building codes still predominantly cater 

to OPC-based systems. These limitations highlight the need for further research 

and development to optimize AAC formulations, improve cost efficiency, and 

establish standardized guidelines for its application in structural and non-

structural elements. In conclusion, while AAC presents a viable and sustainable 



alternative to OPC concrete with superior mechanical properties and durability, 

its widespread adoption is constrained by economic and practical challenges. 

Addressing these issues through technological advancements, regulatory 

support, and improved material standardization will be crucial for promoting 

AAC as a mainstream construction material. Future studies should focus on 

enhancing the cost-effectiveness of AAC production, refining mix design 

methodologies, and evaluating its long-term performance in real-world 

applications. By overcoming these challenges, AAC has the potential to play a 

pivotal role in the transition towards more sustainable and resilient 

construction practices. 

 

Particle packing theory is a fundamental concept in concrete materials science, 

which plays a vital role in understanding and optimizing the properties of 

concrete. This theory focuses on the arrangement and distribution of particles 

within concrete to achieve the densest packing between different sizes of 

aggregates and cement particles. By minimizing voids to enhance material 

properties, particle packing theory can significantly improve concrete 

performance. This theory explores the optimal arrangement of particles of 

optimized different sizes and shapes particles in concrete mixture to achieve 

maximum density and minimal void space within concrete materials. In the 

context of concrete, this theory is applied to the mixture of cement, aggregates, 

and other additives. The primary objective is to enhance the concrete's 

workability, strength, durability, and overall performance by reducing the 

reduce the voids between aggregates. By correctly combining different sizes 

and shapes of particles in the mixture, voids between big particles have been 

filled with small particles, which will cause concrete to be thoroughly 

compacted with all sizes of particles and get the lowest void content inside.  

 



The application of particle packing theory in concrete mix design can 

significantly enhance the mechanical and durability of concrete materials. 

Firstly, it improves workability by reducing friction between particles in concrete 

materials (Fennis and Walraven, 2012). Secondly, higher packing density means 

the minimum space of voids in concrete, which will increase compressive 

strength and make the concrete able to resist environmental factors, freeze-

thaw cycles, chemical attacks, and abrasion, for example (Kumar and 

Santhanam, 2003). Previous research has significantly explained the knowledge 

of particle packing theory in concrete. Pioneering work published by Powers 

(1968) in 1969, which demonstrated the properties of fresh concrete, his 

research highlighted the importance of particle size distribution and its effect 

on concrete’s rheology and strength. Later, in 1999, Larrard (1999) developed a 

comprehensive model for optimizing the particle packing density of granular 

materials, which has been widely adopted in concrete mix design. His work 

provided a theoretical foundation for understanding how different particle sizes 

interact and the connection between the packing density of each size of 

aggregate and concrete performance (De Larrard, 1999). Moreover, particle 

packing theory minimizes the voids between different sizes of aggregates to 

achieve efficient use of raw materials in concrete. This not only reduces the 

costs in the construction industry but also decreases the environmental impact 

associated with cement production, which is the mean origin of carbon dioxide 

emissions. Additionally, the decreasing of voids inside the concrete also 

improves the internal arrangement of the concrete, reduces the possibility of 

shrinkage and creep in concrete, and improves the combination of the 

aggregates, resulting in the performance of concrete in mechanical properties 

and durability (Zhu et al., 2020).  

 

Machine learning has developed rapidly in recent years; this development has 



been caused by upgrading in computational power, the feasibility of large 

datasets, and the expansion of computing algorithms; it transforms from a 

research area only in computer science into a powerful tool in the engineering 

field. Machine learning, which is a sub area of artificial intelligence, its purpose 

is to build a model with algorithms from existing datasets and recognize and 

learn the relationships between input variables to create a predictive model 

used to make decisions without human intervention. Adaptation and efficiency 

are the most significant advantages of machine learning techniques, especially 

in data science. Traditional data analysis methods often have difficulties with 

the complexity and volume of developing engineering datasets. However, 

machine learning algorithms can overcome these problems and discover the 

relationship between each pattern in the dataset. One of the primary reasons 

machine learning techniques are highly recommended when dealing with the 

amount of data, they are able to analyze the correlation between variables, and 

do classification and regression based on the data that has been given to the 

models. This ability is achieved through various methods, for instance, 

unsupervised learning, supervised learning, and reinforcement learning. A 

model is trained using a labeled dataset, to make predictions or classifications 

based on input variables in supervised learning. Unsupervised learning refers to 

identifying hidden patterns or groupings within data without pre-labeled 

outcomes, while reinforcement learning optimizes actions based on feedback 

from interactions with a given environment (Goodfellow et al., 2016). As an 

example, neural networks, especially the deep learning models, convolutional 

neural networks (CNNs), and recurrent neural networks (RNNs), have an 

impressive ability to find out the non-linear in datasets and make prediction 

models, thus making them acceptable for a comprehensive data science 

applications (LeCun et al., 2015). 

 



Machine learning involves a variety of techniques, each offering unique 

advantages for predictive modeling. Among the most widely used are decision 

trees, support vector machines, ensemble methods, etc. For instance, decision 

trees can efficiently handle both continuous and categorical variables and offer 

a clear and understandable depiction of decision-making processes. (Breiman, 

2001). Support vector machine is another robust machine learning algorithm, 

especially effective in high-dimensional spaces. Support vector machines can 

provide robust predictions with limited data, making them suitable for 

applications where data availability is a constraint. The ability of the Support 

vector machine to maximize the margin between different classes in the data 

leads to high generalization performance, which is essential for accurate 

predictive modeling (Cortes and Vapnik, 1995a). Ensemble methods, such as 

random forests and gradient boosting machines, incorporate the predictions of 

multiple base models to improve precision and robustness. Ensemble methods 

are especially effective in dealing with complex and noisy datasets, a common 

challenge in many scientific and engineering domains. These machine learning 

algorithms have shown significant improvements in use, leveraging the 

strengths of different models for predictive performance and mitigating 

individual weaknesses (Friedman, 2001). Other algorithms such as the K-

nearest neighbors algorithm, is a simple yet effective algorithm that makes 

predictions based on the proximity of data points. K-nearest neighbors are 

particularly useful for classification tasks and are valued for their simplicity and 

ease of implementation. However, its performance can degrade with high-

dimensional data and large datasets (Cover and Hart, 1967). Layered structures 

of interconnected nodes (neurons) make up neural networks, this algorithm is 

modeled after the structure and operations of the human brain. These networks 

can catch complicated non-linear relationships in the data, which apply them 

the ability to become a powerful tool for a comprehensive scope of regression 



tasks. Although neural networks can become computing intensive and consume 

a huge dataset in the training process, they are highly versatile and have been 

profitably applied in different domains (Bishop and Nasrabadi, 2006). The 

success of machine learning models, however, hinges on the quality and the 

amounts of data used for training. Datasets with high quality that accurately 

represent the variability and complexity of the natural world are essential for 

developing robust predictive models. Machine learning techniques offer 

powerful tools for predictive modeling, capable of analyzing complex datasets 

and identifying complex patterns. The continual research and development in 

machine learning promises to further expand its capabilities and applications, 

enhancing decision making processes and predictive accuracy across various 

fields. The integration of machine learning into traditional methodologies opens 

new possibilities for innovation and efficiency, paving the way for 

advancements in engineering.  

 

Machine learning (ML) significantly enhances the prediction of alkali-activated 

concrete (AAC) properties by capturing complex nonlinear relationships 

between mix composition, curing conditions, and mechanical performance, 

offering greater accuracy than traditional empirical methods. ML algorithms 

such as artificial neural networks (ANN), support vector machines (SVM), 

random forests (RF), and extreme gradient boosting (XGBoost) can process large 

datasets to predict compressive strength, flexural strength, and durability with 

high precision, reducing the reliance on time-consuming and costly laboratory 

testing (Le et al., 2024). By analyzing vast experimental data, ML models identify 

key influencing factors, enabling the optimization of mix proportions to 

enhance performance while minimizing material costs. Additionally, ML 

applications extend to durability assessments, where predictive models 

estimate AAC's resistance to sulfate attack, chloride penetration, and 



carbonation—critical parameters for ensuring long-term structural 

performance. Despite these advantages, challenges such as limited high-quality 

experimental datasets, variations in raw materials, and the interpretability of 

complex ML models hinder widespread adoption. Future research should focus 

on expanding databases, integrating hybrid AI techniques, and improving model 

transparency through explainable AI (XAI) methods to increase trust and 

applicability in the construction industry. As ML continues to evolve, it has the 

potential to revolutionize AAC research, leading to more sustainable and high-

performance concrete materials. 

 

This research tries to introduce packing density as a novel parameter in 

compressive strength and flexural strength prediction through machine learning 

models. Four machine learning models were chosen in this investigation, 

random forest, extreme gradient boosting, support vector machine, and k-

nearest neighbor. The models were trained by a dataset collected from 

laboratory experiments. The goal of this investigation is to increase the 

precision of alkali-activated concrete’s compressive and flexural strength 

predictions. It has the potential to significantly improve the understanding of 

the design and uses of alkali-activated concrete mixes in construction 

applications.  

 

2. Literature review  

2.1 Alkali-activated concrete 

Alkali-activated concrete performs better than traditional Portland cement, not 

only in environmental aspects but also in mechanical properties and durability. 

Compressive strength is the most important mechanical property considered in 



concrete materials. The development of compressive strength of alkali-

activated concrete is much faster than Portland cement concrete. Angulo-

Ramírez et al. (2017) reported that the alkali-activated hybrid cement, which is 

a mixture of a GGBS and Portland cement in proportion 80% and 20%, 

respectively, got 4.5 and 10.8 times higher compressive strength than the 100% 

Portland cement mixture. Alkali-activated concrete mixed with a binder content 

of 300, 400, and 500
𝑘𝑔

𝑚3⁄   showed around 20 𝑀𝑃𝑎  compressive strength 

higher than the same binder content Portland cement concrete after 28 days 

and 90 days curing under conditions where the temperature of 25 ± 2 °C, and 

RH = 65 ± 5% (Bernal et al., 2011). Marvila et al. (2023) used blast furnace slag 

as cementitious material and activated by sodium hydroxide with different mass 

concentrations to make a 50 × 100𝑚𝑚  cylinder concrete sample. The 

compressive strength test at 7 days and 28 days demonstrates that the alkali-

activated concrete presents a superior behavior compared with traditional 

Portland cement concrete. Based on the comprehensive review of Wang et al. 

(2020), the durability of alkali-activated concrete is better than Portland cement 

concrete in general. 

 

Several factors affected the compressive strength of alkali-activated concrete, 

for example, the composition of the alkali-activator, the solution to binder ratio, 

the dosage of chemical components in the activator, the water to cementitious 

materials ratio, the modulus in the activator solution (mass ratio of 𝑆𝑖𝑂2  to 

𝑁𝑎2𝑂), the type and dosage of the precursor materials, the curing conditions 

and curing time, etc. (Ding et al., 2016). The compressive strength of alkali-

activated concrete increased with the increases in the molarity of 𝑁𝑎𝑂𝐻 

solution in the activator. Results from Singh et al. (2023) demonstrate the 

compressive strength of alkali-activated concrete increases about 81.4% with 

the molarity of 𝑁𝑎𝑂𝐻 solution changed from 12 M to 14 M. According to an 



experiment study published by Farhan et al., the compressive strength of 35.91 

MPa for regular strength and 65.28 MPa for high performance geopolymer 

concrete, when the concentration of 𝑁𝑎𝑂𝐻 solution is 12 M and 14 M (Farhan 

et al., 2019). Similar results were provided by previous research. (Aliabdo et al., 

2019). In addition, other researchers investigated the influence of 𝑁𝑎2𝑂 

content on the compressive strength of FA-based alkali-activated concrete. 

When the 𝑁𝑎2𝑂  content increases from 4% to 6%, the 28 day compressive 

strength increases to 348%. Nevertheless, when 𝑁𝑎2𝑂 content increases from 

6% to 8% and 8% to 10%, the rate of compressive strength development drops 

to 181% and 115%, respectively (Cho et al., 2017). 

 

Alkali-activated concrete is controlled by complex chemical mechanisms 

involving the dissolution, polymerization, and gelation of aluminosilicate 

materials under alkaline activation. The key reaction process, 

geopolymerization, begins with the breakdown of silica (𝑆𝑖𝑂₂)  and alumina 

(𝐴𝑙₂𝑂₃) from precursor materials, such as fly ash or slag, facilitated by alkaline 

activators like sodium hydroxide (𝑁𝑎𝑂𝐻) and sodium silicate (𝑁𝑎₂𝑆𝑖𝑂₃). This 

dissolution process releases silicate (𝑆𝑖𝑂₄) and aluminate (𝐴𝑙𝑂₄) species into 

the solution, where they undergo hydrolysis and polycondensation to form 

oligomeric species. These oligomers then polymerize into a three-dimensional 

sodium-aluminosilicate-hydrate (𝑁 − 𝐴 − 𝑆 − 𝐻)  gel, which serves as the 

primary binding phase in AAC (Provis and Van Deventer, 2013). Sodium silicate 

plays a critical role by enhancing the dissolution of aluminosilicate precursors, 

increasing silicate availability, and promoting a denser geopolymer matrix, 

leading to improved mechanical performance and durability (Palacios et al., 

2021). In addition to (𝑁 − 𝐴 − 𝑆 − 𝐻)  gel, if calcium-rich materials such as 

ground granulated blast furnace slag (GGBS) are present, secondary reactions 

occur, leading to the formation of calcium-alumino-silicate-hydrate (𝐶 − 𝐴 −



𝑆 − 𝐻) gel, which further enhances strength and reduces porosity (Bernal and 

Provis, 2014a). The 𝑆𝑖𝑂₂/𝐴𝑙₂𝑂₃  ratio significantly influences the reaction 

kinetics, gel structure, and final material properties, where higher silica content 

promotes a well-crosslinked network, improving durability and chemical 

resistance (Davidovits, 2008). Furthermore, the 𝑁𝑎₂𝑂/𝑆𝑖𝑂₂  ratio of the 

activator controls the viscosity of the geopolymer paste, affecting workability 

and setting time. Optimizing these parameters, alongside controlled curing 

conditions, ensures complete geopolymerization and enhances alkali-activated 

concrete’s long-term mechanical stability, making it a promising alternative to 

conventional cementitious materials (Provis and Bernal, 2014). 

 

In alkali-activated concrete, the activator is a main component that will 

influence the compressive strength, the effect can be demonstrated by a few 

ratios, 𝑀𝑠 (modulus in activator also known as the ratio of 𝑆𝑖𝑂2 to 𝑁𝑎2𝑂), the 

ratio of sodium silicate solution to sodium hydroxide, etc. For the modulus in 

the activator, the compressive strength of alkali-activated concrete under 

constant curing conditions has been studied. With modulus value increases 

from 0.8 to 1.4, the compressive strength increased, however, they observed 

that the results when modulus is 2.0, the compressive strength decreased, and 

the value is much lower than those in 0.8 and 1.4 of modulus case (Cho et al., 

2017). Soutsos (2016) found that the optimum range of values of the alkali 

modulus is determined by any value above and below, which will cause the 

strength to decrease. As the alkali dosage increases, the "sweet spot" expands 

to accommodate a higher alkali modulus. Generally, the best compressive 

strengths are obtained at alkali doses that have been studied in tests when the 

alkali modulus falls between 1 and 1.25. The reduction in available silica that 

can participate in the "reorganization–gelation–polymerization" steps of the 

alkali-activated concrete formation—that is, the development of a longer, 



denser, and more integrity polymer chain—seems to be the cause of the 

compressive strength decrease with increasing alkali modulus. The decrease in 

compressive strengths at low modulus with a value of 0.5, can be attributed to 

the reaction system's pH value being lower when sodium silicate solution is the 

only alkali activator. For the ratio of sodium silicate to sodium hydroxide, the 

compressive strength of alkali-activated concrete increases with the increase of 

the ratio of sodium silicate to sodium hydroxide, up to 2.5, and then decreases 

(Joseph and Mathew, 2012).  

 

In fly ash-slag based alkali-activated concrete, the compressive strength is 

influenced by the ratio of fly ash to ground granulated blast-furnace slag (GGBS). 

Lee and Lee (2013) demonstrated that the compressive strength of specimens 

with varying replacement ratios of slag to fly ash increased as the slag 

replacement ratio rose from 10% to 15%. Specifically, the compressive strength 

improved from 15.5 MPa to 23.0 MPa after 28 days of curing. Similar results 

were reported in the previous experiment; when the fly ash to GGBS ratio 

changed from 100:0 to 85:15, the compressive strength was 1.11, 1.16, 1.09, 

and 1.109 times higher when the specimens after 3 days, 7 days, 28 days, and 

91 days of curing (Rashad, 2013). This phenomenon has been explained based 

on the chemical reaction in alkali-activated concrete, and the compressive 

strength was enhanced by incorporating slag, which contains a significant 

amount of 𝐶𝑎𝑂 , into the mixture. This improvement is attributed to the 

formation of an amorphous 𝐶𝑎– 𝐴𝑙– 𝑆𝑖 gel, facilitated by the presence of 𝐶𝑎𝑂, 

which strengthened the geopolymer. This finding is consistent with results 

reported in the previous study (Yip, 2004). According to Kumar and his 

colleagues, the compressive strength increasing with the increase of GGBS 

could be on account of the formation of gel phases 𝐶 − 𝑆 − 𝐻 and 𝐴 − 𝑆 − 𝐻 

and the compactness of the microstructure (Kumar et al., 2010). The chemical 



composition of cementitious materials plays an essential part in compressive 

strength performance. Although the chemical composition of different slag is 

nearly the same, the chemical components content of each chemical 

composition in slag is very different (Fu et al., 2023).  Shi et al. found that the 

𝑆𝑖𝑂2 and 𝐶𝑎𝑂 contents in slags from different countries were similar, while the 

𝐴𝑙2𝑂3 , 𝑀𝑔𝑂 , and 𝑇𝑖𝑂2  contents varied significantly. These compositional 

differences affect the slag's reactivity and, consequently, its hydration process 

(Caijun Shi, 2006). The investigation reported that the quick early age 

compressive strength development can be attributed to the reaction of 

additional calcium bearing compounds present in the GGBS (Nath and Sarker, 

2014). Another factor that affects the compressive strength of alkali-activated 

concrete is the binder content to activator ratio; based on Ibrahim et al., in the 

experiment study, the compressive strength increased by about 6.75% when 

the activator to binder ratio increased from 0.467 to 0.5. However, when this 

ratio still increased from 0.5 to 0.643, it showed a negative influence on 

compressive strength. They also suggest when the sodium silicate to sodium 

hydroxide ratio is 2.75, the best activator to binder ratio is 0.5 to achieve the 

biggest compressive strength (Ibrahim et al., 2017). Water to solids ratio also 

known as water to cementitious ratio in alkali-activated concrete, this ratio is 

similar to water to cement ratio in traditional Portland cement concrete. This 

ratio can be defined as the mass ratio of water in the activating solutions and 

additional water to the precursors (fly ash and GGBS) and alkali solids (sodium 

silicate and sodium hydroxide in the activator solution). The water to 

cementitious materials ratio has an adverse relationship with the compressive 

strength of alkali-activated concrete. The effect is more observable for pure fly 

ash alkali-activated concrete, a mixture with 100% fly ash, where the 

compressive strength and the ratio of water to cementitious materials are 

practically linear (Rafeet et al., 2017). Analogous tendencies have been 



demonstrated in the experiment study (Joseph and Mathew, 2012). The 

addition of GGBS likely reduces the effect of water to cementitious materials 

ratio on the compressive strength, and this direction has also been proved by 

other published studies (Hung and Chang, 2013). Detrimental influences of 

water inclusion in 80:20 fly ash to GGBS ratio mixes were more obvious for 

higher water to solids ratios between 0.39 to 0.41 than they were for lower 

water to solids ratio in a range of 0.35 to 0.37, where there was no substantial 

decrease. For concrete mixtures with the fly ash to GGBS ratio of 60:40, greater 

values of water to solids will cause compressive values to show low values. 

When the water to solids ratio is less than 0.41, the compressive strength only 

shows a moderate reduction. When the water to solids ratio is higher than 0.41 

and the paste content is equal to 30% of the entire mixture, compressive 

strength is reduction about 40%. However, when compressive strength was 

higher than 60 𝑀𝑃𝑎, the increase in the water to solids ratio from 0.42 to 0.48 

for mixes with fly ash to GGBS ratio of 30:70 did not seem to have a significant 

effect on the compressive strengths. And 24 hours compressive strengths as 

high as 30 𝑀𝑃𝑎 were accomplished for water to solids ratio of 0.42 (Rafeet et 

al., 2017). 

 

Curing variations in the alkali-activated concrete, such as curing time, 

temperature of curing, and humidity of curing, affect the compressive strength. 

According to analyses of experimental results, Gomaa et al. found that curing 

temperatures have a positive trend with compressive strength. This is to be 

expected as fly ash dissolving kinetics and reaction product precipitation 

kinetics both improve with higher curing temperatures (Gomaa et al., 2021). 

Zhang et al. (2023) investigated the compressive strength under combined 

curing conditions (steam curing for 48h at 90℃, ambient curing until specific 

ages after steam curing) at the age of 3 days can achieve the compressive 



strength value reached at 28 days under normal curing (≥95% relative humidity 

and the temperature is 20 ± 2 °𝐶 ). The accelerated advancement of the 

compressive strength of ultra-high strength alkali-activated concrete specimens 

can be attributed to the steam curing for two days at 90 °C. 

 

2.2 Particle packing theory in concrete 

A concrete mixture has about 60% to 70% volumetric proportion of aggregate 

phase. Particle packing and size distribution in concrete highly affect the volume 

of voids between particles. Particle packing theory is a method to find out the 

optimum proportions of blended coarse aggregate and fine aggregate in the 

concrete mixture. Scientists advised that the concrete mix can be considered a 

combination of aggregate particles and cement paste, optimal aggregate 

arrangement can improve the volume of extra paste to increase the concrete 

performance (Powers, 1968). A packing model which able to maximize the 

strength of ultra-high-performance concrete was invented by researchers in 

1994 (De Larrard and Sedran, 1994). A few famous researchers were continually 

advancing the aggregate distributions through particle packing theory, for 

example, the Modified Toufar Model (MTM), JD Dewar Model (JDD), and 

Compressible Packing Model (CPM); these models are combined models under 

a discrete approach (Toufar et al., 1976) (De Larrard, 1999) (Dewar, 1999). To 

minimize the number of cement paste and tightly packed aggregate and 

maximize the filling density, a multi-component aggregate mixture is used. A 

minimal number of slurries is only needed to permeate the voids within the 

massively packed aggregates, which lets the concrete mixture achieve the 

strength and durability required. Friction between the particles in the concrete 

mixture was generated by direct contact (Fuller and Thompson, 1907) (Kwan 

and Mora, 2001). Pallapothu et al. (2023) show the feasibility of using packing 



density as a mean input variable in machine learning to forecast the 

compressive strength of traditional concrete. The analytical solution to 

maximize packing density by optimizing aggregate proportions was difficult to 

derive, however this work solved the problem. It offered a user-defined model 

that, by utilizing machine learning approaches, decreased the mathematical 

analysis for particle packing optimization. 

 

The packing density of aggregates, which is known as the ratio of the volume of 

aggregates to the volume of voids between aggregates, is an essential factor in 

determining aggregate distribution degree in the concrete mixture; the packing 

density of aggregates in a concrete mixture can significantly influent the 

compressive strength of concrete. The compressive strength of recycled 

aggregate concrete increases with the packing density increasing (Li et al., 2017). 

Based on the effects of the study of aggregate packing density on the 

workability, rheological, and mechanical characteristics of self-consolidating 

concrete published by Khayat et al. The results illustrated that when the packing 

density of aggregate is 0.8, the superplasticizer usage is reduced by 40%, 

significantly (Khayat et al., 2000). Similar research was conducted; in this 

research, the same paste composition and paste volume were kept at a constant 

value; concrete specimens were produced with three different packing 

densities. For each 150 mm cube specimen group with the same packing 

density value, the compressive strength was measured after 28 days of curing. 

The observations showed that the packing density raised from 0.64 to 0.68, and 

the compressive strength of test samples increased from 40.5 to 45.6 𝑁 𝑚𝑚2⁄ . 

The reason for this is that the increased interlocking of the aggregate as the 

packing density increases and the porosity in concrete reduces, which causes 

higher strength. Additionally, with a development in packing density, the paste, 

more than the porosity, will help achieve advanced compatibility, which results 



in higher strength. However, the packing density significantly affects the 

compressive strength of concrete (Nanthagopalan and Santhanam, 2012).  

 

Niyazudddin and Umesh B (2023) investigated the compressive strength, split 

strength, flexural strength, and durability of geopolymer concrete incorporated 

with particle packing theory. The research shows that the geopolymer concrete 

mixtures with particle packing theory have a critical increase in compressive 

strength and durability, compared with the mixtures without particle packing 

theory. The compressive strength with the mix using particle packing theory is 

40% higher than the mix without particle packing theory. The geopolymer 

concrete can achieve around 70Mpa after 28 days of curing. Karadumpa and 

Pancharathi (2021) developed a mixed design method using particle packing 

theory for composite cement concrete and optimizing the fly ash and GGBS 

contents. They found that the compressive strength and packing density are 

directly correlated, at water to binder ratios of 0.45, 0.50, and 0.55, the 

accuracy values 𝑅2are 0.932, 0.957, and 0.979 respectively, show a significant 

positive relationship between the mechanical properties of sustainable 

concrete and the packing density of aggregates. At the same time, they found 

that the workability of concrete mixes was found to decrease drastically with an 

increase in the packing density of the aggregate system. The same result of 

workability affected by the packing density of concrete had been observed by 

Nanthagopalan et al. (Nanthagopalan et al., 2008). The previous research 

proved that the particle packing theory plays a vital role in alkali-activated 

concrete compressive strength performance, and packing density closely 

correlates with compressive strength.  

 



2.3 Machine learning in Alkali-activated concrete 

The high speed advancement of artificial intelligence (AI) technology has led to 

its integration across diverse sectors for enhancement purposes. Numerous 

researchers have applied AI to the field of civil engineering construction 

materials. Machine learning models can make good accurate predictions based 

on a big dataset without understanding the complex physical mechanism.  

Many publications have shown the feasibility of predicting the mechanical 

properties of traditional Ordinary Portland cement concrete by machine 

learning algorithms in recent decades, for example, random forest (RF), support 

vectors machine (SVM), gradient boosting (GB), etc. (Cheng et al., 2012, Chou 

and Pham, 2013). To forecast the compressive strength of high strength 

concrete, Al-Shamiri et al. used an extreme learning machine (ELM) and 

backpropagation ANN (BP) with 324 data records from laboratory experiments. 

Five parameters were chosen as input values in the machine learning model: 

fine aggregate, coarse aggregate, water, cement, and water reducer. The 

simulation result shows the strong potential for using ELM and BP to forecast 

the compressive strength of high strength concrete (Al-Shamiri et al., 2019). A 

laboratory dataset includes 99 data points for self-compacting concrete. Python 

machine learning models were used to train the Lasso regression, Linear 

regression, Ridge regression, decision tree regression, multi-layer perceptron 

regression, and random forest regression; the results show the feasibility of the 

machine learning model for self-compacting concrete compressive strength 

prediction (Rajakarunakaran et al., 2022). Tavares et al. present an innovative 

and efficient methodology, this methodology not only optimizes the mixture 

design of ultra-high-performance-concrete but also reduces experimental runs, 

enabling concrete manufacturers to quickly create efficient models using their 

own experiment data and raw materials. The dataset for machine learning 



models training and testing was collected from orthogonal arrays. Machine 

learning techniques in K-Nearest Neighbors and random forest are able to 

produce Performance Density Diagrams in this methodology, results 

demonstrate that the Performance Density Diagrams from machine learning 

models predicted the trends, magnitude, and ranking of most mixtures stored 

with high efficiency (Tavares et al., 2022). Explainable Boosting Machine 

performed with a high accuracy with a 𝑅2 = 0.93 which was trained and tested 

by a comprehensive dataset has 1030 compressive strength data points. The 

significant time consumption reduction in the machine learning model creating 

procedure can be attributed to the use of Bayesian optimization algorithms to 

iteratively build the algorithmic and hyperparametric model iteratively, also 

identifying the optimal point in the search space (Liu and Sun, 2023). 

 

Machine learning models are also an efficient tool for predicting the mechanical 

properties of alkali-activated concrete (Huo et al., 2022). Thomas and 

Peethamparan used a linear regression algorithm to analyze the optimum mix 

design for slag-based geopolymer and class C fly ash concrete material (Thomas 

and Peethamparan, 2017). In the research published by Sun et al., 193 strength 

data of alkali-activated concrete were collected to build a random forest model 

for compressive strength prediction; the training set and testing set have 0.96 

and 0.92 accuracy of prediction, respectively (Sun et al., 2023b). According to 

Gomaa et al., their research also created a random forest model with around 

200 data to predict the compressive strength of alkali-activated concrete. 

Results showed the model, after being meticulously trained and optimized was 

able to perform with high accuracy in prediction, with the Pearson correlation 

coefficient, 𝑅 ≳  0.95  (Gomaa et al., 2021). The Bayesian linear regression 

algorithm can be used as an innovative technique to investigate the actual 

influence of the chemical interaction between raw materials on the mechanical 



properties of fly ash based geopolymer concrete. For the training set and testing 

set, the model's R factor values were 0.89 and 0.826, respectively (Toufigh and 

Jafari, 2021). Other machine learning models can be applied to alkali-activated 

concrete compressive strength prediction as well, gradient boosting machine, 

decision tree, and support vector machine were trained to predict the 

compressive strength of metakaolin based geopolymer concrete. Test results 

demonstrated that the gradient boosting machine has exceptional performance, 

with a mean absolute error of 1.615 𝑀𝑝𝑎 and a coefficient of determination of 

0.983 (Afzali et al., 2024). Peng and Unluer illustrated three different machine 

learning algorithms, which are Support Vector Machine (SVM), Extreme 

Learning Machine (ELM), and Backpropagation Neural Network (BPNN), have 

the ability to predict 28 days compressive strength of geopolymer concrete 

through mix proportions and pre-curing conditions. The difference between 

each model has been analyzed, highlighting variations in prediction accuracy 

(Peng and Unluer, 2022). In addition, the machine learning technique shows 

good performance in workability, slump flow, flowability, flow consistency, etc., 

and prediction of alkali-activated materials (Kong and Kurumisawa, 2023).  

 

Recently, many researchers have frequently applied machine learning models 

in compressive strength prediction of alkali-activated concrete. The relations of 

mix parameters of alkali-activated concrete such as 𝑆𝑖𝑂2: 𝑁𝑎2𝑂  ratio, 𝑁𝑎𝑂𝐻 

solution to 𝑁𝑎2𝑆𝑖𝑂3 solution ratio, alkaline solution to cementitious materials 

ratio, etc. The machine learning models show the significance and influence of 

the chemical compositions of cementitious materials and alkali activator on the 

compressive strength of fly ash based alkali activated concrete (Toufigh and 

Jafari, 2021). Research chose the mass of the 𝑁𝑎2𝑂 dosage to the mass of the 

GGBS and fly ash ratio; the mass of the 𝑆𝑖𝑂2 dosage to the mass of the 𝑁𝑎2𝑂 

dosage ratio; the mass of additional water; the mass of GGBS and fly ash; the 



mass of GGBS to the mass of cementitious materials ratio and curing time as 

input value in machine learning models training (Sun et al., 2023a). Precursor 

content, GGBS ratio, 𝑁𝑎2𝑂 content, modulus in activator, water content, fine 

aggregate, and coarse aggregate were chosen as parameters in alkali-activated 

mixture proportions for building random forest machine learning dataset to 

forecast the compressive strength (Sun et al., 2023b). Gomaa et al. (2021) 

trained machine models to predict the compressive strength of alkali-activated 

concrete, which uses a comprehensive input value focus on the chemical 

composition in cementitious materials and curing conditions. Three dissimilar 

machine learning models, Random Forest (RF), Gradient Boosting (GB), and 

Back Propagation Neural Network (BPNN), show that they have outstanding 

prediction performance in compressive strength of alkali-activated concrete 

with 𝑅2 over 0.85 and 0.70 for training and testing set. Eight input variables in 

the dataset are used in machine learning model training and testing (Li et al., 

2023). Investigation proposes a machine learning model according to their mix 

formula and the chemical elements of their cementitious materials and 

activators to estimate the compressive strength of alkali-activated concrete. The 

dataset in this study includes 676 mixture design samples collected from peer-

reviewed investigations. Eleven input parameters which mainly focus on 

chemical components of raw materials in mixture design were selected for 

machine learning models training and testing. Four machine learning 

algorithms, support vector machine, extra trees, random forest, and gradient 

boosting all got significant performance predictions of compressive strength in 

alkali-activated concrete (Zhang et al., 2022). 

 

Different machine learning models also show strengths and weaknesses in 

concrete properties prediction. Random Forest excels in modeling non-linear 

relationships inherent in concrete datasets, interactions between mix 



proportions, curing conditions, and alkali activators, for example. While 

resisting overfitting, making it robust for predicting compressive and flexural 

strength (Chou et al., 2014). However, its tendency to average extreme strength 

values can limit accuracy in predicting high-performance or low-strength alkali-

activated concrete. XGBoost often achieves superior accuracy in concrete 

strength prediction tasks due to gradient boosting and regularization, effectively 

capturing hierarchical relationships such as the impact of 𝑆𝑖𝑂₂/𝑁𝑎₂𝑂 ratio, but 

its reliance on meticulous hyperparameter tuning poses challenges for noisy or 

imbalanced concrete datasets (Feng et al., 2020). Support Vector Machines are 

advantageous for small, high-dimensional concrete datasets using non-linear 

kernels to model complex strength trends, though their computational 

inefficiency with large datasets limits scalability in industrial applications (Chou 

and Pham, 2013). K-Nearest Neighbors is rarely favored in concrete strength 

prediction due to its sensitivity to irrelevant features and poor extrapolation 

beyond training data clusters, despite its simplicity for small-scale studies. 

Overall, RF and XGBoost dominate in alkali-activated concrete research for their 

balance of accuracy and interpretability while SVM and KNN are solutions 

depending on dataset characteristics (Ansari et al., 2024). 

 

2.4 Summary 

Alkali-activated concrete shows not only advances in mechanical properties but 

also reduces the environmental impact in the global civil engineering industry. 

Researchers completed extensive investigations to show that alkali-activated 

has many benefits as an alternative material for traditional Portland cement 

concrete in construction and building materials. Based on the literature study 

by previously published research journal articles, machine learning techniques 

such as support vector machines, extra trees, random forests, natural networks, 



extreme learning machines, etc., performed with high accuracy in the 

prediction of compressive strength of alkali-activated concrete. However, 

researchers mainly focus on the cementitious materials, alkaline activators, 

water, and chemical composition of each raw material. Additionally, 

comprehensive studies on the particle packing theory of concrete materials 

have established a strong correlation between aggregate packing density and 

mechanical properties. Despite this, no research has explored the application 

of machine learning techniques to predict the mechanical properties of alkali-

activated concrete based on particle packing theory. Given the critical role of 

aggregate packing density in influencing compressive and flexural strength, 

incorporating this parameter into machine learning based prediction models 

presents a novel approach. This study aims to address this gap by integrating 

aggregate packing density as an input variable in machine learning models to 

enhance the predictive accuracy of alkali-activated concrete’s mechanical 

properties, thereby advancing the understanding and optimization of 

sustainable concrete mix designs. While this study seeks to bridge the identified 

research gap, it also faces several methodological challenges. The dataset for 

model training is derived from laboratory experiments conducted specifically 

for this research, making the dataset relatively small. The limited sample size 

may affect the generalizability of the machine learning models, requiring careful 

validation techniques for model creation. Machine learning techniques have 

demonstrated strong predictive capabilities, but model optimization remains a 

challenge. Further improvements, such as hyperparameter tuning, feature 

selection, and advanced ensemble learning methods, may enhance model 

performance. Addressing these challenges is crucial for developing a more 

robust and reliable machine learning based prediction framework for alkali-

activated concrete mechanical properties. Machine learning techniques have 

demonstrated strong predictive capabilities, but model optimization remains a 



challenge.  

 

3. Research Significance 

In this research, the packing density of aggregates has been chosen as a new 

parameter in machine learning model development; this is an innovative work 

in this research field. This investigation selects random forest, extreme gradient 

boosting, support vector machine, and K-Nearest Neighbors as four different 

machine learning algorithms to figure out the most adequate and accurate 

model for alkali-activated concrete compressive strength prediction and 

consolidate packing density as an important input variable. A dataset involving 

99 compressive strength data and 33 flexural data was used to train and test the 

machine learning models; all data in this dataset were collected from an 

experiment study. By training machine learning models on this experimental 

data, analyzing the feature importance of each model, subsequently evaluating 

their performance, and comparing the prediction accuracy with previous 

models, this research endeavors to stretch the limits of compressive strength 

prediction and flexural strength prediction in alkali-activated concrete with high 

precision.  

 

The overall aim of this research is to create a novel approach by integrating 

machine learning models with particle packing theories. This approach seeks to 

improve the accuracy of compressive and flexural strength predictions in alkali-

activated concrete. It holds great promise for enhancing our understanding of 

alkali-activated concrete mix design and applications in civil engineering 

construction programs. By reducing the environmental impact of traditional 

Portland cement, it also increases the feasibility of alkali-activated concrete in 

real-world construction practices. 



 

Figure 1. Flow chart of the use of machine learning model to predict mechanical properties of alkali-

activated concrete 



4. Experimental program 

In this study, all experiments including raw materials preparation, raw materials 

properties measurement, concrete mix, compressive strength test, flexural 

strength test, and data collection were completed by the author of this 

dissertation. 

4.1 Raw materials 

Alkali-activated concrete was formulated using two cementitious materials: 

ground granulated blast-furnace slag (GGBS) and class F fly ash, water, 𝑁𝑎𝑂𝐻 

and 𝑁𝑎2𝑆𝑖𝑂3  solution, fine aggregates, and coarse aggregates. The following 

subsections describe detailed information about the precursors, alkali 

activators, and basic properties of aggregates.  

 

4.1.1 Collection of coarse aggregates and fine aggregates 

 

Table 1. Physical properties of the aggregates 

Properties  19-12.5mm 12.5-

9.5mm 

9.5-4.75mm River sand 

Specific gravity 2.65 2.62 2.60 2.55 

Water absorption (%) 0.91 1.01 0.71 0.28 

Bulk density (𝑘𝑔 𝑚3⁄ ) 1522.3 1450.1 1481.3 1668.8 

Void content (%) 42.4 44.5 42.9 34.4 

Packing density  57.6 55.5 57.1 65.6 

 

Table 2. Particle size distribution of fine aggregates 

Sieve size (mm) River sand passing (%) 

 9.5  100 

4.75 99.21 



2.36 86.95 

1.18 76.06 

0.6 51.22 

0.3 6.73 

0.15 2.07 

0.08 0.79 

 

 

Figure 2. Particle size distribution of fine aggregates 

 

 

Figure 3. Sieving machine 

0

20

40

60

80

100

0.08mm 0.15mm 0.3mm 0.6mm 1.18mm 2.36mm 4.75mm 9.5mm

C
u

m
u

la
ti
ve

 V
o

lu
m

e 
(%

)

Particle size (mm)



 

The present experiment used river sand as fine aggregates in the concrete mix. 

Three distinct sizes of coarse aggregates with maximum diameters of 19𝑚𝑚, 

12.5𝑚𝑚 , and 9.5𝑚𝑚  were used in the experiment. The collection of coarse 

aggregates and fine aggregates is based on the standard ASTM C33. The 

selection of four aggregate sizes (19–12.5 mm, 12.5–9.5 mm, 9.5–4.75 mm, and 

less than 4.75 mm) was based on the size separation specified in ASTM C33. 

This choice enables precise control and measurement of packing density in 

alkali-activated concrete mixtures. By varying the proportions of each aggregate 

size, the packing density can be optimized to reduce voids and enhance the 

mechanical properties of the concrete. Additionally, this approach provides a 

standardized framework for measuring packing density in each mixture, 

ensuring the results are aligned with international guidelines. 

 

4.1.2 Specific gravity test of coarse aggregate  

The specific gravity test in this experiment study of coarse aggregate was 

completed before the experiment by using ASTM C127. The test will follow the 

procedure below: (1) Sampling the coarse aggregate, 2 kilograms for each 

nominal maximum size aggregate less or equal to 12.5mm, and 3 kilograms for 

19mm aggregate. (2) Place the test coarse aggregate specimen in the oven at 

105℃, then cool the aggregate sample at room temperature, which is 23℃, for 

2 hours. (3) Saturate the coarse aggregate sample in water at 23℃,  for 24 hours. 

(4) Take out the test sample from the water, and clean every water film that is 

apparent on the aggregate surface. Measure the weight of the test coarse 

aggregate sample under its saturated surface-dry condition. Use the masses 

measured to the bigger value of closest 0.5g or 0.05% of the sample mass. (5) 

Put the coarse aggregate sample with the saturated surface-dry condition in a 

container; next, determine the apparent mass in water at room temperature. 



(6) After allowing the sample to cool for one to three hours at room 

temperature after drying it at 105°C to a consistent mass, weigh the aggregate 

sample. The specific gravity and absorption of coarse aggregate can be 

calculated by this equation:  

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =

𝐴

𝐵 − 𝐶
 

 

Equation 1 

 
𝐴𝑏𝑠𝑜𝑝𝑡𝑖𝑜𝑛, % = (

𝐵 − 𝐴

𝐴
) × 100 

 

Equation 2 

Where 𝐴 is the weight determined from the oven-dry test specimen in air g, 𝐵 

is the weight determined from the saturated surface-dry test specimen in air g, 

and 𝐶 is the apparent weight determined from the saturated test specimen in 

water g.  

 

4.1.3 Specific gravity test of fine aggregate 

In this experiment, ASTM C128 will be used to measure the specific gravity of 

fine aggregate. The test will follow the following processes: (1) Sample the 

aggregate of approximately 1 kilogram. (2) Make the fine aggregate arid in the 

oven until the mass is still in a constant value at a temperature of 105℃, and 

measure the mass. (3) Cover the sample with water for 24 hours, then remove 

the fine aggregate specimen from the water, locate the sample on a level 

nonabsorbent surface such as a plastic table, expose the sample to slowly 

moving warm air, and mix it frequently to make sure homogeneous drying to 

get saturated surface-dry condition, then determine the mass. (4) Use water to 

fill the pycnometer, put 500g of saturated surface-dry fine aggregate sample 

from the previous step in the pycnometer, and continually add water into the 

pycnometer to reach 90% of its total capacity. Roll it with a hand and invert the 

pycnometer to remove visible air bubbles between fine aggregate particles. (5) 

Take out the fine aggregate samples from the pycnometer, place them in the 



oven at a temperature of 105℃ until they achieve a constant mass, and 

measure the mass of the sample. (6) Use water to fill the pycnometer to its 

calibrated capacity at room temperature, and measure the weight of it. The 

specific gravity and absorption of fine aggregate can be calculated by this 

equation:  

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =

𝐴

𝐵 + 𝑆 − 𝐶
 

 

 

Equation 3 

 
𝐴𝑏𝑠𝑜𝑝𝑡𝑖𝑜𝑛, % = (

𝑆 − 𝐴

𝐴
) × 100 

 

Equation 4 

 

Where 𝐴 is the weight determined from oven dry fine aggregate sample in the 

air g, 𝐵  is the weight determined from the pycnometer filled with water to 

calibrated capacity in g, 𝐶  is the mass of the pycnometer filled with fine 

aggregate specimen and water to the calibrated capacity, 𝑆 represents the mass 

of saturated surface-dry test fine aggregate sample in the air g. 

 

4.1.4 Test bulk density and voids of fine and coarse aggregates  

The bulk density and voids of both coarse and fine aggregates in this 

investigation were determined according to ASTM C29. The materials used 

included fine and coarse aggregate samples, a calibrated cylindrical container 

of known volume, a balance accurate to 0.05% of the sample mass, a steel 

tamping rod with a hemispherical tip, a scoop, and a funnel. First of all, 

determine the volume of the container, determine the weight of the container 

weight as 𝑇1 , and determine the weight of the container with water as 𝑇2 . 

Calculate the volume of the container by using this equation: 𝑉 =
𝑇2−𝑇1

997.54
. Where 

the 𝑉 is the volume of the container, the 997.54 is the density of water at room 



temperature.  The aggregates were first oven-dried at 110 ± 5°C until constant 

mass was achieved and then cooled to room temperature. A representative 

sample of the aggregate was obtained through quartering or using a sample 

splitter. For fine aggregates, the container was filled approximately one-third 

full of the aggregate using a scoop, and the layer was rodded 25 times uniformly 

over the surface with the tamping rod. This process was repeated for 

subsequent layers until the container was filled to overflowing. The excess 

aggregate was struck off level with the top of the container using a straightedge, 

and the filled container was weighed to the nearest 0.05% of the total mass. For 

coarse aggregates, the procedure was similar. The container was again filled in 

one-third increments, with each layer rodded or vibrated as needed, struck off, 

and weighed. So, the bulk density and void content of aggregates can be 

calculated as following equations: 

 𝑀 = (𝐺 − 𝑇)/𝑉 

 

 

Equation 5 

 𝑉𝑜𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 100 × [(𝑆 × 𝑊) − 𝑀]/(𝑆 × 𝑊) 

 

Equation 6 

Where, 𝑀  represent the aggregate’s bulk density in 
𝑘𝑔

𝑚3⁄  , 𝐺  is the mass of 

aggregate plus the measure in 𝑘𝑔 , 𝑇  is the mass of measure in 𝑘𝑔 , 𝑉  is the 

volume of the measure in 𝑚3, 𝑆 represent the aggregate’s specific gravity, 𝑊 is 

the water’s density in 
𝑘𝑔

𝑚3⁄ . 

 

4.1.5 Cementitious materials  

 



 

Figure 4. Fly ash 

 

 

Figure 5. Ground granulated blast furnace slag 

 

Table 3. Particle size distribution of Fly ash 

Sieve size (mm) Fly ash particles Passing (%) 

0.6 100 

0.3 99.847 

0.15 76.471 

0.08 23.682 

 

Table 4. Particle size distribution of Ground granulated blast furnace slag 

Sieve size (mm) GGBS particles Passing (%) 

0.6 100 



0.3 21.455 

0.15 71.063 

0.08 7.482 

 

 

Figure 6. Particle size distribution of Fly ash and GGBS 

In the experiment, ground granulated blast furnace slag and coal fly ash (ASTM 

type F) were used as cementitious materials in the alkali-activated concrete 

mixture.  

 

4.1.4 Alkali activator solution 

The alkali activators in this experiment were combined with a sodium hydroxide 

solution and water glass solution. In this experiment study 𝑁𝑎𝑂𝐻 (solid) 

with >99% purity. The 14 𝑀 molarity of the 𝑁𝑎𝑂𝐻 solution was made up using 

solid 𝑁𝑎𝑂𝐻  pellets. In this process, 560 g of the solid 𝑁𝑎𝑂𝐻  pellets were 

combined with 1000 g of top water at a room temperature of 23°C until all of 

the pellets had completely dissolved. Since sodium hydroxide dissolves in water 

and releases much heat, this process needs to be completed 24 hours before 

starting to mix the concrete to allow the sodium hydroxide solution to cool to 
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room temperature. 𝑁𝑎2𝑆𝑖𝑂3(liquidous solution), with 
𝑆𝑖𝑂2

𝑁𝑎2𝑂⁄  of 2.33, had 

𝑁𝑎2𝑂 content of 13.32%, 𝑆𝑖𝑂2 content of 30.12%, and 𝐻2𝑂 content of 56.56% 

by mass.  

 

4.2 Mix proportion 

The following table describes the detailed mix proportions used in this 

experiment study. For each mix, three prism samples and ten cylinder samples 

were made. In this experiment, 33 mix proportions were designed to make 

alkali-activated concrete samples. The mix proportion in order to build a 

machine learning dataset for compressive strength and flexural strength 

prediction based on various input value. The total mix proportion can be divided 

into three groups. In each group, the packing density in each mix is adjusted by 

changing the percentage of each aggregate. In addition, the Fly ash to GGBS 

ratio, 
𝑁𝑎2𝑆𝑖𝑂3

𝑁𝑎𝑂𝐻⁄  ratio, 𝑀𝑠 and water to cementitious ratio of each mix is 

different. These variables are usually the key factors affecting alkali-activated 

concrete. The purpose of such an experimental design is to explore the 

influence of various variables on the strength of alkali-activated concrete 

through the powerful data analysis capabilities of machine learning. The mix 

design also cites the mix design process from pass investigation (Pavithra et al., 

2016). 

 

Table 5. Alkali-activated concrete mix proportion 

Mix Fly ash 

(
𝐾𝑔

𝑚3⁄ ) 

GGBS 

(
𝐾𝑔

𝑚3⁄ ) 

Sodium 

silicate 

(
𝐾𝑔

𝑚3⁄ ) 

Sodium 

hydroxide 

(
𝐾𝑔

𝑚3⁄ ) 

Addition

al water 

(
𝐾𝑔

𝑚3⁄ ) 

Aggregat

e 19-

12.5mm 

(
𝐾𝑔

𝑚3⁄ ) 

Aggregate 

12.5-9.5mm 

(
𝐾𝑔

𝑚3⁄ ) 

Aggregate 

9.5-

4.75mm 

(
𝐾𝑔

𝑚3⁄ ) 

Fine 

aggregate 

(
𝐾𝑔

𝑚3⁄ ) 

1 259 111 105.68 42.27 56.43 337.345 122.878 418.08 854.25 



Mix Fly ash 

(
𝐾𝑔

𝑚3⁄ ) 

GGBS 

(
𝐾𝑔

𝑚3⁄ ) 

Sodium 

silicate 

(
𝐾𝑔

𝑚3⁄ ) 

Sodium 

hydroxide 

(
𝐾𝑔

𝑚3⁄ ) 

Addition

al water 

(
𝐾𝑔

𝑚3⁄ ) 

Aggregat

e 19-

12.5mm 

(
𝐾𝑔

𝑚3⁄ ) 

Aggregate 

12.5-9.5mm 

(
𝐾𝑔

𝑚3⁄ ) 

Aggregate 

9.5-

4.75mm 

(
𝐾𝑔

𝑚3⁄ ) 

Fine 

aggregate 

(
𝐾𝑔

𝑚3⁄ ) 

2 185 185 105.68 42.27 56.43 301.835 140.432 435.5 854.25 

3 111 259 105.68 42.27 56.43 319.59 175.54 383.24 854.25 

4 259 111 105.87 65.25 55.75 177.55 351.08 522.6 683.4 

5 259 111 105.87 65.25 55.75 532.65 175.54 348.4 683.4 

6 259 111 105.87 65.25 55.75 355.1 526.62 174.2 683.4 

7 259 111 105.87 65.25 55.75 532.65 175.54 174.2 854.25 

8 259 111 105.87 65.25 55.75 177.55 175.54 522.6 854.25 

9 259 111 105.87 65.25 55.75 177.55 526.62 174.2 854.25 

10 259 111 105.87 65.25 55.75 355.1 175.54 174.2 1025.1 

11 259 111 105.87 65.25 55.75 177.55 175.54 174.2 1195.95 

12 259 111 105.87 65.25 55.75 355.1 175.54 696.8 512.55 

13 170 170 153.24 51.08 69.69 177.55 351.08 522.6 683.4 

14 170 170 153.24 51.08 69.69 532.65 175.54 348.4 683.4 

15 170 170 153.24 51.08 69.69 355.1 526.62 174.2 683.4 

16 170 170 153.24 51.08 69.69 532.65 175.54 174.2 854.25 

17 170 170 153.24 51.08 69.69 177.55 175.54 522.6 854.25 

18 170 170 153.24 51.08 69.69 177.55 526.62 174.2 854.25 

19 170 170 153.24 51.08 69.69 355.1 175.54 174.2 1025.1 

20 170 170 153.24 51.08 69.69 177.55 175.54 174.2 1195.95 

21 170 170 153.24 51.08 69.69 355.1 175.54 696.8 512.55 

22 106.5 248.5 118.50 59.27 55.75 355.1 175.54 696.8 512.55 

23 106.5 248.5 118.50 59.27 55.75 532.65 175.54 348.4 683.4 

24 106.5 248.5 118.50 59.27 55.75 355.1 526.62 174.2 683.4 

25 106.5 248.5 118.50 59.27 55.75 532.65 175.54 174.2 854.25 

26 106.5 248.5 118.50 59.27 55.75 177.55 175.54 522.6 854.25 

27 106.5 248.5 118.50 59.27 55.75 177.55 526.62 174.2 854.25 

28 106.5 248.5 118.50 59.27 55.75 355.1 175.54 174.2 1025.1 

29 106.5 248.5 118.50 59.27 55.75 177.55 175.54 174.2 1195.95 

30 106.5 248.5 118.50 59.27 55.75 177.55 351.08 522.6 683.4 

31 259 111 105.87 65.25 55.75 303.01 172.78 360.58 908.22 

32 170 170 153.24 51.08 69.69 303.01 172.78 360.58 908.22 

33 106.5 248.5 118.50 59.27 55.75 303.01 172.78 360.58 908.22 



4.3 Concrete specimens  

 

Figure 7. Cylinder concrete mold 

 

 

Figure 8. Prism concrete mold 

 

In this experiment study, two kinds of mold were used to produce concrete 

specimens. As shown in Figure 7 and Figure 8, the cylinder mold has a size of 

100*200mm, and the prism mold has a size of 100*100*400mm. For each mix 

formula shown in the previous section, ten cylinder concrete specimens were 

used to complete the compressive strength test, and three prism concrete 

specimens were used to complete the flexural strength test.  



 

4.3.1 Concrete mixing process 

 

 

Figure 9. Concrete mix machine 

 

To produce the alkali-activated concrete samples in this experiment study, the 

procedure of mixing was demonstrated as following procedures: (1) Combined 

all aggregates, and mixed for 1 min in the mixing machine; (2) Fly ash, and GGBS 

were gradually added into the mixing machine, continually mix with coarse and 

fine aggregates for another 1 min in the machine; (3) Combined both 𝑁𝑎2𝑆𝑖𝑂3 

and 𝑁𝑎𝑂𝐻  solution, added into the mixing machine, and mixed with other 

materials for 1 min; (4) The additional water was putted into the mixing 

machine for 1 min; (5) Once all components of alkali-activated concrete were 

added into the mixer, continually mixed for 3 min. After completion of the 

mixing process, transfer the fresh alkali-activated concrete to the cylinder mold 

and prism mold, smooth the surface of concrete samples, cover it with plastic 

film, and cure it in a stable environment at around 20°C for 24 hours until 

demold. 



 

 

4.3.2 Concrete casting 

 

Figure 10. Vibrating table 

 

First, to mold concrete specimens using a vibration machine, ensure the 

cylinder molds (100 𝑚𝑚 𝑥 200 𝑚𝑚)  and prism molds 

(100 𝑚𝑚 𝑥 100 𝑚𝑚 𝑥 400 𝑚𝑚)  are clean, and a thin release agent layer is 

applied to their inner surfaces. Fill each mold with fresh concrete in layers; for 

cylinder molds, fill in three layers; and for prism molds, fill in two layers. After 

adding each layer, place the molds on the vibration machine to compact the 

concrete and eliminate air voids, ensuring even distribution and proper bonding 

between layers. After filling and compacting the final layer, level the surface 

with a trowel to achieve a smooth surface, even finish. For initial curing, keep 

the molds in a stable environment at around 20°C for 24 hours. 

 



4.3.3 Curing  

  

Figure 11. Concrete curing container 

 

The alkali-activated concrete prism specimens covered with plastic bags were 

cured temperature of 23 ±  2 °𝐶  for a day. The cylinder concrete specimens 

were demolded and covered with plastic bags; then the settled cylinder 

specimens in a moisture curing container maintained at 23 ±  2 °𝐶  and the 

relative humidity of 95 ±  5% until testing date. 

 

4.4 Particle packing theory  

Particle packing theory in concrete refers to a foundational concept extensively 

employed to intricately optimize the spatial arrangement of particles within the 

concrete mix, thus significantly enhancing its performance characteristics. This 

theory delves deeply into the intricate interplay of various particle sizes, ranging 

from coarse aggregates to fine cement particles. It describes how their strategic 

organization can lead to the achievement of maximum density and minimal void 

content. The particle packing arrangement plays a crucial role in concrete 

microstructure and, consequently, affects concrete material's mechanical 

properties and durability. The main of particle packing theory is to optimize the 



packing in aggregates and other particles, to minimize the voids between 

different particles in concrete material, reduce the demand for cementitious 

material and water usage in the final. They not only improve the mechanical 

properties of concrete, but also enhance the sustainability of concrete. 

Otherwise, the best packing arrangement in concrete improves durability by 

reducing voids, for example, heightened resistance to freeze-thaw cycles, 

chemical attack, and permeability to deleterious agents, thereby elongating the 

lifespan of concrete structures and maintenance and repair costs. Packing 

density refers to the packing fraction or compacity, which is the ratio of the 

volume of particles to the total volume of the material they are packed in; it is 

an important parameter in particle packing theory. The higher packing density 

will cause a denser particle arrangement in concrete. Achieving high packing 

density is important in the concrete mix design. Particle packing theory provides 

the fundamental strategy and method for arranging particles to achieve optimal 

packing density. This approach seeks to reduce the void content in concrete by 

carefully selecting and positioning particles of various sizes and shapes to 

effectively fill the gaps. In this study, alkali-activated concrete is the target 

material, which is made of cementitious materials, coarse aggregates, fine 

aggregates, and alkali activators; during the experiment, only concern about the 

particle packing of fine aggregates and coarse aggregates. Niyazuddin and 

Umesh (2023) showed that as the packing density of concrete aggregates 

increases, the compressive strength increases. According to Nanthagopalan and 

Santhanam (2012), packing density had a positive influence on the compressive 

strength of self-compacting concrete made from cement and fly ash.  

 

4.4.1 Measurement of packing density of the aggregates by experiment method 

 

Table 6. Packing density measurement of each mixture  



Mix  Void content Packing density 

1 0.24289 0.75711 

2 0.27783 0.72217 

3 0.29307 0.70693 

4 0.23867 0.76133 

5 0.32176 0.67824 

6 0.35475 0.64525 

7 0.29017 0.70983 

8 0.30025 0.69975 

9 0.31998 0.68002 

10 0.27898 0.72102 

11 0.30137 0.69863 

12 0.36199 0.63801 

13 0.24555 0.75445 

14 0.31093 0.68907 

15 0.33393 0.66607 

16 0.28307 0.71693 

17 0.29375 0.70625 

18 0.31656 0.68344 

19 0.28563 0.71437 

20 0.30465 0.69535 

21 0.36595 0.63405 

22 0.35797 0.64203 

23 0.30877 0.69123 

24 0.32776 0.67224 

25 0.29035 0.70965 

26 0.29578 0.70422 

27 0.31037 0.68963 

28 0.28269 0.71731 

29 0.30465 0.69535 

30 0.25537 0.74463 

31 0.20676 0.79324 

32 0.19988 0.80012 

33 0.20059 0.79941 

 

The packing density of the aggregates was measured by a modified edition of 



the test process described in ASTM C29. This procedure involved several steps 

designed to minimize subjective errors and ensure consistent and precise 

measurements. The experiment was conducted using a setup that included a 

steel bucket and a cylindrical container, ensuring accurate and repeatable 

results. 

 

Initially, three different sizes of coarse aggregates (19mm, 12.5mm, and 9.5mm 

maximum sizes) and fine aggregate (river sand) were prepared. The aggregates 

were measured in separate trays, each with a mass equivalent to 12 liters 

according to their volume proportions. These aggregates were then manually 

mixed to achieve a homogenous blend, ensuring a uniform distribution of 

particle sizes. A bucket with a bottom radius of 70 mm, a top radius of 170 mm, 

and a height of 310 mm were used to carry the combined aggregates. The 

bucket was placed on a stand, and a cylindrical container with a diameter of 270 

mm and a height sufficient to hold 10 liters was positioned below it. This setup 

ensured that the aggregates could fall freely into the container without any 

compaction or additional handling. After filling, any extra aggregates container 

were removed above the top. The container, now filled with aggregates, was 

weighed using a digital scale. The empty weight of the container was subtracted 

from this measurement to determine the exact mass of the combined 

aggregates. 

 

The packing density was calculated using the measured mass and the specific 

gravity of each aggregate type. The void content was first determined using the 

equation: 

 

𝑉𝑜𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = (
𝑉𝑐 − (

𝑀1

𝑆1
+

𝑀2

𝑆2
+

𝑀3

𝑆3
+

𝑀𝐹𝑖𝑛𝑒

𝑆𝐹𝑖𝑛𝑒
)

𝑉𝑐
) 

Equation 7 

Where 𝑉𝑐 is the volume of the container, 𝑀1, 𝑀2, 𝑀3, 𝑀𝐹𝑖𝑛𝑒 are the masses of 



each coarse aggregate, 19-12.5mm, 12.5mm-9.5mm, 9.5-4.75mm, and fine 

aggregates, respectively. And 𝑆1, 𝑆2, 𝑆3, 𝑆𝐹𝑖𝑛𝑒  are the specific gravities of the 

different aggregate types with maximum diameters of 19mm, 12.5mm, 9.5mm, 

and fine aggregate. The packing density was then calculated as follows: 

 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 1 − 𝑉𝑜𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 Equation 8 

 

4.4.2 Use Continues models to achieve the biggest packing density in the 

concrete mixture  

To achieve the biggest packing density in this experiment, mathematical 

approaches and packing models were used to establish optimal aggregate 

proportions analytically. The pioneering work of Fuller and Thomsen 

demonstrated that the arrangement of all types of aggregates in concrete 

influences the properties of the resulting concrete. They found that aggregates, 

in combination with a geometric continuous grading, could improve the 

properties of concrete (Fuller and Thompson, 1907). Following the research by 

Fuller and Thomsen, it was found that the minimum value of voids could 

theoretically be reached through an optimal particle size distribution (PSD) of 

all sizes of aggregates used in the concrete mix, as indicated in the equation 

shown as below. (Andreasen, 1930) 

 
𝑃(𝐷) = (

𝐷

𝐷𝑀𝑎𝑥
)𝑞 

 

Equation 9 

where 𝑃(𝐷) represents a fraction of the entire aggregates smaller than the size 

𝐷 , 𝐷  represents the particle dimension, 𝐷𝑀𝑎𝑥   represents the biggest particle 

dimension and 𝑞 is the distribution modulus. 

 

However, the equation above does not account for the minimum particle size, 

although engineering practice must have a finite lower size limit. Therefore, an 

altered model according to the Andreasen and Andersen Equation was 



suggested by Funk and Dinger. In this study, three concrete mixtures are 

designed according to this modified Andreasen and Andersen model, which is 

presented below (Funk and Dinger, 2013): 

 
𝑃(𝐷) =

𝐷𝑞 − 𝐷𝑚𝑖𝑛
𝑞

𝐷𝑚𝑎𝑥
𝑞 − 𝐷𝑚𝑖𝑛

𝑞  

 

Equation 10 

 

Table 7. Fraction of each size of aggregates from Modified Andreasen and Andersen Equation 

Aggregate size in mm Fraction of aggregate 

0.08 0 

0.15 3.61053 

0.3 8.79935 

0.6 15.646 

1.18 24.4303 

2.36 36.2712 

4.75 52.0592 

9 72.7277 

12.5 82.6314 

19 100 

 

where 𝐷𝑚𝑖𝑛
𝑞

  is the minimum particle size. In the methods of Fuller and 

Thompson, 0.37 was the packing factor; in the methods of Funk and Dinger, it 

was 0.37; and in the method of Andreasen and Andersen, it could have been 

any suitable value between 0.33 and 0.5. In this experiment study, the value 𝑞 

will be set as 0.4 in this experiment. Distribution modulus 𝑞  is used to 

determine the fraction between each size of aggregates in the concrete mixture. 

Different types of concrete can be obtained by setting different values for the 𝑞. 

A coarse mixture normally has a distribution modulus with a value higher than 

0.5, while loose concrete mixes with more fine aggregates result in lower values 

of distribution modulus lower than 0.25. 

 



In this experiment, modified Andreasen and Andersen  

 

4.5 Compressive strength test procedures  

 

 

Figure 12. Concrete cylinder for compressive strength test 

 

 

Figure 13. Compressive strength test machine 

 



 

Figure 14. Compressive strength test machine 

 

Before the compressive strength test, use gypsum water mixture to make the 

surface of the concrete cylinder smooth enough to continue the test. The 

gypsum and water were mixed with a ratio of 100g gypsum to 35g water for 

each concrete cylinder sample. For the compressive strength test of 100 mm x 

200 mm cylindrical concrete specimens as per ASTM C39/C39M, first measure 

the diameter at mid-height to the nearest 0.2 mm and calculate the cross-

sectional area. Place the specimen in the testing machine, ensuring it is 

centered under the loading head and aligned properly. Apply a continuous, 

shock-free load at a rate of 0.25 ± 0.05 𝑀𝑃𝑎/𝑠 until failure occurs, so the load 

rate set for the machine was 2KN/s. When the test machine stops loading, 

record the maximum load the specimen carries. The compressive strength of a 

specimen is calculated by dividing its highest load by its cross-sectional area. In 

order to ensure the accuracy and reliability of the compressive strength and 

flexural strength, three concrete samples have been tested. After the test data 

are obtained, the three data are averaged to obtain the final strength. The 

outlier analysis was conducted according to the following procedure to ensure 

the reliability of experiment results (Bernal et al., 2011, Sun et al., 2023a, Zhang 

et al., 2023, Fennis and Walraven, 2012, Soutsos et al., 2016, Pavithra et al., 



2016, Rafeet et al., 2017) Once detected, each outlier is evaluated by comparing 

it with similar studies in literature to determine if similar trends in strength 

ranges, material composition, and failure modes have been reported. If the 

experimental data is abnormal, repeat the experiment in the same way. 

 

4.6 Flexural strength test procedures   

 

 

Figure 15. Flexural strength test set up 

 



 

Figure 16. Flexural strength test machine 

 

 

Figure 17. Concrete prism after test 

The ASTM C78/C78M details the method for using a simple beam with third-

point loading to determine the modulus of rupture. This test method evaluates 

the flexural strength of concrete specimens, which reflects the concrete's ability 

to resist bending. The testing procedure involves placing the 100 mm x 100 mm 

x 400 mm concrete prism in the testing machine with its tension face in contact 

with the support blocks. Up until the beam fails, the weight is applied steadily, 

continuously, and without shock at a steady rate. The rate of loading is 



calculated to ensure it increases the maximum stress on the tension face at a 

steady rate. In this experiment, the loading rate is 40N/s as a constant. After 

failure, the dimensions of the fractured sections are measured to calculate the 

modulus of rupture. Post-test measurements include the specimen's width and 

depth at the fracture point, taken to the nearest 1 mm. The span length and the 

distances from the fracture line to the nearest support are also measured. The 

modulus of rupture is calculated based on these measurements and the 

maximum load applied during the test. The calculation considers whether the 

fracture happens outside or inside the center third of the span length, and using 

specific equations provided in the standard. The fracture occurs within the 

central third of the span length: 

 
𝑅 =

𝑃𝐿

𝑏𝑑2
 

 

Equation 11 

For the fracture is not more than 5% of the span length outside the center third: 

 
𝑅 =

3𝑃𝑎

𝑏𝑑2
 

 

Equation 12 

Where, R represents flexural strength, in MPa. 𝑃 is the maximum load applied 

to the specimen, in N. 𝐿 is span length, in mm. 𝑏 is the specimen's average width 

at the fracture, in mm. 𝑑 represents the specimen’s average depth at the 

fracture, in mm. a is average length from the line of fracture to the nearest 

support, in mm. To ensure the accuracy and reliability of the compressive 

strength measurements, three concrete prisms will be tested. The results from 

these tests will be averaged to determine the final flexural strength. Outlier 

analysis will be performed based on methodologies established in previously 

published experimental studies. If any experimental data are deemed abnormal, 

the tests will be repeated following the same procedures. 

 



5. Machine learning models 

5.1 Machine Learning Models Dataset 

The entire dataset includes 99 data points; machine learning models were 

trained by the dataset, which was collected from previous experiments; the 

compressive strength and flexural strength were set as target values in the 

machine learning models. The following table shows the dataset's entire data 

used to predict alkali-activated concrete compressive strength and flexural 

strength in machine learning models. The compressive strength was set as the 

target output value, which is a function of the eight input values, packing 

density of aggregates, fly ash to GGBS ratio, weight of cementitious materials, 

activator to cementitious materials ratio, sodium silicate to sodium hydroxide 

ratio, modulus of activator, water to cementitious materials ratio and curing 

time. In the flexural strength dataset, the seven input values are packing density 

of aggregates, fly ash to GGBS ratio, weight of cementitious materials, activator 

to cementitious materials ratio, water glass solution to sodium hydroxide 

solution ratio, modulus of activator and water to cementitious materials ratio. 

 

Table 8. Machine learning training dataset used for training and testing (compressive strength) 

Compressive 

strength 

(MPa) 

Packing 

density 

Fly 

ash 

to 

GGBS 

ratio 

Weight of 

Cementitious 

materials 

Activator to 

Cementitious 

ratio 

Sodium 

silicate to 

Sodium 

hydroxide 

ratio 

Ms Water to 

Cementitious 

material 

ratio 

Curing 

time 

18.93 0.75711 2.333 370 0.4 2.5 1.08 0.39 3 

35.18 0.75711 2.333 370 0.4 2.5 1.08 0.39 7 

50.34 0.75711 2.333 370 0.4 2.5 1.08 0.39 28 

26.70 0.72217 1.000 370 0.4 2.5 1.08 0.39 3 

40.66 0.72217 1.000 370 0.4 2.5 1.08 0.39 7 

61.25 0.72217 1.000 370 0.4 2.5 1.08 0.39 28 

31.27 0.70693 0.429 370 0.4 2.5 1.08 0.39 3 

49.36 0.70693 0.429 370 0.4 2.5 1.08 0.39 7 



Compressive 

strength 

(MPa) 

Packing 

density 

Fly 

ash 

to 

GGBS 

ratio 

Weight of 

Cementitious 

materials 

Activator to 

Cementitious 

ratio 

Sodium 

silicate to 

Sodium 

hydroxide 

ratio 

Ms Water to 

Cementitious 

material 

ratio 

Curing 

time 

69.35 0.70693 0.429 370 0.4 2.5 1.08 0.39 28 

27.87 0.76133 2.333 370 0.4 2.5 1 0.32 3 

39.92 0.76133 2.333 370 0.4 2.5 1 0.32 7 

58.47 0.76133 2.333 370 0.4 2.5 1 0.32 28 

22.59 0.67824 2.333 370 0.4 2.5 1 0.32 3 

36.82 0.67824 2.333 370 0.4 2.5 1 0.32 7 

50.11 0.67824 2.333 370 0.4 2.5 1 0.32 28 

26.49 0.64525 2.333 370 0.4 2.5 1 0.32 3 

37.34 0.64525 2.333 370 0.4 2.5 1 0.32 7 

51.58 0.64525 2.333 370 0.4 2.5 1 0.32 28 

22.71 0.70983 2.333 370 0.4 2.5 1 0.32 3 

37.93 0.70983 2.333 370 0.4 2.5 1 0.32 7 

55.45 0.70983 2.333 370 0.4 2.5 1 0.32 28 

23.64 0.69975 2.333 370 0.4 2.5 1 0.32 3 

39.64 0.69975 2.333 370 0.4 2.5 1 0.32 7 

54.39 0.69975 2.333 370 0.4 2.5 1 0.32 28 

20.55 0.68002 2.333 370 0.4 2.5 1 0.32 3 

35.87 0.68002 2.333 370 0.4 2.5 1 0.32 7 

50.12 0.68002 2.333 370 0.4 2.5 1 0.32 28 

24.75 0.72102 2.333 370 0.4 2.5 1 0.32 3 

37.38 0.72102 2.333 370 0.4 2.5 1 0.32 7 

53.79 0.72102 2.333 370 0.4 2.5 1 0.32 28 

21.09 0.69863 2.333 370 0.4 2.5 1 0.32 3 

34.33 0.69863 2.333 370 0.4 2.5 1 0.32 7 

50.91 0.69863 2.333 370 0.4 2.5 1 0.32 28 

19.73 0.63801 2.333 370 0.4 2.5 1 0.32 3 

20.52 0.63801 2.333 370 0.4 2.5 1 0.32 7 

48.84 0.63801 2.333 370 0.4 2.5 1 0.32 28 

30.53 0.75445 1.000 340 0.6 3 1.12 0.42 3 

39.71 0.75445 1.000 340 0.6 3 1.12 0.42 7 

62.14 0.75445 1.000 340 0.6 3 1.12 0.42 28 

27.32 0.68907 1.000 340 0.6 3 1.12 0.42 3 

41.56 0.68907 1.000 340 0.6 3 1.12 0.42 7 

57.70 0.68907 1.000 340 0.6 3 1.12 0.42 28 

29.72 0.66607 1.000 340 0.6 3 1.12 0.42 3 

42.55 0.66607 1.000 340 0.6 3 1.12 0.42 7 

53.92 0.66607 1.000 340 0.6 3 1.12 0.42 28 

26.97 0.71693 1.000 340 0.6 3 1.12 0.42 3 

39.85 0.71693 1.000 340 0.6 3 1.12 0.42 7 

58.67 0.71693 1.000 340 0.6 3 1.12 0.42 28 

29.46 0.70625 1.000 340 0.6 3 1.12 0.42 3 



Compressive 

strength 

(MPa) 

Packing 

density 

Fly 

ash 

to 

GGBS 

ratio 

Weight of 

Cementitious 

materials 

Activator to 

Cementitious 

ratio 

Sodium 

silicate to 

Sodium 

hydroxide 

ratio 

Ms Water to 

Cementitious 

material 

ratio 

Curing 

time 

41.39 0.70625 1.000 340 0.6 3 1.12 0.42 7 

61.07 0.70625 1.000 340 0.6 3 1.12 0.42 28 

27.02 0.68344 1.000 340 0.6 3 1.12 0.42 3 

40.56 0.68344 1.000 340 0.6 3 1.12 0.42 7 

55.70 0.68344 1.000 340 0.6 3 1.12 0.42 28 

31.61 0.71437 1.000 340 0.6 3 1.12 0.42 3 

39.80 0.71437 1.000 340 0.6 3 1.12 0.42 7 

59.97 0.71437 1.000 340 0.6 3 1.12 0.42 28 

24.25 0.69535 1.000 340 0.6 3 1.12 0.42 3 

33.31 0.69535 1.000 340 0.6 3 1.12 0.42 7 

56.15 0.69535 1.000 340 0.6 3 1.12 0.42 28 

23.14 0.63405 1.000 340 0.6 3 1.12 0.42 3 

34.25 0.63405 1.000 340 0.6 3 1.12 0.42 7 

55.97 0.63405 1.000 340 0.6 3 1.12 0.42 28 

40.06 0.64203 0.429 355 0.5 2 0.72 0.37 3 

52.83 0.64203 0.429 355 0.5 2 0.72 0.37 7 

63.53 0.64203 0.429 355 0.5 2 0.72 0.37 28 

41.55 0.69123 0.429 355 0.5 2 0.72 0.37 3 

53.17 0.69123 0.429 355 0.5 2 0.72 0.37 7 

65.71 0.69123 0.429 355 0.5 2 0.72 0.37 28 

42.34 0.67224 0.429 355 0.5 2 0.72 0.37 3 

50.76 0.67224 0.429 355 0.5 2 0.72 0.37 7 

64.87 0.67224 0.429 355 0.5 2 0.72 0.37 28 

42.79 0.70965 0.429 355 0.5 2 0.72 0.37 3 

57.16 0.70965 0.429 355 0.5 2 0.72 0.37 7 

70.84 0.70965 0.429 355 0.5 2 0.72 0.37 28 

47.07 0.70422 0.429 355 0.5 2 0.72 0.37 3 

53.75 0.70422 0.429 355 0.5 2 0.72 0.37 7 

69.16 0.70422 0.429 355 0.5 2 0.72 0.37 28 

39.98 0.68963 0.429 355 0.5 2 0.72 0.37 3 

53.74 0.68963 0.429 355 0.5 2 0.72 0.37 7 

66.13 0.68963 0.429 355 0.5 2 0.72 0.37 28 

48.62 0.71731 0.429 355 0.5 2 0.72 0.37 3 

54.81 0.71731 0.429 355 0.5 2 0.72 0.37 7 

68.53 0.71731 0.429 355 0.5 2 0.72 0.37 28 

40.87 0.69535 0.429 355 0.5 2 0.72 0.37 3 

49.74 0.69535 0.429 355 0.5 2 0.72 0.37 7 

68.31 0.69535 0.429 355 0.5 2 0.72 0.37 28 

44.81 0.74463 0.429 355 0.5 2 0.72 0.37 3 

55.55 0.74463 0.429 355 0.5 2 0.72 0.37 7 

72.20 0.74463 0.429 355 0.5 2 0.72 0.37 28 



Compressive 

strength 

(MPa) 

Packing 

density 

Fly 

ash 

to 

GGBS 

ratio 

Weight of 

Cementitious 

materials 

Activator to 

Cementitious 

ratio 

Sodium 

silicate to 

Sodium 

hydroxide 

ratio 

Ms Water to 

Cementitious 

material 

ratio 

Curing 

time 

29.74 0.79324 2.333 370 0.4 2.5 1 0.32 3 

39.87 0.79324 2.333 370 0.4 2.5 1 0.32 7 

60.42 0.79324 2.333 370 0.4 2.5 1 0.32 28 

33.92 0.80012 1.000 340 0.6 3 1.12 0.42 3 

47.18 0.80012 1.000 340 0.6 3 1.12 0.42 7 

67.76 0.80012 1.000 340 0.6 3 1.12 0.42 28 

45.32 0.79941 0.429 355 0.5 2 0.72 0.37 3 

59.31 0.79941 0.429 355 0.5 2 0.72 0.37 7 

75.67 0.79941 0.429 355 0.5 2 0.72 0.37 28 

 

Table 9. Machine learning training dataset used for training and testing (flexural strength) 

Flexural 

Strength 

(MPa) 

Packing 

density 

Fly 

ash to 

GGBS 

ratio 

Weight of 

Cementitious 

materials 

Activator to 

Cementitious 

ratio 

Sodium 

silicate to 

Sodium 

hydroxide 

ratio 

Ms Water to 

Cementitious 

material ratio 

5.3641 0.75711 2.333 370 0.4 2.5 1.08 0.39 

5.9834 0.72217 1.000 370 0.4 2.5 1.08 0.39 

6.4639 0.70693 0.429 370 0.4 2.5 1.08 0.39 

6.8177 0.76133 2.333 370 0.4 2.5 1 0.32 

6.613 0.67824 2.333 370 0.4 2.5 1 0.32 

6.5768 0.64525 2.333 370 0.4 2.5 1 0.32 

6.7787 0.70983 2.333 370 0.4 2.5 1 0.32 

6.5064 0.69975 2.333 370 0.4 2.5 1 0.32 

6.4775 0.68002 2.333 370 0.4 2.5 1 0.32 

6.5595 0.72102 2.333 370 0.4 2.5 1 0.32 

6.3778 0.69863 2.333 370 0.4 2.5 1 0.32 

6.2121 0.63801 2.333 370 0.4 2.5 1 0.32 

6.6986 0.75445 1.000 340 0.6 3 1.12 0.42 

6.1725 0.68907 1.000 340 0.6 3 1.12 0.42 

6.0902 0.66607 1.000 340 0.6 3 1.12 0.42 

6.6675 0.71693 1.000 340 0.6 3 1.12 0.42 

6.536 0.70625 1.000 340 0.6 3 1.12 0.42 

6.6934 0.68344 1.000 340 0.6 3 1.12 0.42 

6.1281 0.71437 1.000 340 0.6 3 1.12 0.42 

5.8624 0.69535 1.000 340 0.6 3 1.12 0.42 



Flexural 

Strength 

(MPa) 

Packing 

density 

Fly 

ash to 

GGBS 

ratio 

Weight of 

Cementitious 

materials 

Activator to 

Cementitious 

ratio 

Sodium 

silicate to 

Sodium 

hydroxide 

ratio 

Ms Water to 

Cementitious 

material ratio 

6.0014 0.63405 1.000 340 0.6 3 1.12 0.42 

7.1034 0.64203 0.429 355 0.5 2 0.72 0.37 

7.4049 0.69123 0.429 355 0.5 2 0.72 0.37 

7.2084 0.67224 0.429 355 0.5 2 0.72 0.37 

7.79 0.70965 0.429 355 0.5 2 0.72 0.37 

7.4049 0.70422 0.429 355 0.5 2 0.72 0.37 

7.1245 0.68963 0.429 355 0.5 2 0.72 0.37 

7.6656 0.71731 0.429 355 0.5 2 0.72 0.37 

7.2157 0.69535 0.429 355 0.5 2 0.72 0.37 

7.5391 0.74463 0.429 355 0.5 2 0.72 0.37 

6.8231 0.79324 2.333 370 0.4 2.5 1 0.32 

6.7842 0.80012 1.000 340 0.6 3 1.12 0.42 

7.7852 0.79941 0.429 355 0.5 2 0.72 0.37 

 

5.2 Random Forest Model 

Known as an ensemble learning method, the random forest technique is applied 

to regression and classification tasks. During model training, it creates a large 

number of decision trees. The choice made by the majority of trees is the 

random forest model's output when it comes to classification problems. The 

mean value, or average prediction value, that is derived from each individual 

tree in a regression task is returned and used as the output. During training, the 

core of a Random Forest model builds several decision trees and aggregates 

their outputs to produce a final forecast (Breiman, 2001). Unlike the decision 

trees model, the random forest model has advantages in avoiding overfitting 

the given training set. This model uses the power of multiple algorithms to 

reduce overfitting and improve the performance in target value prediction. A 

random forest model is an ensemble of decision trees built from a different 



subset of training data made through the bootstrapping process. In order to 

generate multiple bootstrap samples, data points from the initial dataset are 

substituted during this process. Subsequently, each decision tree in the forest 

is trained using one of these bootstrap samples, which gives the trees more 

variance. The fact that Random Forests split nodes based on a random subset 

of features rather than all features during tree generation further encourages 

variance among the trees and prevents any one factor from dictating the model. 

The prediction process makes use of a Random Forest. The final outcome is the 

sum of the forecasts made by each individual tree. The class that receives the 

most votes overall across all trees is chosen as the final prediction. 

 

Random Forest is a suitable machine learning model for this study due to its 

ability to handle small datasets while reducing the risk of overfitting. As an 

ensemble learning method, random forest builds multiple decision trees during 

training, using random subsets of the data and features, and averages their 

predictions, resulting in a robust model (Breiman, 2001). This robustness is 

particularly beneficial for small datasets, as it prevents overfitting by combining 

weak learners and ensuring that individual data points do not dominate the 

prediction process (Biau, 2010). Furthermore, random forest is capable of 

modeling non-linear relationships, which are common in material property 

predictions, while providing interpretable feature importance rankings. 

 

5.3 Extreme Gradient Boosting Model (XGBoost) 

Extreme Gradient Boosting or XGBoost is a stable and very effective gradient 

boosting framework that has been carefully designed to advance the speed and 

efficiency of machine learning models. The XGBoost model is highly 

recommended in data science because of its ability to build an ensemble of 



decision trees sequentially, and the XGBoost model has advantages based on its 

ability to correct the errors created by the previous tree (Zhang et al., 2021). 

Unlike random forests, where all trees are built independently, XGBoost builds 

trees sequentially with the goal that each tree reduces the residue left by the 

previous tree. This approach is known for its superior scalability, accuracy, and 

ability to handle a wide range of data science problems. This complex process 

is based on the principle of gradient boosting, where the model iteratively 

merges trees to minimize a specified loss function. During the prediction phase, 

XGBoost combines the results of each tree into the ensemble. In the context of 

a classification problem, the scores generated by the individual trees are 

combined, and then these scores are converted into probability estimates using 

a logistic function; the maximum probability obtained is the prediction of the 

final classification. Conversely, for regression tasks, the predictions of all trees 

are added together to produce the final result. This iterative mechanism allows 

XGBoost to improve predictions by incorporating information about errors 

found in previous iterations (Chen et al., 2015). 

 

XGBoost is a highly effective algorithm for small datasets because it employs 

boosting techniques to optimize model performance by iteratively refining 

weak learners. Its regularization features, including L1 and L2 penalties, reduce 

overfitting, which is crucial for small datasets with limited variability (Chen and 

Guestrin, 2016). Additionally, XGBoost handles missing data seamlessly and is 

computationally efficient, allowing for flexible experimentation with 

hyperparameters to adapt to the unique characteristics of small datasets, such 

as the 99 compressive strength and 33 flexural strength data points in this study. 

 



5.4 Support vectors machine model 

Support Vector Machine (SVM) represents a highly efficient supervised learning 

algorithm widely utilized for the purpose of both classification and regression 

tasks within the realm of machine learning. The fundamental principle 

underlying SVM revolves around the identification of an optimal hyperplane 

that effectively segregates the dataset into distinct classes. This characteristic 

renders SVM particularly proficient in managing datasets characterized by high 

dimensionality, exhibiting a remarkable degree of resilience and accuracy in its 

operations (Jakkula, 2006). Specifically, SVM is geared towards establishing a 

hyperplane or a series of hyperplanes within a multi-dimensional space 

strategically positioned to maximize the margin between the various classes 

present in the dataset. The margin essentially denotes the spatial separation 

between the hyperplane and the nearest data points belonging to each class, 

commonly referred to as support vectors. These support vectors play a pivotal 

role in delineating the precise location and orientation of the hyperplane within 

the dataset. When applied to classification tasks, SVM leverages the decision 

boundary defined by the optimal hyperplane to effectively categorize novel 

data points. By discerning the side of the hyperplane on which a new data point 

falls, SVM accurately assigns it to a specific class. Conversely, in scenarios 

involving regression tasks, denoted as Support Vector Regression (SVR), SVM 

attempts to formulate a function that closely approximates the target variable 

within a designated tolerance margin. The primary objective here is to devise 

the most suitable function within the permissible margin while concurrently 

minimizing errors in the process (Cortes and Vapnik, 1995b). 

 

Support Vector Machine (SVM) is particularly effective for small datasets due to 

its reliance on maximizing the margin between data points and the decision 



boundary, which improves generalization even with limited data (Cortes and 

Vapnik, 1995a). Additionally, the use of kernel functions, such as the radial basis 

function (RBF), enables SVM to capture complex, non-linear relationships 

between input features and target variables (Smola and Schölkopf, 2004). This 

capability ensures accurate modeling of material properties like compressive 

and flexural strength, even when the dataset size is restricted. 

 

5.5 K-Nearest Neighbors model 

A popular and essential machine learning technique, K-Nearest Neighbors (KNN) 

is based on the idea of instance-based learning, predicting outcomes based on 

the 'k' most similar instances in the feature space. Since it is non-parametric, no 

assumptions on the distribution of the data are made, contributing to its 

flexibility and ease of implementation for classification and regression tasks 

(Mucherino et al., 2009). The algorithm involves storing the entire training 

dataset and calculating the distance between new data points and existing 

points using metrics such as Euclidean, Manhattan, or Minkowski distances. 

Predictions are made by majority voting for classification tasks or averaging 

values for regression tasks. The benefits of k-NN include its simplicity, 

adaptability to various distance metrics, and robustness to noisy data when an 

appropriate 'k' value is chosen (Kramer, 2013). In civil engineering, KNN has 

been effectively applied in predicting monthly pan evaporation to assist in water 

resource management, and evaluated compressive strength of high-

performance concrete (Hsieh, 2021) (Abed et al., 2023). Despite its 

computational cost and memory requirements, especially with large datasets, 

k-NN remains a valuable tool due to its intuitive approach and effectiveness 

across diverse applications. 

 



The K-Nearest Neighbors (KNN) algorithm is particularly suitable for small 

datasets because it is an instance-based learning method that relies directly on 

the data rather than requiring a training phase, making it inherently 

advantageous for limited data points (Altman, 1992). Its non-parametric nature 

allows KNN to effectively capture non-linear relationships without assuming a 

specific data distribution (Peterson, 2009). This flexibility makes it an excellent 

choice for the prediction of material properties where small datasets, such as 

the one used in this study, are common. 

 

5.6 Performance indicators for machine learning validation 

Evaluating a predictive model's performance is essential to ensure its reliability 

and effectiveness. In regression tasks, several metrics can be used to assess how 

well a model predicts target values. This section delves into four commonly 

used evaluation metrics: MAE, RMSE, MAPE, and 𝑅² . Each metric provides 

different insights into the model’s performance, helping to identify strengths 

and weaknesses. 

 

5.6.1 Mean Absolute Error (MAE) 

The mean absolute error (MAE), which disregards the direction of the errors, is 

a metric used to determine the average magnitude of the errors in a set of 

forecasts. The average absolute discrepancies between the expected and actual 

values are computed. MAE is easy to understand and interpret. It offers a linear 

score, which implies that the average is equally weighted for each individual 

difference. A model that fits the data better is indicated by a lower MAE. It is 

beneficial when the costs of errors are directly proportional to their magnitude. 

Lower MAE corresponds to higher accuracy, while higher MAE corresponds to 

lower accuracy. The following function shows the calculation of MAE: 



 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

 

Equation 13 

Where 𝑦𝑖  is the observed value, 𝑦̂𝑖 is the forecast value from models, and 𝑛 is 

the number of observations. 

 

5.6.2 Root Mean Squared Error (RMSE) 

The average error magnitude is expressed as Root Mean Squared Error. The 

average squared difference between the expected and actual numbers is its 

square root. RMSE is more sensitive to large errors than MAE due to the 

squaring of the differences before averaging, which gives greater weight to 

significant errors, making it susceptive to outliers. A lower RMSE indicates a 

better fit of the model. It is advantageous when large errors are highly 

undesirable and must be penalized more. Lower RMSE corresponds to higher 

accuracy, while higher RMSE corresponds to lower accuracy. The calculation of 

RMSE is shown below: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

 

Equation 14 

Where 𝑦𝑖  represents the observed value, 𝑦̂𝑖 represents the forecast value from 

models, and 𝑛 is the amounts of observations. 

 

5.6.3 R-squared (𝑅2) 

R-squared, is defined as the coefficient to measure the percentage of the 

volatility of the dependent parameters that can be predicted according to the 

independent variables. It offers an indicator of how closely the model matches 

the actual results. 𝑅²  has a value in the range of 0 to 1. An 𝑅²  value of 1 

demonstrates that the model predicts the target variable with extreme accuracy, 



while an 𝑅² of 0 demonstrates that the model has extremely bad performance. 

Negative values of 𝑅² can also occur, indicating that the model performs worse 

than a horizontal line which is the mean of the target. 𝑅² provides an overall 

measure of the performance of the model, making it a useful summary statistic 

for regression models. 𝑅2 calculated by the following formula: 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

 

 

Equation 15 

Where 𝑦̅𝑖  represents the mean of the observed values. 

 

5.6.4 Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error measures the accuracy of predictions as a 

percentage, representing the average absolute percentage error among 

predicted and observed values. It provides an institutionalized measure of 

prediction performance. Mean Absolute Percentage Error clearly indicates 

prediction accuracy in percentage terms. However, it can be problematic when 

actual values are minimal, leading to extremely high percentage errors. Lower 

RMSE corresponds to higher accuracy, while higher RMSE corresponds to lower 

accuracy. MAPE is beneficial for understanding the error in the context of the 

scale of the actual values, making it easier to interpret in a real-world context. 

 
𝑀𝐴𝑃𝐸 =

100%

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖
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|

𝑛
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Equation 16 

Where 𝑦𝑖   represents the actual value, 𝑦̂𝑖  presents the predicted value from 

models, and 𝑛 is the amount of observations. 

 

5.6.5 Mean Squared Error (MSE) 

Mean Squared Error (MSE) is an essential indicator for assessing regression 

models' effectiveness in machine learning. It quantifies the average squared 



difference between the actual values and the predicted values generated by a 

model. By squaring these differences, MSE ensures that larger errors have a 

disproportionately higher impact, which helps highlight significant deviations 

between the forecast and observed values. There is an inverse relationship 

between MSE and model accuracy: lower MSE corresponds to higher accuracy, 

while higher MSE corresponds to lower accuracy. The calculation formula of 

MSE is shown below, 

 
𝑀𝑆𝐸 =

1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 

 

Equation 18 

Where 𝑦𝑖  is the observed value, 𝑦̂𝑖 is the predicted value from models, and 𝑛 is 

the amount of observations. 

 

5.7 Model training and testing of machine learning models 

5.7.1 Dataset splitting  

The dataset is divided using an 80/20 train-test split, where 80% of the data is 

used for training and 20% is reserved for testing. Within the training set, 10-fold 

cross-validation is employed to further split the data into subsets. This process 

ensures that the model is trained and validated on different folds of the data, 

providing a robust evaluation of its generalization capability. Additionally, 

hyperparameter tuning is conducted using GridSearchCV, which systematically 

explores predefined hyperparameter combinations during the 10-fold cross-

validation process. The best-performing parameters are selected based on the 

cross-validation results, and the final model is evaluated on the untouched test 

set. The dataset is divided using an 80/20 train-test split, where 80% of the data 

is used for training and 20% is reserved for testing. Within the training set, 10-

fold cross-validation is employed to further split the data into subsets. This 

process ensures that the model is trained and validated on different folds of the 



data, providing a robust evaluation of its generalization capability. Additionally, 

hyperparameter tuning is conducted using GridSearchCV, which systematically 

explores predefined hyperparameter combinations during the 10-fold cross-

validation process. The best-performing parameters are selected based on the 

cross-validation results, and the final model is evaluated on the untouched test 

set. This approach ensures efficient use of the dataset while maintaining the 

integrity of the test set for unbiased evaluation. The 10-fold cross-validation 

provides a reliable measure of performance by reducing variability associated 

with a single train-test split. GridSearchCV further enhances the model’s 

predictive capability by optimizing hyperparameters, ensuring the selected 

configuration generalizes well across folds. Together, these techniques improve 

model accuracy and robustness while minimizing overfitting, making models 

particularly suitable for scenarios with complex data and small or middle 

dataset sizes, the dataset used in this investigation, for example. 

This approach ensures efficient use of the dataset while maintaining the 

integrity of the test set for unbiased evaluation. The 10-fold cross-validation 

provides a reliable measure of performance by reducing variability associated 

with a single train-test split. GridSearchCV further enhances the model’s 

predictive capability by optimizing hyperparameters, ensuring the selected 

configuration generalizes well across folds. Together, these techniques improve 

model accuracy and robustness while minimizing overfitting, making models 

particularly suitable for scenarios with complex data and small or middle 

dataset sizes, the dataset used in this investigation, for example. 

 

5.7.2 Random Forest   

Random Forest algorithms have established themselves as powerful tools in 

machine learning for both classification and regression tasks due to their 

robustness and high performance. The procedures of creating an RF model 

begin with data preparation. This involves handling missing values, removing 



duplicates, and ensuring that all data types are correct. The prepared data is 

then separated into training and testing sets, typically in an 80:20 ratio, to aid 

model training and evaluation. The random forest model is an improved edition 

of bagging that combines both bagging and a random subset of input variables 

to decrease the relations of grown trees and, at the same time, keep reasonable 

prediction accuracy. (Breiman, 2001) A training set of {𝑥𝑖, 𝑦𝑖}1
𝑁 given for random 

forest model, the characteristic 𝑁 is the quantity of training samples, random 

forest model summaries the predictions from each individual tree which can 

present as 𝑇𝑗(𝑥𝑖; 𝜃𝑗), and by calculating the average value of them using the 

following equation: 𝑓(𝑋) =
1

𝑀
∑ 𝑇𝐽(𝑋: 𝜃𝑗)𝑀

𝐽=1   where 𝑀  means the entire 

amount of base learners, each 𝜃𝑗  includes basic information knowledge about 

re-arrangement of samples, splitting locations and separating features. By using 

a Lasso regularization process, the base learners who are deemed irrelevant 

and uninformative will be eliminated from the ensemble. This also includes 

assessing the weights of the base learners according to their performance, 

dependency, and involvement in the total predictive power. When a specific 

base learner has a value zero of its weight 𝛼𝑗, it may be eliminated.  Finally, we 

can get a compact-random forest model, which contains much fewer base 

learners, and has an improved generalization capability compared with the 

original random forest model. The optimal weights 𝛼𝑗 are used to minimize the 

penalty of ensemble loss, as below: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜑𝑁
𝑛=1 (𝑦𝑖, ∑ 𝛼𝑗𝑇(𝑋: 𝜃𝑗)𝑀

𝐽=1 ) +

𝜆 ∑ |𝛼𝑗|𝑀
1  , in the ensemble model the standard loss function (mean squared 

error was normally used) is represented by 𝜑() , Lasso parameter is given 

as 𝜆, 𝑇(𝑋; 𝜃𝑗) is a simple base learner categorized by 𝜃𝑗 . 𝜆 value was identified 

by using the k-fold cross-validation technique in this investigation. (Afzali et al., 

2024) 

 



Once the data is prepared, the Random Forest model is constructed by 

importing necessary libraries and loading the dataset. The dataset is then 

separated into features and target variables, and the model is initialized using 

default parameters. This random forest model is trained on the training data 

and evaluated on the testing data using the metrics shown in the previous 

section. Hyperparameter tuning is conducted to optimize the model. Key 

hyperparameters in this random forest model in this study are (N_estimators), 

(Max_depth), (Min_samples_split), (Min_samples_leaf), (Max_features) and 

(bootstrap). The hyperparameters of a Random Forest model significantly 

influence its performance by controlling the complexity and generalization 

capability of the model. Specifically, the number of estimators (N_estimators) 

affects the model’s robustness, with an increased number of trees generally 

reducing variance and improving accuracy, though at the cost of computational 

efficiency. The maximum depth (Max_depth) of the trees determines the 

complexity of the decision boundaries, with deeper trees capturing more 

intricate patterns but increasing the risk of overfitting. Meanwhile, the 

minimum samples required to split an internal node (Min_samples_split), and 

the minimum samples required at a leaf node (Min_samples_leaf) regulate the 

tree's growth, with higher values leading to simpler models that reduce 

overfitting but may underfit if too restrictive. The maximum number of features 

considered for a split (Max_features) plays a crucial role in controlling tree 

correlation, with smaller values promoting diversity among trees, thus 

enhancing generalization. Lastly, the bootstrap parameter, which controls 

whether sampling with replacement is applied, can impact the variance of the 

model by influencing the diversity of trees and improving robustness when set 

to true. Therefore, fine-tuning these hyperparameters is essential to balance 

the trade-off between bias and variance, optimizing model performance while 

preventing overfitting or underfitting. The ranges of hyperparameters tuning 



are also important, it needs to design to explore the hyperparameter space 

while considering the computation time and resources. 

 

The value of each hyperparameter was explored using Grid Search. This 

exhaustive search across parameter combinations helps identify the optimal 

configuration that maximizes model performance. To ensure the model's 

robustness and ability to generalize to new data, 10-fold cross-validation is 

applied. Ten subsets are created from the data in 10-fold cross-validation. Nine 

subsets are used to train the model, and the last subset is used to validate it. 

Every subset is used as the validation set once during the ten repetitions of this 

process. To get a trustworthy estimation of the model's performance, the 

results are averaged. After the random forest model finished hyperparameter 

tuning, it is evaluated using the testing data. Performance metrics such as Mean 

squared error and R-squared (𝑅²) score are computed to assess the model’s 

effectiveness and predictive power. Creating and refining a Random Forest 

model is an iterative and comprehensive process. It involves meticulous data 

preparation, detailed feature importance analysis, strategic feature selection, 

rigorous hyperparameter tuning, and robust cross-validation. These steps 

collectively enhance the model's predictive power, robustness, and applicability 

to various machine learning tasks. Continuous evaluation and optimization are 

paramount in achieving a high-performance machine learning model that can 

deliver accurate and reliable predictions of the mechanical properties of alkali-

activated concrete. 

 

5.7.3 Extreme Gradient Boosting  

The effective machine learning technique Extreme Gradient Boosting (XGBoost) 

is well-known for its exceptional performance in regression and classification 

applications. Chen and Guestrin published this model, which is an optimized 



and improved gradient boosting algorithm. (Li and Song, 2022)  The aim 

function for the XGBoost model can be explained below: 𝐹𝑜𝑏𝑗
(𝑡)

=

∑ 𝐿 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝐾𝑛
𝑖=1  , where 𝐹𝑜𝑏𝑗  is the aim function, 𝐿 

represents the loss function, Ω represents the regularization terms (𝐿1 and 𝐿2), 

𝐾  represents the constant term. The initial phase includes careful data 

preparation, addressing missing values, removing duplicates, and ensuring 

accurate data types. Feature engineering creates and modifies features that 

enrich the dataset. To aid in model development and assessment, the data is 

then divided into training and test sets, often in an 80:20 ratio (Shen et al., 2022) 

 

After data preparation, the XGBoost model is built. The required libraries are 

imported, and the dataset is loaded. The features and target variables are 

separated, and the XGBoost model is initialized with default parameters. The 

model is then trained on the training data and evaluated on the test data using 

metrics. Hyperparameter tuning is fundamental to optimizing the performance 

of the XGBoost model. Important hyperparameters include N_estimators, 

learning_rate, max_depth, min_child_weight, subsample, colasample_bytree. 

Grid Search Cross Validation (GridSearchCV) explores different hyperparameter 

combinations and identifies the optimal set. The hyperparameters of the 

XGBoost model significantly influence its performance by controlling the trade-

off between model complexity, generalization ability, and computational 

efficiency. The number of estimators (N_estimators) dictates the number of 

trees, with a higher value, such as 300 for flexural strength, capturing more 

complex patterns but at the risk of overfitting and higher computation costs. 

The learning rate determines the step size during optimization, where smaller 

values like 0.01 ensure gradual learning, reducing overfitting, while larger values 

like 0.2 accelerate convergence but risk overshooting. The maximum depth 

(Max_depth) limits tree complexity, with smaller values for example 3  



preventing overfitting while maintaining generalization. The minimum weight 

of child (Min_child_weight) ensures that nodes have a sufficient number of 

samples, with higher values improving robustness by reducing overfitting. 

Subsample and Colasample_bytree introduce randomness in sampling data and 

features, respectively, with values like 0.8 and 0.9 enhancing model diversity 

and robustness. Proper tuning of these hyperparameters ensures that the 

model captures relevant patterns in the data while avoiding overfitting or 

underfitting, optimizing its predictive performance. 

 

To ensure the robustness and generalization of the model, 10-fold cross 

validation is used. In 10-fold cross validation, the data is divided into 10 subsets. 

On nine subgroups, the model is trained, and on the final subset, it is validated. 

Each subset is utilized as a validation set once, and this process is repeated ten 

times. To obtain a trustworthy approximation of the model's performance, the 

results are averaged. The test data is used to assess the improved model 

following hyperparameter adjustment. Developing and refining XGBoost 

models is an iterative and comprehensive process. It involves meticulous data 

preparation, rigorous hyperparameter tuning, and robust cross validation. 

Together, these steps enhance the model’s predictive ability, robustness, and 

applicability to a variety of machine learning assignments. Continuous 

evaluation and optimization are critical to achieving high-performance machine 

learning models that can provide accurate and reliable predictions of alkali-

activated concrete's mechanical properties. 

 

5.7.4 Support Vector Machine 

Support vector machine is a resilient supervised machine learning method that 

has shown significant efficacy in improving the ability to generalize for both 

regression and classification assignments (Cortes and Vapnik, 1995b).  In a 



training dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑖, 𝑦𝑖)} , where 𝑖  means the amount of 

training data, 𝑥𝑖  represents the input vector, and 𝑦𝑖 is the relevant actual target 

value. The core of the support vector machine when solving a regression 

problem is to create a linear function; this function has the ability to minimize 

the imparity within predictions and observation values in a set threshold (𝜀), 

maximizing the flatness at the same time. The following equation shows the 

linear regression function required in support vector machine: 𝑓(𝑥) = 〈𝑤, 𝑥〉 +

𝑏, in this formula 𝑤 is the vector of weight, scalar threshold vector represented 

by 𝑏, between vector 𝑤 and 𝑥, the 〈, 〉 calculate the dot product operation of it. 

The goal of maximizing flatness can be explained by the following formula, 

which minimizes the weight vector's norm: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉 +𝑖

𝑖=1

𝜉𝑖
∗)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 {

𝑦𝑖 − 〈𝑤, 𝑥〉 − 𝑏 ≤ 𝜀 + 𝜉
〈𝑤, 𝑥〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉∗

𝜉∗𝜉𝑖 ≥ 0
  

In this equation, where 𝐶 represents the regularization parameter that governs 

the trade-off between the flatness of the function 𝑓(𝑥) and the tolerance for 

deviations exceeding 𝜀 . Slack variables 𝜉  and 𝜉 ∗ are introduced to solve the 

convex optimization problem above, which allows for the ignore of deviations 

bigger than 𝜀 utilizing an 𝜀-insensitive loss function, the equation can explain 

this shown as follows: |𝜉|𝜀 = {
0 𝑖𝑓 𝑓|𝑦 − 𝑓(𝑥)| ≤ 𝜀

|𝑦 − 𝑓(𝑥)| − 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  . To provide the 

solution for the non-linearity problems, support vector machine use a linear 

function in a feature space with high dimensions using Lagrange 

multipliers 𝛼𝑖  and 𝛼𝑖∗  : 𝑓(𝑥, 𝛼𝑖 , 𝛼𝑖∗) = ∑ (𝑛𝑠𝑣
𝑖=1 𝛼𝑖 − 𝛼𝑖∗)〈𝜑(𝑥𝑖)𝜑(𝑥)〉 + 𝑏 , in this 

linear function, 𝜑 represent a non-linear map in the range between input space 

to the high-dimensional feature space, 〈𝜑(𝑥𝑖)𝜑(𝑥)〉 is the dot product between 

training patterns in high-dimensional feature space, 𝑛𝑠𝑣  is the amount of 

support vectors.  Nevertheless, expansive computational costs are an issue in 

mapping training patterns to a higher-dimensional space.  

 



A kernel function can reduce this high computational cost 𝐾(𝑥𝑖, 𝑥𝑗), polynomial 

functions or radial basis, for example, without explicitly computing the form 

of 𝜑(𝑥𝑖) , as shown below: 𝑓(𝑥, 𝛼𝑖 ∙ , 𝛼𝑖∗) = ∑ (𝑛𝑠𝑣
𝑖=1 𝛼𝑖 − 𝛼𝑖∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏 . The 

magnitude of the input variable affects the support vector machine, which is 

classified as one kind of geometric algorithm. When a specific feature is more 

important than others, the support vector machine may give this feature more 

weight, thus causing a mistake or an error in explaining its importance (Afzali et 

al., 2024) (Smola and Schölkopf, 2004). 

 

In this investigation, hyperparameter tuning and cross validation are used to 

improve the reliability of the SVM algorithm. Important hyperparameters 

include the type of kernel, regularization parameter, epsilon, degree, and 

gamma. The hyperparameters of the Support Vector Machine (SVM) model 

significantly influence its ability to generalize, handle data complexity, and 

optimize prediction performance. The C parameter controls the trade-off 

between achieving a low error on the training data and ensuring good 

generalization. Higher values reduce bias but increase the risk of overfitting, 

while lower values promote simpler models with better generalization. The 

Kernel defines the function to transform input data into a higher-dimensional 

space for better separability. The linear kernel performs well for data, which is 

linearly separable, while more complex kernels like RBF are suited for non-linear 

relationships. The Gamma parameter, used in non-linear kernels, defines the 

influence of individual data points, a smaller value scale, generalizes better, 

while higher values focus more on specific points, increasing the risk of 

overfitting. The Degree parameter, relevant to polynomial kernels, controls the 

complexity of the decision boundary, with lower degrees, favoring simpler 

models. Lastly, the Epsilon parameter in regression tasks determines the margin 

of tolerance around predictions, higher values reduce model sensitivity to 



outliers but may underfit the data. Together, these hyperparameters must be 

carefully tuned to balance model complexity, accuracy, and generalization. 

 

To ensure the robustness and generalization of the model, 10-fold cross-

validation is used. In 10-fold cross-validation, the data is divided into 10 subsets. 

On nine subgroups, the model is trained, and on the final subset, it is validated. 

This approach is performed ten times, using each subset as a validation set once. 

To obtain a trustworthy approximation of the model's performance, the results 

are averaged. The testing dataset is used to evaluate the improved model 

following hyperparameter adjustment. After hyperparameter tuning, the 

optimized model is assessed by the test dataset. Performance metrics such as 

MSE and R² scores are calculated for regression tasks, and accuracy is calculated 

for classification tasks to evaluate the effectiveness of the model.  

 

Multicollinearity occurs when two or more independent variables in dataset are 

highly correlated, in this research activator to cementitious ration with water to 

cementitious material ratio, sodium silicate to sodium hydroxide ratio with 𝑀𝑠, 

for example. It will be affecting the performance of non-parametric models like 

SVM and KNN. In SVM, multicollinearity can cause instability in feature 

importance, affecting the construction of the optimal hyperplane and 

increasing overfitting risks, particularly in non-linear kernels. To mitigate these 

issues, incorporating L1 (LASSO) and L2 (Ridge) regularization techniques into 

Support Vector Machines (SVMs) effectively mitigates the adverse effects of 

multicollinearity by controlling feature weights and enhancing model stability. 

L1 regularization addresses multicollinearity by shrinking some coefficients to 

zero, effectively performing feature selection and removing redundant variables. 

L2 regularization, on the other hand, deals with multicollinearity by constricting 

the coefficients of correlated variables, thereby distributing their effects more 



evenly across the features. By applying these regularization methods, SVMs can 

achieve improved predictive accuracy and robustness, reducing the bias and 

overfitting associated with multicollinearity. (Chan et al., 2022) (Dedieu and 

Mazumder, 2019) 

 

5.7.5 k-nearest neighbors 

After the completion of data preparation, the construction of the k-nearest 

neighbors (KNN) model commences. This process involves importing the 

necessary libraries and loading the dataset into the computational environment. 

Subsequently, the features and target variables are segregated to prepare for 

the KNN model's initialization with default parameters. It is imperative to 

engage in hyperparameter tuning to enhance the KNN model's performance. 

Key hyperparameters that necessitate optimization encompass the number of 

neighbors, the weight function, the algorithm utilized for computing the nearest 

neighbors, the leaf size and P parameter. The hyperparameters of the K-Nearest 

Neighbors (KNN) model play a crucial role in determining its performance by 

balancing simplicity, accuracy, and computational efficiency. The N_neighbors 

parameter specifies the number of nearest neighbors considered for 

predictions, with smaller values focusing on local patterns and potentially 

overfitting, while larger values provide smoother predictions but may underfit. 

The Weight parameter determines how neighbors contribute to the prediction, 

with "uniform" assigning equal importance to all neighbors and "distance" 

giving more weight to closer neighbors, which can enhance performance on 

data with spatial significance. The Algorithm parameter specifies the algorithm 

for finding nearest neighbors, with automatically choosing the most suitable 

method, ball_tree and kd_tree being efficient for low to moderate dimensions, 

and brute being computationally expensive but effective for high-dimensional 

datasets. The Leaf_size controls the size of the leaf in the tree-based search 



algorithms, affecting the speed and memory efficiency of the model; smaller 

values ensure faster search but may increase computational overhead for large 

datasets. Finally, the P parameter defines the power parameter for the 

Minkowski distance, with 1 and 2 affecting how distances are calculated and 

influencing how neighbors are determined. Proper tuning of these 

hyperparameters is essential to optimize KNN's performance by reducing 

overfitting, ensuring accurate predictions, and maintaining computational 

efficiency. 

 

Grid Search Cross Validation (GridSearchCV) is a technique utilized in machine 

learning to systematically explore various combinations of hyperparameters 

and determine the most optimal set for a given model. In order to ensure the 

reliability and generalizability of the model, a common practice is to employ 10-

fold cross-validation. This technique involves splitting the data into 10 equal 

subsets or folds. Next, nine of these subsets are used to train the model, while 

the remaining fold is used to validate it. Ten times, this process is repeated, with 

each subset serving as the validation set alternately. A more accurate and stable 

estimation of the model's performance can be achieved by averaging the results 

obtained from each iteration. The model is evaluated using a separate test 

dataset following the hyperparameter tuning process. Key performance metrics 

such as Mean Squared Error (MSE) and R² scores are typically computed for 

regression tasks, while accuracy is calculated for classification tasks to assess 

the model's effectiveness. Developing and refining KNN models is a 

multifaceted and iterative process that demands careful attention to detail. This 

process encompasses thorough data preprocessing, meticulous 

hyperparameter optimization, and robust cross-validation techniques. By 

diligently following these steps, the predictive capabilities, robustness, and 

versatility of the model can be significantly enhanced, thereby improving its 



performance across a wide array of machine learning tasks. It is essential to 

emphasize the continuous evaluation and refinement of models, as this is 

paramount in achieving high-performance machine learning models capable of 

generating precise and dependable predictions, particularly in the realm of 

predicting mechanical properties of alkali-activated concrete. 

 

As mentioned above, multicollinearity affects the performance of KNN and SVM. 

In KNN, multicollinearity affects model by distorting distance-based calculations, 

leading to biased similarity measures. Since KNN depends on distance metrics 

such as Euclidean or Manhattan distance, correlated variables create redundant 

information, causing the model to overemphasize certain features. This results 

in misleading neighbor assignments, increased computational complexity, and 

reduced interpretability (Jolliffe and Cadima, 2016). To mitigate these effects, 

Principal Component Analysis (PCA) is a powerful technique that transforms 

correlated variables into a new set of uncorrelated features called principal 

components. PCA reduces dimensionality by capturing the maximum variance 

in fewer components, allowing KNN to operate efficiently in a lower-

dimensional space while retaining essential information. This approach 

eliminates redundant information, improves model interpretability. By using 

PCA, KNN can make more accurate and robust predictions, particularly in high-

dimensional datasets (Abdi and Williams, 2010).  

 

6. Results and discussions  

6.1 Experiment results 

The entire mix proportion for the experiment in this investigation is shown in 

section 4.2, and the mix will be divided into three groups and a trial group. 



Group 1 has a fly ash to GGBS ratio of 70:30, a total weight of cementitious 

materials of 370𝑘𝑔/𝑚3, an alkali activator to cementitious materials ratio of 0.4, 

the water glass solution to 𝑁𝑎𝑂𝐻  solution ratio is 2.5, the Modulus ratio in 

alkali activator is 1, and the water to cementitious materials ratio is 0.32. Other 

mixes can be categorized with the same mix parameters in the other two groups, 

group 2 and group 3. Each group of alkali-activated has 10 mixtures that 

complete both the compressive strength and flexural strength test. In each 

group, the packing density of the fine aggregate and coarse aggregate 

combination is the only parameter. Because in different groups, the fly ash to 

GGBS ratio, total weight of cementitious materials, alkali activator to 

cementitious materials ratio, water glass solution to 𝑁𝑎𝑂𝐻  solution ratio, 

modulus ratio in alkali activator, and water to cementitious materials ratio are 

not maintained, the same value, therefore the influence of these values on 

alkali-activated concrete will be described and discussed in the machine 

learning result part.  

 

 
Figure 18. Compressive strength of alkali-activated concrete (Trial Group) 
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Figure 19. 28days Flexural strength of alkali-activated concrete (Trial Group) 

 

In trial group, contain all parameters except fly ash to GGBS ratio. Figure 18 

shows the compressive strength development of alkali-activated concrete at 3, 

7, and 28 days for three different fly ash to GGBS ratios: 70/30, 50/50, and 30/70. 

The results show a clear trend of increasing compressive strength with curing 

time across all mixtures. Among the three ratios, the 30/70 mix demonstrates 

the highest compressive strength at all curing stages, achieving over 70 MPa at 

28 days. The 50/50 mix follows with intermediate strength values, while the 

70/30 mix consistently exhibits the lowest compressive strength. These results 

indicate that the GGBS content plays a critical role in strength development, 

with higher GGBS proportions contributing significantly to improved 

mechanical performance, likely due to its higher calcium content and reactivity 

in the alkali-activation process. (Rashad, 2013) (Lee and Lee, 2013) Figure 19 

displays the flexural strength at 28 days for alkali-activated concrete prepared 

with varying fly ash to GGBS ratios: 70/30, 50/50, and 30/70. A clear trend is 

observed, where an increase in the proportion of GGBS correlates with higher 

flexural strength. The 30/70 mix achieves the greatest flexural strength, 

approximately 6.5 MPa, followed by the 50/50 mix with a strength of around 
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6.0 MPa. The 70/30 mix records the lowest flexural strength at approximately 

5.5 MPa. 

 

 

Figure 20. 28 days compressive strength of alkali-activated concrete (Group 1) 

 

 

Figure 21. 28 days compressive strength of alkali-activated concrete (Group 2) 
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Figure 22. 28 days compressive strength of alkali-activated concrete (Group 3) 

 

Figure 20, Figure 21, and Figure 22 show the compressive strength of alkali-

activated concrete after 28 days of curing. In each group, increasing the packing 

density of aggregates results in an increase in compressive strength; in group 1, 

the compressive strength increases by 23.7% with an increase in packing 

density of 24.3%. For group 2 and group 3, the compressive strength increases 

by about 25.7% and 16.7%, with increases in packing density at 20.1% and 

18.9%, respectively. From the diagrams above, it is notable that in all groups of 

alkali-activated mixtures, the compressive strength demonstrated an upward 

trend as the packing density value of the aggregate system increased. The 

relationship between packing density and compressive strength of alkali-

activated concrete shows the same trend in the experimental investigation 

completed by Niyazuddin and Umesh (Niyazuddin and B, 2023). Also, this is in 

agreement with Karadumpa and Pancharathi (Karadumpa and Pancharathi, 

2021). This can be explained by particle packing theory: when packing density 

increases, the aggregate in concrete will be denser, the interlocking of 

aggregates will increase, and void content will be reduced, so the concrete 
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achieves higher compressive strength. Furthermore, as the packing density 

rises, the left paste beyond the void volume contributes to improved 

compatibility, resulting in enhanced strength. The previous studies also proved 

a similar result, which was that the compressive strength would increase as the 

packing density increased (Nanthagopalan and Santhanam, 2012).  

 

 

Figure 23. 28 days flexural strength of alkali-activated concrete (Group 1) 
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Figure 24. 28 days flexural strength of alkali-activated concrete (Group 2) 

 

 

Figure 25. 28 days flexural strength of alkali-activated concrete (Group 3) 

 

Figure 23, Figure 24, and Figure 25 show the relationship between 28 days of 

flexural strength and aggregate packing density for the flexural strength of 

alkali-activated concrete. For each group of alkali-activated concrete prism, the 

flexural strength increases by 3.7%, 11.4%, and 8%, while packing density 

increases by about 25.7%, 20.1%, and 18.9%, respectively. Fennis and Walraven 

found the same trend between flexural strength and packing density (Fennis 

and Walraven, 2012). 
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6.2 Machine learning dataset 

Table 10. Statistical descriptive analysis of compressive strength dataset 

Variables Weight 

of CEM 

SS to 

SH 

ratio 

FA to 

GGBS 

ratio 

Activator 

to CEM 

ratio 

Water 

to CEM 

ratio 

Ms Packing 

density 

Curing 

time 

Compress

ive 

strength 

Unit 𝑘𝑔/𝑚3 None None None None None None days MPa 

Mean 356.364 2.5 1.254 0.491 0.372 0.958 0.707 12.667 44.932 

St.D. 12.512 0.040 0.802 0.083 0.400 0.165 0.042 11.020 14.529 

Min 340 2.0 0.429 0.4 0.32 0.72 0.634 3 18.93 

Max 370 3.0 2.333 0.6 0.42 1.12 0.800 28 75.67 

 

Table 11. Statistical descriptive analysis of flexural strength dataset 

Variables Weight 

of CEM 

SS to 

SH 

ratio 

FA to 

GGBS 

ratio 

Activator 

to CEM 

ratio 

Water 

to 

CEM 

ratio 

Ms Packing 

density 

Flexural 

strength 

Unit 𝑘𝑔/𝑚3 None None None None None None MPa 

Mean 356.364 2.5 1.254 0.491 0.372 0.959 0.707 6.710 

St.D. 12.641 0.395 0.810 0.084 0.400 0.167 0.042 0.584 

Min 340 2.0 0.429 0.4 0.320 0.72 0.634 5.364 

Max 370 3.0 2.333 0.6 0.420 1.12 0.800 7.790 

 

In the dataset used for compressive strength prediction, as shown in Table 10 it 

includes various variables that affect the compressive strength of alkali-

activated concrete. Eight variables have been chosen as input variables for 

machine learning models training and testing, the weight of cementitious 

materials (CEM) 𝑖𝑛 𝑘𝑔/𝑚³, the sodium silicate to sodium hydroxide ratio (SS to 

SH ratio), the fly ash to ground granulated blast-furnace slag ratio (FA to GGBS 

ratio), the activator to cementitious materials ratio (Activator to CEM ratio), the 



water to cementitious materials ratio (Water to CEM ratio), the modulus in 

activator (Ms), packing density, and curing time in days. The dataset's statistical 

properties are as follows: the mean weight of cementitious materials is 356.364 

𝑘𝑔/𝑚³ with a standard deviation of 12.512 𝑘𝑔/𝑚³, the SS to SH ratio averages 

at 2.5 with a standard deviation of 0.040, and the FA to GGBS ratio has a mean 

of 1.254 and a standard deviation of 0.802. The activator to cementitious 

materials ratio averages 0.491 with a standard deviation of 0.083, while the 

water to cementitious materials ratio has a mean of 0.372 and a standard 

deviation of 0.400. The activator solution's modulus has an average of 0.958 

with a standard deviation of 0.165, the packing density averages 0.707 with a 

standard deviation of 0.042, and the curing time averages 12.667 days with a 

standard deviation of 11.020 days. The compressive strength, the target 

variable, has a mean of 44.932 𝑀𝑃𝑎 with a standard deviation of 14.529 𝑀𝑃𝑎. 

The entire dataset involves 99 data points for machine learning model training 

and testing. Table 11 shows the statistical descriptive analysis of the flexural 

strength dataset, with the same input value as the compressive strength dataset 

except for curing time; for flexural strength, the investigation only considers the 

flexural strength measure from a specimen after 28 days of curing. The 

statistical properties of the dataset demonstrate that the mean weight of 

cementitious materials is 356.364 𝑘𝑔/𝑚³ and the standard deviation is 12.641 

𝑘𝑔/𝑚³, the mean of the ratio of SS to SH is 2.5, and the standard deviation is 

0.395. The mean of the ratio of FA to GGBS is 1.254, and the standard deviation 

is 0.810. The mean of the ratio of activator to cementitious materials is 0.491, 

and the standard deviation is 0.084; the mean of the water-cementitious 

materials ratio is 0.372, and the standard deviation is 0.400. The modulus of the 

activator solution has a mean of 0.959 and a standard deviation of 0.167; the 

mean of the bulk density is 0.707, and the standard deviation is 0.042. The 

mean of the target variable flexural strength is 6.710 ,  and the standard 



deviation is 0.584 𝑀𝑃𝑎. 

 

 

Figure 26. Feature correlation heat-map of compressive strength dataset 

 



 

Figure 27. Feature correlation heat-map of flexural strength dataset 

 

Figure 26 provides a visual presentation of the relationship in various variables; 

in the heat map, the color intensity presents the strength and direction of the 

correlation in variables; the darker the color, the stronger the correlation. Also, 

the blue color means a negative relationship, and the red color represents a 

positive relationship. A significant positive correlation exists between 

compressive strength and curing time; the correlation coefficient is 0.79, which 

is the highest of all variables; this means the longer curing times result in higher 

compressive strength of alkali-activated concrete. This relationship has been 



proved by previous study (Sun et al., 2023b). Alkali-activated concrete's 

compressive strength has a mild negative connection with the ratio of sodium 

silicate to sodium hydroxide and a moderate negative correlation with the fly 

ash to GGBS ratio; the correlation coefficient for these factors are -0.45 and -

0.35, respectively. The increases in fly ash to GGBS ratio in the mixture will 

decrease the compressive strength of alkali-activated concrete, and the 

increases in sodium silicate to sodium hydroxide ratio will reduce the 

compressive strength. The modulus in the alkali activator has a negative 

correlation with compressive strength either, with a correlation coefficient of -

0.42. The other four input values, packing density, weight of cementitious 

materials, activator to cementitious ratio, and water to cementitious material 

ratio, have the correlation coefficient with compressive strength of alkali-

activated concrete are 0.16, -0.14, 0.14, and 0.12, respectively. According to Sun 

et al., the fly ash to GGBS ratio in alkali-activated concrete plays a crucial role in 

compressive strength development, and the water to cementitious materials 

ratio has less importance in compressive strength, which is the adverse of 

traditional cement based materials (Sun et al., 2023a). The packing density of 

aggregates in alkali-activated concrete shows a similar correlation as water to 

cementitious ratio and weight of cementitious ratio. In traditional cement 

concrete, these three variables similarly influence the compressive strength of 

concrete (Pallapothu et al., 2023). The correlation between the compressive 

strength of alkali-activated concrete and the packing density of aggregates 

shows that packing density is one of the influential factors in alkali-activated 

concrete, and it will affect the prediction of compressive strength by using 

machine learning models.  

 

Figure 27 shows the heat map for the flexural dataset. The graph indicates that 

the flexural strength of alkali-activated concrete has a strong negative 



correlation with modulus in alkali activator and sodium silicate to sodium 

hydroxide ratio, where the correlation coefficient is -0.83 and -0.72. The fly ash 

to GGBS ratio has a moderate negative relationship with flexural strength with 

a -0.5 correlation coefficient. The packing density has a positive correlation 

coefficient of 0.2, which means that when packing density increases, the 

flexural strength will increase. Moreover, the water to cementitious material 

ratio negatively correlates with the target value. The influence of activator to 

cementitious ratio and weight of cementitious materials ratio only has a 

negligible impact on flexural strength in alkali-activated concrete, which can be 

ignored in mix design.  

 

 



 

Figure 28. Pair plot of compressive strength dataset 

 



 

Figure 29. Pair plot of flexural strength dataset 

 

Figure 28 and Figure 29 are the pair plots of the datasets, a visualization 

technique that can discover the pairwise correlations within these two datasets. 

This method creates an axes grid with the y-axis representing the rows and the 

x-axis representing the columns. While the diagonal plots show the distribution 

of a single variable, each plot inside the grid shows the correlation between two 

variables. The illustration demonstrates the connections among the different 

features present in the dataset. The information is condensed to facilitate the 

identification of potential patterns and relationships among the variables.  

 



 

Figure 30. Scatter plot of compressive strength dataset 

 



 

Figure 31. Scatter plot of flexural strength dataset 

 

Figure 30 is the scatter plot of the compressive strength dataset. A scatter plot 

is a powerful tool in data analysis to demonstrate the distribution of each input 

variable with target value; it also provides a clear visualization of the dataset, 



which highlights the concentration and sparsity area of data points. In the 

dataset, the input variables fly ash to GGBS ratio, the weight of cementitious 

materials, activator to cementitious ratio, sodium silicate to sodium hydroxide 

ratio, modulus of alkali activator, and curing time can be grouped into three 

parts; these input variables have three different values in the dataset, for 

packing density, which has a comprehensive value between the range of 0.6 to 

0.8. The dataset has three different values in the fly ash to GGBS ratio, the 

weight of cementitious ratio, the activator to cementitious ratio, and the 

sodium silicate to sodium hydroxide ratio. In addition, the modulus in the 

activator and water to cementitious ratio had four different values in the 

dataset. Curing times were chosen as 3 days, 7 days, and 28 days after alkali-

activated concrete demold. The compressive strength of alkali-activated 

concrete is within the range of 19 MPa to 75 MPa. Figure 31 shows the scatter 

plot of the flexural strength dataset; according to the flexural strength only 

measured after 28 days of curing, lesser data were included in the flexural 

strength dataset. The flexural strength dataset has the same input variables as 

the compressive strength dataset except for curing time.  

 

6.3 Random Forest  

 

 

Table 12. Model evaluation results of compressive strength prediction 

 MAE RMSE MSE 𝑅2 MAPE 

Training set 1.720 2.355 2.546 0.973 4.761 

Testing set 2.187 3.325 11.056 0.948 6.245 

 

Table 13. Model evaluation results of flexural strength prediction 



 MAE RMSE MSE 𝑅2 MAPE 

Training set 0.164 0.226 0.051 0.864 2.598 

Testing set 0.199 0.228 0.052 0.775 2.941 

 

Table 14. Hyperparameter configuration for the Random Forest model 

Hyperparameter Search 

space 

Best parameter 

(compressive strength) 

Best parameter 

(flexural strength) 

N_estimators [100, 200, 

300] 

300 300 

Max_depth [10, 20, 30] 10 10 

Min_samples_split [2, 5, 10] 2 2 

Min_samples_leaf [1, 2, 4] 2 2 

Max_feature [sqrt, log2, 

None]  

None sqrt 

Bootstrap [True, False] Ture False 

 

Regarding the random forest model, Table 14 shows the hyperparameter tuning 

search space and the best parameters for compressive and flexural strength 

predictions. For compressive strength prediction and flexural strength 

prediction, in tuning hyperparameters in random forest, the search space for 

each hyperparameter is [100, 200, 300], [10, 20, 30], [2, 5, 10], [1, 2, 4], [the 

square root of the number of features, the logarithm base 2 of the number of 

features, all feature], [bootstrap sampling, without bootstrap sampling], 

respectively. Table 14 also provides the best parameters from Grid search; in 

compressive strength prediction, the hyperparameters were tuned and 

selected to be [300, 10, 2, 2, None, Ture]; for flexural strength, they were [300, 

10, 2, 2, sqrt, false], respectively. Table 13 presents the performance metrics of 

compressive strength forecast of the random forest model. The values of MAE, 

RMSE, MSE, 𝑅2, and MAPE of the training set are 1.720, 2.355, 2.546, 0.973, 

and 4.761. For the testing set, the performance metrics are 2.187, 3.325, 11.056, 

0.948, and 6.245, respectively. In flexural strength prediction from the random 



forest model, the best parameters of Max_feature and Bootstrap were tuned as 

Sqrt and False; other parameters were the same as compressive strength 

prediction. Table 13 describes the random forest model evaluation results of 

flexural strength prediction; the values of MAE, RMSE, MSE, cap R squared, and 

MAPE are 0.164, 0.226, 0.051, 0.864, 2.598, and for the testing set, the values 

are 0.199, 0.226, 0.051, 0.775, 2.941, respectively. 

 

 

Figure 32. Regression plot of predicted versus observed values in compressive strength prediction 



 

Figure 33. Predictive performance of the Random Forest model in compressive strength prediction 

 

 

Figure 34. Regression plot of predicted versus observed values in flexural strength prediction 

 



 

Figure 35. Predictive performance of the Random Forest model in flexural strength prediction 

 

In terms of compressive strength, the random forest findings show an excellent 

fit between the observation and predictions. This trend can also be found in 

Figure 32. Most of all, the prediction value is close to the line of ideality, and 

only two predictions are outside the range of ±20% bound. Figure 33 presents 

the prediction results versus observed values and errors; the blue line 

represents the observed values, the red line represents the prediction values, 

and the black line represents the error in the percentage of observations. It 

demonstrates that, for the random forest machine learning method, the 

difference between the experimental value and the predictive value of the 

majority of samples is really small. The most common error in predictions is 

located in the range of 0% to 10% of the observation value. It verifies the 

feasibility of using packing density as an input variable to develop a random 

forest model for compressive strength prediction of alkali-activated concrete. 

The random forest model created in this investigation, which set packing 

density as a new input value, predicts an accurate value in compressive strength 

of alkali-activated concrete, compared with published models developed for 



alkali-activated concrete compressive strength prediction using random forest 

model; it is able to provide equivalent or superior performance. The random 

forest from Gomaa et al., Sun et al., and Li et al. got the accuracy of compressive 

strength prediction are 0.944, 0.85, and 0.94, respectively (Gomaa et al., 2021) 

(Sun et al., 2023a) (Li et al., 2023). 

 

In flexural strength prediction, Figure 34 shows the regression plot of predicted 

versus observed values, all training set predictions, and testing values within 

the range of plus or minus20% of the ideality line, which means a good accuracy 

of random forest model in flexural strength prediction of alkali-activated 

concrete when curing time is 28 days. Figure 35 presents the predictive 

performance of the random forest model in flexural strength prediction, as the 

black line in the figure is the error between predictions and observations in 

percentage; nearly all of the predictions have an error of 10%. This result proves 

that the random forest model developed in this investigation has good accuracy 

in flexural strength prediction with the packing density of aggregates as an input 

parameter in the machine learning model. Previous studies used equations to 

predict the flexural strength of GGBS/fly ash-based alkali-activated concrete, 

the standard error is 0.03, and the 𝑅2  value is 0.35 (Sun et al., 2023a). 

Compared with flexural strength prediction, the random forest machine 

learning model in this investigation shows advanced accuracy. However, 

according to the experiment limitations in this research, the dataset in flexural 

strength prediction is not comprehensive enough, the more data points need 

to be added in further model training.  

 

6.4 Extreme Gradient Boosting  

Table 15. Model evaluation results of compressive strength prediction 



 MAE RMSE MSE 𝑅2 MAPE 

Training set 0.775 1.025 1.050 0.995 2.124 

Testing set 2.185 3.065 9.392 0.956 5.274 

 

Table 16. Model evaluation results of flexural strength prediction 

 MAE RMSE MSE 𝑅2 MAPE 

Training set 0.025 0.052 0.003 0.992 0.383 

Testing set 0.153 0.234 0.055 0.748 2.367 

 

Table 17. Hyperparameter configuration in Extreme Gradient Boosting model 

Hyperparameter Search space Best parameter 

(compressive strength) 

Best parameter (flexural 

strength) 

N_estimators [100, 200, 

300] 

100 300 

Learning_rate [0.01, 0.1, 

0.2] 

0.2 0.01 

Max_depth [3, 4, 5] 3 3 

Min_child_weight [1, 2, 3] 2 3 

Subsample [0.8, 0.9, 1.0] 0.8 0.8 

Colasample_bytree [0.8, 0.9, 1.0] 0.9 0.8 

 

For the extreme gradient boosting model, Table 17 shows the hyperparameter 

turning search space and optimal parameters for mechanical properties 

prediction using extreme gradient boosting. In compressive and flexural 

strength prediction, few hyperparameters were selected in the extreme 

gradient boosting model. The search Spaces for each hyperparameter are [100, 

200, 300], [0.01, 0.1, 0.2], [3, 4, 5], [1, 2, 3], [0.8, 0.9, 1.0], [0.8, 0.9, 1.0], 

respectively. After Grid search, the best hyperparameters of extreme gradient 

boosting are shown below: N_estimator are 100 and 300, Learning_rate 0.2 and 

0.01, Max_depth are both 3, Min_child_weight are 2 and 3, Subsample are both 



0.8, Colasample_bytree are 0.9 and 0.8 respectively. Table 15 describes the 

evaluation results of the extreme gradient boosting model for the prediction of 

compressive strength. The values of MAE, RMSE, MSE, 𝑅2, and MAPE are 0.775, 

1.025, 1.050, 0.995, and 2.124, respectively. For the test set, these values are 

2.185, 3.065, 9.392, 0.956, and 5.274. In the training and testing of the extreme 

gradient boosting model for flexural strength, which is shown in Table 16, the 

model performance indexes MAE, RMSE, MSE, 𝑅2, and MAPE were 0.025, 0.052, 

0.003, 0.992, and 0.383 in the training set, and 0.153, 0.234, 0.055, 0.748 and 

2.367 in the test set, respectively. These performance metrics indicate that the 

extreme gradient boosting model in this investigation is able to provide accurate 

predictions of the compressive strength of alkali-activated concrete. Compared 

with previous studies, a gradient boosting regression tree model has been 

developed by Sun et al. to predict the compressive strength of alkali-activated 

concrete; the 𝑅2  of the prediction model is 0.94 (Sun et al., 2023a). Li et al. 

created a machine learning model with gradient boosting and trained with 177 

data points in the dataset, the accuracy of the model shows 𝑅2 very close to 1 

(Li et al., 2023). And Afzali et al. used a gradient boosting model that performed 

superior results in compressive strength prediction of metakaolin based 

geopolymer concrete, with 0.983 of 𝑅2 (Afzali et al., 2024). It denotes that this 

extreme gradient boosting model can achieve the same or even better accuracy 

in compressive strength predictions.  

 



 

Figure 36. Regression plot of predicted versus observed values in compressive strength prediction by 

extreme gradient boosting model 

 

 

Figure 37. Predictive performance of the extreme gradient boosting model in compressive strength 

prediction 

 



 

Figure 38. Regression plot of predicted versus observed values in flexural strength prediction 

 

 

Figure 39. Predictive performance of the Random Forest model in flexural strength prediction 

 

This conclusion is also proved by Figure 36 and Figure 37. The first figure shows 

that in the training set, nearly all results were close to the ideality line and all 



within the range of a plus or ±20% bound to the ideality line; in the testing set, 

only one point was outside the range. In the second figure, except for one error 

bigger than 10% of observation, others all keep an error in 10% of observation, 

which indicates a favorable performance of extreme gradient boosting in 

compressive strength prediction when packing density is an important input 

variable in the dataset. For flexural strength prediction, Figure 38 presents the 

regression plot of flexural strength predicted versus observed values in both the 

training set and testing set; in this figure, the vast majority of both the training 

set and testing set data fell into a ±20% error band deviated from experimental 

results. Figure 39 also shows the same performance; almost all predictions 

contained an error of less than ±10%. However, in flexural strength prediction, 

the performance of the testing data is significantly worse than that of the 

training data. The error values are much higher, and the 𝑅2 value drops to 0.748, 

indicating that the model does not generalize as well. A significant drop in 

performance between the training and testing sets shown in flexural strength 

prediction (𝑅2 from 0.992 to 0.748). For this case is likely due to a combination 

of factors. The small dataset which only includes 33 samples limits the model’s 

ability to generalize as normally, even cross-validation and regularization were 

applied. The dataset may also be affected from inadequate feature relevance, 

high variance in the target variable, or distribution imbalances between the 

training and testing sets. Additionally, the presence of noise or outliers in the 

experimental data could cause the model to overfit the training set while failing 

to capture meaningful patterns for prediction. The dataset may also suffer from 

inadequate feature relevance, high variance in the target variable, or 

distribution imbalances between the training and testing sets. Additionally, the 

presence of noise or outliers in the experimental data could cause the model to 

overfit the training set while failing to capture meaningful patterns for 

prediction. The issues above all influence the performance of XGBoost model 



on unknown data. 

 

6.5 Support Vector Machine 

Table 18. Model evaluation results of compressive strength prediction 

 MAE RMSE MSE 𝑅2 MAPE 

Training set 4.371 5.260 27.670 0.865 12.394 

Testing set 3.576 4.374 19.128 0.911 9.761 

 

Table 19. Model evaluation results of flexural strength prediction 

 MAE RMSE MSE 𝑅2 MAPE 

Training set 0.319 0.369 0.136 0.621 4.868 

Testing set 0.272 0.354 0.124 0.424 4.268 

 

Table 20. Hyperparameter configuration in support vector machine model 

Hyperparameter Search space Best parameter 

(compressive 

strength) 

Best parameter 

(flexural strength) 

C [0.001, 0.01, 0.1, 

0.5, 1, 2] 

2 2 

Kernel [linear, rbf] linear Linear 

Gamma [scale, auto] scale scale 

Degree [2, 3, 4] 2 2 

Epsilon [0.001, 0.01, 0.1, 

0.5, 1, 2] 

2 0.5 

 

From Table 18 and Table 19, the model performance evaluation metrics results 

for the support vector machine model predicting compressive and flexural 



strength show differing performance levels. For compressive strength 

prediction, the training set has an MAE of 4.371, RMSE of 5.260, MSE of 27.670, 

𝑅2  of 0.865, and MAPE of 12.394%. The testing set shows improved 

performance with an MAE of 3.576, RMSE of 4.374, MSE of 19.128, 𝑅2 of 0.911, 

and MAPE of 9.761. Otherwise, in flexural strength prediction, the training set 

has an MAE of 0.319, RMSE of 0.369, MSE of 0.136, 𝑅2 of 0.621, and MAPE of 

4.868%. The testing set has an MAE of 0.272, RMSE of 0.354, MSE of 0.124, 𝑅2 

of 0.424, and MAPE of 4.268. The performance metrics presented the 

performance with low prediction accuracy. In previous studies, Peng and Unluer 

(2022) archived 0.915 of 𝑅2 using a support vector machine in alkali-activated 

concrete compressive strength prediction. Afzali got a similar accuracy in 

support vector machine prediction with a 235 data points size dataset (Afzali et 

al., 2024). Overall, while the SVM model performs well for compressive strength 

prediction with high accuracy and generalization, the prediction of flexural 

strength could benefit from further investigation in the dataset to enhance its 

predictive power. 

 

Figure 40. Regression plot of predicted versus observed values in compressive strength prediction by 

support vector machine model 



 

 

Figure 41. Predictive performance of the Random Forest model in compressive strength prediction by 

support vector machine model 

 

 

Figure 42. Regression plot of predicted versus observed values in flexural strength prediction by support 

vector machine model 



 

 

Figure 43. Predictive performance of the Random Forest model in flexural strength prediction by support 

vector machine model 

 

Table 20 lists all the hyperparameter configurations, search space, and results 

in the support vector machine model used to predict the compressive strength 

and flexural strength of alkali-activated concrete. The hyperparameters tuned 

include the regularization parameter C, the kernel type, gamma, degree, and 

epsilon. The search space for C was [0.001, 0.01, 0.1, 0.5, 1, 2]; for the kernel it 

was [linear, rbf]; for gamma, it was [scale, auto]; for the degree it was [2, 3, 4], 

and for epsilon it was [0.001,  0.01, 0.1, 0.5, 1, 2].For compressive strength 

prediction, the best parameters were C=2, kernel=linear, gamma=scale, 

degree=2, and epsilon=2. For flexural strength prediction, the best parameters 

were C=2, kernel=linear, gamma=scale, degree=2, and epsilon=0.5. These 

optimal values were found through hyperparameter tuning to enhance the 

model's performance in predicting both types of strength. Figure 40 represents 

the observations versus predictions with errors in prediction values. When the 



observation value and prediction value are compared, it can be seen that the 

forecasts nearly match the observations, demonstrating the support vector 

machine model's strong performance and general agreement with the data. 

The error fluctuates around 0%, indicating that the model predictions are 

sometimes above and sometimes below the exact values. However, there are 

instances where the error exceeds 20%, and a few cases in which it goes below 

-20%, suggesting occasional significant deviations between predictions and 

observations. Figure 41 shows the predicted versus observed plot. In this figure, 

most points clustered around the ideal line and within the acceptable error 

range between ± 20% line; however, when the compressive strength of the 

alkali-activated sample has an observed value between 20 to 30 𝑀𝑃𝑎 , the 

predictions located beyond the acceptable error range, which demonstrate in 

low compressive strength range, the performance of support vector machine in 

compressive strength prediction are much lower than in high compressive 

strength range. This may be because of the noise in the data and limitations of 

the support vector machine model to generalize from the dataset. For flexural 

strength prediction, Figure 42 and Figure 43 show the observations and 

prediction results. In the first plot, the predicted values (red points) closely 

follow the observed values (blue points), with the percentage error (black line) 

remaining relatively low and stable, mainly within a ±20% range. The second 

plot, displaying the predicted versus observed flexural strength, shows that 

training (red squares) and testing (blue circles) data points are tightly clustered 

around the ideal line and within the bounding lines.  

 

 

6.6 k-nearest neighbors 

Table 21. Model evaluation results of compressive strength prediction 



 MAE RMSE MSE 𝑅2 MAPE 

Training set 2.105 2.951 8.707 0.957 5.547 

Testing set 2.677 3.384 11.454 0.946 7.248 

 

Table 22. Model evaluation results of flexural strength prediction 

 MAE RMSE MSE 𝑅2 MAPE 

Training set 0.248 0.327 0.107 0.702 3.854 

Testing set 0.203 0.250 0.062 0.713 3.149 

 

Table 23. Hyperparameter configuration in k-nearest neighbors model 

Hyperparameter Search space Best parameter 

(compressive strength) 

Best parameter 

(flexural strength) 

N_neighbors [3, 5, 7, 9] 3 7 

Weight [uniform, 

distance] 

uniform uniform 

Algorithm [auto, 

ball_tree, 

kd_tree, 

brute] 

auto auto 

Leaf_size [20, 30, 40, 

50] 

20 20 

P [1, 2] 1 1 

 



 

Figure 44. Regression plot of predicted versus observed values in compressive strength prediction by k-

nearest neighbors model 

 

 

Figure 45. Predictive performance of the Random Forest model in flexural strength prediction by k-

nearest neighbors model 

 



 

Figure 46. Regression plot of predicted versus observed values in compressive strength prediction by k-

nearest neighbors model 

 

 

Figure 47. Predictive performance of the Random Forest model in flexural strength prediction by k-

nearest neighbors model 

 



The evaluation of the K-Nearest Neighbors model for predicting compressive 

and flexural strengths is demonstrated by the comprehensive metrics provided 

in Table 21 and Table 22. For compressive strength prediction, the 𝑅2 of training 

and testing values of 0.957 and 0.946, respectively, indicating high accuracy of 

the K-Nearest Neighbors model in compressive prediction of alkali-activated 

concrete with packing density as a parameter in the dataset. The training set 

metrics MAE of 2.105, RMSE of 2.951, MSE of 8.707, and MAPE of 5.547, 

alongside the testing set metrics MAE of 2.677, RMSE of 3.384, MSE of 11.454, 

and MAPE of 7.248, these model performance metrics also provide the same 

results with 𝑅2 . Conversely, the flexural strength prediction model achieves 

moderate values of 𝑅2, the values are 0.702 for training and 0.713 for testing, 

not only 𝑅2, but also other metrics of performance evaluation, MAE (0.248 for 

training, 0.203 for testing), RMSE (0.327 for training, 0.250 for testing), MSE 

(0.107 for training, 0.062 for testing), and MAPE (3.854 for training, 3.149 for 

testing). The optimal hyperparameters for compressive strength prediction 

model include N_neighbors: 3, Weight: uniform, Algorithm: auto, Leaf size: 20 

and P:1, which the Grid Search space are [3, 5, 7, 9], [uniform, distance], [auto, 

ball_tree, kd_tree, brute], [20, 30, 40, 50] and [1, 2], respectively. In the 

hyperparameters tuning in flexural strength prediction takes the same 

hyperparameters search space with compressive strength prediction, however, 

the best results are N_neighbors: 7, Weight: uniform, Algorithm: auto, Leaf size: 

20 and P:1. However, in flexural strength prediction after compared with model 

performance metrics, metrics have greater value in training set than testing set, 

which is not normal in typical scenarios. This may be explained by the size of 

the dataset in flexural strength prediction; random variability can cause the test 

set to appear easier to predict than the training set, especially in a small dataset; 

this situation is less common with large datasets. Similar observations occur in 

predicting dynamic yield stress and static yield stress, as given by Sun et al. (Sun 



et al., 2023b). Also, in compressive strength prediction by using the support 

vector machine model, Peng and Unluer (2022) found that the performance 

evaluation metrics showed higher accuracy in the testing set than in the training 

set. After considering this case, more experiment studies need to be done to 

advance the dataset of flexural strength prediction. Figure 45 shows the 

observed verse predicted compressive strength values with a parallel plot of the 

prediction error percentages. The strong correspondence between the 

observed (blue) and observed (red) values indicates that the KNN model 

accurately captures the underlying pattern in the data. The error rates (black 

line) are mostly within a range between 20% higher or less than observed values, 

which suggests that the model has accurate predictions of the compressive 

strength of alkali-activated concrete. Figure 44 is a scatter plot comparing 

predicted compressive strength to observed values for training and testing sets. 

The data points cluster around the ideal y = x line, the dashed lines at y = 1.2x 

and y = 0.8x serve as acceptable deviation boundaries, and most of the data 

points are located within this boundary, further validating the model's 

predictions. Figure 46 illustrates the observed versus predicted flexural strength 

values alongside the prediction error percentages in flexural strength 

predictions. Similar to the compressive strength plot, the observed and 

predicted values are closely aligned, indicating accurate predictions by the k-

nearest neighbors model. The error percentages are generally low, 

demonstrating consistent performance. Figure 47 shows the relationship 

between predicted and observed flexural strength values. The data points are 

closely grouped around the y = x line, indicating predictive solid performance. 

Figure 45, a scatter plot for flexural strength predictions akin to the compressive 

strength plot, includes dashed boundary lines (y = 1.2x and y = 0.8x), within 

which most data points reside. Still, compared with compressive strength 

predictions, the accuracy does not show well. These visualizations and 



quantitative metrics demonstrate that the k-nearest neighbors model performs 

robustly in predicting the compressive strength of alkali-activated concrete with 

packing density as a critical parameter in the dataset. After comparison with the 

k-nearest neighbors model from Karademupa and Pancharathi, Khan et al., the 

k-nearest neighbors model in this study shows similar or even better 

performance than previous studies (Karadumpa and Pancharathi, 2021) (Khan 

et al., 2024). Nonetheless, the flexural strength prediction does not achieve the 

same accuracy, and further experiments can enhance the dataset and ensure 

the model’s reliability in flexural strength prediction.  

 

6.7 Model comparison 

6.7.1 Compressive strength prediction 

 

Figure 48. Coefficient of determination R2 of four machine learning models in compressive strength 

prediction 

 

As shown in Figure 48, the performance of four machine learning models was 

evaluated in predicting the compressive strength of alkali-activated concrete 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Random Forest Extreme Gradient
Boosting

Support Vector
Machine

K-Nearest
Neighbors

C
o

ef
fic

ie
n

t 
o

f 
d

et
er

m
in

at
io

n
 𝑅

2
 

Training Set Testing Set



using the coefficient of determination 𝑅2  for both training and testing sets. 

Overall, the Extreme Gradient Boosting model showed the highest predictive 

accuracy, strong performance, and minimal difference between the training and 

testing sets, indicating excellent generalization capability. The Random Forest 

and K-Nearest Neighbors models also demonstrated high accuracy, with slightly 

lower performance than Extreme Gradient Boosting but still maintaining strong 

predictive power. The Support Vector Machine model showed comparatively 

lower accuracy, with a noticeable difference between the training and testing 

sets. It may not capture the complex relationships in the data as effectively as 

the ensemble methods. The results indicate that ensemble methods, 

particularly Extreme Gradient Boosting, provide superior predictive accuracy for 

the compressive strength of alkali-activated concrete. These models' ability to 

generalize well to new data. With its lower accuracy and greater discrepancy 

between training and testing performance, the Support Vector Machine model 

appears less adept at capturing nonlinear relationships within the data. These 

findings highlight the efficacy of ensemble learning methods in this application, 

suggesting that further exploration of hyperparameter optimization and 

additional features could enhance predictive accuracy. And the high 

performance of machine learning models proved that the packing density can 

be an input variable in alkali-activated concrete compressive strength 

prediction. Previous studies have already found the possibility of packing 

density used in the dataset in traditional Portland cement concrete compressive 

strength prediction (Pallapothu et al., 2023). The four machine learning models 

achieve equivalent or even superior performance in compressive strength in 

alkali-activated concrete compared with existing machine learning models 

(Gomaa et al., 2021) (Sun et al., 2023b) (Sun et al., 2023a) (Peng and Unluer, 

2022) (Khan et al., 2024) (Zhang et al., 2022) (Rajakarunakaran et al., 2022). 

Future research might explore the dataset to collect more data points to 



enhance the packing density contribution in predicting alkali-activated concrete 

compressive strength, to further improve model performance, and to 

contribute valuable insights to civil engineering practices in alkali-activated 

concrete properties. 

 

 

6.7.2 Flexural Strength Prediction 

 

Figure 49. Coefficient of determination R2 of four machine learning models in flexural strength prediction 

 

Similar to the performance in compressive strength prediction, Figure 49 shows 

the performance of the same four machine learning models assessed for 

predicting the flexural strength of alkali-activated concrete. Extreme Gradient 

Boosting achieved the highest accuracy again, with consistent performance 

across training and testing sets. Random Forest and K-Nearest Neighbors also 

performed well, although there was a slightly larger gap between training and 

testing set performance compared to Extreme Gradient Boosting. The Support 

Vector Machine model showed the least accuracy, with significant discrepancies 

between the training and testing sets, indicating potential overfitting and less 

robustness in capturing the flexural strength characteristics.  
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The results indicate that while ensemble methods such as Extreme Gradient 

Boosting and Random Forest provide strong predictive accuracy for 

compressive strength, the prediction of flexural strength proves to be more 

challenging. The models exhibit a noticeable decrease in accuracy for flexural 

strength, particularly with the Support Vector Machine showing significant 

discrepancies between training and testing sets. This suggests potential 

overfitting and a lack of robustness in capturing the complex behavior of flexural 

strength in alkali-activated concrete.  

 

To enhance the performance of flexural strength prediction models, expanding 

the dataset is a critical step. Collecting additional experimental data would 

provide the models with more diverse patterns to learn from, thereby 

improving their generalizability. Alternatively, synthetic data generation 

methods, such as the Synthetic Minority Oversampling Technique (SMOTE), or 

data augmentation strategies could be employed to artificially increase the 

dataset size. Incorporating data from relevant external studies or publicly 

available datasets, provided they align with the experimental context, may also 

supplement the dataset effectively and reduce overfitting risks. Implementing 

ensemble or advanced machine learning models can further enhance predictive 

accuracy. Ensemble approaches, such as stacking or bagging, which combine 

algorithms like Random Forest, XGBoost, and KNN, leverage the complementary 

strengths of individual models while mitigating their limitations. Additionally, 

advanced gradient boosting methods such as LightGBM or CatBoost are 

particularly suitable for small datasets due to their efficiency and robustness. 

Exploring neural network architectures, including Multi-Layer Perceptrons or 

1D-Convolutional Neural Networks (1D-CNNs), can enable the capture of 

complex, non-linear interactions within the data. Furthermore, hybrid models 



that integrate machine learning with domain-specific knowledge may offer a 

more comprehensive and contextually accurate prediction framework.  

 

6.8 Effects of Different Input Parameters 

Analyzing the potential influence and importance of the prediction of each 

input variable is helpful in alkali-activated concrete mix design. This research 

can identify those input variables that have a big impact on the final results and 

those with little impact. To make a measurement of different input variables in 

machine learning model results, permutation feature importance is a normal 

method (Almustafa and Nehdi, 2020). In the permutation feature importance 

method, a certain input variable 𝑋𝑖  will shuffle individually, and other input 

variables remain in the previous arrangement; if this procedure results from the 

prediction accuracy changing significantly, it means this input variable 𝑋𝑖 has a 

high importance in all machine learning input variables. Based on the core idea 

of the permutation feature importance method, in this study, an equation was 

provided below to calculate the permutation feature importance value of a 

specific input variable by using Mean Absolute Error as the error coefficient.  

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

= 𝑀𝐴𝐸𝑝𝑒𝑟𝑚𝑢𝑡𝑒 − 𝑀𝐴𝐸𝑜𝑟𝑖𝑔𝑛𝑖𝑎𝑙 

 

Equation 18 

In this equation, 𝑀𝐴𝐸𝑝𝑒𝑟𝑚𝑢𝑡𝑒  represents the Mean Absolute Error of the 

machine learning model before permuting an input variable, 𝑀𝐴𝐸𝑜𝑟𝑖𝑔𝑛𝑖𝑎𝑙 

represents the Mean Absolute Error of the machine learning model after 

permuting an input variable. According to this method, the value of 

permutation feature importance of an input variable will describe the influence 

of the machine learning model. When this value is close to zero, a low impact 

of this variable on the output value has been proved; while this was big, the 



impact of this variable on the output value was serious.  

 

Table 24. Permutation feature importance values of different input variables in the compressive strength 

prediction by the Extreme Gradient Boosting model 

Notation  Input variable Permutation feature importance 

X1 Modulus in activator solution 0.003 

X2 
Activator to Cementitious materials 

ratio 
0.080 

X3 Water to Cementitious materials ratio 0.3326 

X4 Weight of Cementitious materials  0.4144 

X5 Packing density 1.2811 

X6 
Sodium silicate to Sodium hydroxide 

ratio 
1.2922 

X7 Fly ash to GGBS ratio 2.9767 

X8 Curing time 12.2166 

 

Table 25. Permutation feature importance values of different input variables in the flexural strength 

prediction by the Extreme Gradient Boosting model 

Notation  Input variable Permutation feature importance 

X1 Modulus in activator solution 0.2680 

X2 
Activator to Cementitious materials 

ratio 
0.0094 

X3 Water to Cementitious materials ratio 0.0507 

X4 Weight of Cementitious materials  0.0312 

X5 Packing density 0.0573 

X6 
Sodium silicate to Sodium hydroxide 

ratio 
0.1243 

X7 Fly ash to GGBS ratio 0.0912 

 

 

 



 

Figure 50. Importance of features in compressive strength prediction by Extreme Gradient Boosting 

model 

 

 

Figure 51. Importance of features in flexural strength prediction by Extreme Gradient Boosting model 

 

Table 26. Feature importance values of different input variables in the compressive strength prediction by 

the Random Forest model 

Notation  Input variable Permutation feature importance 



X1 Modulus in activator solution 0.055949 

X2 
Activator to Cementitious materials 

ratio 
0.002982 

X3 Water to Cementitious materials ratio 0.008839 

X4 Weight of Cementitious materials  0.003058 

X5 Packing density 0.047344 

X6 
Sodium silicate to Sodium hydroxide 

ratio 
0.053000 

X7 Fly ash to GGBS ratio 0.132631 

X8 Curing time 0.696197 

 

Table 27. Feature importance values of different input variables in the flexural strength prediction by the 

Random Forest model 

Notation  Input variable Permutation feature importance 

X1 Modulus in activator solution 0.474312 

X2 
Activator to Cementitious materials 

ratio 
0.000389 

X3 Water to Cementitious materials ratio 0.024902 

X4 Weight of Cementitious materials 0.001716 

X5 Packing density 0.040041 

X6 
Sodium silicate to Sodium hydroxide 

ratio 
0.381120 

X7 Fly ash to GGBS ratio 0.077519 



 

Figure 52. Importance of features in compressive strength prediction by Random Forest model 

 

 
Figure 53. Importance of features in flexural strength prediction by Random Forest model 

 

 



 

As mentioned in the previous section, in this study, the Extreme Gradient 

Boosting model and Random Forest model have the best performance in both 

compressive strength prediction and flexural strength prediction. To analyze the 

feature importance of each input parameter, Table 24 and Figure 50 show the 

results after calculating the permutation feature importance value of the 

Extreme Gradient Boosting model. In compressive strength prediction, curing 

time is the most influential parameter which shows a significant impact on 

compressive strength, this is the common phenomenon in concrete materials. 

The following factors are fly ash to GGBS ratio, sodium silicate to sodium 

hydroxide ratio, and packing density; each has an important permutation 

feature of 2.9767, 1.2922, and 1.2811, respectively. This result proved that the 

packing density is an important factor in alkali-activated compressive strength. 

Modulus in activator solution and activator to cementitious materials ratio have 

the smallest impact on prediction. The water to cementitious materials ratio 

and weight of cementitious materials has a permutation feature importance 

value of 0.3326 and 0.4144, which show intermediate influence in prediction. 

According to the Random Forest built-in feature importances analysis program, 

feature importances in Random Forest model were provided in Table 26 and 

Figure 52, for compressive strength, the Random Forest model indicates that 

curing time is the most significant contributor, followed by the fly ash to GGBS 

ratio, the sodium silicate to sodium hydroxide ratio, the modulus in the activator 

solution, and packing density. Meanwhile, the water-to-cementitious ratio, 

weight of cementitious materials, and activator-to-cementitious ratio show 

relatively smaller impacts. However, the permutation features important value 

is limited to analyzing the connection between input variables and output 

values from a single correspondence; it cannot show how a factor affects the 

final prediction outcome; this is due to the compressive strength of alkali-

activated concrete affected by many different influencing factors. The literature 



already proved that when the different input variables change in the alkali-

activated concrete mixture, the ultimate compressive strength will be 

influenced, but the effects are very different. According to the permutation 

feature importance results, obviously, curing time, sodium silicate to sodium 

hydroxide ratio, and packing density all have significant effects on weight 

(Niyazuddin and B, 2023) (Sun et al., 2023a) (Sun et al., 2023b) (Zhang et al., 

2022) (Peng and Unluer, 2022). Due to machine learning models not being able 

to provide a formula directly between input variables and output variables, a 

sensitivity analysis should be done in further investigation.  

 

In flexural strength prediction, Table 25 and Figure 51 present the permutation 

feature importance of input variables in the Extreme Gradient Boosting model. 

The importance of input variables from high to low is modulus in activator, 

sodium silicate to sodium hydroxide ratio, fly ash to GGBS ratio, packing density, 

water to cementitious materials ratio, weight of cementitious materials and 

activator to cementitious materials ratio. Table 27 and Figure 53 provide the 

feature importance of flexural strength prediction in Random Forest model. The 

modulus in the activator solution dominates, followed by the sodium silicate to 

sodium hydroxide ratio. The fly ash to GGBS ratio, packing density, and water-

to-cementitious ratio play moderate roles, whereas the weight of cementitious 

materials and the activator-to-cementitious ratio have minimal influence. In 

both models, packing density shows moderate impact to flexural strength 

prediction 

 

7. Limitations and further study 

This investigation is based on a scientific analysis of predicting mechanical 

properties of alkali-activated concrete through machine learning models. Some 



limitations need to be addressed. The key restrictions are specified as follows:  

 

Using certain input variables provided in the concrete mix design, the trained 

machine learning model can predict the compressive strength and flexural 

strength of alkali-activated concrete using four distinct machine learning 

algorithms. Although all machine learning models show high accuracy in 

compressive strength prediction, the machine learning models still need to be 

verified by a more comprehensive dataset. In machine learning models, 

aggregates' packing density influences prediction performance, so validating 

this observation is necessary in future studies. In future studies, more 

comprehensive experimental designs and more experimental data collection 

are needed to verify the accuracy of machine learning models in predicting 

compressive strength in actual alkali-activated concrete design and research. 

This can reduce the material and time costs required in the alkali-activated 

concrete design process. 

 

Regarding using machine learning models to predict the flexural strength of 

alkali-activated concrete, its prediction accuracy is not high after training and 

testing with the existing data set. This is due to the small size of the data set. In 

the future, more experimental data will be needed to establish a 

comprehensive data set for training and testing to demonstrate the 

performance of machine learning methods in predicting the flexural strength of 

alkali-activated concrete. 

 

8. Conclusion  

In this study, machine learning regression techniques were used to make the 

models predict the compressive strength and flexural strength of alkali-



activated concrete, which is made of ground granulated blast-furnace slag and 

fly ash. The dataset for model training and testing was collected from laboratory 

experiments. 99 compressive strength data points and 33 flexural strength data 

points were included in the dataset. Packing density of aggregates, fly ash to 

ground granulated blast-furnace slag weight ratio, weight of cementitious 

materials, activator to cementitious materials ratio, sodium silicate to sodium 

hydroxide ratio, modulus of activator, water to cementitious materials ratio. 

From the experiment study and the performance of machine learning models, 

the following conclusions can be drawn: 

1. In experiments, both the compressive strength and the flexural strength of 

alkali-activated concrete show high relevance with the packing density of 

aggregates. With the increasing aggregate packing density, the compressive 

strength or flexural strength increases. 

2. Random Forest, Extreme Gradient Boosting, Support Vector Machine, and K-

Nearest Neighbors model all have the ability to predict the compressive 

strength of alkali-activated concrete. In these four models, Extreme Gradient 

Boosting demonstrated the best performance both in the training and testing 

sets. The effective rank of four machine learning models in prediction from high 

to low is Extreme Gradient Boosting, Random Forest, K-Nearest Neighbors, and 

Support Vector Machine.  

3. Machine learning models developed in this research achieve standard 

accuracy in predicting compressive strength with published research papers.  

4. In flexural strength prediction, the Extreme Gradient Boosting Random Forest 

shows better performance than the K-Nearest Neighbors and Support Vector 

Machine. Overall, all predicted accuracy does not show well in flexural strength 

compared to compressive strength prediction. The lack of data points in the 

dataset is the crucial influence of flexural strength prediction; further 

experiment study needs to be carried out to build a comprehensive dataset for 



machine learning model development.  

5. Feature importance from XGBoost and RF models demonstrate that curing 

time is the strongest influence on compressive strength, while the modulus of 

the activator solution dominates flexural strength prediction. Among the other 

factors, the fly ash to GGBS ratio, sodium silicate to sodium hydroxide ratio, and 

notably, the packing density play a significant role in enhancing both 

compressive and flexural strength. In contrast, the water to cementitious ratio, 

weight of cementitious materials, and activator to cementitious materials ratio 

have relatively moderate or minimal impacts. However, because feature 

importance does not illuminate the complex interactions within these variables, 

further sensitivity analysis is recommended to capture the synergistic effects 

that ultimately govern alkali-activated concrete performance. 

6. This study successfully demonstrated the application of machine learning 

techniques, including Random Forest, XGBoost, KNN, and SVM, to predict the 

compressive and flexural strength of alkali-activated concrete. The findings 

revealed that the packing density play a curial role in compressive strength and 

flexural strength prediction of alkali-activated concrete, the machine learning 

models perform high accuracy in strength prediction. This investigation 

provided valuable insights into sustainable construction material properties 

prediction through machine learning techniques. These outcomes are 

instrumental for advancing predictive models in the field of sustainable 

construction materials. However, the study has limitations, such as the 

relatively small dataset for strength predictions, which might affect the 

generalizability of the models. Furthermore, the dataset used in the study was 

limited to specific aggregate sizes and material combinations, limiting the broad 

applicability of the model. Despite these challenges, the strengths of this 

research, including its innovative approach and practical relevance, outweigh 

its limitations. Future studies could focus on expanding the dataset and 



exploring additional variables to enhance model accuracy and applicability in 

industrial practice.  

7. This research developed machine learning models to predict the compressive 

strength and flexural strength of alkali-activated concrete, these models reduce 

the laboratory experiment spend during research in the further study, also 

improve the accuracy of strength prediction in alkali-activated concrete. 

However, according to the limitation of laboratory experiment, the dataset used 

in this investigation, this may cause the machine learning models lack of 

generalizability. To improve this investigation, future research should focus on 

expanding the dataset, particularly for strength, to enhance model robustness 

and generalizability. Incorporating a wider range of material properties, such as 

diverse aggregate types and alkali activator compositions, would increase 

applicability across various scenarios. Advanced machine learning techniques, 

like neural networks and hybrid models, should be explored to improve 

predictive accuracy, especially for smaller datasets. Sensitivity analysis and 

external validation using other datasets would provide deeper insights into 

influential factors and model reliability. Additionally, integrating long-term 

durability studies, analyzing environmental and economic impacts, and 

applying models to broader structural and property contexts would strengthen 

the practical relevance and sustainability of the findings. 
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