
Addressing the Performance Challenges of
Metamorphic Testing

Author:
Zhihao Ying

Supervisors:
Prof. Dave Towey

Dr. Anthony Bellotti

A thesis submitted to University of Nottingham
for the degree of Doctor of Philosophy

School of Computer Science
Faculty of Science and Engineering

University of Nottingham Ningbo China

May 2024

https://research.nottingham.edu.cn/en/persons/dave-towey
https://research.nottingham.edu.cn/en/persons/anthony-graham-bellotti

Addressing the Performance Challenges of Metamorphic Testing, © May 2024

Author:
Zhihao Ying

Supervisors:
Prof. Dave Towey

Dr. Anthony Bellotti

University:
University of Nottingham Ningbo China

ii

A B S T R A C T

Software testing is an important process that should be considered throughout the entire
life-cycle of software development: It is used to assess and assure the quality of the System
Under Test (SUT). One of the fundamental problems faced in software testing is the oracle
problem, which means that it is too expensive or even impossible to implement an oracle,
which represents a mechanism to verify the correctness of the output or behavior of the
SUT. Metamorphic Testing (MT) is a popular property-based software testing approach
that has been proven to be effective in alleviating the oracle problem. As a central compo-
nent of MT, Metamorphic Relations (MRs) are generally derived from necessary properties
of the SUT. To implement MT, some program inputs are first generated as Source Test
Cases (STCs), and then an MR can be used to generate new inputs as Follow-up Test Cases
(FTCs) based on the STCs. If the actual outputs of STCs and FTCs violate the given MR,
then the SUT is referred to as faulty in terms of the property related to the MR. Different
from the traditional way of detecting software failures through checking the test result
against an oracle, MT detects failures by verifying the MRs among STCs and FTCs as well
as their relevant outputs. The STCs and their corresponding FTCs, considered as a whole,
are called the Metamorphic Groups (MGs), and the MGs that violate the given MR are
called MR-violating MGs.

Despite its increasing popularity, the performance of MT still needs further improve-
ment. This thesis focuses on addressing the performance challenges of MT. Specifically,
this thesis attempts to: (1) Improve MT performance (i.e. test effectiveness and efficiency)
by enhancing the quality of MRs and MGs; (2) improve MT performance by addressing
the problems existing in the design and application of MG-generation algorithms; and (3)
improve software testing performance (for testing credit risk models) by employing MT as
an additional model testing, validation and selection methodology.

First, the successful implementation of MT as well as its performance are highly depen-
dent on the MRs and MGs, and therefore, this thesis improves the quality of MRs and MGs
throughout their entire life-cycles:

• This thesis proposes new MR patterns to guide the identification of concrete MRs.

• This thesis proposes new MG-generation algorithms to generate effective MGs.

• This thesis proposes a new MR-MG pair selection algorithm to automatically and
dynamically select effective MR-MG pairs for execution from existing ones.

This thesis evaluates the performance of the proposed methodologies through empirical
experiments, and the experimental results indicated that they are capable of improving
both the efficiency and effectiveness of MT. In addition, this thesis also introduces the
concept of MR-violation regions as an additional evaluation method (for validating exper-
imental results of different MG-generation algorithms).

Second, through the evaluation of MG-generation algorithms, this thesis identifies that
previous MG-generation algorithms may encounter certain problems, which may nega-
tively affect their performance (i.e. test effectiveness and efficiency). This thesis summa-
rizes those situations and formally proposes the concepts of the MT-performance evalua-
tion problem and the input-domain difference problem. This thesis also introduces meth-
ods to address these problems, with the aim of not only avoiding the existence of the same

iii

problems in the proposed methodologies, but also further improving the performance of
previously-published algorithms.

Machine Learning (ML) algorithms have be widely-adopted in financial services for
credit risk modelling and show improved predictive performance in comparison with tra-
ditional linear models. However, the adoption of ML algorithms may raise serious vali-
dation issues, related to the inherent complexity of models. With this consideration, this
thesis proposes a new perspective for testing and validating ML-based credit risk models
that uses properties of the model, or properties hypothesized by users based on business
rationale, to allow testers to predict how a particular change in the input should affect the
output. Specifically, this thesis proposes MT as a model testing, validation and selection
step, complementary to traditional model fit measures, when ML is used for credit risk
modelling.

In summary, this thesis aims to improve the effectiveness and efficiency of MT by focus-
ing on its core parts: The MRs and MGs. The main limitation of the work is that this thesis
has only proposed some methodologies specifically for each part of MT. In this context, the
future work will include investigating the relationships and the connections between the
proposed methodologies and propose an overall MT framework that consists of all these
methodologies.

iv

C O N T E N T S

Abstract . iii

List of Figures . ix

List of Tables . xi

Declaration of Authorship . xv

Acknowledgments . xvii

Publications . xix

Acronyms . xxi

1 introduction . 1

2 literature review . 7

2.1 Conventional Software Testing . 7

2.1.1 Overview . 7

2.1.2 Random Testing . 7

2.1.3 Adaptive Random Testing . 8

2.2 Metamorphic Testing . 13

2.2.1 Overview . 13

2.2.2 Metamorphic Relation Patterns . 14

2.2.3 Metamorphic Exploration and Metamorphic Robustness Testing . . . 19

2.2.4 Advantages and Disadvantages of Metamorphic Testing 19

2.2.5 MT Test Case Generation . 20

2.2.6 MR and MG Selection . 22

2.3 Evaluation Metrics . 23

2.3.1 Test Effectiveness (F-measure and F-ratio) 23

2.3.2 Test Effectiveness (Cohen’s d) . 24

2.3.3 Test Efficiency (Generation Time) . 25

2.3.4 Test-Case Diversity (Dispersion) . 25

2.3.5 Test-Case Diversity (Discrepancy) . 26

2.3.6 Receiver Operating Characteristics (ROC) and Area Under the ROC
Curve (AUC) . 26

2.4 Experiments Setup . 27

2.5 Machine Learning . 30

2.5.1 Neural Networks . 30

v

2.5.2 Decision Trees . 32

2.5.3 Gradient Boosting Decision Trees . 33

2.5.4 Random Forests . 33

2.5.5 Machine Learning in Credit Risk Assessment 33

3 a simulation framework for the process of metamorphic testing . 37

3.1 Introduction and Motivation . 37

3.2 An MT Simulation Framework . 38

3.2.1 Deterministic Metamorphic Relations (DMRs) 38

3.2.2 Metamorphic Relation Violation Regions (MRVRs) 39

3.2.3 Relationship between MRVRs and Failure Regions 40

3.3 Empirical Experiments . 41

3.4 Conclusion . 44

4 addressing the problems in metamorphic group generation algo-
rithms . 45

4.1 Introduction and Motivation . 45

4.2 SFIDMT-ART Algorithm . 46

4.2.1 Motivation, Problem and Solution . 46

4.2.2 Distance Measurements and SFIDMT-ART Algorithm 49

4.2.3 Characteristics of SFIDMT-ART . 52

4.3 Research Questions . 54

4.4 Empirical Experiments . 55

4.4.1 Experimental Setup . 55

4.4.2 Experimental Results and Discussion 58

4.5 Conclusion . 64

5 metamorphic group generation algorithms for improving test ef-
ficiency and effectiveness . 67

5.1 Introduction and Motivation . 67

5.2 MT-PART Algorithms . 68

5.2.1 Selection of Basic Algorithms . 68

5.2.2 MT-based ART by Bisection (MT-BART) 69

5.2.3 MT-based ART through Iterative Partitioning (MT-IPART) 71

5.2.4 Comparison between MT-BART and MT-IPART 73

5.3 Research Questions . 74

5.4 Empirical Experiments . 75

5.4.1 Experimental Setup . 75

5.4.2 Experimental Results, Discussions, and Conclusions 76

5.5 Future Work . 79

5.5.1 MT-based ART by Random Partitioning (MT-RPART) 79

5.5.2 A Combination of SFIDMT-ART and MT-BART 82

5.6 Conclusion . 83

vi

6 metamorphic relation patterns , trees and framework 85

6.1 Introduction and Motivation . 85

6.2 Definitions . 86

6.2.1 Sub-MRP (Sub-Pattern) and Super-MRP (Super-Pattern) 86

6.2.2 Metamorphic Relation Pattern Tree . 87

6.3 Metamorphic Relation Patterns and Trees . 88

6.3.1 Sets MRP . 88

6.3.2 Similar MRP for Big Data Systems . 89

6.3.3 MRIPs for Query-based Systems . 90

6.3.4 MRIPs for Machine Translation Systems 91

6.3.5 Irrelevance MRP for Big Data Systems 91

6.3.6 MROPs for Big Data Systems . 92

6.3.7 Symmetry MRP Tree and Sets MRP Tree 93

6.3.8 Existing Application of the Proposed MRPs 94

6.4 A New Metamorphic Testing Framework . 95

6.4.1 Introduction and Motivation . 95

6.4.2 Framework . 95

6.4.3 Application of the MT Framework . 96

6.5 A Case Study of Query-based Systems . 98

6.5.1 Experimental Setup . 98

6.5.2 Relations . 100

6.5.3 Experimental Results, Evaluation and Discussion 101

6.6 A Case Study of Map Systems . 105

6.6.1 Experimental Design . 105

6.6.2 Relations . 105

6.6.3 Evaluation and Discussion . 106

6.7 A Case Study of Machine Translation Systems 108

6.7.1 Experimental Design . 108

6.7.2 Relations . 108

6.7.3 Evaluation and Discussion . 111

6.8 Conclusion . 116

7 metamorphic relation and group selection algorithm 119

7.1 Introduction and Motivation . 119

7.2 Metric and Algorithm . 120

7.2.1 MR-MG Distribution Metric . 120

7.2.2 Selection of Basic Algorithm . 121

7.2.3 MRGS-ART Algorithm . 121

7.2.4 Application of MRGS-ART . 125

7.2.5 Advantages . 126

7.3 Research Questions . 127

7.4 Empirical Experiments . 128

7.4.1 Experimental Setup . 128

vii

7.4.2 Experimental Results and Discussion 130

7.4.3 Answer to Research Question . 137

7.5 Future Work . 138

7.5.1 An Enhanced Version of MRGS-ART 138

7.5.2 Metamorphic Relation and Group Selection based on ART Through
Iterative Partitioning (MRGS-IPART) 142

7.5.3 Metamorphic Relation and Group Selection based on ART Through
Random Partitioning (MRGS-RPART) 145

7.6 Conclusion . 145

8 metamorphic testing for validating credit score assessment

models . 147

8.1 Introduction and Motivation . 147

8.2 Research Questions . 149

8.3 Case Study of Credit Risk Models . 151

8.3.1 Experimental Setup . 151

8.3.2 Input Parameters . 153

8.3.3 HMRs . 155

8.3.4 Experimental Results . 157

8.3.5 Forecast Performance . 159

8.3.6 Answers to Research Questions . 160

8.4 Conclusion and Future Work . 163

9 conclusion, contribution and future work 165

9.1 Discussion and Conclusion . 165

9.2 Main Contributions . 167

9.3 Limitation and Future Work . 168

9.3.1 Limitations and Extensions to Algorithms 168

9.3.2 Limitations and Extensions to MRPs and MRP trees 169

9.3.3 Limitations and Extensions to the MT Framework 169

bibliography . 169

appendices . 187

a appendix 1 . 187

viii

L I S T O F F I G U R E S

Figure 1 Examples of failure regions in 2D input domains [140] 8

Figure 2 An MT Class Diagram . 13

Figure 3 A multi-layer feed-forward neural network example 31

Figure 4 A Simple Decision Tree Example for Credit Scoring 32

Figure 5 Block MRVR-S . 43

Figure 6 Strip MRVR-S . 43

Figure 7 Point MRVR-S . 43

Figure 8 1000 STCs generated by MT-ART-Min using MRProduct for Product . 47

Figure 9 1000 STCs generated by MT-ART-Max using MRProduct for Product . 47

Figure 10 Three examples of dividing a 2D input domain 52

Figure 11 F-measure Experimental Results of the MG-generation Algorithms
(Part 1) . 58

Figure 12 F-measure Experimental Results of the MG-generation Algorithms
(Part 2) . 59

Figure 13 Generation Time Experimental Results of the MG-generation Algo-
rithms . 62

Figure 14 F-measure Experimental Results of the MG-generation Algorithms
(Part 1) . 76

Figure 15 F-measure Experimental Results of the MG-generation Algorithms
(Part 2) . 77

Figure 16 A set of possible nearby STCs generated using MT-BART in a 2D
input domain . 82

Figure 17 Symmetry MRP Tree . 93

Figure 18 Sets MRP Tree . 93

Figure 19 MT Framework Architecture . 96

Figure 20 The first recommendation list example from Amazon 99

Figure 21 The second recommendation list example from Amazon 99

Figure 22 The third recommendation list example from Amazon 99

Figure 23 An MR1 STC example for Amazon in English 103

Figure 24 An MR1 FTC example for Amazon in English 103

Figure 25 An HMR1 STC example for Amazon in English 103

Figure 26 An HMR1 FTC example for Amazon in English 103

Figure 27 An HMR2 STC example for Amazon in English 104

Figure 28 An HMR2 FTC example for Amazon in English 104

Figure 29 An HMR3 STC example for Amazon in English 104

Figure 30 An HMR3 FTC example for Amazon in English 104

Figure 31 An HMR4 STC example for Google Maps 107

ix

Figure 32 An HMR4 FTC example for Google Maps 107

Figure 33 An MRR1 violation example for Google Translator 112

Figure 34 An MRR2 violation example for Google Translator 112

Figure 35 An MRR3 violation example for Google Translator 112

Figure 36 An MRR3 violation example for Google Translator 112

Figure 37 The first MRR4 violation example for Google Translator 114

Figure 38 The second MRR4 violation example for Google Translator 114

Figure 39 An MRR5 violation example for Google Translator 114

Figure 40 An MRR6 violation example for Google Translator. 115

Figure 41 An MRR6 violation example for Google Translator 115

Figure 42 An MRR7 violation example for Google Translator 115

Figure 43 An MRR8 violation example for Google Translator 115

Figure 44 Examples of Bisecting Subdomains in 2D input domains 123

Figure 45 Executed STCs Distribution (source candidates are represented by
red points, and executed STCs are represented by black points) . . . 125

Figure 46 Executed FTCs Distribution (follow-up candidates are represented
by green points, and executed FTCs are represented by black points) 125

Figure 47 Two sets of possible nearby STCs selected by MRGS-ART in 2D in-
put domains . 138

Figure 48 Distribution of executed STCs and source candidates 141

Figure 49 Distribution of executed FTCs and follow-up candidates 141

Figure 50 An instance of the number of HMR violations in different ranges . . 156

x

L I S T O F TA B L E S

Table 1 Strengths of effect sizes in different ranges 25

Table 2 Information of the Experimental SUTs and MRs 28

Table 3 Information of the Experimental SUTs and MRs 42

Table 4 Information of the SUTs and MRs . 56

Table 5 Effect Size (Cohen’s d) Experimental Results of the MG-generation
Algorithms . 60

Table 6 The Relationship between MRVRs and Input Domains 60

Table 7 Dispersion and Discrepancy Experimental Results of the MG-
generation Algorithms . 63

Table 8 Experimental Results of Generation Time [57] 68

Table 9 Experimental Results of F-ratio on 2D input domains (under the
block failure region) [57] . 68

Table 10 Information of the SUTs and MRs . 74

Table 11 Effect Size (Cohen’s d) Experimental Results of the MG-generation
algorithms . 78

Table 12 Generation Time Experimental Results of the MG-generation algo-
rithms . 78

Table 13 Discrepancy and Dispersion Experimental Results of the MG-
generation algorithms . 79

Table 14 MRP Application Scopes . 94

Table 15 The number of MGs and MR/HMR violations for English Amazon . 102

Table 16 The number of MGs and MR/HMR violations for Chinese Amazon 102

Table 17 The number of MGs and MR/HMR violations for JD.com 102

Table 18 Overall Statistical Results of the Experiment 111

Table 19 SUTs and MRs . 128

Table 20 MR-violation Regions and Rates of Each MR for Sin (10,000 trials
per algorithm) . 129

Table 21 MR-violation Regions and Rates of Each MR for Erf (10,000 trials
per algorithm) . 129

Table 22 MR-violation Regions and Rates of Each MR for sncndn (10,000 tri-
als per algorithm) . 129

Table 23 MR-violation Regions and Rates of Each MR for BesselJ (10,000 trials
per algorithm) . 130

Table 24 MR-violation Regions and Rates of Each MR for TriSquarePlus
(10,000 trials per algorithm) . 130

Table 25 MR-violation Regions and Rates of Each MR for rj (10,000 trials per
algorithm) . 131

xi

Table 26 MR-Violation Regions and Rates of Each MR for PntLinePos (10,000

trials per algorithm) . 131

Table 27 Mean F-ratio Experimental Results (10,000 trials per algorithm) . . . 132

Table 28 Cohen’s d Experimental Results (10,000 trials per algorithm) 133

Table 29 Mean Time (in seconds) Experimental Results (10,000 trials per al-
gorithm) . 134

Table 30 Mean Dispersion (Max-Min) Experimental Results (10,000 trials per
algorithm) . 135

Table 31 Mean Discrepancy (Max-Min) Experimental Results (10,000 trials
per algorithm) . 135

Table 32 Credit Dataset Size . 153

Table 33 Back-propagation neural networks experimental using the 2016-
oriented dataset (n*m = (number of neurons in each layer) * (number
of layers)) . 158

Table 34 Back-propagation neural networks experimental using the 2018-
oriented dataset (n*m = (number of neurons in each layer) * (number
of layers)) . 158

Table 35 Gradient-boosting decision trees experimental using the 2016-
oriented dataset . 159

Table 36 Gradient-boosting decision trees experimental using the 2018-
oriented dataset . 159

Table 37 Random forests experimental results using the 2016-oriented dataset 160

Table 38 Random forests experimental results using the 2018-oriented dataset 160

Table 39 The forecast experimental results of gradient-boosting decision trees 161

xii

L I S T O F A L G O R I T H M S

1 MT Simulations . 40

2 SFIDMT-ART for 1-N MRs . 50

3 MT-BART Algorithm for 2D input domains . 70

4 MT-IPART Algorithm for 2D input domains . 72

5 MT-RPART Algorithm for 2D input domains . 80

6 MRGS-ART for n 1-1 MRs . 122

7 MRGS-ART+ for n 1-1 MRs . 140

8 MRGS-IPART for n 1-1 MRs with 2D input domains 143

9 MRGS-RPART for n 1-1 MRs with 2D input domains 144

xiii

S TAT E M E N T O F A U T H O R S H I P

I, Zhihao Ying, born November 1
st, 1996 in Zhejiang China, declare that this thesis titled

Addressing the Performance Challenges of Metamorphic Testing and the work presented in it
are my own. I confirm that this work was done while in candidature for a research degree
at University of Nottingham Ningbo China.

Except where reference is made in the text of the thesis, this thesis contains no material
published elsewhere or extracted in whole or in part from a thesis accepted for the award
of any other degree or diploma. No other person’s work has been used without due ac-
knowledgment in the main text of the thesis. This thesis has not been submitted for the
award of any degree or diploma in any other tertiary institution.

Zhihao Ying May 16, 2024

xv

A C K N O W L E D G M E N T S

I would like to express my deep gratitude to the exceptional support and guidance of my
supervisor, Dave Towey, professor in computer science, associate dean for education and
student experience for the Faculty of Science and Engineering, Deputy Head of School,
Deputy Director of IDIC, for providing invaluable guidance, continued support, and en-
couragement throughout this research and guiding me to the completion of this thesis. His
vision and sincerity inspired me deeply. He taught me the methodology of research and
the way to present the research results clearly. I am very grateful to him for everything he
has taught me. In the meanwhile, I also want to thank Anthony Bellotti, Associate Profes-
sor, my second supervisor, for his kindly help and exceptional guidance throughout this
project. It is a great honor to conduct research and study under their supervision.

I would like to give my deep thanks to the teachers who have offered me help during my
four years of PhD study. Thank my university, the University of Nottingham Ningbo China,
for giving me the abundant educational and research resources, and support, which make
it possible for me to go further. I wish my university to achieve its grand goal of becoming
a world-class university as soon as possible.

At last, I would like to give my deep thanks to my family, especially my parents, for
their love, caring, kindly support, and help. I would also like to give my deep thanks to
friends for their kindly help and support.

xvii

P U B L I C AT I O N S

The work presented in this thesis has generated the following publications:

• Zhihao Ying, Dave Towey, Anthony Bellotti, Zhi Quan Zhou and T. Y. Chen. Prepar-
ing SQA professionals: Metamorphic relation patterns, exploration, and testing for
big data. In Proceedings of the 2021 International Conference on Open and Innovative Edu-
cation (ICOIE’21), 2021, pp. 22–30.

• Zhirui Zhang, Dave Towey, Zhihao Ying, Yifan Zhang, and Zhi Quan Zhou. MT4NS:
Metamorphic testing for network scanning. In 2021 IEEE/ACM 6th International Work-
shop on Metamorphic Testing (MET), IEEE, 2021, pp. 17–23.

• Zhihao Ying, Anthony Bellotti, Dave Towey, T. Y. Chen and Zhi Quan Zhou. Using
metamorphic relation violation regions to support a simulation framework for the
process of metamorphic testing. In 2022 IEEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC’22), IEEE, 2022, pp. 1722–1727.

• Zhihao Ying, Anthony Bellotti, Joe Breeden and Dave Towey. Metamorphic Explo-
ration for Machine Learning Validation and Model Selection. 1. Abstract from Credit
Scoring and Credit Control Conference, Edinburgh, United Kingdom, 2023.

• Zhihao Ying, Dave Towey, T. Y. Chen and Zhi Quan Zhou. MT-PART: Metamorphic-
Testing-Based Adaptive Random Testing Through Partitioning. In 2024 IEEE 48th
Annual Computers, Software, and Applications Conference (COMPSAC’24), 2024, IEEE,
pp. 1184–1193.

• Zhihao Ying, Dave Towey, Anthony Bellotti, Tsong Yueh Chen, and Zhi Quan Zhou.
SFIDMT-ART: A Metamorphic Group Generation Method Based on Adaptive Ran-
dom Testing Applied to Source and Follow-up Input Domains. Information and Soft-
ware Technology, 2024, pp. 107528.

Currently under review:

• Zhihao Ying, Dave Towey, Anthony Bellotti, Caslon Chua, and Zhi Quan Zhou. Meta-
morphic Relation Patterns for Metamorphic Testing, Exploration, and Robustness.
Submitted to Software Testing, Verification and Reliability, 2023.

• Zhihao Ying, Dave Towey, Anthony Bellotti, and Zhi Quan Zhou. MRGS-ART: Meta-
morphic Relation and Group Selection based on Adaptive Random Testing. Submit-
ted to Software Testing, Verification and Reliability, 2023.

xix

• Zhihao Ying, Anthony Bellotti, Joseph Lynn Breeden, and Dave Towey. Metamorphic
Testing and Exploration for Machine Learning Credit Score Models. Submitted to
Applied Soft Computing, 2024.

In Preparation:

• Zhihao Ying, Dave Towey, Anthony Bellotti, Tsong Yueh Chen, and Zhi Quan Zhou.
Theoretical and Empirical Analyses of the Application of Metamorphic Group Gen-
eration Algorithms with Different Numbers of Metamorphic Relations. To be submit-
ted to International Conference on Software Engineering.

xx

A C R O N Y M S

ART Adaptive Random Testing
BART ART by Bisection
DMR Deterministic Metamorphic Relation
FTC Follow-up Test Case
FSCS-ART Fixed-Size-Candidate-Set ART
HMR Hypothesized Metamorphic Relation
ME Metamorphic Exploration
MG Metamorphic Group
ML Machine Learning
MR Metamorphic Relation
MRGSART Metamorphic Relation and Group Selection based on ART
MRGSART+ An Enhanced Version of MRGS-ART
MRGS-IPART MRGSART Through Iterative Partitioning
MRGS-RPART MRGSART by Rrandom Partitioning
MRP Metamorphic Relation Pattern
MRIP Metamorphic Relation Input Pattern
MROP Metamorphic Relation Output Pattern
MRR Metamorphic Relation for Robustness
MRT Metamorphic Robustness Testing
MRVR Metamorphic Relation Violation Region
MRVR-S STC-only component of the MRVR
MRVR-F FTC-only component of the MRVR
MT Metamorphic Testing
MT-ART MT-based ART
MT-BART MT-based ART through by Bisection
MT-IPART MT-based ART through Iterative Partitioning
MT-RPART MT-based ART by Rrandom Partitioning
IPART ART by Iterative Partitioning
RPART ART by Random Partitioning
RQ Research Question
RT Random Testing
SFIDMT-ART MT-based ART applied to Source and Follow-up Input Domains
SQA Software Quality Assurance
STC Source Test Case
SUT System Under Test

xxi

1
I N T R O D U C T I O N

The challenges in Software Quality Assurance (SQA) are growing rapidly due to the in-
creasing complexity and sophistication within computing systems, as well as the lagging
pace of SQA tools in adapting to these advanced computing systems [134]. As the core of
SQA, software testing [216] should be comprehensively considered by testers throughout
the entire software development life-cycle. The typical process of software testing consists
of the following steps: (1) Generating test inputs based on a test-case generation algo-
rithm; (2) executing these inputs against the SUT to generate test outputs; and (3) verifying
whether or not the SUT behaves as anticipated and provides accurate outputs. The mech-
anism employed to verify the correctness of SUT behavior/output is commonly referred
to as a (test) oracle [17, 293]. Any difference between the actual SUT behavior/output and
the oracle is considered as a software failure. The test cases that trigger such differences
are referred to as failure-causing test cases [17]. When the oracle is proven to be too ex-
pensive or impossible to employ, or when no oracle exists, this is a scenario referred to
as the (test) oracle problem. The system that encounters this problem is referred to as an
"untestable" system [17]. This constitutes a major obstacle that testers may encounter in
software testing: Traditional software testing methodologies often struggle to address the
oracle problem [64, 246].

Metamorphic Testing (MT) is a well-developed property-based software testing method-
ology [52]: It is able to not only address the oracle problem but also provide users with a
new approach for generating test cases and verifying test outputs. Rather than verifying
the correctness of individual test outputs through an oracle, MT identifies software failures
by examining the Metamorphic Relations (MRs) among Source Test Cases (STCs), Follow-
up Test Cases (FTCs), and their respective outputs [52, 64, 246]. Some basic concepts in MT
are introduced as follows:

• Metamorphic Relations (MRs): Typically, testers identify a set of critical properties
of an SUT based on software specifications and formally define them as MRs [64,
246]. The performance of MT is highly dependent on the MRs, but the identification
of MRs is often a manual task requiring some knowledge of Metamorphic Relation
Patterns (MRPs), creative thinking, and a good understanding of the SUT.

• Metamorphic Relation Patterns (MRPs): The abstractions or templates of various spe-
cific MRs and can serve as guidelines for identifying effective MRs [292]. In general,
testers identify the most important factors of a set of MRs and formally define them
as MRPs [292].

1

2 introduction

• Source Test Cases (STCs): The test cases generated through a specific algorithm [64,
246].

• Follow-up Test Cases (FTCs): The test cases generated through the STCs and an MR
[64, 246].

• Metamorphic Groups (MGs): The combination of associated STCs and FTCs [64, 246].

• MR-Violating MGs: The MGs that violate an MR [64, 246, 284].

• Non-MR-Violating MGs: The MGs that satisfy an MR [64, 246, 284].

• Recent additions to MT literature include the following two concepts:

1. Metamorphic Exploration (ME): Enables testers to identify MRs from the view-
point of software users, in order to provide testers with an approach to better
understand, test, and implement the SUT [292]. In addition, ME can be em-
ployed to assess whether or not the design of a function might negatively affect
the user experience [292].

2. Metamorphic Robustness Testing (MRT): Assess SUT robustness even in the
presence of the oracle problem [295]. Robustness is a crucial aspect of SQA,
which relates to the capability of the SUT to function correctly and produce
accurate outputs even when given invalid inputs, or operating in an unforeseen
environment [272].

The application of MT typically involve the following steps [52, 64, 246]:

1. Identify MRs for the SUT from scratch or select one from existing ones.

2. Generate STCs through a specific algorithm.

3. Derive FTCs according to the STCs and the MRs.

4. Execute both the STCs and the FTCs against the SUT, and examine for MR violations.
A MR violation typically indicates the presence of a software failure.

Despite the increasing popularity of software testing and MT, their performance contin-
ues to require enhancement [64, 246]. This thesis aims to enhancing the performance (i.e.,
test effectiveness and efficiency) of MT. Specifically, it makes the following main contribu-
tions:

1. Enhances the effectiveness and efficiency of MT by identifying problems in the de-
sign, application, and evaluation of MG-generation algorithms, and proposing solu-
tions to address them.

2. Enhances the effectiveness and efficiency of MT from the perspectives of MRs and
MGs through the following measures:

introduction 3

a) Introduces new MRPs to facilitate the identification of specific MRs from scratch,
as well as a new MT framework to assist in the identification and implementa-
tion of MRPs.

b) Introduces new MG-generation algorithms aimed at generating effective MGs
from scratch.

c) Introduces a new MR-MG pair selection algorithm for the automatic and dy-
namic selection of effective MR-MG pairs from existing ones for execution.

3. Enhances the performance of software testing (particularly for credit risk models)
through the incorporation of MT and ME as supplementary model testing, validation,
and selection methodologies.

The first primary contribution of this thesis involves identifying issues in MG-generation
and proposing solutions to mitigate them. In particular, while designing, applying, and
evaluating MG-generation algorithms, prior published MG-generation algorithms may en-
counter certain challenges that could negatively affect their performance, including test
effectiveness and efficiency. This thesis outlines these scenarios and formally introduces
the concepts of the MT-performance evaluation problem (in Chapter 3) and the input-
domain difference problem (in Chapter 4). Furthermore, this thesis presents methodolo-
gies to tackle these challenges (see Chapters 3 and 4 for details), with the aim of not only
circumventing the existence of the same problems in the algorithms proposed in this thesis,
but also enhancing the performance of previously-published algorithms.

Given the fact that MRs and MGs play crucial roles in the successful implementation and
performance of MT, the second contribution of this thesis focuses on producing effective
MRs and MGs. Specifically, this thesis presents the following methodologies:

• Firstly, this thesis concentrates on guiding the identification of MRs from scratch.
Specifically, this thesis proposes a series of new MRPs targeted at facilitating the
identification of effective MRs across diverse systems, and a new MT framework to
facilitate the identification and application of MRPs. In addition, it introduces the
concept of MRP trees (as well as two instances of MRP trees) for the classification
of MRPs, with the aim of providing users with a more efficient means of searching
for their desired MRPs for reuse, reference, or inference. This thesis subsequently
presents findings (such as the successful detection of multiple MR violations) from
three case studies that apply MRPs and the MT framework to identify effective MRs
for big data systems.

• Secondly, this thesis focuses on the generation of effective MGs from scratch. Specif-
ically, this thesis introduces three new MG-generation algorithms. This rationale be-
hind these algorithms is to enhance MT performance by ensuring an even distribu-
tion of STCs and FTC throughout their respective input domains. Two case studies
are reported evaluating and comparing the performance of these algorithms with
previously-published MG-generation algorithms in the MT literature. The experimen-
tal results demonstrate that, compared with previously-published MG-generation

4 introduction

algorithms, the proposed algorithms exhibit better performance in terms of both ef-
ficiency and effectiveness.

• Lastly, this thesis introduces a new algorithm for the selection of effective MR-MG
pairs from existing ones. More specifically, this thesis presents a new metric from
a black-box perspective to define the criteria for an effective MR: Given an MG, an
effective MR should aim to maximize the distance between this MG and non-MR-
Violating MGs. This metric was designed based on the same rationale used for the
design and development of the proposed MG-generation algorithms. Building upon
this metric, this thesis introduces a novel MR-MG pair selection algorithm known
as Metamorphic Relation and Group Selection based on Adaptive Random Testing
(MRGS-ART). This algorithm is capable of automatically and dynamically selecting
effective MR-MG pairs for execution from existing ones. A case study is reported
validating and comparing the performance of MRGS-ART with the other algorithm.
The experimental results demonstrate that, compared with a previously-published
MR and MG selection algorithm, MRGS-ART exhibits better performance in terms
of both efficiency and effectiveness.

The final contribution lies in the implementation of MT and ME as supplementary model
testing, validation and selection methodologies for credit risk models. With advancements
in Machine Learning (ML) technology and data accessibility, ML algorithms have gained
widespread adoption in credit risk modeling within the financial industry [112]. These
algorithms often exhibit superior predictive capabilities compared to traditional linear
models [27, 171]. Nevertheless, the adoption of ML algorithms has introduced significant
validation challenges due to the inherent complexity of these models. Consequently, this
necessitates testing methodologies that may differ from those employed for linear models
or are more readily applicable to linear models. Specifically, the following conditions must
be satisfied:

• The decisions made using ML-based models need to be explainable.

• The ML algorithms need to be robust over time and different data segments.

• The models need to be fair and unbiased.

• The models need to match business intuition.

Extensive research efforts have been devoted to tackling the first three challenges [31,
38, 118, 171, 277, 288]; however, this thesis concentrates on the fourth challenge, which
has received relatively less attention. In particular, this thesis presents a new approach for
empirically assessing and validating the quality and performance of credit risk models on
the basis of MT and ME. The general process of the proposed approach includes:

• Based on the business expectations hypothesized by users, predict the possible im-
pact that certain modifications to the input may have on the output.

• Formally define them as MRs, which are so-called Hypothesized MRs (HMRs).

introduction 5

• Train and test credit risk models to examine for HMR violations.

That is, as an adjunct to model fit and calibration performance measures, the proposed
approach verifies whether or not the output changes as anticipated according to prior
application knowledge. Using the credit score as a predictor example: It would be ex-
pected that a model would predict a decrease in credit risk as the credit score increases.
A case study is reported investigating the integration of conventional evaluation metrics
with MT and ME for the testing and validation of credit risk models. Specifically, this
thesis examines the performance of models chosen based on traditional evaluation met-
rics when validated using ME. Experimental results indicate that multiple HMR violations
have been identified and the number of HMR violations grows as the complexity of the
model increases. In this context, when ML algorithms are employed for constructing credit
risk models, this thesis advocates for the use of MT and ME as supplementary tools for the
testing, validation, and selection of models, in addition to traditional model fit evaluation
metrics.

The remaining chapters of this thesis, as well as the connections among them, are struc-
tured as follows.

Chapter 2 provides background information relevant to this thesis.

Chapter 3 presents a novel MT simulation framework to tackle the MT-performance eval-
uation challenge: It is capable of swiftly and efficiently assessing MT performance
from a new perspective. This chapter also introduces the concept of MR-Violation
Region (MRVR) to facilitates the MT simulation framework, as well as three kinds
of MRVRs that may exist in MT. A case study is reported exploring the presence of
potential MRVRs in the systems taking numerical inputs.

Chapter 4 uses MRVRs to investigate the performance of previously-published MG-
generation algorithms, and successfully identifies a challenge encountered by the al-
gorithms, referred to as the input-domain difference challenge. This challenge may af-
fect the performance (i.e., effectiveness and efficiency) of MG-generation algorithms.
Subsequently, this chapter introduces a potential solution to address this challenge.
By tackling the challenge within an existing MG-generation algorithm, this chap-
ter proposes an enhanced algorithm, called MT-based ART applied to Source and
Follow-up Input Domains (SFIDMT-ART), which can demonstrate superior perfor-
mance in terms of efficiency and effectiveness. A case study is reported on that vali-
dates and compares the performance of this algorithm with existing MG-generation
algorithms in the MT literature.

Chapter 5 introduces two new MT partitioning methods (MT by bisection and MT by
iterative partitioning) to address the computational overhead problem of SFIDMT-
ART (the algorithm presented in Chapter 4). This chapter then introduces two novel

6 introduction

MG-generation algorithms using the solution presented in Chapter 4 (in order to
avoid the impact of the input-domain difference problem presented in Chapter 4).
A case study is reported that shows, compared with the algorithms proposed in
Chapter 4, these two algorithms are capable of achieving a better balance between
efficiency and effectiveness.

Chapter 6 introduces a series of new MRPs to guide the identification of MRs. This chapter
further introduces a new MT framework to facilitate the identification and applica-
tion of MRPs, and the concept of MRP trees, as well as two instances of MRP trees, to
facilitate the selection of MRPs. A case study is reported applying MRPs, MRP trees,
and the MT framework to identify MRs for big data systems.

Chapter 7 further improves the solution presented in Chapter 4, and uses it, as well as
the MT partitioning method (MT by bisection) introduced in Chapter 5, to designs
a novel metric (which can guide the design and development of MR-MG selection
algorithm) and an MR-MG pair selection algorithm, called Metamorphic Relation
and Group Selection based on Adaptive Random Testing (MRGS-ART). A case study
is reported on that evaluates the performance of MRGS-ART and compares it with
an existing algorithm in the MT literature.

Chapter 8 introduces the implementation of MT and ME as a supplementary methodol-
ogy for testing, validating and selecting credit risk models. A case study is reported
applying the proposed approach, in conjunction with a traditional model evaluation
method, to validate popular credit risk models.

Chapter 9 concludes the thesis, summarizing the contributions of this thesis, and dis-
cussing potential limitations and future research directions.

2
L I T E R AT U R E R E V I E W

2.1 conventional software testing

2.1.1 Overview

In conventional software testing, errors committed by program developers can lead to
faults within the program; and a failure may be detected if a fault is encountered during
the execution of the system [146]. In particular, following the execution of a test case, a
failure is identified if the output or behavior of the SUT differs from the expected out-
come. The executed test cases that result in software failures are termed failure-causing
test cases, while those that pass are referred to as non-failure-causing [64, 140]. The ratio
of failure-causing test cases to the total number of possible test cases within the input
domain determines the failure rate [64, 140].

Broadly speaking, conventional software testing algorithms can be categorized into two
types: Black-box and white-box testing [128, 185]. Black-box testing, referred to as func-
tional testing, generates new test cases according to software specifications [185]. In black-
box testing, testers lack access to the source code of the SUT. White-box testing, also known
as structural testing, generates new test cases according to the source code of the SUT [185].
In other words, testers have visibility into the source code of the SUT in white-box testing.

2.1.2 Random Testing

Random Testing (RT) (also known as monkey testing) stands as one of the most popular
black-box software testing technique [123]. It automatically generates random and inde-
pendent test cases for the SUT without reference to any system design or source code [25,
222]. The concept of RT was first proposed by Melvin Breuer in 1971 [5], who employed
it for hardware examination. Subsequently, Prathima et al. [5] conducted the first study to
validate the effectiveness of RT in 1975. Hamlet [123] reported that due to RT’s lack of sys-
tematic selection of new inputs, there exists no correlation between the inputs generated
by RT. In the IEEE Guide to the Software Engineering Body of Knowledge [25], RT is listed
as one of four popular input-domain based testing algorithms (as well as equivalence par-
titioning, pairwise testing and boundary value analysis). Orso et al. [222] categorized RT
as one of four most popular test-case generation algorithms, alongside symbolic execu-
tion algorithm, search algorithm and hybrid algorithm. Various RT algorithms have been

7

8 literature review

Figure 1: Examples of failure regions in 2D input domains [140]

developed for better identifying failures, with two notable approaches being uniform dis-
tribution and non-uniform distribution. Uniform distribution [83] means that all test cases
in the input domain have an equal probability of selection, while non-uniform distribution
[63] means that the test cases in the input domain do not have an equal probability of
selection. It should be noted that sometimes a test-case distribution approach may be too
expensive or even impossible to be applied. For instance, adaptive random testing [77, 140]
attempts to improve the performance of software testing by achieving an even distribution
of test cases over the input domain. However, this distribution approach may be too expen-
sive to be used when the input domain has an irregular polygon shape, or is unavailable
where the similarity/distance between test cases cannot be calculated (e.g., non-numeric
test cases). At this point, additional guards are required to ensure the running of the test-
ing. For example, common guards include expanding the distribution approach, switching
to other approaches, or involving human participants.

Studies have been carried out to validate and compare the efficiency and the effective-
ness of RT with several state-of-the-art software testing algorithms, revealing RT as an effi-
cient test-case generation algorithm [251, 275]. For instance, Sharma et al. [251] reported on
a case study validating and comparing the performance of RT and shape abstraction (an
approach for generating test containers) [275]. They found that RT achieved comparable
effectiveness to shape abstraction, but with significantly lower computational overheads.
One of the main advantages of RT is its ease of understanding and use. RT has been
proved to be a valuable algorithm in numerous fields, such as secure software systems
[178]; embedded software systems [235]; Java and .NET libraries [224]; database systems
[20]; windows NT systems [113]; SQL database systems [20]; Android systems [213]; and
MT [246].

2.1.3 Adaptive Random Testing

2.1.3.1 Overview

It has been argued that RT may sometimes be not efficient since it does not make any
use of the features of the SUT [246]. Chen et al. [77] introduced Adaptive Random Test-
ing (ART) to address this limitation by utilizing the generic information on common fault
patterns within the SUT. It has been reported that failure-causing test cases often cluster

2.1 conventional software testing 9

into contiguous regions known as failure regions [9, 24, 111, 240, 279]. Chan et al. [39]
identified and classified three types of failure regions: Block, point, and strip. Fig. 1 pro-
vides typical examples of these regions within a 2D input domain, accompanied by the
following explanations [39, 140]:

• Strip region: Failure-causing test cases typically cluster in a narrow and contiguous
area.

• Block region: Failure-causing test cases typically cluster in a single contiguous area.

• Point region: Failure-causing test cases dispersed throughout the input domain, ei-
ther individually or in small groups.

According to Chan et al. [39], the block region is the most common failure region. In this
context, the neighboring test cases of a failure-causing test case are likely to also be failure-
causing, while the neighboring test cases of a non-failure-causing test case are likely to
remain non-failure-causing [39, 140]. That is to say, the test cases chosen from the regions
distant from non-failure-causing test cases are more likely to be failure-causing. Building
on this insight, Adaptive Random Testing (ART) was proposed: It aims to improve fault-
detection capability by ensuring an even distribution of test cases throughout the entire
input domain [77, 83, 140].

Different kinds of ART algorithms have been collected and categorized by Huang et al.
[140], summarized as follows:

• Select-Test-From-Candidates [40, 77]: This, in general, selects a set of inputs, named
the candidate set, and then selects new inputs from the candidate set according to
some specific criteria and executed test cases. It consists of two kinds of algorithms,
namely Fixed-Size-Candidate-Set ART Algorithm [77] and Restricted Random Test-
ing (RRT for short, which constructs new inputs according to some predefined re-
striction criteria) [40].

• Partitioning-based [57, 78, 86]: This combines the partition testing with ART to gen-
erate new inputs, which divides the entire input domain into several subdomains
based on a predefined criterion, and then selects one within which to generate new
inputs.

• Test-Profile-based [183, 184]: It selects new inputs according to a dynamic test profile.

• Quasi-Random ART [80, 180]: This combines the quasi-random sequences (points
with low discrepancy and dispersion) with ART based on the findings reported by
Chen et al. [60] that, generally, points with lower discrepancy and dispersion have the
ability to achieve a wide distribution of inputs throughout the entire input domain.

• Search-based [125, 207]: This combines the search-based software testing techniques
with ART to select new inputs that can achieve a wide distribution.

• Hybrid [59, 61]: This combines several different ART algorithms to improve test effi-
ciency or effectiveness.

10 literature review

2.1.3.2 Select-Test-From-Candidates Algorithms

The Fixed-Size-Candidate-Set ART (FSCS-ART) [77] stands as the first ART algorithm and
falls under the category of select-test-from-candidates algorithms [140]. FSCS-ART aims
to improve test effectiveness by utilizing the test cases that have already been executed
against the SUT, but without resulting in any failure. To implement FSCS-ART, firstly, a set
of test cases is generated as candidates from the input domain at random. Subsequently,
FSCS-ART selects one of the candidates based on the distance between each candidate and
all non-failure-causing test cases. FSCS-ART stands as the most popular ART algorithm
owing to its simplicity and effectiveness in detecting failures [140]. Nonetheless, FSCS-
ART may encounter the edge preference problem [140], wherein it exhibits a preference
for generating new test cases near the boundary of the input domain. To address this
problem, numerous techniques have been proposed, with one of the most effective being
FSCS-ART with partitioning by edge and center [59, 73, 143]. This algorithm partitions the
input domain from the edge to the center according to the number of executed test cases
and selects k (k > 0) candidates from the empty subdomains. It subsequently calculates
the distances from each candidate to its nearest executed test case and selects the candidate
with the maximum distance as the next test case. Its time complexity is O(n2) [59, 73].

2.1.3.3 Partitioning-based Algorithms

Select-test-from-candidates algorithms, such as FSCS-ART, often encounter a significant
challenge: Their time complexities are generally too high. To address the problem of com-
putational and comparison overheads, a series of partition-based ART algorithms have
been designed and developed [57, 78]. Partition-based ART algorithms dynamically parti-
tion the input domain into subdomains according to specific criteria and then select one
for the next test case generation. Chen et al. [57] introduced two partition-based ART al-
gorithms: ART by Random Partitioning (RPART) and ART by Bisection (BART): RPART
divides the input domain using executed and non-failure-causing test cases and then gen-
erates the next test case randomly in the largest subdomain; and BART dynamically parti-
tions the input domain into equally sized subdomains and selects the next test case from
a subdomain containing no executed and non-failure-causing test cases.

Later, Chen et al. [57] introduced a new test-case generation algorithm named ART
through Iterative Partitioning (IPART): For example, given n executed and non-failure-
causing test cases in a 2D input domain, it firstly divides the input domain into n ∗ n
subdomains. Then, it randomly selects a test case in a subdomain devoid of any non-
failure-causing test cases and not surrounded by subdomains containing any non-failure-
causing test cases. According to Chen et al. [57], IPART may also encounter the edge
preference problem.

2.1.3.4 Advantages and Shortcomings

Nowadays, ART has been widely used as test-case generation techniques for various ar-
eas [140]. Empirical studies together with theoretical discussions have been conducted to

2.1 conventional software testing 11

explore and compare test efficiency and effectiveness of ART with other test-case gener-
ation algorithms, such as RT [140]. In general, ART has the followings advantages and
shortcomings:

1. Enhanced Input Spread: In general, ART achieves a better input distribution through-
out the entire input domain than RT [58, 60, 62, 164, 179, 180, 183, 184].

2. Enhanced Test Coverage: Many studies [34, 35, 65, 66, 135, 168] have explored and
reported that ART algorithms are able to achieve better test coverage than RT.

3. More Accurate Software Reliability Estimation: It has been reported that the test
coverage enhanced method can provide a better software reliability estimation [50,
51]. Therefore, since ART can typically achieve greater code coverage than RT, ART
may be a better choice than RT for improving the software reliability estimation of
the SUT.

4. Enhanced Effectiveness and Efficiency: Huang et al. [140] stated that, in general, ART
effectiveness refers to its fault-detection-capability, while its efficiency consists of test
case selection and execution time. F-measure (how many inputs have been used to
reveal the first failure) [69], E-measure (how many failures have been detected by
a set of inputs) [70] and P-measure (the probability of a group of inputs detecting
no less than one failure in the SUT) [70] are three common metrics employed to
assess ART effectiveness [140]. F-time [86] is a widely-used metric for assessing ART
efficiency: It is a metric of the CPU execution time (including all steps involved in
implementing an ART algorithm) until the first failure is detected. Chen et al. [76]
explored and identified four factors that may positively influence ART effectiveness:
(a) A low fault ratio; (b) a compact failure region; (c) few failure regions; and (d) a
predominant area over the entire failure region.

If at least one of these elements is satisfied, in general, ART is capable of achieving
better effectiveness than RT. In general, on the basis of test effectiveness, ART uses
fewer test inputs to reveal the first failure (F-measure) than RT. For example, pre-
vious studies [53, 72, 78] assessed and compared the effectiveness of ART and RT
based on F-measure, and the experimental results indicated that ART was capable
of outperforming RT with an F-measure up to about 50% smaller than RT. As for
test efficiency, compared with RT, ART naturally requires higher computing costs to
construct the same number of inputs, which is known as the computational overhead
problem [10]. FSCS-ART and RRT generally cost about O(n2) and O(n2log(n)) to gen-
erate n inputs, respectively [77, 203]. However, firstly, compared to ART, RT generally
requires more time to reveal the first failure (F-time) [10, 138, 175, 186, 248]. Secondly,
many hybrid methods have been designed to reduce the computational overheads
of ART, such as the improvements on FSCS-ART [59, 61, 71, 72, 88, 138, 162, 192,
199, 220]. Furthermore, other enhancements of ART that combine ART methods with
the techniques from other areas have been designed and developed to alleviate this
problem [15, 41–43, 49, 79, 138, 223]. For instance, Chan et al. [42, 43] presented an
approach that uses a square exclusion area version of RRT to alleviate this problem.

12 literature review

5. Broad Applicability: Huang et al. [140] stated that ART is a widely-used algorithm
for generating test cases and has been employed in various fields, such as simulations
and models [195, 259], numerical systems [12, 65, 77, 276, 290], embedded software
programs [130–132, 145] and object-oriented systems [47, 89, 175, 231]. ART has been
employed to enhance the efficiency and effectiveness of various other software test-
ing techniques, such as regression testing [286], reliability testing [215], MT [19, 143,
144] and combinatorial testing [219]. For instance, Barus et al. [19] conducted a com-
parison between RT and ART in terms of their effectiveness in generating STCs for
MT. The experimental results revealed that ART outperformed RT in enhancing the
effectiveness of MT.

6. While ART offers numerous advantages over RT, it still faces some shortcomings and
challenges, including the edge preference problem [55, 140] and the high dimension
problem [60, 75, 140].

Some ART algorithms, such as FSCS-ART and RRT, may tend to produce new inputs
closer to the edges rather than the centre of the entire input domain, particularly un-
der conditions of high fault ratio and dimensionality [55]. Numerous methods have
been explored and developed to mitigate the edge preference problem: For example,
some studies [59–61, 63, 163, 166] increased the selection probability of inputs near
the centre of the input domain rather than those at the edges, while others [55, 57,
116, 198, 202, 204] have addressed the problem by connecting or extending the edges.

While some ART algorithms, such as partition-based ones [60, 184], remain unaf-
fected by the dimensionality, a higher dimensionality (typically exceeding two) may
occasionally result in poorer performance of some ART algorithms (i.e., FSCS-ART
[58, 60, 62, 164] and RRT [60, 184]) compared with RT, owing to the curse of dimen-
sionality [22]. This constitutes one of the primary challenges encountered by ART,
known as the high dimension problem [60, 75, 140]. Although no technique has been
devised to completely address this challenge, several have been introduced to allevi-
ate it. It has been reported that, in high-dimensional input domains, failure regions
are prone to clustering at the center [54, 200]. Consequently, the edge preference prob-
lem may have an impact on the high dimension problem, and solutions [54, 55, 57,
59, 61, 63, 116, 141, 163, 164, 166, 198, 200, 202, 204] employed to tackle the edge pref-
erence problem might also help alleviate the high dimension problem. Nevertheless,
the effectiveness of these solutions is still influenced by the input dimensions. Ad-
ditionally, Schneckenburger et al. [241] integrated the Hill-Climbing algorithm with
continuous distance [203], and presented a search-based ART algorithm capable of
alleviating the high dimension problem.

In summary, RT is a widely-adopted software testing algorithm for generating test cases,
while ART is designed and developed as an improvement upon RT. The rationale behind
ART is that it attempts to improve RT performance by achieving a more uniform distrib-
ution of inputs throughout the entire input domain. In comparison to RT, ART typically
exhibits four primary strengths: Better test-input spread, better test coverage, more accu-

2.2 metamorphic testing 13

Figure 2: An MT Class Diagram

rate software reliability estimation, and better test efficiency and effectiveness. Despite the
existence of several remaining challenges for ART that require resolution (i.e., the computa-
tional overhead problem, the high dimension problem, and the edge preference problem),
ART generally represents a superior option for test case generation compared to RT.

2.2 metamorphic testing

2.2.1 Overview

Metamorphic Testing (MT) introduces a novel approach to test case generation and test
result verification, through the use of Metamorphic Relations (MRs). MRs represent the
essential properties (denoting the conditions logically inferred from) the SUT, involving
at least two inputs and their corresponding outputs [52, 64]. In order to clearly elucidate
the interconnections among various MT concepts, Fig. 2 depicts an MT class diagram. MT
comprises precisely two sets of test cases: STCs and FTCs. In contrast to the conventional
approach of individually verifying each test case’s outcome using a test oracle, MT assesses
the satisfaction of the relationship between the STCs and the FTCs as well as their outputs

14 literature review

[52, 64]. Given an MR, Metamorphic Groups (MGs) denote the combination of correlated
STCs and FTCs [64]. MR-violating MGs indicate the MGs that violate an MR, while those
satisfying an MR are denoted as non-MR-violating MGs [64]. According to the quantity of
STCs and FTCs, MRs generally can be classified into four categories, listed as follows [64]:

• 1-1 MR: Only one STC is employed to produce a single FTC.

• 1-N MR: Only one STC is employed to produce N FTCs (N > 1).

• M-1 MR: M STCs (M > 1) is employed to produce a single FTC.

• M-N MR: M STCs (M > 1) is employed to produce N FTCs (N > 1).

It is noteworthy that certain MG-generation algorithms [143, 144] do not directly gener-
ate new MGs. Instead, they firstly generate STCs from the input domain as source candi-
dates, and subsequently derive FTCs as follow-up candidates based on the MRs and source
candidates. Finally, these algorithms select source and follow-up candidates for execution
according to specific criteria.

MT has been employed to alleviate the oracle problem in various fields, including ML
classifiers [214, 218, 281], network scanning [289], embedded systems [44, 151, 165], secu-
rity [68], and web services [45, 263, 285]. Furthermore, over the past few decades, besides
software testing, MT has been successfully applied in many different fields, such as soft-
ware debugging [85, 152] and education [269, 285].

2.2.2 Metamorphic Relation Patterns

A great number of MRs have been identified across various application fields; however, the
majority of published MRs have been identified arbitrarily and ad-hoc, lacking a system-
atic mechanism [64, 246]. Consequently, systematic MR identification remains a significant
challenge for the MT community [64, 246].

In order to tackle this challenge, Zhou et al. [294] introduced the concept of general MRs,
which are abstract representations of MRs and serve as guides for identifying concrete
MRs. They reported on a case study applying the general MRs to guide concrete MR
identification, with the experimental results indicating that the identified MRs effectively
detected software failures.

Segura et al. [247] proposed the formal concept of Metamorphic Relation Output Pattern
(MROP), the definition for which is as follows:

• Definition 2 (Metamorphic Relation Output Pattern (MROP)): An abstract relation among
multiple source outputs and corresponding follow-up outputs that can guide con-
crete MR identification of when combined with proper input relations.

More recently, Zhou et al. [292] advanced this research by proposing the formal concept
of Metamorphic Relation Pattern (MRP) and Metamorphic Relation Input Pattern (MRIP).
Their formal definitions are:

2.2 metamorphic testing 15

• Definition 3 (Metamorphic Relation Pattern (MRP)): An abstraction that encapsulates a
group of (potentially infinitely many) MRs [292].

• Definition 4 (Metamorphic Relation Input Pattern (MRIP)): An abstraction that describes
the relationships among various STCs and FTCs within a group of (potentially infi-
nitely many) MRs [292].

Constructing an MRP involves identifying the important factors of a given set of MRs
while ignoring all the details [292]. The relations among multiple MRPs may form a hier-
archy [191, 292]. In particular, MRPs vary in abstraction levels, with higher levels being
more abstract and lower levels being more concrete. MRs are the specific relations derived
from these abstractions. For instance, a human may have the following different levels of
abstraction: (1) Organism; (2) Human; (3) Age/Gender/Nationality; and (4) Infancy/Child-
hood/Adolescence/Adulthood.

Here is an example to illustrate the differences between an MR and an MRP. Using a
simple program F(x) as an instance. This program calculates the square value of an input
x. The following two MRs are identified for the program F(x) as example.

In the domain of F(x) Function
assuming that

• The input contains one parameter: x(x > 0).

• The output consists of one parameter: F(x).

the following MR(s) should hold

• MRa:

if x2 = x1 + 1,
then F(x2) > F(x1).

• MRb:

if x2 = x1 + P(P > 0),
then F(x2) > F(x1).

MRb can also be used to identify new MRs by varying the values of P, such as MRa when
P equals 1. However, MRb does not belong to MRPs. In particular, MRPs concentrate solely
on important factors, and the identification of potential MRs using MRPs still demands
some degree of creative thought. On the other hand, for the aforementioned two MRs,
one important factor suitable for constructing MRPs, for instance, is monotonicity. In this
scenario, one of the specific elements overlooked by MRPs but accounted by MRb, for
instance, is how to achieve the monotonicity. That is, there could be various methods
to achieve monotonicity, necessitating a degree of creative thinking, and these methods
should not be taken into account during the construction of MRPs; rather, they should
be incorporated when identifying MRs. For example, altering the method of achieving
monotonicity can produce the following two common MRs:

In the domain of F(x) Function
assuming that

16 literature review

• The input contains one parameter: x(x > 0).

• The output consists of one parameter: F(x).

the following MR(s) should hold

• MRc:

if x2 = x1 ∗ Q(Q > 1),
then F(x2) > F(x1).

• MRd:

if x2 = x1/R(R > 1),
then F(x2) < F(x1).

In summary, MRPs can provide guidance for the identification of MRs, but the use of
MRPs still requires the user’s innovative thinking; instead, MRb does not provide any
guidance, and identifying new MRs through MRb does not require innovative thinking: It
is quite obvious how to identify new MRs according to MRb.

2.2.2.1 Existing MRPs in the Literature

Zhou et al. [292] introduced the Symmetry MRP and the Change Direction MRIP (Metamor-
phic Relation Input Pattern), drawing from symmetry concepts evident in diverse fields
like nature and mathematics. Symmetry MRP guides the identification of MRs based on
the perspectives from which the SUT appears identical. Some concepts, like "symmetry",
require no explicit explanation in the definition. When applying this MRP to a specific
field to construct concrete MRs, testers may interpret these concepts diversely. For exam-
ple, an e-commerce system should produce the identical amount of items for queries that
vary solely based on the sorting rule. Change Direction MRIP guides the identification of
MRs by altering the direction of source inputs to derive follow-up inputs. For instance,
e-commerce systems commonly have two sorting rules that contain directional elements:
Price from low to high and price from high to low.

Wu et al. [280] introduced a new MRP, termed Noise MRP, which was inspired by the
Symmetry MRP: It asserts that minimal interference (noise) should not have a severe impact
on the behavior/output of a robust system. Similarly, testers may interpret certain concepts
(such as "performance" and "noise") diversely when applying this MRP to a specific field.

An input query defines how data is retrieved and displayed. Users are able to use
queries to search for information and to filter or sort outputs based on particular rules.
For instance, on Amazon, the possible values for filter function include "Women’s Fashion
Department" and "Men’s Fashion Department", while the possible values for sorting func-
tion are "Price from Low to High" and "Price from High to Low". Segura et al. [245] term
subject systems supporting queries as query-based systems and introduced the following
MRPs for such systems:

2.2 metamorphic testing 17

• Input Equivalence: A robust query-based system should yield identical outputs for
inputs accepting fully identical values expressed differently (i.e., “1 minutes” com-
pared with “60 seconds”).

• Shuffling: Reversing the sorting rule in the inputs (i.e., “price from low to high” com-
pared with “price from high to low”) should not affect the quantity of the items in
the outputs.

• Conjunctive Conditions: If incorporating a new conjunctive condition into the source
inputs to generate follow-up inputs (i.e., a query “shoes” without filters compared
with a query “shoes” filtered by a specific brand like “Nike”), then the follow-up
outputs should be contained in the source outputs.

• Disjunctive Conditions: If incorporating a series of new disjunctive conditions into
the source inputs to generate follow-up inputs (i.e., a query “PC” compared with
a query “‘PC’ OR ‘mobile phone’”), then the follow-up outputs should contain the
source outputs.

• Disjoint Partitions: If partitioning the input domain of one or more parameters of
the source inputs to generate follow-up inputs, this MRP represents the MRs that
the source and follow-up outputs are pairwise disjoint. For instance, a robust query-
based system should return completely different outputs for the a query “shoes”
filtered by a brand like “Adidas” and the same query filtered by a different brand
like “Nike”.

• Complete Partitions: If partitioning the input domain of one or more parameters of
the source inputs to generate follow-up inputs, this MRP represents the MRs that the
follow-up outputs are contained in the source outputs. For instance, the outputs of
the query "shoes" without filters on Amazon should include the outputs of the same
query "shoes" filtered by "Men’s Fashion".

• Partition Difference: If partitioning the input domain of one or more parameters of
the source input to generate follow-up inputs, this MRP represents the MRs that the
follow-up outputs are pairwise disjoint from each other, while their union equals the
source output. For instance, the source input is the query "shoes" filtered by "‘Nike’
and ‘Adidas’", while the two follow-up inputs are the query "shoes" filtered by "Nike"
and "Adidas" separately.

REpresentational State Transfer (REST) is a software architecture style used in distrib-
uted hypermedia systems [110]. Computer systems are able to communicate with each
other based on the rules defined by an API (Application Programming Interface). Web
APIs following architectural constraints is capable of securely facilitating the exchange
of information among computer systems [110]. Segura et al. [247] proposed six MROPs
specifically for this kind of Web API:

18 literature review

• Equivalence: Both the source output and the follow-up output contain identical con-
tent irrespective of order.

• Equality: Both the source output and the follow-up output contain identical content
with the same order.

• Subset: The source output contains all follow-up outputs.

• Disjoint: The source output and the follow-up output are pairwise disjoint to each
other.

• Complete: Both the source output and the collective output of all follow-ups contain
identical content irrespective of order.

• Difference: The intersection of the source output and the follow-up output must differ
from their combination.

Recently, in addition to the concept of MRP, several studies have concentrated on sum-
marizing the shared properties of multiple MRs. For instance, Hui et al. [142] introduced
a formal model to describe MRs using predicate logic. They reported that an MR can be
defined as a composed relation in predicate logic and proposed a decomposition model.

MR = [IR, SF, OR], (1)

• Input-Relation (IR) represents the relation between source and follow-up inputs.

• Self-Relation (SR) represents the SUT.

• Output-Relation (OR) represents the relation between source and follow-up outputs.

The problem is that some MRs cannot be subdivided into input-only and output-only
sub-relations [64]. For instance, given a system S(x) that calculates the square value of an
integer x (x > 0). The following are two MRs identified for this SUT:

• MR1: If x2 = x1 + 1, then S(x2) > S(x1).

• MR2: If x2 = x1 + S(x1), then S(x2) > x1 + S(x1).

MR1 can be divided into input-only and output-only sub-relations, and described using
the decomposition model from Hui et al. [142]. However, MR2 cannot be divided into input-
only and output-only sub-relations like MR1, as the calculation of the follow-up input x2

relies on S(x1) (the output of the source input x1), and the relation between outputs also
involves the source input x1. In this context, the decomposition model is only applicable to
a specific subset of MRs, not all. This proves that not all MRs as composed of relations in
predicate logic. This differs from MRPs, as each MRP possesses varying abstraction levels,
and various MRPs are able to form a hierarchy.

2.2 metamorphic testing 19

2.2.3 Metamorphic Exploration and Metamorphic Robustness Testing

Zhou et al. [292] recently introduced the concept of Metamorphic Exploration (ME): It
aims to improve users’ SUT understanding, enabling its improved utilization without the
requirement of a comprehensive user manual. The authors further noted in the same pa-
per that in ME, MRs need not necessarily be properties of the SUTs; rather, they can be
properties hypothesized by users, termed hypothesized MRs (HMRs). HMR violations can
provide users with a novel means to comprehend SUT behavior and empower them to
take measures to achieve their desired outcomes. For example, users can generate specific
STCs and FTCs for a particular MR/HMR. Additionally, testers can apply ME to ascertain
whether or not a function is designed to meet the needs of users. In summary, ME offers
users a novel approach to exploring the SUT, aiming to enhance users’ comprehension of
its behavior/output and consequently improve its utilization.

More recently, the concept of Metamorphic Robustness Testing (MRT) [295] has emerged.
MRT can assess the robustness of an SUT even in the presence of the oracle problem.
Robustness, as a core component of SQA, signifies the ability of an SUT to manage invalid
test cases or operate in unforeseen environments [272, 295]. In studies related to MRT [170,
295], MRs are identified to assess the robustness of SUTs rather than to detect software
failures, specifically evaluating the SUT’s capacity to manage erroneous inputs [117, 272].
These MRs are termed Metamorphic Relations for Robustness (MRRs).

2.2.4 Advantages and Disadvantages of Metamorphic Testing

The advantages of MT are listed as follows:

1. MT is known for its simplicity and ease of use. The structure and definition of MT
are simple, making it accessible for users to comprehend and implement. Liu et al.
[181] and Poon et al. [228] demonstrated that the testers unfamiliar with MT can
learn to identify basic MRs and implement MT within several hours across various
systems. Le et al. [169] reported the successful identification of a great number of
bugs in two widely-used compilers using a straightforward MR, which can be easily
identified by even MT beginners.

2. Automating the primary components of MT and developing MT tools is straight-
forward. In addition to MR identification, testers can easily automate other core
components of MT, such as test case generation, implementation, and validation. Ex-
isting MT-related studies have extensively explored the generation of STCs. Previous
studies indicated that test case implementation is readily automatable [64]. Various
methods have been designed and implemented to automate the validation process
[64, 246]. Nevertheless, there is still one challenge: MR identification remains depen-
dent on human participants. Significant effort has been dedicated to addressing this
challenge, leading to the development of several techniques to mitigate it. MRP [292]
is a typical example. Zhou et al. [292] also reported on an empirical study involving

20 literature review

65 popular electronic commercial websites, which revealed many MR violations and
failures. Furthermore, some studies [263, 298] have indicated that developing MT
tools is straightforward and uncomplicated for testers.

3. Broad applicability. Segura et al. [246] conducted an exhaustive survey of 119 MT-
related publications, revealing its widespread adoption across various application
domains. They reported that MT is a popular approach for addressing the oracle
problem and has been employed in diverse fields.

4. Low costs (compared with conventional software testing techniques). One cost-
saving aspect is the identification of MRs. As reported by Chen et al. [64], although
the involvement of human participants in the process of MR identification may lead
to additional computational overheads, they are generally unavoidable and accept-
able. Similar efforts are common in conventional software testing, such as the asser-
tion identifications. Additionally, Chen et al. [64] noted that the additional overheads
of test output validation, such as verifying outputs against MRs, are lower than those
associated with validation using the oracle.

The disadvantages of MT are listed as follows:

1. The performance of MT largely depends on the MRs, but the identification of MRs is
often a difficult and time-consuming task [64, 246]: It can require a good understand-
ing of the SUT, creative thinking and some knowledge of MRPs.

2. Traditional software testing can verify the correctness of individual test cases. MT,
without an oracle, cannot determine which test case (STC or FTC, or both) are pro-
ducing the wrong output [64, 246]. It can only identify that there is an MR violation.
Likewise, if the MG’s test cases produce the wrong outputs, but (for example) both
the wrong STC output and the wrong FTC output are the same (with an equality
relation), then MT will not identify the violation.

2.2.5 MT Test Case Generation

Chen et al. [84] integrated fault-based testing [211] into MT to construct new STCs auto-
matically. Gotlieb and Botella [120] introduced a new method called automated MT. This
method is able to construct new STCs automatically by translating the initial code of the
SUT into an equivalent constraint logic system [147] and then searching for new STCs
that can violate the MRs. Alatawi et al. [8] integrated the dynamic symbolic execution
into MT to construct STCs automatically. More specifically, the proposed method gener-
ate STCs by recording the system execution behavior influenced by the MGs and storing
the symbolic constraints at each branch point. After the executions, the method constructs
new inputs that are able to execute the target system along a different path. Lindvall et
al. [177] combined MT with model-based testing methods to construct MGs automatically.
Batra et al. [21] designed a genetically enhanced MT method for generating a small set

2.2 metamorphic testing 21

of efficient STCs by combining MT with genetic algorithms. Saha et al. [238] validated
the performance of code-based software testing methods (e.g., line coverage, branch cov-
erage and weak mutation) on generating STCs for MT. Barus et al. [19] applied FSCS-ART
to generate STCs for systems taking non-numerical inputs, and used the category-choice
framework [223] to compute the distance between the inputs. Cao et al. [37] demonstrated
a robust and statistically significant correlation between the effectiveness of MRs and the
dissimilarity between STCs and FTCs, particularly when employing branch coverage.

Hui et al. [143] introduced ART into MT to generate MGs for MT and proposed an MG-
generation algorithm termed Metamorphic Distance-based ART. This algorithm aims to
enhance the fault-detection effectiveness of MT through ensuring an even distribution of
STCs across the entire input domain. Additionally, its time complexity is O(n2) [143, 144].

Subsequently, Hui et al. [144] reported that considering FTCs during the MG-generation
process can lead to better MT performance. In this context, Hui et al. [144] introduced
a novel MG-generation algorithm called Metamorphic Testing-based Adaptive Random
Testing (MT-ART), as an improved iteration of metamorphic distance-based ART. Both
metamorphic distance-based ART and MT-ART aim to improve the performance of MT
(especially the test effectiveness) from the perspective of black-box testing. In particular,
MT-ART aims to improve MT performance by achieving an uniform distribution of both
STCs and FTCs throughout the entire input domain. For this purpose, Hui et al. [144]
proposed distance metrics to facilitate this algorithm. In particular, they categorized the
distance between the test cases in MT into three types, referred to as metamorphic dis-
tances:

d1: The distance between a source candidate and all executed STCs and FTCs.

d2: The distance among (source and follow-up) candidates from the same candidate MG,
including the distance between two source candidates, the distance between two
follow-up candidates, and the distance between a source candidate and a follow-up
candidate.

d3: The distance between a follow-up candidate and all executed STCs and FTCs.

The computation of metamorphic distances uses the Euclidean distance.
In the MG-generation process, MT-ART firstly partitions the entire input domain into

subdomains with identical sizes according to the number of all executed STCs and exe-
cuted FTCs. Subsequently, it selects a sequence of STCs from the empty subdomains and
generates FTCs based on the chosen STCs and the specified MR, with the aim of obtain-
ing a set of MGs. Then, MT-ART calculates the metamorphic distances between test cases
and chooses the MG with the greatest distance for execution. As reported by Hui et al.
[144], its time complexity is O(n4). The computation of metamorphic distances can be per-
formed in three ways: The Maximum (Max), Average (Avg), or Minimum (Min) distance.
Additionally, two strategies are available for selecting the next MG: Strategy 1 (prioritiz-
ing d1 and d3 followed by d2) and Strategy 2 (prioritizing d2 followed by d1 and d3). As
a result, there exist six MT-ART algorithms: MT-ART with Strategy 1 and Max distance;

22 literature review

MT-ART with Strategy 1 and Avg distance; MT-ART with Strategy 1 and Min distance; MT-
ART with Strategy 2 and Max distance; MT-ART with Strategy 2 and Avg distance; and
MT-ART with Strategy 2 and Min distance. Generally, MT-ART surpasses metamorphic
distance-based ART based on effectiveness, efficiency, and code coverage [144].

2.2.6 MR and MG Selection

The following metrics have been introduced to define the properties of effective MR:

• Effective MRs should aim to maximize the difference between the behavior of STC
execution and that of corresponding FTC execution [56]. This metric has garnered
support from various individual studies [14, 37, 99, 101, 167, 181, 282]. Asrafi et al.
[14], for example, reported that improving the combined code coverage of the STCs
and the FTCs may increase the difference between SUT execution behaviors. Through
a large-scale empirical study, Cao et al. [37] reported that from a white-box-coverage
perspective, the test effectiveness (i.e., fault-detection capability) of MRs has a strong
and statistically significant correlation with the dissimilarity between the STCs and
the FTCs.

• The MRs identified according to specific components of the SUT are more likely to
outperform those identified according to the entire SUT in terms of test effectiveness
(i.e., fault-detection capability) [153, 154]. This metric was subsequently confirmed
by Xie et al. [282].

• Chen et al. [56] proposed the role of white-box considerations in guiding MR identi-
fication. This metric was subsequently confirmed and formally presented by Mayer
and Guderlei [201].

• Mayer and Guderlei [201] proposed four general metrics for quickly (but approxi-
mately) assessing potential MR performance. These four metrics can guide, not only
the identification, but also the selection, of MRs.

According to these metrics, several techniques have been designed and proposed to
guide the selection of effective MRs. Ding et al. [99] introduced a technique known as self-
checked MT to assess MR quality. This approach quantifies the code coverage of STCs and
FTCs throughout the MT process by integrating MT with structural testing. The rationale
behind self-checked MT aligns with one of the aforementioned metrics: MRs exhibiting
higher code coverage are likely to be more effective in identifying software failures. They
reported on a case study validating the performance (i.e., fault-detection capability) of
self-checked MT on a cellular image processing application. Gagandeep and Singh [253]
introduced a dynamic system for automating MT implementation. This system employs
unified modeling language [227] to guide MR selection. They conducted an empirical
study on a banking system to assess the performance of the SUT. Spieker and Gotlieb
[256] proposed a new approach called adaptive MT to dynamically adjusts MR selection

2.3 evaluation metrics 23

throughout the MT process. The rationale behind adaptive MT is to convert the problem
of MR selection into a reinforcement learning problem.

Recently, Sun et al. [260] introduced a novel algorithm named feedback-directed MT,
designed for the selection of effective MRs and STCs based on the SUT’s execution behav-
iors/outputs. This algorithm prioritizes the following aspects: (1) The violated MRs; and
(2) the STCs that are "close" to the STCs from MR-violating MGs. Empirical experiments
have been carried out to assess and compare the performance of this algorithm with MT-
RT. The experimental results demonstrated that this algorithm surpassed MT-RT in terms
of fault-detection capability.

2.3 evaluation metrics

2.3.1 Test Effectiveness (F-measure and F-ratio)

F-measure and F-ratio serve as two widely-used metrics for assessing the failure-detection
capability in both conventional software testing [81, 140, 210] and MT [64, 246]. The initial
F-measure in software testing indicates the count of test case executions required to reveal
the first software failure [81, 140, 210], while the initial F-ratio indicates the proportion
between the F-measure of a test-case generation algorithm and the F-measure of RT (FRT)
[140].

Given that MT identifies software failures through scrutinizing the relationships among
STCs and FTCs alongside their corresponding outputs [64, 143, 144, 246], it necessitates
redefining both the F-measure and the F-ratio: The F-measure in MT signifies the count
of MGs required for identifying the first MR violation, while the F-ratio in MT represents
the proportion between the F-measure of an MG-generation algorithm and the F-measure
of MT with RT (FMT−RT). A smaller MT F-measure value indicates a reduced count of
MGs required for identifying the first MR violation; similarly, a smaller MT F-ratio value
indicates enhanced fault-detection capability.

Despite the existence of other metrics for evaluating test effectiveness, like the E-measure
[70] and the P-measure [70], this thesis opt for F-measure and F-ratio due to the following
rationales:

1. All experiments were iterated 10,000 times to calculate the mean F-measure, genera-
tion time, Discrepancy, and Dispersion results. It should be pointed out that given an
algorithm, the mean F-measure does not represent the average F-measure of many
SUTs. Instead, the mean F-measure represents the average F-measure obtained after
multiple executions of a specific algorithm on one SUT and one MR. Specifically,
in the experiment, for each SUT and an MR, an algorithm was executed to get the
F-measure result. This step was then repeated 10000 times, and then the mean F-
measure was calculated. This is because all the three algorithms under test contain
randomness (e.g., the selection of STCs as candidates). Running the algorithm only
a few times is not reliable.

24 literature review

2. The reason for using the F-measure and F-ratio: F-measure is able to assess the ca-
pability of algorithms on detecting the first failure. In other words, when a failure
is identified for the first time. The F-ratio facilitates a comparative analysis of the
proposed algorithm against the baseline algorithm, MT-RT. Both F-measure and F-
ratio serve as popular metrics for assessing test effectiveness, and have been widely
employed in prior studies related to MT [143, 144, 260, 262, 296] and ART [81, 140,
210, 249, 265].

3. The reason for using the mean F-measure: (1) It has been commonly used in many
MT-related studies [143, 144, 260, 262, 296]. For instance, Hui et al. [144] proposed
MT-ART, which was also included in the experiments in the thesis, and used the
mean F-measure to measure the performance of MT-ART; and (2) this thesis also
used the effect size (Cohen’s d) to compare different algorithms, and the calculation
of effect size requires the mean F-measure values.

4. F-measure can measure the fault-detection capability of MG-generation algorithms
without the detection of prior faults. Since software testing may reveal multiple faults
from a SUT during a test session, the evaluation of MG-generation algorithms after
the detection of the first fault may be included in the future work. In particular, the
F2-measure may be considered, which can be used to validate the fault-detection ca-
pability of MG-generation algorithms after some fault(s) have already been revealed.

2.3.2 Test Effectiveness (Cohen’s d)

effect sizes are designed and developed to measure the size of effects in a population [121].
Additionally, the effect size (Cohen’s d [90]) was considered in the empirical studies to vi-
sually compare the performance of various algorithms. Generally, the effect size serves as
a metric illustrating the strength of the relation between two variables within a population
[121]. Various effect size concepts have been formulated and employed in statistical prac-
tice, categorized into different families on the basis of the experimental design, including
the difference family (measuring the standardized difference between two means) [90, 121],
categorical family (assessing risk) [157], and correlation family (evaluating the strength of
association between two variables) [237].

Cohen’s d [90] was included in the empirical studies of this thesis, which is a widely-
used effect size within the difference family. In general, Cohen’s d values denote the num-
ber of standard deviations between two populations. Its selection is based on the following
considerations: (a) Its capability to measure the standardized difference between two pop-
ulation averages, which correspond to the F-measure results in the empirical studies; and
(b) its widespread application in the empirical studies related to MT [262, 296] and ART
[249, 265]. Typically, larger Cohen’s d values signify greater difference between the two
means. Table 1 displays the range of Cohen’s d values corresponding to various effect size
magnitudes, initially delineated by Cohen [90] and later further expanded by Sawilowsky
[239]. The values of Cohen’s d can be computed using the following formula:

2.3 evaluation metrics 25

Table 1: Strengths of effect sizes in different ranges
Effect Size Strengths Cohen’s d Values

Very Small 0.01

Small 0.2

Medium 0.5

Large 0.8

Very Large 1.2

Huge 2.0

Cohen′s d =
Mean Di f f erence

Pooled Standard Deviation

=
M2 − M1√

SD2
1+SD2

2
2

(2)

• M1 denotes the average of the first set of data.

• M2 denotes the average of the second set of data.

• SD1 denotes the standard deviation of the first set of data.

• SD2 denotes the standard deviation of the second set of data.

2.3.3 Test Efficiency (Generation Time)

Two metrics, generation time and execution time [137, 140], are commonly employed to
measure and compare the test efficiency of conventional test-case generation algorithms:
The generation time denotes the computational cost associated with constructing a spec-
ified number of test cases and serves as the main indicator of testing efficiency, while
the execution time signifies the duration needed to execute a given number of test cases
against the SUT [137, 140].

In the empirical experiments of this thesis, generation time was included as the principal
metric for assessing test efficiency, as it typically has a greater influence on the overall com-
putational costs of software testing in comparison to execution time [137]. It is noteworthy
that, owing to the characteristics of MT, the concept of generation time in the empirical
studies was redefined as the duration required to produce a specified number of MGs:
Specifically, the CPU time (measured in seconds) for generating 10,000 MGs was recorded.
Given the fact that RT is likely to contain the minimal computational overhead in test case
generation, it was anticipated that its generation time would be shorter than that of all
other algorithms examined in the experiments.

2.3.4 Test-Case Diversity (Dispersion)

Dispersion was considered in the empirical studies to assess the diversity of test cases
generated by various algorithms. Dispersion assesses the test-case diversity by determining

26 literature review

the presence of significant empty regions (void of executed test cases) within the input
domain [60]. Dispersion can be measured using the following metrics:

• Min: The minimum distance between any two test cases within the test-case set [140].

• Max: The maximum distance between any two test cases within the test-case set
[140].

• Max-Min: The difference between the maximum distance (Max) and the minimum
distance (Min) within the test-case set [140]. A value approaching zero indicates a
more uniformly distributed set of test cases.

2.3.5 Test-Case Diversity (Discrepancy)

Discrepancy serves as another metric for evaluating the diversity of test cases in the empir-
ical studies. Discrepancy assesses the test case diversity by determining if various subdo-
mains within the input domain exhibit an equal density of test cases. Eq. 3 [60] is employed
to calculate the Discrepancy, illustrated as follows:

Discrepancy =

∣∣∣∣ |Ei|
|E| −

|Di|
|D|

∣∣∣∣ (3)

In Eq. 3, D represents the input domain, and E denotes the executed test case set. Di

represents the ith subdomain within D, characterized by randomly defined positions and
sizes, while Ei signifies the ith subset of executed test cases located within Di. Typically,
the number of subdomains is set to 1000 to balance between computational efficiency and
accuracy [140], which is also the configuration adopted in the empirical studies of this
thesis.

• i: 1 ⩽ i ⩽ n.

• n: The total number of subdomains.

• Min: The minimum value of Eq. 3 obtained for a set of test cases E within D.

• Max: The maximum value of Eq. 3 obtained for a set of test cases E within D.

• Max-Min: The difference between the maximum value (Max) and the minimum value
(Min) obtained from Eq. 3. A value approaching zero indicates a more uniformly
distributed set of test cases.

2.3.6 Receiver Operating Characteristics (ROC) and Area Under the ROC Curve (AUC)

The ROC graph serves as a visualization method for assessing the performance of classifi-
cation models [108]. It represents a curve depicted on a two-dimensional graph. The ROC
curve illustrates the model’s capacity to differentiate between positive and negative test

2.4 experiments setup 27

cases effectively. In the context of a model, there exist two types of test cases and four po-
tential outcomes. To determine the ROC curve of a given model, it is necessary to calculate
the following rates:

• Positive (P): The positive test case.

• Negative (N): The negative test case.

• True Positive (TP): The positive test case that are predicted to be positive.

• False Negative (FN): The positive test case that are predicted to be negative.

• True Negative (TN): The negative test case that are predicted to be negative.

• False Positive (FP): The negative test case that are predicted to be positive.

• True Positive Rate (TPR): The ratio of TP to the total number of P.

• False-Positive Rate (FPR): the ratio of FP to the total number of N.

For a given model, a pair of points (TPR, FPR) can be computed based on its perfor-
mance on a set of test cases. The horizontal axis of the ROC graph denotes the FPR, while
the vertical axis denotes the TPR. By adjusting the model’s threshold, a curve can be gen-
erated passing through points (0, 0) and (1, 1), representing the ROC curve of the model.
Typically, an ROC curve should lie above the line connecting points (0, 0) and (1, 1). To
assess and visualize the quality and performance of a model, the Area Under the ROC
Curve (AUC) was proposed [26, 124]. The value of AUC represents the size of the area un-
der the ROC curve, with values typically ranging from 0.5 to 1.0. Typically, a larger AUC
value indicates better test performance. Both ROC and AUC have been widely employed
in evaluating credit risk models [23, 27, 46, 173, 189, 212].

Although other validation metrics, such as the Kolmogorov-Smirnoff statistic, are
widely-used in credit scoring validation, this thesis selected AUC for the following two
main reasons: (1) It is more suitable for imbalanced classification scenarios than the typi-
cal Accuracy metric [27]; and (2) it is widely aadopted within the credit scoring commu-
nity [27], as well as the Gini coefficient [106], which is merely a transformation of AUC
(Gini = 2 × AUC − 1).

2.4 experiments setup

In order to thoroughly explore the efficiency and effectiveness of MG-generation algo-
rithms, a diverse array of subject programs was chosen, varying in both size and dimen-
sionality. Artificial faults were manually introduced into the SUTs to produce mutants,
in accordance with the following specified mutation operators [149]: Constant RePlace-
ment (CRP); Arithmetic Operator Replacement (AOR); Return Statement Replacement
(RSR); and Relational Operator Replacement (ROR). All experimental procedures were
performed under uniform hardware conditions: A Dell PC equipped with a 3.00GHz In-
tel(R) Core(TM) i5-9500 processor and 16.0GB RAM. Details about the SUTs, such as the

28 literature review

Table 2: Information of the Experimental SUTs and MRs
SUT Sin tanh Erf BesselJ BesselJ sncndc TriSquare TriSquarePlus rj PntLinePos

Input
Dimensions

1 1 1 2 2 2 3 3 4 6

Input Domain
Ranges

(0,1000) (0,1000) (0,1000)
((1,1),

(100,100))
((1,1),

(100,100))
((0,0),

(100,100))
((0,0,0),

(100,100,100))
((0,0,0),

(100,100,100))

((0,0,0,0),
(100,100,
100,100))

((0,0,0,0,0,0),
(100,100,100,
100,100,100))

Size (LOC) 120 18 763 140 1211 64 38 31 175 23

Number of
MRs

12 8 8 3 3 8 11 11 6 8

Fault Types CRP, ROR, RSR, AOR

name of the SUTs, the range of input domains, the Lines Of Code (LOC), and the number
of MRs, and the mutation operators used, are outlined in Table 2, with comprehensive
explanations provided below.

2.4.0.1 Sin

The first SUT, Sin, is programmed to execute the sine function, with its source code retriev-
able from Chen et al. [67]. Due to the oracle problem associated with most inputs for the
sine function, it has garnered frequent attention in MT-related studies [52, 67, 143, 144].
Twelve MRs (refer to Appendix 1) were identified based on sine identities or insights from
previous MT-related studies [52, 67, 143, 144].

2.4.0.2 tanh

The subsequent SUT, tanh, computes the ratio of Sinh to Cosh. This choice was because of
its popularity in ART-related studies [13, 136, 137, 139]. In total, ten MRs were identified
for the empirical experiments based on common tanh identities, with detailed information
provided in Appendix 1.

2.4.0.3 Erf

Erf [276] was selected as the third SUT. Its implements the Gauss error function illustrated
in Eq. 4. The version 3.6.1 of Erf from the Apache Commons Math framework1 was selected
for the empirical experiments, and a total of eight MRs were identified based on Eq. 4 or
the monotonicity of Erf, as detailed in Appendix 1.

Er f (x) =
2√
π

∫ x

0
e−t2

dt (4)

Er f (x) = −Er f (−x) (5)

2.4.0.4 BesselJ

The subsequent SUT, BesselJ, was designed to calculate the Bessel function of the first kind
Jv(x) for each element in array x. Various implementations of the Bessel function exist, and

1 https://commons.apache.org/proper/commons-math/

2.4 experiments setup 29

this thesis chose the SUT within the Apache Commons Math framework (version 3.6.1)1

for the empirical experiments. This SUT has been widely employed in ART-related studies
[276]. A total of three MRs were identified (listed in Appendix 1) based on the Bessel
function or the common relation (Eq. 6).

Jv−1(x) + Jv+1(x) = 2 ∗ v ∗ Jv(x)/x (6)

2.4.0.5 BesselJ

The next SUT, BesselJ, was also designed to implement the Bessel function according to
Steed’s method [143, 144, 229, 230]. Developed using C++, its source code is available
in Numerical Recipes [229, 230]. This selection was motivated by its popularity in MT-
related studies [143, 144]. For consistency, the same three MRs as those used by BesselJ
were employed in the experiments for BesselJ.

2.4.0.6 sncndn

The sixth SUT is sncndn, tasked with implementing the Jacobi elliptic function [229, 230].
It is a system frequently employed in ART-related studies [13, 137, 193]. This system is
also developed using C++, and its source code is available in Numerical Recipes [229, 230].
Eight MRs were derived based on the following relationships satisfied by the Jacobi elliptic
function:

k2 ∗ sn2 + dn2 = 1, k2 = 1 − y. (7)

2.4.0.7 TriSquare

TriSquare, another widely-used system, was designed to determine if three given double-
precision numbers greater than 0.0 can form a triangle and subsequently compute its size
[49, 100, 102, 143, 144]. The system ends if the given numbers are incapable of forming a
triangle; otherwise, it proceeds to calculate the its size. Eleven MRs were identified (shown
in Appendix 1), derived based on previously-published MT-related studies [100].

2.4.0.8 TriSquarePlus

The eighth SUT, TriSquarePlus, was sourced from Dong [100] and designed to determine if
three given double-precision numbers greater than 0.0 can form a triangle. If so, TriSquare-
Plus proceeds to identify the type of triangle and calculate its size. In the empirical exper-
iments, the same eleven MRs identified for TriSquare were used.

2.4.0.9 rj

The next SUT in the empirical experiments is rj, sourced from Numerical Recipes [229,
230]. It implements the Carlson’s elliptic integral of the third kind, as illustrated in Eq. 8.
This SUT represents an enhanced iteration of cel and el2, both of which are widely-used

30 literature review

in ART-related studies [13, 62, 136, 137, 139, 193]. In the experimental setup, six MRs were
identified, as detailed in Appendix 1, on the basis the following formula:

rj(x, y, z, p) =
3
2

∫ ∞

0

dt
(t + p)

√
(t + x)(t + y)(t + z)

(8)

2.4.0.10 PntLinePos

PntLinePos, serving as the final SUT, was selected due to its popularity in ART-related
studies [13, 136, 137, 139, 193]. This SUT determines the relations between a point and a
line segment, and outputs values representing the following:

• 0: Indicates that the point lies to the left of the line.

• 1: Indicates that the point lies on the line segment.

• 2: Indicates that the point lies on the extension of the line segment.

• 3: Indicates that the point lies to the right of the line.

In total, eight MRs were identified for the empirical experiments, as introduced in Ap-
pendix 1.

2.5 machine learning

2.5.1 Neural Networks

Neural networks are among the most widely-used predictive models, with significant re-
search dedicated to their application in the credit scoring domain [27, 31, 93, 97, 148, 171,
190, 212, 225, 255, 273, 278]. A simple form of neural network (consisting of an individ-
ual neuron) is given to illustrate neural networks. This neuron serves as a computational
unit, accepting two inputs x1, x2, two corresponding weights w1, w2, and a bias b1, and pro-
ducing an output y. The weights determine the strength of inputs, while the bias enables
an activation function f to adjust the decision boundary [2, 105, 160]. The absence of bias
may render the neural network inactive, impeding information transmission. That is to say,
the bias regulates the activation function’s triggering threshold. Common activation func-
tions are sigmoid, tanh, and ReLU functions [2, 105, 160]. Here, f represents the activation
function and ŷ denotes the neural network estimate of y. The formula for computing this
individual neuron is:

ŷ = f (x1w1 + x2w2 + b1)

Neural networks are constructed by interconnecting individual neurons, enabling the
output of one neuron to serve as the input for another [2, 105, 160]. Suppose that there is
a dataset consisting of three attributes (x1, x2, y), with x1 and x2 known and y unknown.

2.5 machine learning 31

Figure 3: A multi-layer feed-forward neural network example

The objective is to predict the unknown attribute y using the two known attributes. Vari-
ous types of neural networks exist, and in this instance, a basic multi-layer feed-forward
neural network model is constructed, as illustrated in Fig. 3. This model contains three
components: An input layer of neurons (used for the acceptance of inputs in various for-
mats), two layers of hidden neurons (used for the identification of hidden features), and
one layer of output neurons (used for the generation of final outputs) [2, 105, 160]. In
particular, this neural network can be calculated using (where x represents an input, w
represents a weight, h represents a hidden neuron, and b represents a bias):

h1 = f (x1w1 + x2w3 + b1), h2 = f (x1w2 + x2w4 + b2)

h3 = f (h1w5 + h2w6 + b3)

ŷ = f (h3w7 + b4).

As a common type of neural network, the back-propagation neural network [36, 119, 172]
operates as a multi-layer feed-forward network trained using the error back-propagation
algorithm [2, 105, 160]. The back-propagation algorithm, a supervised learning algorithm,
employs a loss function that quantifies the differences between predictions ŷ and true
labels y on training data, with the aim of adjusting the weights of network connections. In
general, a back-propagation neural network can be built based on the following steps:

• Forward propagation of the operational signal requires the transmission of the input
signal from the input layers through the hidden layers to the output layers. Through-
out this process, the weights and biases remain constant, and the state of neurons in
each layer solely influences the state of neurons in the subsequent layer. If the antici-
pated output is not obtained at the output layer, then the process transitions to error
signal back-propagation; otherwise, the process ends and the results are reported.

• The back-propagation of the error signal involves the transmission of the error
signal, representing the differences between the actual and expected outputs of a

32 literature review

Figure 4: A Simple Decision Tree Example for Credit Scoring

neural network, from the output layers through the hidden layers to the input lay-
ers. Throughout this process, the weights are adjusted based on the error feedback.
Back-propagation neural networks iteratively adapt the weights and biases to pro-
gressively align the network’s actual output with the expected output.

2.5.2 Decision Trees

A decision tree, a parameter-free supervised ML-based model, serves as a versatile tool
for both regression (distinguishing the data into continuous real values) and classification
(separating the data into multiple categorical classes) tasks [217, 254]. It represents a tree
structure formed by a root node, branches, internal nodes, and leaf nodes [217, 254]. The
implementation of decision trees in credit scoring dates back to the 1940s [94, 115]. For
instance, in the assessment of a customer’s credit score, the decision tree illustrated in Fig.
4 serves as an illustrative example: Renters typically receive lower scores, while individuals
with credit cards are assigned higher scores. The decision tree commences with a root
node devoid of incoming branches. The pathway from the root node to each leaf node
corresponds to a sequence of decisions. Each internal node (or decision node) represents
an attribute, serving as a judgment condition containing the dataset subset that satisfies
all conditions from the root node to the respective node. The leaf node, also referred to as
the terminal node, consists of all potential outcomes and is indivisible.

Commonly-used decision tree types include the classification and regression tree [187],
which is available for both classification and regression tasks: The former is applicable
when predicting discrete data outcomes, while the latter is available for the scenarios
where the predicted results contain real numbers. The classification and regression tree
model typically consists of three key steps: Feature selection (highlighting the differences
between classification and regression analyses), decision tree generation (formulating a
decision tree according to the training dataset), and decision tree pruning (utilizing the
validation dataset to refine the generated tree and identify the best sub-tree).

2.5 machine learning 33

2.5.3 Gradient Boosting Decision Trees

Gradient boosting represents a widely-used and powerful ML algorithm employed in con-
structing predictive models within the field of credit scoring [27, 31, 171, 255]. It repre-
sents an ensemble of weak learners (predictive models), which is available for both re-
gression and classification tasks [27, 114, 126]. In general, weak learners represent the
models slightly outperforming random guessing, while strong learners denote the models
with good accuracy [104]. Specifically, when these weak learners are constituted by de-
cision trees (particularly the classification and regression tree [187]), the resultant models
are termed gradient boosting decision trees [27, 126]. Belonging to the domain of ensemble
learning, boosting combines a set of models to generate predictions [46, 126]. Within boost-
ing decision trees, an ensemble of weak learners (individual decision trees) is amalgamated
and trained sequentially. Each subsequent model learns from the errors of its predecessor
to decrease the collective error of these weak learners, with the aim of forming a strong
learner [46]. Friedman [114] introduced the concept of gradient boosting decision trees as
an extension to boosting decision trees, focusing on descending the loss function in the
previous model along its gradient direction. A gradient boosting decision tree typically
consists of three components:

• The loss function to be optimized, which is designed according to the problem type.

• The weak learner (decision tree) responsible for predictions.

• The additive model (gradient descent) that amalgamates weak learners to minimize
the loss function.

2.5.4 Random Forests

The Random forest stands as a widely-used predictive model within the field of credit
scoring [6, 27, 31, 93, 107, 171, 212, 255, 270, 277]. As a powerful and favored ML-based
model, it represents a parallel combination of decision trees available for both classification
and regression analyses [30]. It users both bagging [29] and random feature selection [30]
to construct a forest of uncorrelated decision trees. Bagging, or Bootstrap aggregating,
is a renowned ensemble learning algorithm that typically combines and trains a set of
weak models. Each model learns from a random subset of the original dataset, after which
all models are amalgamated to produce an appropriate outcome. In contrast to bagging,
random forests employ distinct random subsets of features to train a series of decision
trees, with the aim of ensuring minimal correlation between them.

2.5.5 Machine Learning in Credit Risk Assessment

Brown et al. [31] investigated the credit scoring performance of eight classifiers, includ-
ing neural networks, gradient-boosting decision trees and random forests. The empirical

34 literature review

experiments revealed that gradient-boosting decision trees and random forests typically
exhibited better performance compared to other classifiers when using test samples with
substantial class imbalances. Lessmann et al. [171] reported on an exhaustive study ex-
amining the credit scoring effectiveness of 41 different classifiers (such as neural networks,
gradient-boosting decision trees, and random forests) across eight real-world datasets. The
empirical results revealed that, in general, random forests were able to provide more pre-
cise predictions compared to individual classifiers such as neural networks. Wang et al.
[277] employed random forest models to assess the probability of default and the spe-
cific default time of loan applicants in Peer-to-Peer lending scenarios. Through empirical
experiments, they found that the random forest models were capable of outperforming
other models, including logistic regression, in terms of AUC. Song et. al. [255] introduced
a novel ensemble algorithm and reported on an empirical study to exploring and com-
paring it with six state-of-the-art algorithms, such as decision trees, gradient-boosting de-
cision trees, random forests, and multi-layer perceptrons. Dusimana et. al. [107] reported
on a case study validating the credit risk assessment performance of three popular ML-
based models (including logistic regression, decision trees, and random forests) based on
various cross-validation methods. Their experimental results indicated that the random
forests demonstrated better performance compared to other models. Pandey et. al. [225]
conducted empirical experiments to investigate and compare the performance of various
credit-risk-related algorithms in assessing credit-risk datasets, such as neural networks,
decision trees, multi-layer perceptrons, extreme learning machines, and support vector
machines. The experimental results revealed that the extreme learning machines were ca-
pable of outperforming other algorithms. Trivedi [270] examined the optimal combination
of feature selection methodologies and ML-based models through three commonly-used
feature-selection techniques (including chi-square, information gain, and gain ratio) as well
as five ML-based models (including Bayesian, Naive Bayes, support vector machines, deci-
sion trees, and random forests). The experimental results revealed that combining random
forest and chi-square tended to contain better performance. Moscato et al. [212] introduced
a bench-marking study examining the probability of loan repayment in a Peer-to-Peer plat-
form through the combination of commonly-used ML-based algorithms (such as random
forests and multi-layer perceptrons) and sampling methodologies. Breeden [27] examined
the credit risk assessment performance of various ML-based classifiers (including random
forests, neural networks, and gradient-boosting decision trees). The experimental results
indicated that choosing the optimal classifier among the diverse options is exceedingly
challenging. Agrawal et al. [6] presented a credit-risk calculator-driven loan-eligibility pre-
diction tool using ML-based algorithms: It is capable of forecasting credit scores based on
ML-based algorithms (including random forests and decision trees). The empirical experi-
ments of algorithmic prediction accuracy revealed logistic regression as the top performer
in terms of precision. Davis et al. [93] investigated and contrasted the credit-score predic-
tion performance of various ML-based models (including neural networks and random
forests) through a real-world residential loan dataset published by the Fair Isaac COrpora-

2.5 machine learning 35

tion (FICO). The empirical results revealed that neural networks generally exhibited better
performance compared to other linear and nonlinear models.

Predictive models find widespread application in the industrial sector as well. Equifax2

holds numerous patents granted in the United States, and NeuroDecision Technology
(NDT) is presently a widely-used international application developed by Equifax: It repre-
sents a regulatory-compliant neural network approach applicable to risk decision-making
scenarios and has been widely used in predictive models requiring risk-assessment rea-
son codes [205, 206]. McBurnett et al. [205] examined the interpretability of ML-based
models and revealed significant distinctions in model scores and reason codes between
NeuroDecision credit-risk models and unconstrained neural-network credit-risk models.
McBurnett et al. [206] employed logistic regression to investigate the differences between
the cause code patterns generated by the NeuroDecision model and a proxy model, in
order to compare their of their accuracy. Quell et al. [233] evaluated the performance of
ML-based models (including neural networks, gradient-boosting decision trees, and ran-
dom forests) in model-risk and credit-score assessment. Regarding selection criteria, Quell
et al. [233] stressed the importance of not only assessing model performance (credit risk
assessment capability) but also other additional factors (including model interpretability,
as well as the cost and effort associated with model application, maintenance, and mon-
itoring). FICO3, a popular analytics software enterprise assisting businesses across more
than 90 countries in making decisions, conducted a comparison between the credit-score
prediction performance of the proposed model (termed FICO Score analytic model) and
prevalent ML-based models (including neural networks and gradient-boosting decision
trees) [109]. The experimental results suggested that the proposed model were capable of
outperforming other models.

Traditional linear models often rely on business intuition for model selection. The esti-
mated model coefficients should meet the business expectations. For instance, if we see a
positive coefficient estimate for credit score in a default model, we may be suspicious of
the model and may not use it [28]. Because there are no coefficients on linear terms, and
the effects are commonly non-linear on the factors, this procedure cannot be used for ML-
based models. The emergence of ML-based models with high complexity highlights the
importance of Explainable Artificial Intelligence (XAI) in credit risk assessment [4]. XAI
concentrates on making the decision-making process of ML-based models transparent and
understandable [3, 4, 176]. Consumers are able to better understand why the model makes
certain decisions and how it works. For example, by deeply understanding the factors that
affect the credit score, consumers are able to take proactive measures to improve their
credit score. In general, XAI consists of two primary components [176]: Interpretability
and explainability.

Interpretability is an important evaluation metric for ML-based credit risk models [38,
118, 288], and is generally associated with the rationale behind the outputs of a model [3]:
It indicates the degree to which the output of a model can be understood and interpreted
by humans. Baesens et al. [16] was arguably the first to highlight the predictive-accuracy-

2 https://www.equifax.com/ (7 April 2024)
3 https://www.fico.com/en (7 April 2024)

36 literature review

interpretability trade-off in credit risk assessment, which was later further elaborated by
Martens et al. [194] and Coussement et al. [92]. On the other hand, explainabilityis often
related to the internal logic and mechanisms within ML-based models [3, 176]: A model
that is highly explainable represents a deep human understanding of the internal processes
that occur during model training or decision-making.

Model-agnostic methods can be used for XAI, which can be roughly divided into two
types: Global methods and local methods [209]. A Partial Dependence Plot (PDP) [122] is
a typical example of a global method: It enables the relative effect size of values of each
feature against the target variable. In contrast, local methods work by interpreting the fea-
ture effects inside the local neighborhoods of the data. For instance, Local Interpretable
Model-agnostic Explanations (LIME) [236] is one of the most commonly-used methods:
It can generate a local linear model in the neighborhood of an example, and offer coeffi-
cient estimates for the model as explanations of model behavior at that example. SHapley
Additive exPlanations (SHAP) is another commonly-used method for constructing local
explanations according to the concept of Shapley value [250]. Although LIME and SHAP
can be used with MT/ME (since they are able to offer measures at local level), we are
unaware of any previous related works. They were not used in the thesis since they may
not necessarily express business intuitions in one specific format, and thus, the HMRs
were directly constructed according to business rules instead of using generic local XAI
methods.

3
A S I M U L AT I O N F R A M E W O R K F O R T H E P R O C E S S
O F M E TA M O R P H I C T E S T I N G

Publications delivered from this chapter

1. Zhihao Ying, Anthony Bellotti, Dave Towey, Tsong Yueh Chen, and Zhi Quan Zhou.
Using Metamorphic Relation Violation Regions to Support a Simulation Framework
for the Process of Metamorphic Testing. In 2022 IEEE 46th Annual Computers, Software,
and Applications Conference (COMPSAC), 2022, pp. 1722-1727, doi: 10.1109/COMP-
SAC54236.2022.00274.

3.1 introduction and motivation

As a well-developed software testing technique, Simulation evaluates software testing per-
formance by employing artificial failure regions, and assessing whether or not the gener-
ated test cases are located within these regions [140]. Due to their ability to mitigate the
challenges and time constraints associated with evaluating and comparing software testing
techniques, simulations have seen widespread adoption in the development of traditional
testing methods [140]. Test cases inducing unexpected SUT behavior or output are termed
as failure-causing test cases. Failure regions, as the core of simulations, denote the areas
(i.e., test cases) of the input domain that can lead to SUT failures (as determined by the
oracle) [140]. Simulations do not require SUT executions; instead, they ascertain software
failures based on the location of test cases.

However, to the best of our knowledge, no simulation framework has been proposed
for MT. This may be caused by the fact that simulations are often designed designed and
applied under the availability and applicability of an oracle. However, a key strength of MT
lies in its demonstrated effectiveness in software testing, without the requirement for an
available oracle. Furthermore, MT identifies software failures by detecting MR violations,
rather than test case failures. These factors make traditional simulations less applicable to
MT. MT performance evaluation can prove challenging and time-consuming (particularly
the identification of MRs), involving the following steps:

1. Identify an SUT and generate mutants by injecting artificial faults into the SUT, either
manually or using an automatic mutation tool [149].

2. Identify MRs for the SUT, either manually or through an automatic tool.

37

38 a simulation framework for the process of metamorphic testing

3. Generate MGs using MG-generation algorithms.

4. Execute the generated MGs against the mutants.

5. Examine the outputs and check for MR violations.

The absence of inexpensive and swift MT simulation tools are likely to impede the
exploration, development, and application of MT. This chapter refers to this problem as
the MT-performance evaluation challenge.

This chapter reports on proposing the concept of MR-Violation Regions (MRVRs) [285]
as a solution to this challenge, demonstrating their capability in developing MT simulation
tools. Such MT simulations simplify the process of evaluating MT performance, allowing
testers and researchers to conduct MT-related experiments with greater efficiency and
speed. For instance, numerous previous studies on MG-generation have highlighted the
potential influence of MG quality on MT performance [19, 143, 144]. However, assessing
the efficiency and effectiveness of MG-generation algorithms has consistently been chal-
lenging and time-consuming [246]. The use of MT simulations are expected to address
these challenges and provide users with a faster and more comprehensive approach for
the investigation of MG-generation algorithms. This chapter reports on a case study in-
vestigating the presence of different types of MRVRs in programs with numerical input
domains, drawing from previously-published MT-related or ART-related studies [13, 52,
62, 67, 100, 136, 137, 139, 143, 144, 193, 276]. Additionally, this chapter also analyzes and
explores the differences between MRVRs and traditional (oracle-based) failure regions. It
is hoped that the proposed MT simulation framework could facilitate the in-depth explo-
ration and wider adoption of MT.

3.2 an mt simulation framework

This section introduces the concept of MRVRs and a framework to facilitate the MT sim-
ulation for a specific category of MRs: The Deterministic MRs (DMRs). While the concept
of DMRs has been applied to some extent, it remains without a formal definition. Consid-
ering this, this section formally proposes definitions for both DMRs and non-DMRs.

3.2.1 Deterministic Metamorphic Relations (DMRs)

Using a program, Square (calculating the square of a number) as an example. The following
are two possible examples of 1-1 MR described based on the template proposed by Segura
et al. [244]:

In the domain of Square Program
assuming that

• The input contains one parameter: x (x > 0).

• The output consists of one parameter: Square(x).

3.2 an mt simulation framework 39

the following metamorphic relation(s) should hold

• MRsquare1:

if source inputs are increased by an integer P (P = 1) to construct follow-up inputs,

then the follow-up outputs should be larger than the source outputs.

• MRsquare2:

if source inputs are increased by a positive integer Q to construct follow-up inputs,

then the follow-up outputs should be larger than the source outputs.

It is evident that for the first 1-1 MR type, each STC can generate a unique FTC, while
for the second 1-1 MR type, varying FTCs can be constructed from a single STC by using
different P values. This chapter refers to the first kind of 1-1 MRs as Deterministic 1-1 MRs
(DMRs[1-1]). With this consideration, MRsquare1 can be written as DMR[1-1]square1. This
chapter generalizes this concept to formally define a Deterministic M-N MR (DMR[M-N])
as follows.

• Definition 3.1 (Deterministic M-N MR (DMR[M-N])): An M-N MR such that for any set
of M STCs (<STC1, STC2, . . . , STCM>) in a given valid MG, there is one and only one
determined set of N corresponding FTCs (<FTC1, FTC2, . . . , FTCN>).

3.2.2 Metamorphic Relation Violation Regions (MRVRs)

If conducting MT on an SUT with a DMR[1-1], all available STCs within the input domain
are chosen and the relevant FTCs can be automatically generated, to identify the subset of
those STCs (as well as their respective FTCs) that violate the specified MR. Thus, selecting
an STC from this test set will certainly result in the violation of this MR. In this scenario,
further consideration of FTCs is unnecessary, as they are entirely determined by the STCs
and the DMR: Once the STCs and the DMR are decided, the FTCs cannot be altered. In
this context, an MT simulation can be employed for (D)MRs: Without executing the SUT,
violation of the specified (D)MR can be detected by identifying any STC that leads to
an MR violation — these STCs are referred to as (D)MR-violating STCs. Specifically, the
following formal definitions are presented:

• Definition 3.2 (MR-violating STCs): The set of STCs from MR-violating MGs for an DMR.

• Definition 3.3 (MR-Violation Region (MRVR)): The regions of MR-violating MGs, including
corresponding MR-violating STCs and MR-violating FTCs

• Definition 3.4 (MR-Violation Rate): The number of MR-violating STCs as a proportion of all
possible STCs.

This chapter further refers to the MRVR-S as the STC-only component of the MRVR and
the MRVR-F as the FTC-only component of the MRVR, and their formal definitions are:

40 a simulation framework for the process of metamorphic testing

Algorithm 1: MT Simulations

1 Choose a processed SUT with a suitable identified MR-violation rate and regions;
2 while none of the stopping conditions are triggered do
3 Employ an MG-generation algorithm to generate a new STC;
4 Determine the MR violation by verifying whether or not the new STC falls

within an MRVR-S;
5 end

• Definition 3.5 (MRVR-S): The regions within the input domain from which any selected and
executed STC will lead to a violation of the MR.

• Definition 3.6 (MRVR-F): The regions within the input domain identified based on the
MRVR-S and an MR.

At this stage, a tester or researcher is able to ascertain whether or not an MR is violated
by examining whether or not the generated STC belongs to the set of MR-violating STCs
(within the relevant MRVR-S). Building upon the concepts of DMRs and MRVRs, this thesis
summarizes the procedure of implementing MT simulations in Algorithm 1. Additionally,
it is crucial to emphasise that the MRVRs will vary for different MRs.

For the second 1-1 MR type (such as MRsquare2), identifying the relevant MRVR-S neces-
sitates determining the Q value: when Q = 1, one MRVR-S can be identified (equivalent
to MRsquare1); and when Q = 2, a new MRVR-S can be identified. Each Q value can be
regarded as defining an input domain dimension, or alternatively, the entire SUT can be
considered to have an additional input domain dimension characterized by different Q val-
ues. Further discussion and analysis of identifying MRVRs for other types of MRs (such as
non-DMR[1-1]) is beyond the scope of this research, which may be included in the future
work.

3.2.3 Relationship between MRVRs and Failure Regions

It should be noted that, within a given faulty SUT, the failure regions and the MRVRs are
anticipated to manifest dissimilar characteristics. Typically, in scenarios where the oracle
is absent (with the presence of the oracle problem), the localization of failure regions
becomes indeterminate; however, the determination of MRVRs remains feasible. Even with
an available oracle and the same SUT, as previously indicated, one specific MR has its
own MRVR, and different MRs have different MRVRs. In particular, within the context of
the same SUT, the localization of failure regions is immutable, while different MRs are
anticipated to contain different MRVRs.

In the context of a faulty SUT equipped with an accessible oracle and a 1-1 MR, three
different types of MGs can be defined based on the correlation between the location of
MGs and the location of failure regions:

1. Either the STC or the FTC lies within the failure region.

3.3 empirical experiments 41

2. Both the STC and the FTC lie within the failure region.

3. Neither the STC nor the FTC lies within the failure region.

The selection of MGs categorized under Types (1) or (2) produces the identification of at
least one failure-causing test case: Either the STC or the FTC for Type (1); or both for Type
(2). Nonetheless, it is important to emphasize that the MGs classified under Types (1) or
(2) do not inevitably lead to MR violations; in contrast, the MGs categorized under Type
(3) may still reveal MR violations.

The use of diverse combined MRs has been reported to perform better than any indi-
vidual MRs [64, 74, 181, 246, 297]. Although this concept may be applicable in practical
software testing scenarios, the scope of this study includes the design of simulations for
specific individual MRs, as exemplified by DMRs[1-1]. Testers or researchers might prefer
to apply MT simulations when MR-violating STCs or FTCs also trigger failures, that is, the
MRVR-S/MRVR-F and the failure region are identical. This is an additional extension for
the proposed MT simulation framework.

Drawing from the existence of failure regions in conventional (oracle-based) software
testing [83], it is logical to predict the existence of similar (MT-oriented) MRVRs: block,
strip and point. For instance, the following MRVRs can be identified for the SUTs (in
reality or simulations) with a DMR[1-1]:

• Definition 3.7 (Block MRVRs): The MR-violating STCs or FTCs roughly concentrate within
a singular contiguous jagged rectangular region.

• Definition 3.8 (Strip MRVRs): The MR-violating STCs or FTCs roughly concentrate within
a slender line connecting adjacent boundaries.

• Definition 3.9 (Point MRVRs): The MR-violating STCs or FTCs are less obviously clustered,
and are more diversely spread throughout the entire input domain in minor clusters.

3.3 empirical experiments

In this section, an investigation was conducted into the presence of various types of MRVR
in subject programs of varying sizes and dimensions. Table 3 summarizes brief information
about the SUTs and their mutants, while Appendix A presents details of all the (D)MRs
used. All SUTs have previously been studied and published in MT-related or ART-related
studies [13, 52, 62, 67, 100, 136, 137, 139, 143, 144, 193, 276]. All MRs used in the experi-
ments were DMRs, derived from previous MT-related studies [67, 100, 143, 144] or man-
ually identified. Artificial faults were inserted into the SUTs to create mutants through
mutation operators [149] — the description of the mutation operators is given in Section
2.4. In total, ten mutants were created for each SUT. The steps for creating mutants can be
summarized as follows:

42 a simulation framework for the process of metamorphic testing

Table 3: Information of the Experimental SUTs and MRs
SUTs Sin tanh Erf BesselJ BesselJ sncndc TriSquare TriSquarePlus rj PntLinePos

Input
Dimensions

1 1 1 2 2 2 3 3 4 6

Input Domain
Ranges

(0,1000) (0,1000) (0,1000)
((1,1),

(100,100))
((1,1),

(100,100))
((0,0),

(100,100))
((0,0,0),

(100,100,100))
((0,0,0),

(100,100,100))

((0,0,0,0),
(100,100,
100,100))

((0,0,0,0,0,0),
(100,100,100,
100,100,100))

Size (LOC) 120 18 763 140 1211 64 38 31 175 23

Number of
MRs

12 8 8 3 3 8 11 11 6 8

Number of
Mutants

10 10 10 10 10 10 10 10 10 10

Fault Types CRP, ROR, RSR, AOR

Existence of
Block MRVRs

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Existence of
Strip MRVRs

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Existence of
Point MRVRs

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1. An artificial fault is randomly inserted into the SUT to create a mutant using muta-
tion operators, either manually or through a tool.

2. MT-RT is executed against the mutant using each MR to check whether or not the
MR is violated.

3. Repeat Step 2 10,000 times, and if a violation is detected, then include this MR in the
experiments; otherwise, skip to Step 1.

4. Repeat Steps 1-3 until ten mutants have been created.

The steps of identifying MRVRs (Section 3.2.2) were repeated for each mutant and its
corresponding MR to identify the MRVRs. The detailed experimental steps were:

1. Select a system.

2. If a stopping condition is not triggered, do:

a) Select a mutant and an MR.

b) Execute the MGs in the input domain.

c) Check and mark the part of MGs that violate the MR.

d) Examine and categorize the MRVR.

The stopping condition was that for the selected system: (A) all three types of MRVRs had
been identified; or (B) each pair of mutants and MRs had been examined. For instance,
using the Sin system as an example: It has 12 MRs and 10 mutants, and thus, there are
a total of 12 ∗ 10 = 120 pairs of mutant and MR. Then each pair of mutant and MR was
selected and examined, until at least one block MRVR, one point MRVR and one strip
MRVR had been identified, or all the 120 pairs of mutant and MR had been examined.
Therefore, the number of instances for the three kinds of MRVRs were not recorded. This
is because the purpose of the experiment is to demonstrate the existence of the three MRVR
types, rather than their proportions. Given the very large time commitment (more than a

3.3 empirical experiments 43

Figure 5: Block MRVR-S Figure 6: Strip MRVR-S Figure 7: Point MRVR-S

few weeks) that would be necessary to revise the experiment and gather the data, it seems
that would not be feasible. It will be interesting future work to examine the proportions of
each MRVR type.

The last three rows of Table 3 present the experimental results indicating the presence
or absence of the three types of MRVR. For instance, the shapes of the instances found in
the 2D to 4D input domains are listed as follows:

1. In 2D input domains:

• Block MRVR: A complete/incomplete square, and a complete/incomplete rec-
tangle.

• Point MRVR: Point (individual test case), square, and rectangle.

• Strip MRVR: A slender line (e.g., trapezium).

2. In 3D input domains:

• Block MRVR: A complete/incomplete cube, and a complete/incomplete cuboid.

• Point MRVR: Point (individual test case), cube, and cuboid.

• Strip MRVR: A flat surface with a certain thickness.

3. In 4D input domains:

• Block MRVR: A complete/incomplete tesseract, and a complete/incomplete hy-
percube.

• Point MRVR: Point (individual test case), tesseract, and hypercube.

• Strip MRVR: A hyperplane.

It is not difficult to infer the corresponding MRVR shapes in higher dimensional input do-
mains. It should be noted that the complete square means that the square is conventional,
while the incomplete square represents that this square contains some extra or miss some
parts. For instance, as shown in Fig. 5, this polygon can be regarded as a rectangle that
contain/miss some small triangles. In addition, since the purpose of this experiment was
to explore and analyze whether or not the three kinds of MRVRs exist, a detailed analysis
of their shapes was not the main objective of this thesis. Nevertheless, this is something
that I hope to address in future work.

Typical examples of the three MRVR-S (STC-only component of the MRVR) types for
the Bessel J(x, y) program with MRBessel J1 are illustrated in Figs. 5, 6 and 7:

44 a simulation framework for the process of metamorphic testing

• Block MRVR-S: The MR-violating STCs roughly concentrate within a singular con-
tiguous jagged rectangular region.

• Strip MRVR-S: The MR-violating STCs roughly concentrate within a slender line
connecting adjacent boundaries.

• Point MRVR-S: The MR-violating STCs are less obviously clustered, and are more
diversely spread throughout the entire input domain in minor clusters.

3.4 conclusion

With the rising popularity of MT, there is an increasing need to easily and quickly evaluate
its performance, including efficiency and effectiveness. Some software testing techniques,
such as ART [140], have always benefited from using simulations to facilitate a quick and
efficient evaluation of testing parameters or configuration settings. Over the past decades,
the absence of a simulation framework for MT may have hindered certain MT research
efforts. Traditional simulations are not readily applicable to MT due to its requirement for
an available oracle and the reduced demand for an oracle in MT. In this chapter, the concept
of MR-Violation Regions (MRVR) was proposed to address this issue. A new framework
was proposed to support MT simulations for a specific MR type, labeled Deterministic
MRs (DMRs), based on the application of MRVRs. This, to the best of our knowledge, is
the first MT simulation framework in the literature. Specifically, the creation of MRVR-S
(the STC-only component of MRVR) enables the application of MT simulations for 1-1
DMRs (MRs that have exactly one STC and one FTC), with MR violations determined by
checking if the generated STCs are within MRVR-S without further exploration of FTCs or
SUT executions.

This chapter has proposed three types of MRVRs: block, strip, and point. The relation-
ship between oracle-oriented failure regions and MRVRs was discussed and analyzed,
highlighting that they are not expected to be identical. A case study was reported, inves-
tigating and supporting the identification and classification of the three possible types of
MRVRs in certain SUTs and (D)MRs from previously-published studies [13, 52, 62, 67, 100,
136, 137, 139, 143, 144, 193, 276]. A limitation of this study has been its focus solely on
one type of MRs (the DMRs). Therefore, future work may involve further investigation
into the preparation of simulations for other MR types (i.e., non-DMR[1-1]), as well as the
exploration of different MRVR types.

The next chapter will introduce how to use MRVR to explore and validate the perfor-
mance of previously-published MG-generation algorithms. That is, through the applica-
tion of MRVR, the next chapter effectively identifies the existence of potential challenges
that could impact the performance of MG-generation algorithms. A solution will also be
proposed to address these challenges, as well as a new MG-generation algorithm aimed at
further enhancing MT performance.

4
A D D R E S S I N G T H E P R O B L E M S I N M E TA M O R P H I C
G R O U P G E N E R AT I O N A L G O R I T H M S

Papers delivered from this chapter (Under Review)

1. Zhihao Ying, Dave Towey, Anthony Bellotti, Tsong Yueh Chen, and Zhi Quan Zhou.
SFIDMT-ART: A Metamorphic Group Generation Method Based on Adaptive Ran-
dom Testing Applied to Source and Follow-up Input Domains. Information and Soft-
ware Technology, 2024, pp. 107528.

4.1 introduction and motivation

The successful application and performance of MT is mainly dependent upon the MRs
and MGs [64, 246]. Nevertheless, the construction of effective MGs still needs further in-
vestigation and exploration [64, 246]. Prior MT-related studies has mainly concentrated
on STCs, somewhat neglecting FTCs, to a certain extent [64, 246]. It has been reported
that the most widely-used MG-generation algorithm is MT-RT [64, 246]. However, MT-RT
sometimes cannot achieve satisfactory test effectiveness as it does not utilize any features
of the SUT [140, 246]. Recently, some studies [144, 291] have suggested considering FTCs
in the MT process, which could enhance MT performance. In essence, although some stud-
ies have emphasized the significance of FTCs, there remains a dearth of research on how
to enhance their quality: All prior MG-generation algorithms treated FTCs in a manner
identical to STCs. This may have an impact on the performance of MG-generation algo-
rithms, explained as follows: In conventional software testing, there exists only one set
of test cases and one input domain. In contrast, MT comprises at least two sets of test
cases (STCs and FTCs). This thesis refers to the set of STCs associated with an MR as the
source input domain and the set of FTCs as the follow-up input domain. In this thesis, if
no ambiguity exists, the source input domains and the follow-up input domains may be
simply referred to as input domains. The entire input domain denotes the input domain of
the SUT, containing both the source input domain and the follow-up input domain. MRs
can be categorized into two types based on the positional relationship between the source
input domain and the follow-up input domain:

1. The MR in which the source input domain and the follow-up input domain are
identical.

45

46 addressing the problems in metamorphic group generation algorithms

2. The MR in which the source input domain and the follow-up input domain are
different.

However, all previously-published MG-generation studies have ignored the impact of
input domains on MT performance. In particular, the differences between the source input
domain and the follow-up input domain are likely to have an impact on the efficiency
and effectiveness of MG-generation algorithms. This thesis refers to this issue as the input-
domain difference problem.

This chapter reports on a study applying MRVRs to examine a particular type of MG-
generation algorithms: The algorithms aim to enhance MT performance by achieving a
balanced distribution of both STCs and FTCs throughout the entire input domain [143,
144]. Through empirical experiments, this chapter discovers that the algorithm is likely
to encounter the input-domain difference problem, as explained below: When the source
input domain differs from the follow-up input domain for a given MR, the STCs and FTCs
generated by the algorithm may not be able to achieve an even distribution, potentially
leading to adverse effects on MT performance [74].

This chapter introduces a novel approach to enhance the quality of both STCs and FTCs:
Treating FTCs separately from STCs during the MG-generation process. On the basis of
the proposed approach, this chapter presents a novel STC and FTC allocation principle
for MT to tackle the input-domain difference problem: Ensuring an even distribution of
STCs over the relevant source input domain and FTCs over the relevant follow-up input
domain.

Subsequently, this chapter introduces the following two MT-distance measures, known
as Input-Domain-based Metamorphic Distances (ID-MDs), to facilitate the application of
the proposed novel STC and FTC allocation principle:

• The distance between STCs and executed STCs.

• The distance between FTCs and executed FTCs.

It is important to note that the executed STCs and relevant executed FTCs represent
the test cases from the same executed and non-MR-violating MGs. On the basis of the
proposed STC and FTC allocation principle and MT-distance measures, this thesis subse-
quently propose a novel MG-generation algorithm named SFIDMT-ART (MT-based ART
applied to Source and Follow-up Input Domains) from black-box testing perspective.
Empirical studies were conducted, and the experimental results demonstrated that the
proposed algorithm significantly outperforms previously-published MG-generation algo-
rithms in terms of test effectiveness and efficiency.

4.2 sfidmt-art algorithm

4.2.1 Motivation, Problem and Solution

Different from traditional software testing techniques (such as ART), where one test case
is generated for the SUT at a time, MT uses at least two sets of test cases (STCs and

4.2 sfidmt-art algorithm 47

Figure 8: 1000 STCs generated by MT-ART-Min using MRProduct for Product

Figure 9: 1000 STCs generated by MT-ART-Max using MRProduct for Product

FTCs). Because of this difference, traditional ART is not readily applicable for generating
test cases for MT. Furthermore, some recent studies [144, 291] have suggested that the
MG-generation process should take into account not only STCs but also FTCs, with the
aim of enhancing MT performance. Nevertheless, comprehensive and in-depth research on
how to improve the quality of FTCs is still lacking. In particular, previous MG-generation
studies treated FTCs the same as STCs and disregarded the differences between them. One
notable difference, for example, is their corresponding input domains. Specifically, given
an MR, the source input domain (the input domain of the STCs) may differ from the follow-
up input domain (the input domain of the FTCs). This difference may result in the input-
domain difference problem, potentially having a negative impact on the performance of
MG-generation algorithms, particularly ART-based ones [143, 144], a factor that has been
overlooked in previous MG-generation studies.

48 addressing the problems in metamorphic group generation algorithms

For instance, consider the application of MT-ART to a small program Product, and a
DMR[1-1] named MRProduct. Product calculates the product of two double-precision num-
bers, ranging from 0 to 1000. According to MRProduct, dividing each source input by three
to generate follow-up inputs results in the follow-up output being one-ninth of the source
output. Analysis of the MR reveals that the source input domain spans from 0 to 1000,
while the follow-up input domain ranges from 0 to 333.33. Evidently, the source input
domain is notably larger and contains the entirety of the follow-up input domain. Subse-
quently, MT-ART-Min was applied across the entire input domain, producing a total of
1000 STCs, as illustrated in Fig. 8: MT-ART-Min selectively picked only a small number of
STCs from the region where the source input domain intersects with the follow-up input
domain. This may occur since MT-ART attempts to produce STCs and FTCs that are evenly
spread throughout the entire input domain, if a majority of the FTCs are concentrated in
the area where the source input domain intersects with the follow-up input domain, then
fewer STCs will be chosen from that region. Consequently, if MR-violating STCs are located
within this region, the performance of MT-ART may be significantly adversely impacted.
In particular, although the STCs and FTCs may appear evenly distributed across the entire
input domain from a broader standpoint, the individual test case sets (the STC/FTC sets)
are actually clustered in distinct regions rather than being uniformly distributed within
their respective input domains.

From the aforementioned discussion, it can be inferred that the primary reason MT-ART
faces the input-domain difference problem is its treatment of FTCs in the same manner
as STCs. Given the difference between the source input domain and the follow-up in-
put domain, this treatment adversely affects the testing performance of MT-ART. Hence,
this thesis introduces a novel approach to enhance the quality of STCs and FTCs during
MG generation: The MG-generation algorithm can handle FTCs independently of STCs.
Subsequently, this thesis introduces a novel principle for distributing STCs and FTCs to
tackle the input-domain difference problem of MT-ART in accordance with the proposed
approach: Ensure an even distribution of STCs across the respective source input domain
and FTCs across the corresponding follow-up input domain. It is noteworthy that not all
MG-generation algorithms may encounter the input-domain difference problem: Since the
difference between STCs and FTCs may not only be limited to the input domain difference,
certain algorithms may be influenced by other specific differences.

In addition to the input domain difference problem, there are other problems present
in ART-related studies [140]. Hence, to further explore whether or not MT-ART would
be impacted by other problems, MT-ART-Max was applied to generate 1000 STCs for the
Product program with MRProduct, and the results are illustrated in Fig. 9. The STCs appear
to cluster towards the edges of the entire input domain (particularly in the bottom-left
corner), instead of being evenly spread. Traditional ART algorithms may also face this
issue, called the edge preference problem [140]. This problem may arise because, with the
maximum distance criterion, edge test cases may be farther from the executed test cases
than center test cases. As a consequence, MT-ART-Max will prioritize the selection of test

4.2 sfidmt-art algorithm 49

cases from the edge over those from the center. MT-ART-Avg encounters the same problem,
while only MT-ART-Min can circumvent it.

This issue may arise from the utilization of the maximum distance criterion and the
average distance criterion. MT-ART uses the Euclidean distance to measure the distance
between test cases [144]. However, in studies related to ART [140], the use of the Euclidean
distance is limited to computing the minimum distance between test cases; in contrast,
alternative distance calculation methods are used to assess the average or maximum dis-
tance criterion. For instance, the average distance criterion was formulated for test cases
prioritization [150]: It was computed on the basis of the Jaccard distance, which quantifies
the dissimilarity between test cases. Both Chen et al. [48] and Ciupa et al. [89] employed
the maximum and average distance criteria to compute the object distance between the
test cases within object-oriented programs. Considering this, SFIDMT-ART only takes the
minimum distance criterion into account to mitigate the edge-preference problem.

4.2.2 Distance Measurements and SFIDMT-ART Algorithm

In order to implement the proposed STC and FTC allocation principle (achieving an even
distribution of STCs and FTCs across their respective input domains), this thesis introduces
two novel MT-distance metrics termed Input Domain-based Metamorphic Distances (ID-
MDs), detailed as follows:

• Definition 4.7 (Source Metamorphic Distance (SMD)): The distance between a source candi-
date and all the respective executed STCs.

• Definition 4.8 (Follow-up Metamorphic Distance (FMD)): The distance between a follow-up
candidate and all the respective executed FTCs.

Based on the ID-MDs, this thesis introduces a novel MG-generation algorithm named
MT-based ART applied to Source and Follow-up Input Domains (SFIDMT-ART). It aims
to enhance MT performance by: 1) Ensuring the even distribution of STCs across the re-
spective source input domain; and 2) ensuring the even distribution of FTCs across the
corresponding follow-up input domain. The steps for implementing SFIDMT-ART are
summarized in Algorithm 2 and explanations for each step are described as follows:

• Step 1: SFIDMT-ART is provided with an MR which can be either identified from
scratch or directly selected from existing ones.

• Step 2: SFIDMT-ART identifies the scope of source and follow-up input domains
based on the provided MR.

• Step 3: SFIDMT-ART records the number of executed STCs as M. The rationale be-
hind this step is that SFIDMT-ART partitions the source input domain according to
the quantity of respective executed STCs within that input domain.

• Steps 4-5: SFIDMT-ART initializes all executed test-case sets to be empty. The ra-
tionale behind this step lies in the presumption that the input-domain difference

50 addressing the problems in metamorphic group generation algorithms

Algorithm 2: SFIDMT-ART for 1-N MRs

1 Given one 1-N MR;
2 Determine the scope of the source input domain and follow-up input domains

based on the provided 1-N MR;
3 Record the number of executed STCs as M;
4 Initialize the set of executed STCs as empty (M = 0);
5 Initialize the N sets of executed FTCs as empty;
6 while no stopping conditions are triggered do
7 Partition the source input domain into M + 1 equally-sized subdomains from

the edge to the center;
8 Choose k source candidates at random from the empty subdomains;
9 for n = 1 → k do
10 Choose the nth source candidate and construct N follow-up candidates based

on the provided MR;
11 Compute the distance (SMD) between this source candidate and its nearest

executed STC, recorded as sdn;
12 Compute the sum of the distances (FMDs) between each follow-up candidate

and its nearest executed FTC from the same follow-up input domain,
recorded as f dn;

13 Denote the sum of sdn and f dn as Dn;
14 end
15 Choose the candidate MG containing the largest Dn value;
16 if more than one MGs containing the same maximum Dn value then
17 Randomly select one of them;
18 end
19 Execute the SUT using the selected MG, and inspect for MR violations;
20 Append the currently executed test cases to their respective executed test sets

(M = M + 1);
21 end

problem is caused by an improper treatment of FTC. Hence, in order to mitigate the
impact of this problem, this chapter suggests adopting a novel STC and FTC alloca-
tion principle (ensuring an even distribution of STCs and FTCs across their respective
input domains). To achieve this principle, each input domain is given a distinct set
of executed test cases.

• Step 7: SFIDMT-ART partitions the source input domain into M + 1 equally-sized
subdomains from the edge to the centre, for generating source candidates. Fig. 10

illustrates three prototypical examples of partitioning a square/rectangle/triangle
input domain into two equally-sized subdomains in a 2D input domain. The rationale
behind setting the number of subdomains to M + 1 is to guarantee the existence of
at least one empty subdomain.

• Step 8: SFIDMT-ART maps all STCs in the executed STC set to their corresponding
input domain and searches for empty subdomains. SFIDMT-ART then randomly
generates k STCs as source candidates from the empty subdomains.

4.2 sfidmt-art algorithm 51

• Step 10: For each source candidate, SFIDMT-ART generates N FTCs as follow-up
candidates based on the MR, in order to obtain k MGs as candidate MGs. The use
of k candidate MGs is because, in MT, FTCs are fully determined by the STCs and
the MR, rather than generated by the testers/researches from scratch. In this context,
SFIDMT-ART generates k MGs as candidate MGs, and compares their qualities based
on the ID-MDs, with the aim of achieving the proposed allocation principle.

• Steps 11-13: SFIDMT-ART compares the quality of the k candidate MGs by comput-
ing and comparing the sum of the ID-MDs.

• Step 15: SFIDMT-ART chooses the candidate MG containing the maximum value of
the sum of ID-MDs. The rationale behind this step is to choose the MG that is the
furthest from previously-executed MGs among the k candidate MGs.

• Steps 16-18: If more than one candidate MG meets the criterion, SFIDMT-ART then
randomly chooses one among them for execution.

• Step 19: SFIDMT-ART executes the selected MG against the SUT and checks whether
or not the MR is violated.

• Step 20: SFIDMT-ART adds the STC from the currently executed MG into the respec-
tive executed STC set, and the FTCs into their respective executed FTC sets.

• Step 21: If no stopping conditions are met, such as no violations are detected,
SFIDMT-ART proceeds to Step 5; otherwise, SFIDMT-ART ends the testing and re-
ports the results.

Algorithm 2 exclusively considers 1-N MRs. The overall framework remains similar for
other types of MRs. Applying SFIDMT-ART to 1-1 MRs or M-N MRs, for instance, contains
the following distinctions:

(1) In the case of 1-1 MRs: SFIDMT-ART features a single source input domain and its
corresponding executed STC set, as well as a single follow-up input domain and its corre-
sponding executed FTC set. While the computation of sdn (Algorithm 2 Step 11) remains
unchanged, the computation of f dn (Algorithm 2 Step 12) varies: SFIDMT-ART calculates
the distance (FMD) from each follow-up candidate to its nearest executed FTC, eliminating
the need for summing FMDs.

(2) In the case of M-N MRs: SFIDMT-ART involves M source input domains with their
respective executed STC sets, as well as N follow-up input domains with their respective
executed FTC sets. While the computation of f dn (Algorithm 2 Step 12) remains consistent,
the computation of sdn (Algorithm 2 Step 11) differs: SFIDMT-ART computes the sum of
distances (SMD) from each source candidate to its nearest executed STC.

As for how to partition a 1D input domain, a typical example is shown as follows.
The scope of the input domain is [0, 100]. In this example, SFIDMT-ART partitions the
input domain into two subdomains from the centre to the edges. Specifically, SFIDMT-
ART partitions the input domain into three parts: The scope of the left part is [0, 25]; the

52 addressing the problems in metamorphic group generation algorithms

Figure 10: Three examples of dividing a 2D input domain

center part is [25, 75]; and the right part is [75, 100]. The combination of the left part and
the right part denotes a subdomain, and the middle one denotes another subdomain.

SFIDMT-ART can also generate MGs for systems with non-numerical inputs. For exam-
ple, the category and choice technique, based on a category-partition method [18], can
compute the distance between non-numerical MGs. Testers identify input parameters or
environmental conditions (referred to as categories) that may influence SUT behavior. Each
category includes a series of disjoint partitions (referred to as choices), which represent
the potential values of this category. An input is formed by the choices from different
categories. As an example, consider a student registration system with three categories:
Name, Age, and Nationality. In this scenario, testers can generate inputs such as (Peter, 21,
Japanese) and (John, 19, Chinese).

Below is an example of applying SFIDMT-ART to systems with non-numerical inputs:
After determining the categories and choices based on the SUT, SFIDMT-ART generates k
candidate MGs. SFIDMT-ART selects the nth (n ≤ k) candidate MG and verifies whether
or not the choice of its source candidate matches any of the executed STCs to calculate
the SMDs (represented by sdn); and whether or not the choice of its follow-up candidate
matches any of the executed FTCs to compute the FMDs (represented by f dn). SFIDMT-
ART increments the distance by 1 if the respective choices differ. Lastly, SFIDMT-ART
calculates the sum of sdn and f dn, represented by Dn, and chooses the candidate MG with
the highest Dn for execution.

4.2.3 Characteristics of SFIDMT-ART

SFIDMT-ART differs from the MT-ART algorithm proposed by Hui et al. [144] in the fol-
lowing aspects:

1. The way of handling STCs and FTCs during the MG-generation process are different.
MT-ART treats STCs and FTCs as a unified entity when generating new MGs, aiming
to enhance MT performance by achieving an even distribution of STCs and FTCs
throughout the entire input domain. However, MT-ART may encounter the input-
domain difference problem, which may lead to uneven distribution issues. In order to
address this, this thesis suggests that an MG-generation algorithm should treat FTCs
separately from STCs. SFIDMT-ART aims to improve MT performance by achieving
an even distribution of STCs and FTCs across their respective input domains. In this
context, this thesis introduces the SFIDMT-ART algorithm, aiming to enhance MT

4.2 sfidmt-art algorithm 53

performance by achieving an even distribution of STCs and FTCs throughout their
respective input domains.

2. SFIDMT-ART and MT-ART employ different methods for computing the distance
between test cases. During the MG-generation process, MT-ART concentrates on not
only the distance between source/follow-up candidates and all executed test cases
(d1 and d3), but also the distance among source candidates and follow-up candi-
dates (d2). In contrast, SFIDMT-ART does not consider the distance among source
candidates and follow-up candidates. It focus on only the distance between source
candidates (SMD) and executed STCs and the distance between follow-up candidates
and executed FTCs (FMD).

The rationale behind is explained as follows: Firstly, It has been noted that there is a
significant correlation between the fault-detection capability of MRs and the dissim-
ilarity between the STC execution profiles and relevant FTC execution profiles (e.g.,
measured by statement coverage and branch coverage) [37]. These dissimilarity met-
rics are white-box metrics, and the use of Euclidean distances between test cases on
the input domain (as a black-box metric) has not been explored. Secondly, adopting
d2 may not facilitate the even distribution of STCs and FTCs, and sometimes it may
even hinder this process. For example, consider MRtanh (Section 4.4) as an example:
The distance between the STC and the FTC is |3 ∗ x − x| = |2x|. As the absolute value
of x increases, the distance between the STC and the FTC also increases, resulting in
a higher likelihood of selecting test cases further away from zero. To sum up, the Eu-
clidean distance metric is unsuitable for quantitatively measuring MG dissimilarities.
Therefore, SFIDMT-ART does not consider d2 in the process of MG generation.

3. SFIDMT-ART is applicable to systems with non-numerical inputs, as explained in
Section 4.2.2. In contrast, Hui et al. [144] only discuss the application of MT-ART to
the systems with numerical input domains.

4. SFIDMT-ART employs only the minimum distance criterion to compute the distance
between test cases, while MT-ART includes three criteria (maximum, average, and
minimum).

5. MT-ART partitions the entire input domain and selects an empty subdomain for
source candidate generation. Nevertheless, as the entire input domain includes the
source and follow-up input domains, the selected subdomain may partially or fully
extend beyond the source input domain, rendering it unusable for generating new
source candidates. Hui et al. [144] did not provide an explanation of how to address
this issue. Conversely, SFIDMT-ART avoids this issue by partitioning the source input
domain into subdomains and selecting empty ones for source candidate generation.

6. The time complexity of SFIDMT-ART is influenced by the MR types. Suppose k
denotes the number of candidate MGs generated in each iteration and n repre-
sents the number of MGs to be generated, the time complexity of SFIDMT-ART is
O(n ∗ k) = O(n2) with 1-1 MRs, and is O(n ∗ k ∗ Max(N, M)) = O(n3) with 1-N

54 addressing the problems in metamorphic group generation algorithms

MRs, M-1 MRs or M-N MRs. In this context, a conclusion can be drawn that the
time complexity of SFIDMT-ART is much lower than that of MT-ART (O(n4) [144]).

4.3 research questions

The following RQs were formulated to provide guidance for the empirical experiments:
RQ1: Do the Input-Domain Difference and Edge-Preference Problems have an impact
on the performance of MG-generation algorithms?

• Objective: Investigate whether or not MT-ART and SFIDMT-ART are affected by the
input-domain difference and edge-preference problems.

• Motivation: Firstly, given that SFIDMT-ART was introduced to mitigate the input-
domain difference problem inherent in MT-ART, an examination of the effect of the
input-domain difference problem on both MT-ART and SFIDMT-ART will be con-
ducted. Secondly, since MT-ART was formulated upon the FSCS-ART algorithm, sus-
ceptible to the edge-preference problem, an analysis of the influence of this problem
on both MT-ART and SFIDMT-ART will be undertaken.

• Methodologies:

1. Apply MRVR to explore and analyze the impact of the two problems on the
performance of MT-ART and SFIDMT-ART.

2. Determine whether or not MT-ART is affected by these problems and whether
or not SFIDMT-ART can mitigate them.

RQ2: What are the performance differences between SFIDMT-ART, MT-ART, and MT-
RT?

• Objective: Evaluate whether or not SFIDMT-ART outperforms MT-ART and MT-RT.

• Motivation: MT-RT was selected for the empirical experiments as it is the most popu-
lar MG-generation algorithm [64, 246]. Additionally, since SFIDMT-ART is proposed
as an enhanced algorithm over MT-ART, MT-ART was also selected for the experi-
ments.

• Methodologies:

1. Select three performance criteria: Test efficiency, test effectiveness, and MG di-
versity.

2. Design sub-RQs to delve deeper into specific aspects of performance.

3. Determine whether or not SFIDMT-ART performs better across multiple perfor-
mance metrics compared to MT-ART and MT-RT.

• Sub-RQs:

4.4 empirical experiments 55

1. Can SFIDMT-ART achieve better test effectiveness (F-measure) than MT-ART
and MT-RT?

2. Can SFIDMT-ART achieve better test efficiency (generation time) than MT-ART?

3. Can SFIDMT-ART achieve better distribution diversity of MGs (Dispersion and
Discrepancy) than MT-ART and MT-RT?

RQ3: Does the STC and FTC allocation principle have an impact on the performance
of MG-generation algorithms?

• Objective: Investigate whether or not MT-ART and SFIDMT-ART are affected by the
input-domain difference and edge-preference problems.

• Motivation: Hui et al. [144] suggested that MT performance can be enhanced by
making STCs and FTCs evenly distributed throughout the entire input domain. In
this chapter, a novel STC and FTC allocation principle is introduced: Ensuring the
even distribution of STCs and FTCs throughout their respective input domains. The
aim is to investigate and analyze which criterion could further augment the fault-
detection capability of MT, and to ascertain the underlying reasons if the divergent
utilization of executed STCs and FTCs during the MG-generation process results in
disparate MT performances.

• Methodology:

1. Analyze differences in MT performance resulting from different approaches to
utilizing executed STCs and FTCs.

2. Determine whether or not the proposed criterion enhances the fault-detection
capability of MT and identify any root causes for differences in MT perfor-
mance.

4.4 empirical experiments

4.4.1 Experimental Setup

The empirical experiments selected systems of varied sizes and dimensions as well as the
corresponding MRs sourced from previously-published studies in the fields of MT or ART,
as listed in Table 4. Artificial faults were manually inserted to create mutants according
to the mutation operators [149]. The introduction of these SUTs and mutation operators is
provided in Section 2, while the introduction of the selected MRs is provided in Appendix
A. As SFIDMT-ART and MT-ART with Strategy 1 primarily focus on the distance between
(source and follow-up) candidates and executed test cases, while MT-ART with Strategy
2 focuses on the distance among source candidate and follow-up candidates, this chapter
sorely adopted MT-ART with Strategy 1 in the experiments. Consequently, this chapter
chose the following three MT-ART algorithms: MT-ART with Strategy 1 and Max Distance
(MT-ART-Max), MT-ART with Strategy 1 and Avg Distance (MT-ART-Avg), and MT-ART

56 addressing the problems in metamorphic group generation algorithms

Table 4: Information of the SUTs and MRs
Systems Sin tanh Erf BesselJ sncndc TriSquare TriSquarePlus rj PntLinePos

Input
Dimension

1 1 1 2 2 3 3 4 6

Entire
Input Domains

(0,1000) (0,1000) (-500,500) ((1,1), (100,100))
((0,0),

(100,100))
((0,0,0),

(100,100,100))
((0,0,0),

(100,100,100))

((0,0,0,0),
(100,100,
100,100))

((0,0,0,0,0,0),
(100,100,100,
100,100,100))

Source
Input Domains

(0,1000) (0,333.33) (-500,500) ((2,2), (99,99))
((0,0),

(33.33,33.33))
((0,0,0),

(33.33,33.33,33.33))

((0,0,0),
(100,100,100)),

((0,0,0),
(100,100,100))

((0,0,0,0),
(100,100,
100,100))

((0,0,0,0,0,0),
(33.33,33.33,
33.33,33.33,
33.33,33.33))

Follow-up
Input Domains

(0,333.33) (0,1000) (-500,500)
((1,1), (99,99),

(2,2), (100,100))
((0,0),

(100,100))
((0,0,0),

(100,100,100))

((0,0,0),
(33.33,33.33,33.33)),

((0,0,0),
(100,100,100))

((0,0,0,0),
(100,100,
100,100))

((0,0,0,
0,0,0),

(100,100,100,
100,100,100))

Size (LOC) 120 18 763 1211 64 38 31 175 23

MRs MRSin13 MRtanh MREr f 1 MRBessel J1 MRsncndn2 MRTriSquare6
MRTriPlus2,
MRTriPlus12

MRrj2 MRPnt2

Number of
Mutants

2 2 2 3 2 3 6 2 2

Fault Type CRP,ROR CRP CRP CRP,ROR,AOR CRP,ROR,AOR CRP,ROR,AOR CRP,ROR,RSR,AOR CRP,ROR CRP,ROR

with Strategy 1 and Min Distance (MT-ART-Min). The source code of all algorithms is
publicly-available on Github1. In accordance with the principles of ART algorithms, the
value of k (representing the number of candidate MGs) was set to 10 for both SFIDMT-ART
and MT-ART. A total of 1000 MGs were generated using each algorithm and a correspond-
ing MR, for computing Discrepancy and Dispersion. All experiments were iterated 10,000

times to calculate the average F-measure, generation time, Discrepancy, and Dispersion.
The major contributions of Chapter 3 are: Propose the concept of MRVRs, propose three

types of MRVRs (block, point and strip), and propose the simulator. In this chapter, exper-
iments were conducted to evaluate the performance of MG-generation algorithms (using
MRVRs) through the following steps.

1. Artificial faults were manually inserted into the systems to create mutants.

2. MGs were generated using given MG-generation algorithms and MRs.

3. The generated MGs were executed against the mutants, and the F-measure values
were recorded.

4. Through the experiments, it was found that MT-ART may sometimes perform much
worse than MT-RT. In particular, the concept of MRVR was used to investigate the
causes of this situation through Step 5.

5. For each mutant, all the STCs and FTCs in the input domain were executed and
the outputs were checked against the respective MRs. Then the STCs (as well as
the corresponding FTCs) that violate the given MRs were identified, and then they
were categorized according to the three types of MRVRs. According to the size and
location of input domains and the location of MRVRs, they were divided into several
cases, which are shown in Table 6. The detailed processes are shown as follows:

1 https://github.com/scxzy2/SFIDMT-ART.git

4.4 empirical experiments 57

a) Select one given MR (and a related mutant), and compare the size and loca-
tion of its source input domain and follow-up input domain. Categorize them
according to the following criteria:

A: The source input domain is inside the follow-up input domain (the source
input domain is smaller than the follow-up input domain).

B: The source input domain is the identical or very similar to the follow-up
input domain.

C: The follow-up input domain is inside the source input domain (the source
input domain is larger than the follow-up input domain).

b) For the selected MR (and a related mutant), check the location of its MRVR-S,
and categorize it according to the following criteria:

1: The MRVR-S is close to the center of the source input domain.

2: The MRVR-S is close to the edge of the source input domain.

3: The MRVR-S is distributed over the source input domain.

4: The MRVR-S is close to the center of the follow-up input domain.

5: The MRVR-S is close to the edge of the follow-up domain.

c) Combine the above two classifications for each pair of MR and mutant. For
instance, for a given MR (and a related mutant), if its source input domain is
inside its follow-up input domain, and its MRVR-S is close to the center of the
source input domain, then it was categorized as A1.

6. Through the investigation of MT-ART using MRVRs, it was found that the differ-
ences between STC input domain and FTC input domain were ignored by MT-ART
(since it treats STCs and FTCs as a unified entity), which may have an impact on its
performance. This problem was referred to as the input-domain difference problem.

As for the MT simulator, additional MT simulations will be conducted in the future, to
further explore the problem and findings from another perspective (e.g., the existence and
impact of the input-domain difference problem). The detailed experimental steps will be:

1. Select one MR and one respective previously-identified MRVR-S.

2. Execute MT-ART, SFIDMT-ART or MT-RT to generate MGs.

3. Check if the generated STCs are within the MRVR-S.

4. Compare the results (the outputs and the distribution of generated STCs in the source
input domain) to see if the algorithms under test were affected by the input-domain
difference problem: Check if the F-measure experimental results of an algorithm are
abnormal (very high/low compared with the results of other algorithms) when the
source input domain is different from the follow-up input domain

58 addressing the problems in metamorphic group generation algorithms

317 209
101

281 199

1

10

100

1000

10000

100000

1045 1009 996 1011 1006

1

10

100

1000

10000

100000

92
38 40 37 50

1

10

100

1000

10000

100000

(a) MRSin and mutant 1; (b) MRSin and mutant 2; (c) MRtanh and mutant 3;

Block MRVRs; Scenarios C2&C5; Point MRVRs; Scenarios C3&C4; Block MRVRs; Scenarios A2&A5;

626
241 257

572 348

1

10

100

1000

10000

100000

500

100000 100000

155 261

1

10

100

1000

10000

100000

75

14900 14321

41 42

1

10

100

1000

10000

100000

(d) MRtanh and mutant 4; (e) MREr f and mutant 5; (f) MREr f and mutant 6;

Block MRVRs; Scenarios A1&A4; Block MRVRs; Scenarios B1; Block MRVRs; Scenarios B1;

1012

100000 100000

714 693

1

10

100

1000

10000

100000

51 46 46 40 41

1

10

100

1000

10000

100000

1125
351 385

994 980

1

10

100

1000

10000

100000

(g) MRBessel J and mutant 7; (h) MRBessel J and mutant 8; (i) MRBessel J and mutant 9;

Block MRVRs; Scenario B1; Strip MRVRs; Scenario B3; Block MRVRs; Scenario B2;

2085

100000 100000

1277 1347

1

10

100

1000

10000

100000

1403

270
495

1138 890

1

10

100

1000

10000

100000

450
139 192

706
336

1

10

100

1000

10000

100000

(j) MRsncndn and mutant 10; (k) MRsncndn and mutant 11; (l) MRTriSquare and mutant 12;

Block MRVRs; Scenarios A1&A4; Block MRVRs; Scenarios A2&A5; Block MRVRs; Scenarios A2&A5;
Figure 11: F-measure Experimental Results of the MG-generation Algorithms (Part 1)

4.4.2 Experimental Results and Discussion

4.4.2.1 F-Measure and Cohen’s d

The experimental results of F-measure and Cohen’s d are presented in Figs. 11 - 5: In
Figs. 11 - 12, the vertical axis denotes the F-measure value, while the horizontal axis repre-
sents the algorithm under test; and in Fig. 5, the vertical axis denotes the Cohen’s d value,
while the horizontal axis represents the algorithm under test. During the experiment, all
algorithms were terminated when generating and executing 100,000 MGs without detect-
ing any MR violations. Consequently, the Cohen’s d values were not computed for these
scenarios and were denoted as NaN (Not a Number).

The F-measure and Cohen’s d experimental results revealed that under block MRVRs,
SFIDMT-ART was capable of consistently outperforming MT-RT, while the three MT-ART

4.4 empirical experiments 59

1165 1339 1295 1173 1164

1

10

100

1000

10000

100000

1023
1833

100000

676 556

1

10

100

1000

10000

100000

456

101

542 701
328

1

10

100

1000

10000

100000

(m) MRTriSquare and mutant 13; (n) MRTriSquare and mutant 14; (o) MRTriPlus1 and mutant 15;

Point MRVRs; Scenarios A3&A5; Block MRVRs; Scenario A1&E; Block MRVRs; Scenarios C2&C5;

666 436 473 681 662

1

10

100

1000

10000

100000

1536
3631

100000

1101 1190

1

10

100

1000

10000

100000

1122
293 269

922 929

1

10

100

1000

10000

100000

(p) MRTriPlus1 and mutant 16; (q) MRTriPlus1 and mutant 17; (r) MRTriPlus2 and mutant 18;

Strip MRVRs; Scenarios C3&C4; Block MRVRs; Scenarios C1&C4; Block MRVRs; Scenario B2;

626
270 298 507 504

1

10

100

1000

10000

100000

512

100000 100000

397 402

1

10

100

1000

10000

100000

1254

100000 100000

1061 1022

1

10

100

1000

10000

100000

(s) MRTriPlus2 and mutant 19; (t) MRTriPlus2 and mutant 20; (u) MRrj and mutant 21;

Strip MRVRs; Scenario B2; Block MRVRs; Scenario B1; Block MRVRs; Scenario B1;

718
219 168

606 623

1

10

100

1000

10000

100000

64

13

429

60 46

1

10

100

1000

10000

100000

1381

164

17718

3225

783

1

10

100

1000

10000

100000

(v) MRrj and mutant 22; (w) MRPnt and mutant 23; (x) MRPnt and mutant 24;

Block MRVRs; Scenario B2; Block MRVRs; Scenarios A2&A5; Block MRVRs; Scenarios A2&A5;
Figure 12: F-measure Experimental Results of the MG-generation Algorithms (Part 2)

algorithms occasionally exhibited superior performance to MT-RT; and under point/strip
MRVRs, all the algorithms typically exhibited similar performance.

According to the experimental results for Cohen’s d and the strengths of effect sizes
in different ranges shown in Table 1, it can be observed that among the cases with block
MRVRs, about 30% of the results have values greater than 0.5 (medium effect size strength),
and the highest value is 0.64; and about 60% of the results have values less than 0.5 and
greater than 0.2 (which means that there are small effect size strengths); and about 10%
of the results have values less than 0.2 and greater than 0.01 (which means that there
are very small effect size strengths). Among these results, the highest value appeared
when using Erf, which was a medium strength; the lowest value appeared when using
rj, where the strength value was a very small strength. These F-measure and Cohen’s
d experimental results indicate that under block MRVRs, SFIDMT-ART was capable of
consistently outperforming MT-RT (and sometimes even significantly better than MT-RT),

60 addressing the problems in metamorphic group generation algorithms

Table 5: Effect Size (Cohen’s d) Experimental Results of the MG-generation Algorithms

SUTs MRs Mutants MRVR Type
Statistical Analysis

SFIDMT-ART
vs RT

SFIDMT-ART
vs MT-ART-Max

SFIDMT-ART
vs MT-ART-Ave

SFIDMT-ART
vs MT-ART-Min

p-value effect size p-value effect size p-value effect size p-value effect size

Sin MRSin
mutant 1 Block 0.000 0.480 0.000 0.059 0.000 -0.827 0.000 0.457

mutant 2 Point 0.006 0.040 0.832 0.005 0.471 -0.009 0.721 0.007

tanh MRtanh
mutant 3 Block 0.000 0.590 0.000 -0.379 0.000 -0.299 0.000 -0.357

mutant 4 Block 0.000 0.590 0.000 -0.513 0.000 -0.378 0.000 0.576

Erf MREr f
mutant 5 Block 0.000 0.640 NaN NaN NaN NaN 0.000 -0.745

mutant 6 Block 0.000 0.580 0.000 2.972 0.000 2.628 0.011 -0.041

BesselJ MRBessel J

mutant 7 Block 0.000 0.390 NaN NaN NaN NaN 0.008 0.030

mutant 8 Strip 0.000 0.250 0.000 0.125 0.000 0.132 0.060 -0.033

mutant 9 Block 0.000 0.160 0.000 -0.902 0.000 -0.836 0.472 0.017

sncndn MRsncndn
mutant 10 Block 0.000 0.460 NaN NaN NaN NaN 0.000 -0.068

mutant 11 Block 0.000 0.460 0.000 -1.085 0.000 -0.612 0.000 0.266

TriSquare MRTriSquare

mutant 12 Block 0.000 0.290 0.000 -0.823 0.000 -0.547 0.000 0.700

mutant 13 Point 0.950 0.020 0.000 -0.551 0.000 0.246 0.571 0.042

mutant 14 Block 0.000 0.600 0.000 1.020 NaN NaN 0.000 0.250

TriSquarePlus

MRTriSquarePlus1

mutant 15 Block 0.000 0.330 0.000 -0.977 0.000 0.497 0.000 0.726

mutant 16 Strip 0.665 0.010 0.000 -0.398 0.000 -0.325 0.044 0.035

mutant 17 Block 0.000 0.260 0.000 0.950 NaN NaN 0.000 -0.092

MRTriSquarePlus2

mutant 18 Block 0.000 0.200 0.000 -1.025 0.000 -1.071 0.549 -0.009

mutant 19 Strip 0.000 0.220 0.000 -0.585 0.000 -0.502 0.675 0.007

mutant 20 Block 0.000 0.260 NaN NaN NaN NaN 0.275 -0.016

rj MRrj
mutant 21 Block 0.000 0.250 NaN NaN NaN NaN 0.006 0.054

mutant 22 Block 0.000 0.140 0.000 -0.881 0.000 -0.976 0.043 -0.027

PntLinePos MRPntLinePos
mutant 23 Block 0.000 0.340 0.000 -1.140 0.000 1.280 0.000 0.311

mutant 24 Block 0.000 0.540 0.000 -1.150 0.000 1.621 0.000 1.162

Table 6: The Relationship between MRVRs and Input Domains
Size and Location of Input Domains MRVR-S Location Scenarios

The source input domain is
inside the follow-up input domain

(the source input domain is
smaller than the follow-up input domain)

close to the center of the source input domain A1

close to the edge of the source input domain A2

distributed over the source input domain A3

close to the center of the follow-up input domain A4

close to the edge of the follow-up domain A5

The source input domain is the identical or
very similar to the follow-up input domain

close to the center of entire input domain B1

close to the edge of entire input domain B2

distributed over the entire input domain B3

The follow-up input domain is
inside the source input domain

(the source input domain is
larger than the follow-up input domain)

close to the center of the source input domain C1

close to the edge of the source input domain C2

distributed over the source input domain C3

fully/mostly outside the follow-up input domain C4

fully/mostly inside the follow-up input domain C5

while the three MT-ART algorithms occasionally exhibited superior performance to MT-RT;
and under point/strip MRVRs, all the algorithms typically exhibited similar performance.

To further explore the influence of the input-domain difference problem on the MT-
ART algorithms, the concept of MRVRs (introduced in Section 3.2) was adopted [284]. The
MRVR-S (STC-only components of MRVRs) of all SUTs with relevant MRs have been identi-
fied, and the relationship between the input domains and the MRVRs has been categorized
based on their relative size and location, as illustrated in Table 6.

Further observations can be made from Figures 11 - 5, as introduced below.

4.4 empirical experiments 61

• In contrast to MT-ART-Max and MT-ART-Avg, MT-ART-Min exhibited greater stabil-
ity: It never required more than 100,000 MGs to detect the initial MR violation and
never significantly outperformed SFIDMT-ART in terms of F-measure. The problem
is that in Scenarios A2 and C2, the performance of MT-ART-Min markedly lagged
behind that of SFIDMT-ART and even MT-RT. The underlying cause of this issue may
be the input-domain difference problem, which resulted in the uneven distribution
of STC and FTC generated by MT-ART-Min. For example, Fig. 8 illustrates a typical
instance of the STCs generated by MT-ART-Min. If MT-ART-Min encounters Scenario
A2 — the MRVR-S resides in the bottom-left corner of the source input domain —
it would exhibit poor performance. Similarly, MT-ART-Max and MT-ART-Avg may
encounter this problem, with SFIDMT-ART being the only algorithm capable of ad-
dressing it and achieving significantly better performance.

• MT-ART-Max and MT-ART-Avg occasionally exhibited significantly better perfor-
mance compared to MT-ART-Min, particularly in Scenarios A2, B2, and C2. Never-
theless, they may occasionally perform quite poorly. For instance, in Scenarios A1, B1,
and C1, sometimes 100,000 MGs were generated and executed using MT-ART-Max
or MT-ART-Avg, but the first MR violation had not yet been revealed. This could
be caused by the influence of both the input-domain difference problem and the
edge-preference problem. Due to the edge-preference problem, the STCs and FTCs
produced by MT-ART-Max or MT-ART-Avg exhibit a trend of clustering near the
boundary of the input domain rather than being uniformly distributed. For instance,
in Scenario B2, the MRVR-S was positioned near the boundary of the entire input do-
main, which may result in the two MT-ART algorithms significantly outperforming
all other algorithms. On the contrary, in Scenario B1, where the MRVR-S was close
to the center of the entire input domain, both MT-ART algorithms performed poorly.

• Based on the above experimental results and discussions, the following conclusion
can be drawn:

Answer to RQ2.1: SFIDMT-ART generally exhibits relatively stable and superior fault-
detection capabilities compared to all other algorithms under test.

4.4.2.2 Generation Time

The experimental results of the mean generation time of all algorithms are described in
Fig. 13: The vertical axis denotes generation time and the horizontal axis represents the
algorithms under test.

It can be observed that SFIDMT-ART consistently required the least amount of time to
generate 10,000 MGs, across all scenarios, indicating its superior test efficiency compared
to the three MT-ART algorithms. The following observations and conclusions can be made:

1. All three MT-ART algorithms and SFIDMT-ART are affected by the input domain
dimension: As the input domain dimension increases, the time required for MT-ART
and SFIDMT-ART to generate a certain number of MGs also increases. Between them,

62 addressing the problems in metamorphic group generation algorithms

0s

100s

200s

300s

400s

500s

600s

700s

800s

900s

1000s

1100s

MT-ART-Max MT-ART-Avg MT-ART-Min SFIDMT-ART

Figure 13: Generation Time Experimental Results of the MG-generation Algorithms

MT-ART is more sensitive to the changes in the input domain dimension. That is, as
the input domain dimension increases, the generation time for MT-ART typically
increases faster than that of SFIDMT-ART.

2. When using MRBessel J , the generation time of MT-ART was very high, which was
even larger than that of MRrj. In addition, the difference in time between SFIDMT-
ART and the three MT-ART algorithms was largest when MRBessel J was used. The
possible reason for this phenomenon is that MT-ART is also influenced by the type
of MRs: MRBessel J is a 1-2 MR, while MRsncndn is a 1-1 MR. In other words, given
an M-N MR, as the value of M or N increases, the generation time for MT-ART also
increases. This is different from SFIDMT-ART, which may not be affected by the type
of MR: The generation time result of SFIDMT-ART using MRBessel J is almost the same
as that of MRsncndn. Therefore, it is expected that, in theory, for an M-N MR, SFIDMT-
ART can be capable of outperforming MT-ART in terms of generation time and the
time difference between them may increase with higher values of M and N. In the
future, empirical studies will be conducted to future investigate the above analysis.

However, there is still room for improvement in both effectiveness and efficiency of
SFIDMT-ART. With this consideration, Section 18 introduced SFIDMT-BART, which is an
enhanced version of SFIDMT-ART. This algorithm attempts to improve the performance
of SFIDMT-ART by combining it with MT-BART (proposed in Chapter 5).

In addition to time complexity, this chapter also aims to investigate and analyze the main
reasons why SFIDMT-ART was capable of outperforming the three MT-ART algorithms in
terms of generation time from the following perspectives:

• MT-ART typically needs more time for calculating the distance between test cases.
In particular, MT-ART computes not only the distance from each candidate to all
executed test cases but also the distances among all test cases from a single candidate
MG, while SFIDMT-ART only involves the computation of the distance from each
source candidate to relevant executed STCs, and the distance from each follow-up
candidate to relevant executed FTCs.

4.4 empirical experiments 63

Table 7: Dispersion and Discrepancy Experimental Results of the MG-generation Algorithms

MRs Algorithms
Dispersion Discrepancy

STCs in the
STC Input Domain

FTCs in the
FTC Input Domain

STCs in the
STC Input Domain

FTCs in the
FTC Input Domain

Min Max Max-Min Min Max Max-Min Min Max Max-Min Min Max Max-Min

MRSin

MT-RT 0.0010 3.7800 3.7790 0.0003 1.2600 1.2597 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.0100 73.8000 73.7900 0.0033 24.6000 24.5967 0 0.0053 0.0053 0 0.0053 0.0053

MT-ART-Avg 0.0108 59.2000 59.1892 0.0036 19.7000 19.6964 0 0.0049 0.0049 0 0.0049 0.0049

MT-ART-Min 0.2640 6.2200 5.9560 0.0880 2.0700 1.9820 0 0.0020 0.0020 0 0.0020 0.0020

SFIDMT-ART 0.4200 1.6900 1.2700 0.1400 0.5640 0.4240 0 0.0010 0.0010 0 0.0010 0.0010

MRtanh

MT-RT 0.0003 1.2600 1.2597 0.0010 3.7800 3.7790 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.0034 24.5000 24.4966 0.0101 73.4000 73.3899 0 0.0051 0.0051 0 0.0051 0.0051

MT-ART-Avg 0.0039 16.7000 16.6962 0.0116 50.0000 49.9884 0 0.0046 0.0046 0 0.0046 0.0046

MT-ART-Min 0.0903 1.3700 1.2797 0.2710 4.1200 3.8490 0 0.0020 0.0020 0 0.0020 0.0020

SFIDMT-ART 0.1400 0.5640 0.4240 0.4200 1.6900 1.2700 0 0.0010 0.0010 0 0.0010 0.0010

MREr f

MT-RT 0.0010 3.7800 3.7790 0.0010 3.7800 3.7790 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.0119 38.9000 38.8881 0.0119 38.9000 38.8881 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Avg 0.0120 52.5000 52.4880 0.0120 52.5000 52.4880 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Min 0.2250 3.0700 2.8450 0.2250 3.0700 2.8450 0 0.0021 0.0021 0 0.0021 0.0021

SFIDMT-ART 0.4200 1.6900 1.2700 0.4200 1.6900 1.2700 0 0.0010 0.0010 0 0.0010 0.0010

MRBessel J

MT-RT 0.0692 5.2861 5.2169 0.0692 5.2861 5.2169 0 0.0046 0.0046 0 0.0046 0.0046

MT-ART-Max 0.0497 10.2096 10.1599 0.0497 10.2096 10.1599 0 0.0077 0.0077 0 0.0077 0.0077

MT-ART-Avg 0.0531 9.7781 9.7250 0.0531 9.7781 9.7250 0 0.0070 0.0070 0 0.0070 0.0070

MT-ART-Min 0.8791 4.2297 3.3506 0.8791 4.2297 3.3506 0 0.0029 0.0029 0 0.0029 0.0029

SFIDMT-ART 1.4170 4.1938 2.7768 1.4170 4.1938 2.7768 0 0.0021 0.0021 0 0.0021 0.0021

MRsncndn

MT-RT 0.0235 1.7900 1.7665 0.0706 5.3702 5.2996 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.0143 5.0800 5.0657 0.0428 15.2400 15.1972 0 0.0108 0.0108 0 0.0108 0.0108

MT-ART-Avg 0.0171 3.6500 3.6329 0.0512 10.9498 10.8986 0 0.0081 0.0081 0 0.0081 0.0081

MT-ART-Min 0.4490 1.7000 1.2510 1.348 5.1010 3.7530 0 0.0022 0.0022 0 0.0022 0.0022

SFIDMT-ART 0.4780 1.4100 0.9320 1.434 4.2300 2.7960 0 0.0021 0.0021 0 0.0021 0.0021

MRTriSquare

MT-RT 0.2345 4.8184 4.5839 0.7035 14.4551 13.7517 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.1469 7.7325 7.5856 0.4408 23.1975 22.7567 0 0.0120 0.0120 0 0.0120 0.0120

MT-ART-Avg 0.1660 6.8391 6.6731 0.4980 20.5173 20.0193 0 0.0089 0.0089 0 0.0089 0.0089

MT-ART-Min 1.8198 4.5100 2.6902 5.4595 13.5300 8.0705 0 0.0027 0.0027 0 0.0027 0.0027

SFIDMT-ART 1.8334 4.2797 2.4463 5.5002 12.8391 7.3389 0 0.0025 0.0025 0 0.0025 0.0025

MRTriPlus1

MT-RT 0.6982 14.4296 13.7314 0.2327 4.8098 4.5771 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.4362 24.1957 23.7595 0.1454 8.0652 7.9198 0 0.0141 0.0141 0 0.0141 0.0141

MT-ART-Avg 0.5252 20.0710 19.5458 0.1751 6.6903 6.5153 0 0.0085 0.0085 0 0.0085 0.0085

MT-ART-Min 5.3961 13.8927 8.4966 1.7987 4.6309 2.8322 0 0.0027 0.0027 0 0.0027 0.0027

SFIDMT-ART 5.5078 12.8340 7.3262 1.8359 4.2780 2.4421 0 0.0025 0.0025 0 0.0025 0.0025

MRTriPlus2

MT-RT 0.6981 14.4124 13.7143 0.5871 14.1467 13.5596 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 0.5033 18.8736 18.3703 0.5033 18.8736 18.3703 0 0.0092 0.0092 0 0.0092 0.0092

MT-ART-Avg 0.5144 19.3271 18.8127 0.5144 19.3271 18.8127 0 0.0084 0.0084 0 0.0084 0.0084

MT-ART-Min 4.5598 13.5540 8.9942 4.5598 13.5540 8.9942 0 0.0031 0.0031 0 0.0031 0.0031

SFIDMT-ART 5.5285 12.5366 7.0081 5.5142 12.7878 7.2736 0 0.0025 0.0025 0 0.0025 0.0025

MRrj

MT-RT 2.3200 24.7000 22.3800 2.3200 24.7000 22.3800 0 0.0045 0.0045 0 0.0045 0.0045

MT-ART-Max 1.7500 25.4000 23.6500 1.7500 25.4000 23.6500 0 0.0086 0.0086 0 0.0086 0.0086

MT-ART-Avg 1.7700 25.5000 23.7300 1.7700 25.5000 23.7300 0 0.0083 0.0083 0 0.0083 0.0083

MT-ART-Min 9.9000 23.6000 13.7000 9.9000 23.6000 13.7000 0 0.0038 0.0038 0 0.0038 0.0038

SFIDMT-ART 11.3000 23.0000 11.7000 11.3000 23.0000 11.7000 0 0.0034 0.0034 0 0.0034 0.0034

MRPnt

MT-RT 3.7600 31.1000 27.3400 11.2800 93.3000 82.0200 0 0.0013 0.0013 0 0.0013 0.0013

MT-ART-Max 3.4200 43.9000 40.4800 10.2600 131.700 121.440 0 0.0041 0.0041 0 0.0041 0.0041

MT-ART-Avg 3.1500 49.6000 46.4500 9.4500 148.800 139.350 0 0.0104 0.0104 0 0.0104 0.0104

MT-ART-Min 15.5000 29.9000 14.4000 46.5000 89.7000 43.2000 0 0.0015 0.0015 0 0.0015 0.0015

SFIDMT-ART 15.4000 29.6000 14.2000 46.2000 88.8000 42.6000 0 0.0012 0.0012 0 0.0012 0.0012

64 addressing the problems in metamorphic group generation algorithms

• In MT-ART, the number of empty subdomains may have an impact on its test effi-
ciency. Because MT-ART divides the entire input domain based on the number of
all executed STCs and executed FTCs, an great number of subdomains may be cre-
ated, particularly when the source input domain differs from the follow-up input
domain. This may lead to the following consequences: (1) A great number of empty
subdomains may prolong the search process excessively; and (2) the large number of
empty subdomains available for generating source candidates in each testing round
may not necessarily enhance test effectiveness. This is mainly because the objective
of partitioning the input domain is to facilitate the selection of source candidates
distant from executed test cases; however, an excess of subdomains may impede this
process, particularly in the case of 1-N MRs or M-N MRs. In contrast, SFIDMT-ART
divides the source input domain according to the number of relevant executed STCs,
which can improve test efficiency while preserving test effectiveness.

• Based on the above experimental results and discussions on generation time, the
following conclusion can be drawn:

Answer to RQ2.2: SFIDMT-ART demonstrates superior time complexity and outper-
forms MT-ART in terms of test efficiency.

4.4.2.3 Discrepancy and Dispersion

Table 7 presents the experimental results of Dispersion and Discrepancy, from which the
following observations can be drawn: SFIDMT-ART typically exhibited the best perfor-
mance in both Dispersion and Discrepancy, followed by MT-ART-Min. SFIDMT-ART was
the only algorithm consistently outperform MT-RT. MT-ART-Max typically demonstrated
the poorest performance.

In light of these results, the following conclusions can be inferred:
Answer to RQ2.3: SFIDMT-ART is capable of achieving the most uniform distribution of

STCs and FTCs across their respective input domains compared to MT-ART and MT-RT.
Answer to RQ2: Among SFIDMT-ART and the three MT-ART algorithms, SFIDMT-ART

is capable of exhibiting better performance in terms of F-measure, Cohen’s d, generation
time, Discrepancy and Dispersion, making it the preferred choice for MG generation.

Answer to RQ1: According to the experimental results and discussions regarding F-
measure, Cohen’s d, generation time, Discrepancy and Dispersion, a conclusion may be
drawn that, compared to achieving even distribution of both STCs and FTCs throughout
the entire input domain, the performance of MT may be further improved by achieving
even distribution of STCs and FTCs throughout their respective input domains.

4.5 conclusion

While MT has repeatedly demonstrated its effectiveness as an SQA technique, there is
still room to enhance both its effectiveness and efficiency [64, 246]. Recent studies [144,
291] have suggested that considering the quality of both STCs and FTCs could lead to

4.5 conclusion 65

further enhancements in MT performance. Nevertheless, previous MG-generation stud-
ies treated FTCs in the same manner as STCs. This could make an MG-generation algo-
rithm encounter the input-domain difference problem, severely affecting its effectiveness
and efficiency. MT-ART [144], for example, is a recently-released MG-generation algorithm
that seeks to enhance MT performance through evenly distributing both STCs and FTCs
throughout the entire input domain. This algorithm is likely to encounter the input-domain
difference problem, explained as follows: Different from traditional software testing, which
operates within a single input domain, MT examines the relationships among STCs and
FTCs, resulting in the presence of at least two input domains: The source input domain
and the follow-up input domain. However, MT-ART overlooks the difference between the
source input domain and the follow-up input domain, treating FTCs in the same manner
as STCs. From a broader perspective, while the STCs and FTCs may appear to be evenly
distributed throughout the entire input domain, a closer examination focusing solely on
STCs or FTCs reveals different outcomes: STCs may cluster in one region, while FTCs
cluster in another. Consequently, the performance of MT-ART could be severely impacted.
This thesis referred to this issue as the input-domain difference problem.

This thesis have reported on a case study investigating how this problem may affect the
performance of a specific MG-generation algorithm, MT-ART [144], using the concept of
MRVR. A potential solution to address this problem has also been introduced: Treating the
FTCs separately from the STCs during the MG-generation process, instead of treating them
as a unified entity. Inspired by the proposed solution, to address the input-domain differ-
ence problem existing in MT-ART to enhance its performance further, a new principle for
allocating STCs and FTCs has been presented as follows: Ensuring the even distribution
of STCs throughout the respective source input domain and FTCs throughout the respec-
tive follow-up input domain. Additionally, this thesis have introduced two MT-distance
measurements (ID-MDs) to facilitate the implementation of the proposed allocation prin-
ciple and have introduced a new MG-generation algorithm named SFIDMT-ART to en-
hance the test efficiency and effectiveness of MT-ART. Empirical experiments have been
conducted to evaluate and compare the performance of SFIDMT-ART with that of MT-RT
and MT-ART using publicly-available systems from previously-published MT-related or
ART-related studies [13, 49, 52, 62, 67, 100, 102, 136, 137, 139, 143, 144, 193, 238]. The exper-
imental results revealed that, in comparison with MT-RT and MT-ART, SFIDMT-ART was
capable of exhibiting significantly better performance in terms of fault-detection capability,
while also reducing the computational overhead of MT-ART.

The main limitation of SFIDMT-ART is its high computational overhead. Therefore, ad-
dressing the issue of generation time cost in SFIDMT-ART is imperative. In this context,
future work will include the exploration of approaches to minimize the computational
overhead associated with SFIDMT-ART. Since the rationale of SFIDMT-ART is inspired by
ART, one possible approach to address this limitation is to introduce some advanced ART
algorithms, or the methods designed to improve the efficiency of ART algorithms, into
SFIDMT-ART to improve its efficiency.

66 addressing the problems in metamorphic group generation algorithms

The following chapter of this thesis will introduce two novel MG-generation algorithms.
The rationale behind the next chapter is that while the efficiency of SFIDMT-ART has
improved compared to MT-ART, it remains excessively high compared to MT-RT. In light
of this, the next chapter will introduce two novel algorithms that exhibit significantly better
while maintaining high test effectiveness compared to SFIDMT-ART and MT-ART.

5
M E TA M O R P H I C G R O U P G E N E R AT I O N
A L G O R I T H M S F O R I M P R O V I N G T E S T E F F I C I E N C Y
A N D E F F E C T I V E N E S S

Publications delivered from this chapter

1. Zhihao Ying, Dave Towey, T. Y. Chen and Zhi Quan Zhou. MT-PART: Metamorphic-
Testing-Based Adaptive Random Testing Through Partitioning. In 2024 IEEE 48th
Annual Computers, Software, and Applications Conference (COMPSAC’24), 2024, IEEE,
pp. 1184–1193.

5.1 introduction and motivation

Previously-published MG-generation algorithms may confront issues relating to test ef-
ficiency, explained as follows: Their main focus is directed towards enhancing the test
effectiveness of MT (especially the fault-detection capabilities), albeit at the expense of test
efficiency (particularly evident in ART-based algorithms) [19, 21, 64, 143, 144, 246]. At this
point, the principal objective of this chapter is to design and develop MG-generation algo-
rithms that are capable of achieving a balance between the effectiveness and efficiency of
MT.

This chapter introduces a series of novel class of MG-generation algorithms rooted in
partition-based ART, referred to as MT-based ART Through Partitioning (MT-PART): These
algorithms aim to improve the effectiveness and efficiency of MT by dynamically parti-
tioning the source and follow-up input domains, and generating new STCs and FTCs
uniformly distributed throughout their respective input domains. MT-PART consists of
two concrete algorithms: MT-based ART by Bisection (MT-BART) and MT-based ART
through Iterative Partitioning (MT-IPART). Then, this chapter conducts empirical experi-
ments aimed at assessing and comparing the performance of MT-PART algorithms against
other existing MG-generation algorithms in the literature. In particular, this chapter se-
lects SFIDMT-ART (proposed in the last chapter of this thesis), MT-ART (SFIDMT-ART
was proposed as its enhanced version) and MT-RT (the most popular MG-generation al-
gorithm) for the empirical experiments. The experimental results revealed that MT-PART
algorithms were capable of achieving a marked enhancement in the efficiency of MT, while
maintaining a high level of effectiveness.

67

68 metamorphic group generation algorithms for improving test efficiency and effectiveness

Table 8: Experimental Results of Generation Time [57]

ART Algorithms FSCS-ART RPART BART IPART

Time (in seconds) 3645.8 1141.1 6.4 12.0

Table 9: Experimental Results of F-ratio on 2D input domains (under the block failure region) [57]

Failure Rates
F-ratio of

FSCS-ART
F-ratio of
RPART

F-ratio of
BART

F-ratio of
IPART

0.01 67% 76% 75% 63%

0.00 66% 77% 74% 61%

0.002 65% 79% 74% 60%

0.001 65% 80% 75% 61%

5.2 mt-part algorithms

5.2.1 Selection of Basic Algorithms

The primary computational cost associated with FSCS-ART [83] stems from the compu-
tation and comparison of distances between test cases. If the size of the candidate set is
denoted as c (c > 1), the test case to be chosen is denoted as i (i > 0), and the number of
previously-selected test cases (from the input domain) is denoted as n (n > 0), then the
number of distance calculations for selecting the ith test case is given by c ∗ (i − 1).

The time complexity of FSCS-ART is O(n2) [57, 77], a value that can be computed as
follows:

n

∑
i=1

e ∗ (i − 1) = e ∗
n−1

∑
i=1

i ∈ O(n2) (9)

Both RPART [78] and BART [78] exhibit a time complexity of O(n) [53, 57]. Let k (k > 0)
represent the input dimensionality, the time complexity of IPART [57] can then be mea-
sured by:

O(3k+1, n1+1/k) (10)

In IPART, searching for the empty subdomains that are not surrounded by any non-
empty subdomains constitute the main computational overhead.

Chen et al. [57] conducted empirical experiments to measure the actual time required
for generating test cases using the ART algorithms, as some certain factors that could
potentially impact the real-world experiments may be overlooked in the calculation of
time complexity. The experiments were conducted under the following conditions: (a) On
an HP Compaq PC equipped with a 2.6 GHz Intel Pentium IV processor and 256M RAM;
and (b) using the Microsoft Windows XP SP1 operating system. Table 8 lists the time (in
seconds) to run the ART algorithms for 5000 trials.

The experimental results revealed that the generation times of BART and IPART were
minimal in comparison to FSCS-ART and RPART. However, while the generation time of
RPART is notably lower than that of FSCS-ART, it remains considerably larger than the

5.2 mt-part algorithms 69

other two partition-based algorithms. This may be due to the computational overhead in-
volved in identifying the largest subdomain, despite the avoidance of distance calculations
and comparisons.

Additionally, Chen et al. [57] conducted experiments to evaluate and compare the fault-
detection capabilities of the four ART algorithms with RT, with the experimental results
summarized in Table 9. The experiments included four failure rates (0.01, 0.005, 0.002,
and 0.001), with all four ART algorithms demonstrating significantly better fault-detection
capabilities compared to RT. Among the ART algorithms, IPART exhibited the highest
fault-detection capability overall, followed by FSCS-ART. Although BART exhibited infe-
rior performance compared to FSCS-ART, it was capable of significantly outperforming
RPART.

In summary, the inclusion of BART and IPART in the MG-generation algorithms was
guided by the following considerations:

1. In terms of fault-detection capability, as indicated by the F-ratio experimental re-
sults, IPART generally necessitates the fewest number of test cases among the five
algorithms to identify the first failure, followed closely by FSCS-ART. While the
fault-detection capability of BART falls below that of IPART and FSCS-ART, it is
still capable of significantly outperforming both RPART and RT.

2. In regard to computational efficiency, the generation time experimental results re-
vealed that BART and IPART incur acceptable computational overhead. Their com-
putational overheads are similar to or slightly higher than RT, and meanwhile signif-
icantly lower than those of FSCS-ART and RPART.

5.2.2 MT-based ART by Bisection (MT-BART)

The steps of MT-BART are summarized in Algorithm 3, with a detailed explanation of
each step provided below:

• Step 1: MT-BART assumes the existence of an MR, which can be identified from
scratch using specific approaches (such as MRPs) or directly chosen from previously-
published MRs.

• Step 2: MT-BART determines the scope of the source input domain and follow-up
input domain according to the given MR.

• Step 3: MT-BART initializes the executed STC set and the executed FTC set as empty.
The rationale behind this step is that MT-BART aims to enhance MT performance
by evenly distributing STCs and FTCs across their respective input domains, thereby
two sets of executed test sets are required.

• Steps 5-7: MT-BART checks:

(1) In the source input domain, if all subdomains are non-empty (covered by the test
cases in the executed STC set), MT-BART then bisects these subdomains by drawing
horizontal or vertical lines.

70 metamorphic group generation algorithms for improving test efficiency and effectiveness

Algorithm 3: MT-BART Algorithm for 2D input domains

1 Assume the existence of an MR;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Initialize the executed STC and FTC sets to be empty;
4 while all the stopping conditions are not satisfied do
5 if all subdomains are non-empty or the number of executed STCs/FTCs is the same as

the number of relevant subdomains then
6 Bisect all the corresponding subdomains using horizontal or vertical lines;
7 Identify the empty subdomains in the source/follow-up input domain as

source/follow-up candidate subdomains;
8 end
9 Randomly choose one source candidate subdomain and select k source

candidates;
10 for m = 1 → k do
11 Choose the mth source candidate and construct follow-up candidates based

on the given MR;
12 Explore if the follow-up candidates are within follow-up candidate

subdomains, represented by fm (If yes, fm = 1; otherwise, fm = 0);
13 end
14 Choose the candidate MG with the largest fm;
15 if more than one MG satisfies the criterion then
16 Choose one at random;
17 end
18 Execute the MG against the SUT and check whether the given MR is violated;
19 Add the executed STC and FTC to their respective executed test sets;
20 end

(2) In the follow-up input domain, if all subdomains are non-empty (covered by the
test cases in the executed FTC set), or the number of executed FTCs is the same as
the number of subdomains, then MT-BART bisects all the subdomains.

The rationale behind these three steps is to generate empty subdomains for future
use.

• Step 8: After partitioning the subdomains, MT-BART chooses the empty subdomains
in the source input domain as source candidate subdomains, and chooses the empty
subdomains in the follow-up input domain as follow-up candidate subdomains.
Source candidate subdomains are created for generating STCs, while follow-up can-
didate subdomains serve the purpose of validating and comparing the generated
STCs and FTCs to determine the most suitable MG for execution.

• Step 9: MT-BART chooses one source candidate subdomain at random and selects k
STCs from it as source candidates.

• Steps 10-13: MT-BART constructs k FTCs as follow-up candidates according to the
given MR and the k source candidates, with the aim of creating k candidate MGs. Sub-
sequently, MT-BART validates and compares the k candidate MGs to get an appropri-

5.2 mt-part algorithms 71

ate one for execution by exploring if the follow-up candidates are within follow-up
candidate subdomains.

• Step 14: MT-BART chooses a candidate MG for execution, with all its follow-up can-
didates situated within follow-up candidate subdomains. It is worth noting that, to
achieve the objective within reasonable computational overheads, a finite number of
(k) candidate MGs is considered instead of an infinite set. In particular, if none of the
k candidate MGs satisfy the predefined criteria, MT-PART ceases the search process
and randomly chooses one from the pool of k candidate MGs for execution.

• Steps 15-17: If there are more than one candidate MG containing the same maximum
value, then MT-BART chooses one of them for execution at random.

• Step 18: MT-BART executes the generated MG against the SUT and checks for MR
violations.

• Step 19: For the currently executed MG, MT-BART appends its STC to the executed
STC set, and appends its FTC to the executed FTC set.

• Step 20: If all the stopping conditions are not satisfied (i.e., no MR violations de-
tected), then MT-BART skips to Step 5; otherwise, MT-BART ceases the process and
reports the testing outcomes.

5.2.3 MT-based ART through Iterative Partitioning (MT-IPART)

The steps of MT-IPART are summarized in Algorithm 4, with a detailed explanation of
each step provided as follows:

• Step 1: MT-IPART assumes the existence of an MR.

• Step 2: MT-IPART determines the scope of the source input domain and follow-up
input domain according to the given MR.

• Step 3: MT-IPART initializes the executed STC set and the executed FTC set as empty.

• Step 4: MT-IPART divides the source/follow-up input domain based on the value of
the relevant partitioning scheme: The source partitioning scheme (ps) for the source
input domain; and the follow-up partitioning scheme (p f) for the follow-up input
domain. In this step, MT-IPART initialize the values of both schemes to 1 (ps = 1 and
p f = 1).

• Steps 6-10: MT-IPART checks:

(1) Within the source input domain, if all subdomains are either non-empty or sur-
rounded by a non-empty subdomain, then MT-IPART increments the source parti-
tioning scheme by 1 (ps = ps + 1) and divides the source input domain into ps × ps

subdomains.

72 metamorphic group generation algorithms for improving test efficiency and effectiveness

Algorithm 4: MT-IPART Algorithm for 2D input domains

1 Assume the existence of an MR;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Initialize the executed STC and FTC sets to be empty;
4 Set the source and follow-up partitioning schemes to 1 (ps = 1 and p f = 1);
5 while all the stopping conditions are not satisfied do
6 if all subdomains are non-empty or are surrounded by a non-empty subdomain; or the

number of executed STCs/FTCs is the same as the number of relevant subdomains then
7 Increase the corresponding partitioning scheme by 1 (p = p + 1);
8 Partition the corresponding input domain into p × p subdomains;
9 Map all executed STCs/FTCs to the respective input domain to construct

empty subdomains;
10 Identify the empty subdomains that are also surrounded by empty

subdomains as source/follow-up candidate subdomains;
11 end
12 Randomly choose one source candidate subdomain and select k source

candidates;
13 for m = 1 → k do
14 Choose the mth source candidate and construct follow-up candidates based

on the given MR;
15 Explore if the follow-up candidates are within follow-up candidate

subdomains, represented by fm (If yes, fm = 1; otherwise, fm = 0);
16 end
17 Choose the candidate MG with the largest fm;
18 if more than one MG satisfies the criterion then
19 Choose one at random;
20 end
21 Execute the MG against the SUT and check whether the given MR is violated;
22 Add the executed STC and FTC to their respective executed test sets;
23 end

(2) Within the follow-up input domain, if all subdomains are either non-empty or
surrounded by a non-empty subdomain, or the number of test cases in the executed
FTC set is equal to the number of subdomains in the follow-up input domain, then
MT-IPART increments the follow-up partitioning scheme by 1 (p f = p f + 1) and
divides the follow-up input domain into p f × p f subdomains.

• Step 11: After partitioning the subdomains, MT-IPART subsequently identifies the
empty subdomains (from the source/follow-up input domain) that are not sur-
rounded by non-empty subdomains as (source/follow-up) candidate subdomains. In
addition, due to the fact that the subdomains located at the edges have fewer adjacent
subdomains, the probability of these subdomains being selected as source/follow-
up candidate subdomains may be higher than the subdomains located at the center.
With this consideration, given a subdomain located at the edges, MT-IPART not only
checks if its adjacent subdomains are empty, but also checks if the corresponding sub-
domain located at the edge of the other side of the entire input domain are empty.

5.2 mt-part algorithms 73

• Step 12: MT-IPART chooses one source candidate subdomain at random and chooses
k STCs from it as source candidates.

• Steps 13-16: MT-IPART constructs k FTCs as follow-up candidates according to the
given MR and the k source candidates, with the aim of creating k candidate MGs.
Subsequently, MT-IPART validates and compares the k candidate MGs to get an
appropriate one for execution by exploring if the follow-up candidates are within
follow-up candidate subdomains.

• Step 17: MT-IPART chooses a candidate MG for execution, with all its follow-up
candidates situated within follow-up candidate subdomains.

• Steps 18-20: If there are more than one candidate MG containing the same maximum
value, then MT-IPART chooses one of them for execution at random.

• Step 18: MT-IPART executes the generated MG against the SUT and checks for MR
violations.

• Step 19: For the currently executed MG, MT-IPART appends its STC to the executed
STC set, and appends its FTC to the executed FTC set.

• Step 20: If all the stopping conditions are not satisfied (i.e., no MR violations de-
tected), then MT-IPART skips to Step 5; otherwise, MT-IPART ceases the process and
reports the testing outcomes.

5.2.4 Comparison between MT-BART and MT-IPART

Suppose k denotes the number of candidate MGs generated in each iteration, and n repre-
sents the number of MGs to be generated, the time complexity of MT-BART and MT-IPART
is O(n × k). According to the experimental results and analysis shown in Section 5.4.2, the
value of k typically can be set to 3 or 4. Therefore, the complexity is O(3n) or O(4n), both
of which are O(n). In this context, a conclusion can be drawn that the time complexity of
MT-BART and MT-IPART is much lower than that of SFIDMT-ART and MT-ART.

The major differences between MT-BART and MT-IPART are summarized as follows:

• The major difference lies in the partitioning method. For instance, in the case of a
2D input domain, MT-BART divides it by drawing horizontal or vertical lines, while
MT-IPART divides it into n ∗ n subdomains.

• The second difference concerns the conditions for partitioning the input domains.
For instance, MT-BART partitions the source input domain when all subdomains
are covered by executed STCs, while MT-IPART partitions the source input domain
under the condition that all subdomains are either covered by executed STCs or
surrounded by a non-empty subdomain.

• The final difference concerns the way of defining source/follow-up candidate sub-
domains. In particular, MT-BART identifies subdomains not covered by executed

74 metamorphic group generation algorithms for improving test efficiency and effectiveness

Table 10: Information of the SUTs and MRs
SUTs Sin BesselJ TriSquare TriSquarePlus

Input Dimensions 1 2 3 3

Input Domain Ranges (0,1000) ((1,1), (100,100)) ((0,0,0), (100,100,100)) ((0,0,0), (100,100,100))

Sizes (LOC) 120 1211 38 31

MRs MRSin13 MRBessel J
MRTriSquare3,
MRTriSquare6

MRTriPlus2,
MRTriPlus12

Number of MRs 1 1 2 2

Dimension of MRs 1 3 2 2

Number of Mutants 2 3 6 6

Fault Types CRP, ROR, AOR CRP, ROR, AOR CRP, ROR, RSR, AOR CRP, ROR, RSR, AOR

STCs/FTCs as source/follow-up candidate subdomains, while MT-IPART identifies
subdomains that are not only empty but also not surrounded by non-empty subdo-
mains as source/follow-up candidate subdomains.

5.3 research questions

The following RQs were formulated to provide guidance for the empirical experiments:
RQ1: Can MT-BART and MT-IPART achieve a balance between test effectiveness and
efficiency?

• Objective: Evaluate whether or not MT-BART and MT-IPART can outperform
SFIDMT-ART, MT-ART and MT-RT and achieve a better balance between test ef-
fectiveness and efficiency.

• Motivation: MT-RT is the most popular MG-generation algorithm, but it sometimes
cannot achieve satisfactory fault-detection capability as it does not utilize any fea-
tures of the SUT [64, 246]. MT-ART and SFIDMT-ART were introduced to improve
the fault-detection capability of RT; however, the improvement of their fault-detection
capabilities are achieved at the cost of sacrificing efficiency. In this context, MT-BART
and MT-IPART were proposed, in order to achieve a balance between test effective-
ness and efficiency.

• Baseline algorithms:

1. MT-RT, selected for its widespread adoption — it is the most popular MG-
generation algorithm.

2. MT-ART, selected for its endeavor to bolster MT performance by uniformly dis-
persing STCs and FTCs across the complete input spectrum

3. SFIDMT-ART, selected as it is another MG-generation algorithm proposed in
this thesis, and it is proposed as an enhanced iteration of MT-ART.

• Methodologies:

1. Select three performance criteria: Test efficiency, test effectiveness, and MG di-
versity.

5.4 empirical experiments 75

2. Design sub-RQs to delve deeper into specific aspects of performance.

3. Determine whether or not MT-BART and MT-IPART perform better across mul-
tiple performance metrics compared to SFIDMT-ART, MT-ART and MT-RT.

• Sub-RQs:

1. Can MT-BART and MT-IPART achieve better test effectiveness (F-measure) than
SFIDMT-ART, MT-ART, and MT-RT?

2. Can MT-BART and MT-IPART achieve better test efficiency (generation time)
than SFIDMT-ART and MT-ART?

3. Can MT-BART and MT-IPART achieve better distribution diversity of MGs (Dis-
persion and Discrepancy) than SFIDMT-ART, MT-ART, and MT-RT?

5.4 empirical experiments

5.4.1 Experimental Setup

In the empirical experiments, systems of various sizes and dimensions were chosen, and
artificial faults were introduced to generate mutants. Table 10 provides an overview of
the SUTs and MRs, including input dimensions, the scope of the entire input domain, the
scope of the source input domains, the scope of the follow-up input domain, the size of
the SUTs (measured in Lines Of Codes (LOC)), MRs, number of mutants, and types of
faults. A detailed introduction of the SUTs is provided in Section 2.4. Six MRs, all sourced
from previously-published MT-related studies [49, 52, 67, 100, 143, 144], were chosen for
the SUTs. The descriptions of these MRs are presented in Appendix A.

Since according the the experimental results and conclusions from Section 4.4.2, MT-
ART-Min (MT-ART with Strategy 1/Min) is the most stable one among the three MT-ART
algorithms (MT-ART-Max, MT-ART-Avg, and MT-ART-Min), to simplify the experimental
procedure, only MT-ART-Min was included in the empirical experiments. The following
experimental environment was built, mirroring the experiments conducted in Section 4.4:

• The k value for MT-ART-Min and SFIDMT-ART was set to 10;

• 1000 MGs were generated for each MG-generation algorithm and its corresponding
MR, facilitating the computation of Discrepancy and Dispersion.

• All experiments were repeated 10,000 times to compute the average F-measure, Dis-
crepancy, and Dispersion.

• The number of subdomains for Discrepancy was set to 1000, aiming to balance com-
putation overheads and accuracy.

76 metamorphic group generation algorithms for improving test efficiency and effectiveness

317

281

199 208 201

0

50

100

150

200

250

300

350 1045

1011

1005

1027
1024

980

990

1000

1010

1020

1030

1040

1050

1012

714 693
793

637

0

200

400

600

800

1000

1200

(a) MRSin and Mutant 1; (b) MRSin and Mutant 2; (c) MRBessel J and Mutant 3;

Block region; Point region; Block region;

52

40 41
45

41

0

10

20

30

40

50

60
1125

994
980

1003
992

900

950

1000

1050

1100

1150

450

709

337
370 341

0

100

200

300

400

500

600

700

800

(d) MRBessel J and Mutant 4; (e) MRBessel J and Mutant 5; (f) MRTriSquare1 and Mutant 6;

Strip region; Block region; Block region;

1164

1173

1164

1124

1150

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

674

689

650 651

661

630

640

650

660

670

680

690

700 1110

920 930

1046
942

0

200

400

600

800

1000

1200

(g) MRTriSquare1 and Mutant 7; (h) MRTriSquare1 and Mutant 8; (i) MRTriSquare2 and Mutant 9;

Block region; Point region; Strip region;
Figure 14: F-measure Experimental Results of the MG-generation Algorithms (Part 1)

5.4.2 Experimental Results, Discussions, and Conclusions

5.4.2.1 F-measure and Cohen’s d

Figs. 14 - 11 illustrates the F-measure and Cohen’s d experimental results of the MG-
generation algorithms under test, while Table 11 presents the Cohen’s d experimental
results. The following observations can be drawn from the experimental results:

• In block MRVRs: All four algorithms (MT-BART, MT-IPART, SFIDMT-ART, and MT-
ART-Min) consistently outperformed MT-RT. Specifically, MT-IPART and SFIDMT-
ART exhibited the highest performance, followed by MT-BART and MT-ART-Min.
MT-BART generally exhibited performance comparable to MT-ART-Min. For in-
stance, when using mutants 1, 6, and 12, MT-BART significantly outperformed MT-
ART-Min; conversely, when using mutants 3, 11, and 15, MT-ART-Min exhibited su-
perior performance. In most cases, they demonstrated similar performance, such as
mutants 5, 7, 8, 10, 13, 14, 15, 16 and 17.

• In point/strip MRVRs: The performance of all five algorithms tends to be similar.

5.4 empirical experiments 77

453

430 429
433 432

415

420

425

430

435

440

445

450

455

460

513

392 402
440

367

0

100

200

300

400

500

600

459

706

337
379 349

0

100

200

300

400

500

600

700

800

(j) MRTriSquare2 and Mutant 10; (k) MRTriSquare2 and Mutant 11; (l) MRTriPlis1 and Mutant 12;

Strip region; Block region; Block region;

666

681

658
655

648

630

640

650

660

670

680

690

1536

1101
1199

1286
1167

0

200

400

600

800

1000

1200

1400

1600

1800 1122

922 929
1049

971

0

200

400

600

800

1000

1200

(d) MRTriPlis1 and Mutant 13; (e) MRTriPlis1 and Mutant 14; (f) MRTriPlis2 and Mutant 15;

Strip region; Block region; Block region;

625

507 503
556 545

0

100

200

300

400

500

600

700

512

397 402 424
380

0

100

200

300

400

500

600

(g) MRTriPlis2 and Mutant 16; (h) MRTriPlis2 and Mutant 17;

Strip region; Block region;
Figure 15: F-measure Experimental Results of the MG-generation Algorithms (Part 2)

According to the F-measure and Cohen’s d experimental results and subsequent discus-
sion, a conclusion can be inferred as follows:

Answer to RQ1.1: MT-IPART and SFIDMT-ART typically exhibit the highest test effective-
ness among the five algorithms under test, followed by MT-BART and MT-ART.

5.4.2.2 Generation Time

Table 12 presents the mean generation time experimental results. MT-BART and MT-IPART
consistently required significantly less time to generate 10,000 MGs compared to MT-ART-
Min and SFIDMT-ART, which indicate their superior test efficiency. Notably, MT-BART
exhibited better test efficiency than MT-IPART.

The underlying reason that MT-BART and MT-IPART outperformed SFIDMT-ART and
MT-ART is that, although MT-BART and MT-IPART still require the generation of extra
source and follow-up candidates, they do avoid the distance computations and compar-
isons, which are the major computational overheads in SFIDMT-ART and MT-ART. In
particular, MT-BART and MT-IPART only need to check whether or not the follow-up can-
didates are within empty subdomains, while SFIDMT-ART and MT-ART compute and
compare the distance between source candidates and executed STCs and the distance be-
tween follow-up candidates and executed FTCs. The computational cost of SFIDMT-ART

78 metamorphic group generation algorithms for improving test efficiency and effectiveness

Table 11: Effect Size (Cohen’s d) Experimental Results of the MG-generation algorithms

SUTs MRs Mutants
MT-BART

vs RT
MT-BART

vs MT-ART-Min
MT-BART

vs SFIDMT-ART
MT-IPART

vs RT
MT-IPART

vs MT-ART-Min
MT-IPART

vs SFIDMT-ART
MT-BART

vs MT-IPART

Sin MRSin
Mutant 1 0.38 0.33 -0.13 0.46 0.43 -0.04 -0.10

Mutant 2 0.01 -0.03 -0.03 0.01 -0.02 -0.03 0.00

BesselJ MRBessel J

Mutant 3 0.25 -0.13 -0.16 0.46 0.14 0.11 -0.27

Mutant 4 0.15 -0.12 -0.09 0.22 -0.04 -0.01 -0.08

Mutant 5 0.12 -0.01 -0.04 0.14 0.01 -0.02 -0.01

TriSquare

MRTriSquare1

Mutant 6 0.20 0.64 -0.10 0.28 0.71 -0.01 -0.09

Mutant 7 0.04 0.04 0.04 0.01 0.02 0.01 0.02

Mutant 8 0.03 0.06 0.00 0.02 0.04 -0.02 0.02

MRTriSquare2

Mutant 9 0.06 -0.15 -0.13 0.17 -0.04 -0.02 -0.11

Mutant 10 0.05 -0.01 -0.01 0.05 0.00 -0.01 0.00

Mutant 11 0.16 -0.13 -0.10 0.35 0.08 0.11 -0.20

TriSquarePlus

MRTriPlus1

Mutant 12 0.20 0.62 -0.13 0.28 0.69 -0.04 -0.09

Mutant 13 0.02 0.04 0.00 0.03 0.05 0.02 -0.01

Mutant 14 0.18 -0.16 -0.07 0.29 -0.07 0.03 -0.10

MRTriPlus2

Mutant 15 0.07 -0.15 -0.14 0.15 -0.07 -0.06 -0.09

Mutant 16 0.12 -0.10 -0.11 0.14 -0.08 -0.09 -0.02

Mutant 17 0.20 -0.08 -0.06 0.32 0.05 0.07 -0.13

Table 12: Generation Time Experimental Results of the MG-generation algorithms
SUTs MRs MT-ART-Min SFIDMT-ART MT-BART MT-IPART

Sin MRSin 16.873 8.172 0.01 1.38

BesselJ MRBessel J 218.764 28.226 0.078 2.864

TriSquare
MRTriSquare1 110.627 53.743 0.252 2.633

MRTriSquare2 135.291 67.676 0.254 2.589

TriSquarePlus
MRTriPlus1 107.551 53.891 0.256 2.64

MRTriPlus2 135.581 67.872 0.255 2.588

and MT-ART becomes particularly high when using M-N MRs or when the number of exe-
cuted STCs and FTCs increases. Therefore, MT-BART and MT-IPART typically have much
lower computational overhead while maintaining a high fault-detection capability.

Thus, based on the mean generation time experimental results and discussions, a con-
clusion can be inferred as follows:

Answer to RQ1.2: In addition to MT-RT, MT-BART typically demonstrates the highest
test efficiency, followed by MT-IPART.

5.4.2.3 Dispersion and Discrepancy

Table 13 summarizes the Dispersion and Discrepancy experimental results. It is evident
that all four ART-based algorithms achieved a uniform distribution of STCs and FTCs
throughout their respective input domains compared to MT-RT. Among these algorithms,
MT-IPART and SFIDMT-ART generally demonstrated superior performance, followed by
MT-BART and MT-ART-Min. Consistent with the F-measure and Cohen’s d experimental
results, MT-ART and MT-BART exhibited similar performance regarding Dispersion and
Discrepancy.

Therefore, according to the Dispersion and Discrepancy experimental results and dis-
cussions, a conclusion can be inferred as follows:

Answer to RQ1.3: MT-IPART and SFIDMT-ART are capable of achieving the most even
distribution of STCs and FTCs throughout the respective input domains, followed by MT-
BART and MT-ART-Min.

5.5 future work 79

Table 13: Discrepancy and Dispersion Experimental Results of the MG-generation algorithms

MRs Methods
Discrepancy Dispersion

STCs in the
Source Input Domain

FTCs in the
Follow-up Input Domain

STCs in the
Source Input Domain

FTCs in the
Follow-up Input Domain

Min Max Max-Min Min Max Max-Min Min Max Max-Min Min Max Max-Min

MRSin

MT-RT 0 0.0081 0.0081 0 0.0081 0.0081 0.0009 3.7863 3.7854 0.0003 1.2621 1.2618

MT-ART-Min 0 0.0020 0.0020 0 0.0020 0.0020 0.2685 4.6971 4.4289 0.0895 1.5657 1.4763

SFIDMT-ART 0 0.0010 0.0010 0 0.0010 0.0010 0.4197 1.6953 1.2753 0.1399 0.5651 0.4251

MT-BART 0 0.0020 0.0020 0 0.0020 0.0020 0.0345 1.9310 1.8965 0.0115 0.6437 0.6322

MT-IPART 0 0.0010 0.0010 0 0.0010 0.0010 0.5068 1.4940 0.9872 0.1689 0.4980 0.3291

MRBessel J

MT-RT 0 0.0046 0.0046 0 0.0046 0.0046 0.0692 5.2861 5.2169 0.0692 5.2861 5.2169

MT-ART-Min 0 0.0029 0.0029 0 0.0029 0.0029 0.8791 4.2297 3.3506 0.8791 4.2297 3.3506

SFIDMT-ART 0 0.0021 0.0021 0 0.0021 0.0021 1.4170 4.1943 2.7772 1.4170 4.1943 2.7772

MT-BART 0 0.0027 0.0027 0 0.0027 0.0027 0.2593 4.3349 4.0756 0.2593 4.3349 4.0756

MT-IPART 0 0.0020 0.0020 0 0.0020 0.0020 1.5502 4.2302 2.6799 1.5502 4.2302 2.6799

MRTriSquare1

MT-RT 0 0.0045 0.0045 0 0.0045 0.0045 0.2345 4.8184 4.5839 0.7035 14.4551 13.7517

MT-ART-Min 0 0.0027 0.0027 0 0.0027 0.0027 1.7430 7.6376 5.8946 5.2289 22.9128 17.6839

SFIDMT-ART 0 0.0025 0.0025 0 0.0025 0.0025 1.8334 4.2797 2.4463 5.5002 12.8391 7.3389

MT-BART 0 0.0033 0.0033 0 0.0033 0.0033 0.4393 4.3873 3.9480 1.3178 13.1618 11.8440

MT-IPART 0 0.0025 0.0025 0 0.0025 0.0025 1.6506 4.3014 2.6508 4.9519 12.9042 7.9523

MRTriSquare2

MT-RT 0 0.0045 0.0045 0 0.0045 0.0045 0.6981 14.4689 13.7708 0.6981 14.4689 13.7708

MT-ART-Min 0 0.0031 0.0031 0 0.0031 0.0031 4.5597 13.5676 9.0079 4.5597 13.5676 9.0079

SFIDMT-ART 0 0.0025 0.0025 0 0.0025 0.0025 5.5040 12.8224 7.3183 5.5040 12.8224 7.3183

MT-BART 0 0.0033 0.0033 0 0.0033 0.0033 1.3235 13.2100 11.8864 1.3235 13.2100 11.8864

MT-IPART 0 0.0025 0.0025 0 0.0025 0.0025 4.9520 12.9119 7.9598 4.9520 12.9119 7.9598

MRTriPlus1

MT-RT 0 0.0045 0.0045 0 0.0045 0.0045 0.6982 14.4296 13.7314 0.2327 4.8099 4.5771

MT-ART-Min 0 0.0027 0.0027 0 0.0027 0.0027 5.1816 23.0830 17.9014 1.7272 7.6943 5.9671

SFIDMT-ART 0 0.0025 0.0025 0 0.0025 0.0025 5.5074 12.8353 7.3279 1.8358 4.2784 2.4426

MT-BART 0 0.0033 0.0033 0 0.0033 0.0033 1.3295 13.1807 11.8512 0.4432 4.3936 3.9504

MT-IPART 0 0.0025 0.0025 0 0.0025 0.0025 4.9535 12.9046 7.9511 1.6512 4.3015 2.6504

MRTriPlus2

MT-RT 0 0.0045 0.0045 0 0.0045 0.0045 0.6981 14.4124 13.7143 0.5871 14.1467 13.5596

MT-ART-Min 0 0.0031 0.0031 0 0.0031 0.0031 4.5623 13.6858 9.1235 4.4997 13.4354 8.9357

SFIDMT-ART 0 0.0025 0.0025 0 0.0025 0.0025 5.5288 12.5385 7.0097 5.5140 12.7897 7.2757

MT-BART 0 0.0033 0.0033 0 0.0033 0.0033 1.3250 13.1809 11.8559 1.3226 13.1891 11.8665

MT-IPART 0 0.0025 0.0025 0 0.0025 0.0025 4.9390 12.5679 7.6289 4.8874 12.7346 7.8472

According to the experimental results and discussions, it can be concluded that among
the five MG-generation algorithms under test, MT-BART and MT-IPART offer a better bal-
ance between efficiency and effectiveness, and thus, they are preferable choices for MG
generation. In addition, between these two algorithms, MT-BART generally outperforms
in efficiency (generation time), while MT-IPART excels in effectiveness (fault-detection ca-
pability).

5.5 future work

5.5.1 MT-based ART by Random Partitioning (MT-RPART)

In addition to BART and IPART, there are also many other well-known partition-based
ART algorithms, including RPART [78].

In Section 5.2.1, aiming to simplify the experimental process and allocate time for other
projects, analysis and discussion have been provided to explain why RPART was not se-
lected. Nevertheless, certain features of RPART might have been overlooked during the
theoretical analysis. More specifically, although RPART typically exhibits lower efficiency
and effectiveness compared to BART and IPART [57], the capability of RPART for design-

80 metamorphic group generation algorithms for improving test efficiency and effectiveness

Algorithm 5: MT-RPART Algorithm for 2D input domains

1 Assume the existence of an MR;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Initialize the executed STC and FTC sets to be empty;
4 while all the stopping conditions are not satisfied do
5 Identify the empty subdomains in source/follow-up input domain as

source/follow-up candidate subdomains;
6 Choose the largest source candidate subdomain and generate k source

candidates;
7 for m = 1 → k do
8 Choose the mth source candidate and construct follow-up candidates based

on the given MR;
9 Explore if the follow-up candidates are inside the largest follow-up candidate

subdomain, represented by fm (If yes, fm = 1; otherwise, fm = 0);
10 end
11 Choose the candidate MG with the largest fm;
12 if more than one MG satisfies the criterion then
13 Choose one at random;
14 end
15 Execute the MG against the SUT and check whether the given MR is violated;
16 Partition the two relevant subdomains into four subdomains by drawing

horizontal and vertical lines according to the currently executed test cases;
17 Add the executed STC and FTC to their respective executed test sets;
18 end

ing MG-generation algorithms remains unverified. With this consideration, this section
proposes a novel MG-generation algorithm named MT-based ART by Random Partitioning
(MT-RPART), based on RPART. Future work include evaluating and comparing MT-RPART
with MT-RT, MT-BART, and MT-IPART through empirical experiments. The steps of MT-
RPART are outlined in Algorithm 5, with a detailed explanation of each step provided
below:

• Step 1: MT-RPART assumes the existence of an MR.

• Step 2: MT-RPART determines the scope of the source input domain and follow-up
input domain according to the given MR.

• Step 3: MT-RPART initializes the executed STC set and the executed FTC set as empty.

• Step 5: MT-RPART checks:

(1) Within the source input domain, MT-RPART identifies the empty subdomains as
source candidate subdomains.

(2) Within the follow-up input domain, MT-RPART identifies the empty subdomains
as follow-up candidate subdomains.

• Step 6: MT-RPART chooses the largest subdomain and chooses k STCs from it at
random as source candidates.

5.5 future work 81

• Steps 7-10: MT-RPART constructs k FTCs as follow-up candidates according to the
given MR and the k source candidates, with the aim of creating k candidate MGs.
Subsequently, MT-RPART validates and compares the k candidate MGs to get an
appropriate one for execution by exploring if the follow-up candidates are within
the largest follow-up candidate subdomain.

• Step 11: MT-RPART chooses a candidate MG for execution, with its follow-up candi-
dates situated within the largest follow-up candidate subdomain.

• Steps 12-14: If there are more than one candidate MG satisfying the criterion, then
MT-RPART chooses one of them for execution at random.

• Step 15: MT-RPART executes the generated MG against the SUT and checks for MR
violations.

• Step 16: MT-RPART divides the subdomain (within the source input domain) con-
taining the currently executed STC into four subdomains using horizontal and
vertical lines. Similarly, it divides the subdomain (within the follow-up input do-
main) containing the currently executed FTC into four subdomains using horizontal
and vertical lines.

• Step 19: For the currently executed MG, MT-RPART appends its STC to the executed
STC set, and appends its FTC to the executed FTC set.

• Step 18: If all the stopping conditions are not satisfied (i.e., no MR violations de-
tected), then MT-RPART skips to Step 5; otherwise, MT-RPART ceases the process
and reports the testing outcomes.

The major differences among MT-RPART and the other two MT-PART algorithms (MT-
BART and MT-IPART) closely resemble those illustrated in Section 5.2.4, including the
partitioning method, the conditions for input domain partitioning, and the way to defining
source and follow-up candidate subdomains. Further detailed explanations are as follows:

• Regarding the partitioning method: In a 2D input domain scenario, MT-RPART di-
vides the subdomain containing the currently selected STC/FTC into four subdo-
mains through the use of horizontal and vertical lines.

• Regarding the conditions for partitioning the input domains: MT-RPART divides the
corresponding subdomains each time an STC/FTC is selected and executed.

• Regarding the way of defining source and follow-up candidate subdomains: MT-
RPART designates subdomains not covered by any executed STCs or FTCs as source
or follow-up candidate subdomains.

82 metamorphic group generation algorithms for improving test efficiency and effectiveness

Figure 16: A set of possible nearby STCs generated using MT-BART in a 2D input domain

5.5.2 A Combination of SFIDMT-ART and MT-BART

The underlying reason for SFIDMT-ART’s poor efficiency is mainly because it requires
the generation of extra source and follow-up candidates and the distance computations
and comparisons between source/follow-up candidates and executed STCs/FTCs. The
computational cost of SFIDMT-ART and MT-ART becomes particularly high when using
M-N MRs or when the number of executed STCs and FTCs increases.

As for MT-BART, its effectiveness also needs further improvement. In particular, the
intuition of MT-BART is improve MT performance by achieving a uniform distribution
of STCs and FTCs across their respective input domains. However, it has been noted that
MT-BART sometimes cannot achieve this: It may suffer from the nearby test-case problem
[196, 197]. That is, the MGs generated by MT-BART may be too close to the nearby MGs
from neighboring subdomains. Fig. 16 shows a typical STC distribution example in a 2D
input domain. It can be observed that STCs tend to cluster in a small area rather than
evenly distributed across the input domain, which may negatively affect the performance
of MT.

With these considerations, a new MG-generation algorithm, named MT-based BART ap-
plied to Source and Follow-up Input Domains (SFIDMT-BART), can be proposed by com-
bining SFIDMT-ART and MT-BART. In particular, after the identification of source/follow-
up candidate subdomains (Step 6 of Algorithm 3), SFIDMT-BART identifies the non-empty
subdomains that are adjacent to these empty subdomains, as well as the executed STC-
s/FTCs that are within these non-empty subdomains. Next, instead of checking if the
follow-up candidates are within follow-up candidate subdomains (Step 12 of Algorithm
3), SFIDMT-BART focuses on calculating the distance from a source/follow-up candidate
to its nearest executed STCs/FTCs, respectively. The intuition for this step is to avoid gen-
erating test cases that are very close to each other. In addition, to reduce computational
overheads, only the executed STCs/FTCs that are inside adjacent subdomains are consid-
ered. That it, SFIDMT-BART calculates the distance from a source/follow-up candidate
to the executed STCs/FTCs that are within its adjacent subdomains. Obviously, it may
happen that the subdomains adjacent to some source/follow-up candidates are all empty,
which means the input domain has a large space that has not been tested. At this point, one
test case would be randomly selected from those source/follow-up candidates. Theoreti-

5.6 conclusion 83

cally, it is expected that SFIDMT-BART can achieve a better balance between effectiveness
and efficiency than SFIDMT-ART and MT-BART. Note that SFIDMT-BART is an attempt to
alleviate the high computational overhead of SFIDMT-ART. The future work will include
the investigation of SFIDMT-BART and further modify or even redesign it based on the
experimental results.
5.6 conclusion

MGs have been acknowledged as one of the cornerstones of MT; however, there remains
a need for further research on how to generate effective MGs [64, 246]. Previous MG-
generation algorithms, including MT-ART [144] and SFIDMT-ART (proposed in the last
chapter of this thesis), primarily concentrated on enhancing the effectiveness of MT while
neglecting its efficiency. The testing performance of MT, particularly its efficiency, still
requires further enhancement.

Taking this into account, this chapter introduced two novel MG-generation algorithms
(MT-BART and MT-IPART) according to partition-based ART algorithms, aiming at achieve
a balance between the effectiveness and efficiency in MT. The intuition behind the two al-
gorithms is to distribute (1) STCs throughout the respective source input domain and
(2) FTCs throughout the respective follow-up input domain. Subsequently, this chapter
conducted empirical experiments to assess and compare the performance of the two al-
gorithms with MT-ART, SFIDMT-ART and MT-RT. Programs of various input dimensions
and sizes, as well as MRs, were chose from previous MT-related or ART-related studies [13,
49, 52, 62, 67, 100, 102, 136, 137, 139, 143, 144, 193]. The experimental results demonstrated
that the proposed algorithms significantly outperformed MT-ART and SFIDMT-ART in
terms of test efficiency while maintaining high test effectiveness.

Since in addition to MGs, MR is the second element that have a great impact on the
successful implementation and performance of MT, to address the performance challenge
of MT, the following chapter of this thesis will introduce a series of MRPs (Metamorphic
Relation Patterns) that can be used to guide the identification of effective MRs.

6
M E TA M O R P H I C R E L AT I O N PAT T E R N S , T R E E S
A N D F R A M E W O R K

Papers delivered from this chapter (Under Review)

1. Zhihao Ying, Dave Towey, Anthony Bellotti, Zhi Quan Zhou and T. Y. Chen. Prepar-
ing SQA professionals: Metamorphic relation patterns, exploration, and testing for
big data. In Proceedings of the 2021 International Conference on Open and Innovative Edu-
cation (ICOIE’21), 2021, pp. 22–30.

2. Zhihao Ying, Dave Towey, Anthony Bellotti, Caslon Chua, and Zhi Quan Zhou. Meta-
morphic Relation Patterns for Metamorphic Testing, Exploration, and Robustness.
Submitted to Software Testing, Verification and Reliability, 2023.

6.1 introduction and motivation

The quality of MRs (and HMRs and MRRs) and MGs profoundly influences MT perfor-
mance [64, 246]. Nevertheless, systematically identifying MRs remains a significant chal-
lenge, demanding innovative thinking and a thorough comprehension of the SUT, partic-
ularly for effective MRs [64, 246]. In order to systematically formalize the process of MR
identification and provide guidance, Zhou et al. [292] introduced the concept of MRPs
(Metamorphic Relation Patterns): They are abstract representations or templates for multi-
ple concrete MRs. A great number of studies [33, 170, 243, 245, 280, 295] have illustrated
the effectiveness of MRPs in facilitating the identification of effective MRs. As the number
of MRPs continues to increase, the challenge lies in the lack of a formal approach to de-
scribe and classify the relationship between the increasing number of MRPs [280]. Users
still lack a way to easily and timely find and access the MRPs they want and use them. In
addition, there is also a scarcity of MRPs, particularly since some of them are limited to
specific application fields [245, 247, 280]. Therefore, the identification and application of
MRPs is still at an early stage and necessitate further research.

To formally define the relationship between multiple MRPs, this chapter introduces the
concepts of Sub-Metamorphic Relation Pattern (sub-pattern) and Super-Metamorphic Re-
lation Pattern (super-pattern). On the basis of these concepts, this chapter additionally
proposes a formal tree structure, termed the MRP tree, for the classification of existing
MRPs. Subsequently, this chapter introduces a series of new MRPs for various application
fields. Through the collection and categorization of existing MRPs as well as the proposed

85

86 metamorphic relation patterns , trees and framework

MRPs, this chapter presents two new MRP trees. Furthermore, a new MT framework is de-
signed and developed to guide not only the identification but also the application of MRPs.
This chapter presents findings from three case studies employing the MRPs and the pro-
posed MT framework to identify MRs for MT, ME or MRT, revealing multiple violations.
ME (Metamorphic Exploration) [292] aims at enhancing the understanding of the SUTs,
thus providing users with a way to better utilize them without requiring a comprehensive
user manual. In ME, MRs are the properties hypothesized by users, termed HMRs (Hy-
pothesized MRs). MRT (Metamorphic Robustness Testing) [295] can validate SUT robust-
ness without requiring an available oracle, and the MRs used in MRT are termed MRRs
(Metamorphic Relations for Robustness). Experimental results demonstrate that MRPs can
facilitate MR identification for detecting software faults (MT), evaluating software robust-
ness (MRT), and enhancing software understanding (ME), as well as the capacity of the
MT framework to guide the identification and application of MRPs. For instance, testers
and users can enhance their understanding of the SUTs and improve testing or usage by
applying MRPs to guide the identification of HMRs for ME. This is the first study to do
so.

6.2 definitions

6.2.1 Sub-MRP (Sub-Pattern) and Super-MRP (Super-Pattern)

In general, MRPs serve as abstractions/templates for multiple concrete MRs, and are ca-
pable of guiding the identification of specific MRs [292]. The process of identifying MRs
involves identifying a series of necessary attributes of the SUT and describing them formally
as MRs; similarly, identifying MRPs involves identifying important factors for a group of
MRs, overlooking all details, and formally describing them as MRPs. The necessary attrib-
utes represent the conditions logically inferable from the SUT [64, 246], while the important
factors represent the conditions logically deducible from each MR within a specified MR
group [292]. Users can identify and summarize the common important factors from a se-
ries of MRs to infer MRPs, and furthermore, employ MRPs to guide the identification of
specific MRs.

It has been reported that MRPs exhibit varying abstraction levels, and are capable of
forming a hierarchical structure [292]: Those positioned higher possess higher abstraction
levels, while those situated lower exhibit lower abstraction levels. On the basis of this
observation, the concepts of sub-MRP (also known as sub-pattern) and super-MRP (also
known as super-pattern) are introduced to formally define and standardize the relation-
ships among MRPs of differing abstraction levels. The formal definitions of sub-patterns
and super-patterns are as follows:

• Definition 6.1 (sub-pattern and super-pattern): Let MRPA and MRPB represent two
MRPs, where MRPA contains the important factors FA = { f A

1 , f A
2 , ..., f A

k } identified
from a group of MRs, denoted as MRA = {MRA

1 , MRA
2 , . . . , MRA

l }; and MRPB

contains the important factors FB = { f B
1 , f B

2 , ..., f B
m} identified from a group of MRs,

6.2 definitions 87

denoted as MRB = {MRB
1 , MRB

2 , . . . , MRB
n}. Note that k, l, m, n ≥ 2. If FB ⊆ FA and

MRB ⊆ MRA, then MRPB is termed a sub-pattern of MRPA, and conversely, MRPA

is termed a super-pattern of MRPB.

Generally, a super-pattern exhibits the following properties in comparison to its corre-
sponding sub-pattern:

• The relation between a sub-pattern and its corresponding super-pattern is transitive.
For instance, given three MRPs: MRP1, MRP2, and MRP3. If MRP1 is a super-pattern
of MRP2 and MRP2 is a super-pattern of MRP3, then MRP1 is likewise a super-pattern
of MRP3.

• Super-patterns can offer more vague and abstract MR identification guidance for a
wider scope of applications, while sub-patterns are able to provide more specific and
in-depth MR identification guidance for a smaller scope of applications.

• Super-patterns tend to be more abstraction, while sub-patterns tend to be more con-
crete.

• Super-patterns contain important factors inferred from larger or identical MR groups.

• Both a sub-pattern and a super-pattern can be any of MRP, MRIP or MROP.

6.2.2 Metamorphic Relation Pattern Tree

A MRP family tree (or MRP tree) is tree-structured visual tool showing the MRPs of this
family and structuring and visualizing relationships among them. It can provide users
with a simple and fast way to find their desired MRPs for reuse, inference, or reference.
This section introduces a novel approach to constructing an MRP family tree: Assuming
the presence of a set of MRPs, including one MRP and all its super-patterns and sub-
patterns. The MRP with the highest abstraction level serves as the root of the tree, with
MRPs nearer to the root being more abstract (and less concrete), while those further away
are less abstract (and more concrete). It is noteworthy that, according to the transitive
property, in an MRP tree, all other MRPs can be considered as sub-patterns of the root, they
only appear at the layer corresponding to their lowest abstraction level. Using the same
three MRPs as examples: MRP1, MRP2, and MRP3 (MRP1 is a super-pattern of MRP2, and
MRP2 is a super-pattern of MRP3). An MRP tree can be formed based on the three MRPs.
The root (the first layer) of this MRP tree is MRP1. While both MRP2 and MRP3 are sub-
patterns of MRP1, MRP2 appears solely in the second layer, and MRP3 appears exclusively
in the third layer. Identifying the abstraction levels of MRPs typically requires human
participants (i.e., MT experts). Therefore, future work involves investigating systematic
techniques for automatically measuring the abstraction levels of MRPs. Additionally, a
Directed Acyclic Graph [266] represents a more general form of the relationships among
MRPs: The tree structure is a subset of it, as it permits a node to have multiple parents.
However, due to the absence of systematic techniques for measuring the abstraction level
of MRPs, this chapter restricts the focus to tree structures.

88 metamorphic relation patterns , trees and framework

6.3 metamorphic relation patterns and trees

This section proposes three MRPs with varying application scopes: Sets MRP, Similar MRP
and Irrelevance MRP. By lowering the levels of abstraction, this section additionally pro-
poses six MRIPs and two MROPs as sub-patterns of the proposed MRPs. To demonstrate
the application and effectiveness of the proposed MRPs, this section also gathers and in-
troduces the previously-published MRs [11, 32, 33, 285, 295, 296] that can be easily and
quickly identified using the proposed MRPs. In addition, based on the concept of MRP
trees, this section constructs two MRP trees by collecting and classifying the previously-
published MRPs and the proposed MRPs.

6.3.1 Sets MRP

In mathematics, a set represents a group of n (n ≥ 1) distinct objects, where these objects
serve as the elements of the set. Generally, anything can serve as an element, including
numbers, words, animals, and mathematical concepts. Sets are typically manipulated us-
ing set operations, and the following are typical set operations.

• Union: The symbol ∪ denotes the union of two sets: A ∪ B is defined as the set
consisting of all the elements present in set A or set B. For example, {1, 2} ∪ {2, 3} =

{1, 2, 3}.

• Intersection: The symbol ∩ represents the intersection of two sets: A∩ B is defined as
the set consisting of elements common to both A and B. For example, {1, 2}∩{2, 3} =

{2}.

• Relative Complement: A − B refers to the elements that are in set A, but are not in
the set B. For example, {1, 2} − {2, 3} = {1}.

• Symmetric Difference: A⊕ B refers to a new set that contains all the elements present
in either of the sets but not in their intersection. For example, {1, 2} ⊕ {2, 3} = {1, 3}.

Relationships between sets can be categorized into various types based on the size of the
set and the elements it contains. For instance, equal, disjoint, and sub-set (and super-set)
are common relationships between sets.

• The symbol = indicates that two given sets are equal to each other: They contain
exactly the same elements in any order. For instance, {1, 2} = {2, 1}.

• Disjoint sets denote that two sets (A and B) have no common elements, represented
by A ∩ B = ∅. For instance, {1, 3} ∩ {2, 4} = ∅.

• Sub-set (and super-set) relations between two sets A and B are defined as follows:
A ⊆ B indicates that every element of A is also an element of B, while A ⊇ B
indicates that every element of B is also an element of A. For instance, if A = {2}
and B = {1, 2}, then A is a sub-set of B, and conversely, B is a super-set of A, denoted
as A ⊆ B.

6.3 metamorphic relation patterns and trees 89

In addition to the relationships and operations between two sets, there are also the
relationships and operations between an element and a set, and the following are two
common examples:

• The symbol ∈ denotes that a particular element is a member of a given set, and /∈ that
a particular element does not belong to a set. For example, if a given set A consists
of an element x, then it is represented by x ∈ A; and if not, then x /∈ A.

A formal presentation of Sets MRP is as follows:

• Definition 6.2 (Sets MRP): This MRP represents the MRs for which both inputs and
outputs can be represented by sets, and the relationships among inputs and outputs
can be denoted through set relations or calculated via set operations.

For a certain application field, such as e-commerce systems, the current MRP set (as
well as the respective MRIPs and MROPs introduced in the following sections) may have
covered the common set relationships and operations introduced in this section. However,
with the development of computing systems and related technologies that support them,
in the future, the current set of MRPs may need further revisions or additions. Further-
more, since different kinds of application fields may have different features/properties,
the current MRP set may be incomplete for them.

6.3.2 Similar MRP for Big Data Systems

This MRP is a sub-pattern of the Symmetry MRP and draws inspiration from the Input
Equivalence MRP: A robust big data system should accurately process not only identical
but also similar inputs.

The following presents the formal definition of the Similar MRP:

• Definition 6.3 (Similar MRP): A robust big data system should be able to return similar
outputs for similar inputs.

Furthermore, it is unnecessary to clearly define certain terms in this definition such as
"similar inputs" and "similar outputs", as these can be interpreted differently by testers
when applying this MRP to a specific filed. For example, this MRP may serve to assess the
robustness of SUTs (i.e., the MRs identified in the experiments of the chapter), which is a
significant challenge in big data systems, as explained below:

1. Due to the extensive user base, developers of big data systems may lack the opportu-
nity to directly engage with users to fully comprehend and fulfill their requirements.
This contrasts with traditional software development, where developers and users
can communicate directly [292].

2. The SUT might be used for various (and sometimes even conflicting) purposes [292].

3. The SUT must be able to handle diverse unexpected inputs provided by users.

90 metamorphic relation patterns , trees and framework

6.3.3 MRIPs for Query-based Systems

With the aim of providing more precise and specific guidance for MR identification in
query-based systems, this chapter has additionally introduced two new MRIPs, both of
which are sub-patterns of Similar MRP, as outlined below:

In the domain of query-based systems
assuming that

• The input contains a set of parameters, including the query, the filter function and
the sorting function.

the following patterns should hold

• Query-Meaning MRIP: The follow-up input query has the identical meaning as the
source input query.

• Input-Merge MRIP: The combined values of all follow-up input parameters have the
identical meaning as the combined values of all input parameters of the source input.

Within these two MRIPs, the concept of "similar inputs" was defined as inputs shar-
ing identical meaning while diverging slightly in one or more other parameters: Query-
Meaning MRIP emphasizes a particular input parameter, namely, the query, while Input-
Merge MRIP concentrates on an combination of all input parameters. Here, Query-Meaning
MRIP is exemplified to illustrate the application of the proposed MRIPs. By clearly explain-
ing the definition of "elements" and the method of their slight modifications in different
ways, three MRs can be identified for e-commerce systems as follows:

• MRQM1: If the source input query is altered sorely through rearranging two words,
or by a minor syntactical adjustments, to generate the follow-up input query with
the same meaning, then the follow-up output ought to have identical or substantially
similar items as the source output, irrespective of their order. For instance, [“shoes
for men”] and [“men’s shoes”] are two different input queries, but they contain the
same meaning and may be used to search for the same thing. In this context, a
robust e-commerce system ought to return identical or highly similar outputs for
them, irrespective of their order. This MR was also included in the empirical studies
of this chapter, as shown in Section 6.5.2.

• MRQM2: A robust e-commerce system should return identical or substantially similar
outputs, irrespective of their order, for two input queries with equivalent meaning
but differing solely in the use of singular and plural linguistic forms. For instance,
some users always use the query ["hats"], while some may prefer ["hat"]. Since both
are valid and used to search for the same thing, an e-commerce system should return
identical or highly similar outputs, irrespective of their order.

• MRQM3: A robust e-commerce system should return identical or substantially simi-
lar outputs, irrespective of their order, for two input queries with equivalent mean-
ing but differing solely in the presence of a conjunction. For example, [“sweaters

6.3 metamorphic relation patterns and trees 91

for men”] and [“sweaters men”] are commonly-used input queries and a robust e-
commerce system ought to be able to return identical or highly similar outputs for
them, irrespective of their order.

6.3.4 MRIPs for Machine Translation Systems

In order to offer more precise and in-depth guidance for MR identification in machine
translation systems, this section has additionally proposed two new MRIPs, both of which
are sub-patterns of Sets MRP and Similar MRP, as illustrated below:

In the domain of machine translation systems
assuming that

• The input can be represented by a sequenced group of elements.

• The elements can be words, phrases, or punctuation marks.

the following input patterns should hold

• Addition MRIP: The follow-up input consists of an additional element compared to
the source input.

• Subtraction MRIP: The follow-up input consists of one fewer element compared to
the source input.

• Substitution MRIP: The source and follow-up inputs contain identical length and
sorely differ in one of the elements.

• Combination MRIP: The ordered combination of multiple follow-up inputs have iden-
tical or highly similar elements as the ordered combination of multiple source inputs.

These four MRIPs draws inspiration from both Sets MRP and Similar MRP: Based on
the Sets MRP, this chapter divides the inputs into a sequenced group of elements, and
subsequently concentrated on the input relationship within the Similar MRP to identify
the four MRIPs. Specifically, to identify the Addition MRIP, the Subtraction MRIP, and the
Substitution MRIP, the concept of "similar inputs" was characterized as two (highly) iden-
tical inputs differing solely in one specific element. To identify the Combination MRIP, this
chapter focused on the combination of n inputs (n ≥ 1), and additionally defined "similar
inputs" as an ordered combination of n source/follow-up inputs. Moreover, in the Combi-
nation MRIP, the "(highly) identical" inputs can be constructed based on the approaches
mentioned within the Addition MRIP, the Subtraction MRIP, and the Substitution MRIP.

6.3.5 Irrelevance MRP for Big Data Systems

With the aim of offering more precise and in-depth guidance for MR identification in
big data systems, this section has additionally proposed one new MRP, which is the sub-
pattern of Symmetry MRP, as outlined below:

92 metamorphic relation patterns , trees and framework

• Definition 6.4 (Irrelevance MRP): A robust big data system should return (highly)
identical output for the inputs differing solely in irrelevant conditions.

This MRP draws inspiration from both Symmetry MRP and Input Equivalence MRP: The
behavior/output of the SUT can be influenced by both inputs and environmental condi-
tions, warranting consideration during the MR identification process. Potential irrelevant
conditions for a machine translation system, for example, are the factors like the date and
medium of SUT execution (such as a laptop or a mobile phone). It is noteworthy that since
various SUTs may possess distinct attributes, irrelevant conditions identified for a particu-
lar SUT type may not be applicable to other SUT types. In addition, the inputs of Similar
MRP differ from those of Irrelevance MRP: The "similar inputs" represent the inputs that
are not only similar but also have an impact on the behavior/output of the SUT. Particu-
larly, Irrelevance MRP focuses on the conditions irrelevant to SUT behavior/output, while
Similar MRP mainly concentrates on the conditions relevant to SUT behavior/output.

6.3.6 MROPs for Big Data Systems

With the aim of offering more precise and in-depth guidance for MR identification in big
data systems, this section has additionally proposed two new MROPs, both of which are
the sub-patterns of Irrelevance MRP, as illustrated below:

In the domain of big data systems
assuming that

• The behavior/output can be represented by a series of elements, called sub-outputs.

the following output patterns should hold

• Fully-Equal MROP: Each sub-output in the follow-up output is identical to the rele-
vant sub-output in the source output.

• Partially-Equal MROP: One or several sub-outputs in the follow-up output are identi-
cal to the relevant sub-outputs in the source output.

These two MROPs were identified by concentrating on the output relationship within
Irrelevance MRP: Further postulating that SUT outputs can be decomposed into discrete
elements termed sub-outputs According to this premise, this chapter suggests that an
irrelevant condition does not necessarily need to be irrelevant to the entirety of SUT be-
havior/output; instead, it can be irrelevant to one or more sub-outputs of the SUT behav-
ior/output. In this scenario, different conditions may be considered "irrelevant" to various
sub-outputs. Amazon’s output, for instance, is a list of items that can be divided into
a group of sub-outputs, including the name, quantity and order. One of the inputs to
Amazon, the sorting rule, should solely have an impact on the item order and remain
"irrelevant" to item names or quantities.

6.3 metamorphic relation patterns and trees 93

Figure 17: Symmetry MRP Tree

Figure 18: Sets MRP Tree

6.3.7 Symmetry MRP Tree and Sets MRP Tree

In this section, by gathering and categorizing previously-published MRPs as well as the
proposed MRPs (and MRIPs and MROPs), two MRP trees were proposed, as shown in
Figs. 17 - 18: Symmetry MRP tree and Sets MRP tree. Within these figures, the MRPs within
the same dashed box share identical application scopes, with specific scopes detailed in
Table 14. These trees serve to collect and classify MRPs, and offer users a convenient and
efficient means to locate MRPs for reuse, inference, or reference. Symmetry MRP serves
as the root of the first tree, while Sets MRP acts as the root of the second tree. MRPs
connected by a single line represents the presence of a sub-super relation: MRPs positioned
higher possess higher abstraction levels and serve as super-patterns of MRPs positioned
lower, while MRPs positioned lower have lower abstraction levels and function as sub-
patterns of MRPs positioned higher. It is noteworthy that while some MRPs may have
limited application scopes, they are intended to offer guidance for MR identification rather
than directly generating new MRs. Consequently, MRPs from other domains can also be
employed provided the tester possesses adequate understanding of the SUT.

94 metamorphic relation patterns , trees and framework

Table 14: MRP Application Scopes
Application Scope Total Number of Patterns MRPs MRIPs MROPs

No Restrictions 4 Symmetry, Sets, Noise Change Direction -

RESTful Web APIs 6 - -
Equivalence, Equality, Subset,
Disjoint, Complete, Difference

Big Data Systems 4 Irrelevance, Similar - Fully-Equal, Partially-Equal

Query-based Systems 9

Query-Meaning, Input-Merge,
Input Equivalence, Disjunctive Conditions,

Disjoint Partitions, Complete Partitions,
Shuffling, Conjunctive Conditions,

Disjunctive Conditions

- -

Machine Translation Systems 4 -
Addition, Subtraction,

Substitution, Combination
-

6.3.8 Existing Application of the Proposed MRPs

This section has gathered and summarized previously-published MRs that can be easily
identified based on the MRPs proposed in Section 6.3. For instance, the following are
concrete MRs derived from the proposed Similar MRP and its sub-patterns:

• MRMPReverseJD [296]: For a robust search engine, a slight change in the input query
should not severely affect the output. Additionally, Signorini et al. [252] used the
rationale behind this MR to test semantic search engines according to a set of seman-
tically equivalent queries.

• MRSwapJD [296]: Given an input query consisting of two words. For a robust search
engine, swapping the two words to construct a new input query without changing
the meaning should not have a severe impact on the output. This MR is designed
based on the same rationale as MRMPReverseJD. Zhou et al. [296] used the Jaccard Co-
efficient [221] to measure the overlap percentage between outputs and the similarity
between outputs.

• MRMPShu f f leJD [11]: For a robust academic search engine, a slight change in the input
query should not have a series impact on the output. This MR has been used to assess
the stability ranking of academic search engines (such as IEEE, ACM, Springer, IEEE,
and ScienceDirect), and is a follow-up of the work by Zhou et al. [296].

• MRSimilar [32, 33] was identified on the basis of the rationale that for an industrial
map system, a slight modification in the input query should not severely affect the
output [296]. Lee et al. [170] applied these kinds of MRs to assess machine translator
(such as Google Translator). For instance, MRcase presents that for a robust machine
translator, minor case-sensitive typos should not have a severe impact on the output.
Typical examples of input queries are [“It is A pen”] and [“It is a pen”].

• MRSimilar [295]: A robust citation database system ought to return identical or highly
similar average citation counts for two slightly different large publication sets (i.e.,
without any systematic differences in the factors related to citations)

• He et al. [129] employed MT to assess machine translators, positing that a robust ma-
chine translator ought to generate outputs with similar structures for similar inputs.

6.4 a new metamorphic testing framework 95

They proposed the following three approaches to construct similar input sentences:
Raw target sentences, constituency parse trees, and dependency parse trees. For in-
stance, the process of raw target sentences involves modifying an individual token
in a sentence to check its variation in the output.

The specific MRs derived from the proposed irrelevance MRP and its sub-patterns are as
follows:

• MREnvironment [32]: A robust navigation system ought to return a similar output for
the same input across various user environments (i.e., APIs and mobile applications).

• MRTrimO f f [33]: In a robust map system, altering irrelevant environmental factors
should not have a severe impact on the time cost and distance of a returned route.

6.4 a new metamorphic testing framework

6.4.1 Introduction and Motivation

With the growing popularity of MT and the significance of MR, MRP as a technology for
MR identification has garnered increased attention. The quantity of MRPs identified for
various application fields is rapidly increasing [245, 247, 280, 292]. Therefore, an important
question requiring further research is: How can MRPs be effectively used as their number
continues to grow? With this consideration, this section introduces a new MT framework to
tackle this issue: This framework is capable of facilitating the identification and application
of MRPs (as well as MRIPs and MROPs). This framework accomplishes its objectives by
dividing an MRP into two components: An input-only pattern (MRIP) and an output-only
pattern (MROP). When applying an MRIP or an MROP, the user only needs to consider
how to satisfy either the input or the output relation, rather than both simultaneously.
The pertinent output or input relation can be deduced according to the particular concrete
input or output relations, respectively. This can alleviate the challenge of MR identification
for users, particularly MT beginners.

6.4.2 Framework

Fig. 19 introduces the architecture of the proposed MT framework to guide not only the
identification, but also the application, of MRPs (as well as MRIPs and MROPs). It consists
of two major components: The "MR-Identification Phase" (to guide concrete MR identifica-
tion) and the "MRP-Identification Phase" (to guide MRP identification according to existing
MRPs). As other MT steps, including the generation and execution of STCs and FTCs, are
the same as traditional MT process, they are not included in the framework.

96 metamorphic relation patterns , trees and framework

Figure 19: MT Framework Architecture

6.4.3 Application of the MT Framework

This section introduces the application of the proposed MT framework via a typical exam-
ple involving users on the Amazon e-commerce platform.

1. Users are capable of choosing an MRP tree and an MRP (or MRIP/MROP) with
preferred abstraction levels, for future application. Using the Change Direction MRIP
and Amazon as an example.

2. Users can determine input and output parameters as well as their relevant value
ranges of the SUT. As an illustration, Amazon’s input parameters consist of a query,
a sorting rule, and a filter rule; while its output parameters consist of item name,
quantity, and order.

3. Users have two potential methods to determine a new relation:

(a) Explore the modification of one or more input parameters to fulfill the abstract
input/output relation of the chosen MRP.

(b) Investigate previously-published concrete MRs/HMRs of the selected MRP to
deduce novel concrete input/output relations. It is noteworthy that the existing con-
crete MRs/HMRs of the MRPs proposed in this chapter have been gathered and
summarized in Section 6.3.8.

For instance, assuming method 3a is chosen. Within Amazon, the sorting rule values
are: "Feature" (default), "Price: Low to High", "Price: High to Low", "Avg. Customer
Review", "Newest Arrivals", and "Best Sellers". In the Change Direction MRIP, the

6.4 a new metamorphic testing framework 97

meaning of "modifying the direction element" was construed to switch the sorting
rule from "Price: High to Low" to "Price: Low to High".

4. Users can try to instantiate a concrete input/output relation. Building upon the afore-
mentioned example, an input relation, MRInput, can be determined thus: The sorting
rule is transitioned from "Price: High to Low" to "Price: Low to High" to formulate
follow-up inputs.

5. Users are able to construct outputs/inputs for future application in accordance with
the inputs/outputs constructed in Step 2.

6. Users have two methods to explore potential relations:

(a) Users can scrutinize if the abstract output/input relations of the chosen MRPs
can be fulfilled according to the currently-identified concrete input/output relation
(Step 3a). Users can try to identify a concrete output/input relation if the abstract
relations are fulfillable; otherwise, proceed to Step 3.

(b) Users can examine the ramifications of the currently-identified concrete in-
put/output relation on the output/input parameters. For example, given the
currently-identified MRInput and the Change Direction MRIP, method 6b is chosen:
The quantity of returned items should remain unchanged, while their order is re-
versed.

7. Users can try to determine a concrete output/input relation. For example, a con-
crete output relation, MROutput, can be constructed as follows: The item orders in the
follow-up outputs ought to be inverted from that of the source outputs.

8. Users are able to ascertain a concrete MR/HMR according to previously-identified
concrete input and output relations. Given the currently-identified MRInput and
MROutput, a concrete MR/HMR can be constructed: If the sorting rule in the source
input transitions from "Price: High to Low" to "Price: Low to High" to generate the
follow-up input, then the item order in the follow-up output ought to be inverted
from that of the source outputs.

9. In addition to MR/HMR identification, the MT framework is also applicable for
identifying MRPs (as well as MRIPs and MROPs). More specifically, users can gener-
ate inputs/outputs based on the identified input/output parameters and their value
ranges (in Steps 2 and 5), then modify them to investigate how to meet the abstract
input/output relations of the chosen MRP (or MRIP/MROP).

10. Users can explore and summarize the common properties of the inputs/outputs, or
the common steps taken to meet the abstract relations.

11. The MT framework provides users with three possible methods to deduce new MRPs
with varying abstraction levels according to the chosen MRP (or MRIP/MROP).

(a) Reduce the abstraction level: Investigate various interpretations of the chosen
abstract input/output relation.

98 metamorphic relation patterns , trees and framework

(b) Raise the abstraction level: Investigate and summarize the common properties of
the chosen abstract input/output relations.

(c) Maintain the same abstraction level: Explore ways to modify the chosen MRP to
deduce new abstract input/output relations. Examples of this include the Addition
MRIP and the Subtraction MRIP.

12. Users are able to construct inputs/outputs to verify the validity and achievability of
the findings. If yes, then users can formally translate the abstract input/output rela-
tion of the chosen MRPs into a more concrete/abstract relation as a new MRIP/M-
ROP; otherwise, proceed to Step 9.

13. Users are able to choose whether or not to conclude the MT process. If yes, then
proceed to Step 15; otherwise, the MT framework provides users with two possible
methods to deduce a new corresponding MROP/MRIP:

(a) Explore the impact of the currently-identified MRIP on the output parameters.

(b) Explore the ways of satisfying the currently-identified MROP by modifying the
input parameters.

14. Users are able to formally present the previously-identified MRIP and MROP as a
new MRP.

15. Users are able to conclude the MT process and report the outcomes.

6.5 a case study of query-based systems

6.5.1 Experimental Setup

Systems Under Test: According to the Global Powers of Retailing 2022 report [96], two pop-
ular e-commerce platforms, namely Amazon and JD.com, were selected as the subject
programs for the empirical experiments. The experimental studies include both English
and Chinese languages. Thus, there are a total of three SUTs: Amazon in its English ver-
sion, Amazon in its Chinese version, and JD.com. To obviate any potential impact stem-
ming from user-account configurations [292], the experiments were executed without any
logged-in sessions to either Amazon or JD.com. It is noteworthy that the empirical exper-
iments were executed in 2023: Since 2024, JD.com requires user authentication prior to
accessing its query function. All the experimental results reported in this chapter were
reproducible on different days and machines during the experimental process, therefore
ruling out the possibility of MR violations were caused by server-side data updates [292].

Test Case Generation: As presented in Figs. 20 - 21, English inputs were constructed
based on popular syntactic structures within Amazon: the "noun-’s-noun" structure and
the "noun-for-noun" structure. In contrast, for JD.com, as presented in Fig. 22, the "noun
noun" structure was employed to construct Chinese inputs. The first set of nouns included
common consumer requisites sourced from Amazon, while the second set included two
common nouns, "women" ("女") and "men" ("男"). To illustrate, given the nouns "sweaters"

6.5 a case study of query-based systems 99

Figure 20: The first recommendation list example from Amazon

Figure 21: The second recommendation list example from Amazon

Figure 22: The third recommendation list example from Amazon

("毛衣") and "men" ("男"), two English inputs ([“sweaters for men”] and [“men’s sweaters”])
and two Chinese inputs ([“毛衣男”] and [“男毛衣”]) were constructed. In addition, the first
noun set was also directly employed as inputs in the experimental studies.

The Selection of Query Function and the Number of Returned Items: The query function was
chosen for the empirical experiments, with the number of returned items serving as the
outputs. That is, in this chapter, the output of an e-commerce system typically refers to
the number of items. The query function was singled out owing to its popularity across
e-commerce platforms [292]. Users are able to derive insights through the identification
and application of MRPs and HMRs, in order to enhance their understanding of the be-
havior and output of the query function. HMR violations enable users to evaluate the
performance of e-commerce systems in meeting their requirements. User are able to make

100 metamorphic relation patterns , trees and framework

better decisions regarding subsequent actions, including adopting more precise queries or
choosing other e-commerce platforms.

The rationales behind the adoption of the number of returned items as the evaluation
metric are:

• A significant difference between the source output and the follow-up output may
have a impact on user experience. For instance, as presented in Figs. 25 - 26, when a
sorting rule is used, although users may not browse every returned item, a significant
omission in the returned items may lead to the loss of some top-ranked items, which
may prevent users from finding their desired things.

• Even a small difference in returned item counts can have a severe impact on user
experience. For instance, as illustrated in Figures 23 - 24, the absence of over 940

items, relative to the initial 66 items returned, could result in users being unable to
find their desired item, which may prompt them to choose alternative e-commerce
platforms.

6.5.2 Relations

In total, one MR and three HMRs were identified for e-commerce systems following the
guidance of MRPs and the MT framework, as illustrated below.

MR1: The sorting rule should not have an impact on the output (the number of returned
items) of a robust e-commerce system. In the empirical experiments, the default rule and
the price sorting rule were chosen due to their common usage among users [91, 95, 258].
This MR exemplifies the Partially-Equal MROP: Since the empirical experiments focus on
solely one specific type of output (the number of returned items), new concrete MRs can
be deduced by considering the use of functions that have no effect on it.

HMR1: If a specific filter rule is applied to the source input to generate the follow-up
input, then the follow-up output (the number of returned items) should be greater than or
equal to the source output (the number of returned items). This HMR was derived based
on the Complete Partitions MRP [245]. For example, when an input query like [“sweaters”]
is filtered by the default rule ([“All Department”]), if further filtered by a specific rule,
such as [“Men’s Fashion”], a robust e-commerce system should return identical or more
items for the first input compared to the second.

HMR2: If only the word order is altered, or an additional grammatical change is made to
the source input query to generate the follow-up input query without altering the meaning,
then the follow-up output (the number of returned items) should be equal to the source
output (the number of returned items). This HMR can be easily and quickly identified
based on the Query-Meaning MRIP (and also its super-pattern, the Similar MRP). For exam-
ple, consider two English input queries involving structural changes: [“men’s sweaters”]
and [“sweaters for men”]. Both query forms are commonly used by users, as evidenced
by the recommendation lists from Amazon (see Figs. 20 - 21). Although the two input
queries are not the same, they have the same meaning and are used to search for the same

6.5 a case study of query-based systems 101

things. In this context, a robust e-commerce system ought to return identical or highly
similar outputs for them. Notably, in Chinese, rather than using conjunctions like “for”,
users prefer directly combining Chinese words (see Fig. 22). For example, the two English
input queries ([“men’s sweaters”] and [“sweaters for men”]) can be respectively translated
to Chinese as [“男士毛衣”] and [“毛衣男士”].

HMR3: If a user employs two different inputs to search for the same item — the first
input relies solely on the query function, while the second one includes both the query
and filter functions — then a robust e-commerce system should return identical or highly
similar outputs (the number of returned items) for both inputs. Since the source and follow-
up input queries contain the same meaning, users are likely seeking the same item via
different inputs, and a robust e-commerce system should correctly handle such scenarios.
This HMR can be easily and quickly identified based on the Input-Merge MRIP (and also
its super-pattern, the Similar MRP). For instance, when searching for women’s sweaters on
Amazon, some users may employ a straightforward query like [“women’s sweaters”], with
the filter function defaulting to [“All Departments”]. Conversely, some users might prefer
the query [“sweaters”] filtered by [“Women’s Fashion”]. In both cases, Amazon should
return identical or highly similar outputs.

The reason for having a set of HMR1 to HMR3: The purpose of the experiment is to
use MRPs, the MT framework and MRP trees to guide the identification of MRs. During
the experiment, a set of MRs and HMRs were identified, and after a literature review, the
duplicate MRs/HMRs were removed. Finally, three HMRs were identified and used for
e-commerce systems. In addition, there is no sub/super relation among HMR1 to HMR3

(and other relations stated in Section 6.6 and Section 6.7). To illustrate the sub/super rela-
tion between two MRs, suppose we are testing a simple program F(x) that computes the
value of 2 to the xth power. The following two MRs can be identified for the program F(x):

• MRa: If x2 = x1 + 1, then F(x2) > F(x1).

• MRb: If x2 = x1 + P (P > 0), then F(x2) > F(x1).

We can see that MRb can also be used to construct new MRs by setting different values of
P (including MRa when P = 1). At this point, MRa can be regarded as the sub-relation of
MRb. Thus, as we can see, there is no sub/super relation among the relations stated in the
thesis.

6.5.3 Experimental Results, Evaluation and Discussion

The experimental results indicating the numbers of MR/HMR violations for Amazon and
JD.com are presented in Tables 15 - 17: MR1 and all HMRs were violated by all three SUTs.
It is worth noting that Amazon and JD.com did not provide exact numbers of returned
items. Therefore, parenthesized numbers were considered to represent the range of dif-
ferences between a source output and its corresponding follow-up output. For instance,
"Number of Violations [100 − 101)" represents the number of MR/HMR violations where
the difference range between the source output and its corresponding follow-up output is

102 metamorphic relation patterns , trees and framework

Table 15: The number of MGs and MR/HMR violations for English Amazon

MRs
Number of

Metamorphic Groups

Number of
Violations

(Total)

Number of
Violations
[100 − 101)

Number of
Violations
[101 − 102)

Number of
Violations
[102 − 103)

Number of
Violations
[103 − 104)

Number of
Violations
[104 − 105)

Number of
Violations
[105 − 106)

Number of
Violations
[106 − 107)

MR1 1747 1532 31 71 84 505 708 133 0

HMR1 1747 159 14 22 61 39 20 3 0

HMR2 1747 982 127 183 51 318 292 11 0

HMR3 1747 1681 11 120 331 703 502 14 0

Table 16: The number of MGs and MR/HMR violations for Chinese Amazon

MRs
Number of

Metamorphic Groups

Number of
Violations

(Total)

Number of
Violations
[100 − 101)

Number of
Violations
[101 − 102)

Number of
Violations
[102 − 103)

Number of
Violations
[103 − 104)

Number of
Violations
[104 − 105)

Number of
Violations
[105 − 106)

Number of
Violations
[106 − 107)

MR1 2621 2361 190 220 401 1001 469 40 0

HMR1 2621 164 40 68 37 15 4 0 0

HMR2 2621 1884 309 312 427 575 234 27 0

HMR3 2621 2557 12 218 730 1135 398 14 0

Table 17: The number of MGs and MR/HMR violations for JD.com

MRs
Number of

Metamorphic Groups

Number of
Violations

(Total)

Number of
Violations
[100 − 101)

Number of
Violations
[101 − 102)

Number of
Violations
[102 − 103)

Number of
Violations
[103 − 104)

Number of
Violations
[104 − 105)

Number of
Violations
[105 − 106)

Number of
Violations
[106 − 107)

MR1 2621 668 10 12 175 10 421 40 0

HMR1 2621 20 0 0 1 2 6 4 7

HMR2 2621 1275 77 175 688 159 21 126 11

HMR3 2621 1909 41 167 708 282 436 265 10

within [100 − 101). As illustrated in Fig. 27, the source output exceeds 100,000 items, while
the relevant follow-up output shown in Fig. 28 exceeds 200,000 items. Consequently, the
difference between them amounts to 100,000, falling within the range [105 − 106). Given
that both the outputs and the differences are not precise numbers, the MR/HMR violations
numbers presented in Tables 15 - 17 are approximations. For instance, the actual values of
the two outputs may be 199,999 and 200,001, meaning the true difference between them is
merely two, as opposed to 100,000. Due to the lack of access to the precise numbers and
the internal source code of the SUTs, this study solely relies on the approximate numbers
provided by Amazon and JD.com. In addition, since investigating the root causes of viola-
tions and delving into the internal architecture of Amazon and JD.com are not the primary
objectives of this study, only the instances of MR/HMR violations of (the English version
of) Amazon are exclusively presented and analyzed.

6.5.3.1 Violations of MR1

All the three SUTs violated MR1. Figs. 23 - 24 illustrate an instance of an MR1 violation on
the (English version of) Amazon website: The source input was [“iPhone”] with [“Sort by:
Featured”], and its corresponding output exceeded 1000 items; however, the follow-up in-
put was [“iPhone”] with [“Sort by: Price Low to High”], and its corresponding output con-
tained only 60 items. In this scenario, the estimated difference amounted to 940, markedly
exceeding the follow-up output. Because only the sorting rule in the source input was al-
tered to construct the follow-up input, and the source output significantly differed from
the follow-up output, this was a clear MR1 violation.

6.5 a case study of query-based systems 103

Figure 23: An MR1 STC example for Amazon in English

Figure 24: An MR1 FTC example for Amazon in English

Figure 25: An HMR1 STC example for Amazon in English

Figure 26: An HMR1 FTC example for Amazon in English

MR1 is related to the functional correctness of Amazon and JD.com. Functional correct-
ness denotes the ability of the SUT to deliver the anticipated outcomes with the necessary
precision [1]. In this context, the violation of MR1 reveals the functional deficiency of the
SUTs: At least one output contains incomplete results.

Since the internal code and design of SUT cannot be accessed, it is not possible to ascer-
tain the causes of MR1 violations and the functional deficiency. Nonetheless, MR1 viola-
tions present both pros and cons from the user experience standpoint: On the one hand,
an overly detailed and precise output may require excessive preparation time, while a
faster but less precise output may cater to users who prioritize shorter loading times. For
instance, Kohavi et al. [159] presented that certain users exhibit high sensitivity to delays,
and even minor delays may prompt them to switch to alternative e-commerce platforms:
For example, they reported that a 100 millisecond increase in the page load time cost 1%
in sales, while similar research from Google shown that a 500 millisecond increase in the
search results display time cost 1% in revenue [159]. A potential drawback could be that
the absence of items may impact the user experience, as some users prioritize an complete
and accurate list of results despite longer loading times [234].

6.5.3.2 Violations of HMR1

All the three SUTs violated HMR1. Figs. 25 - 26 illustrate an instance of an HMR1 vio-
lation on the (English version of) Amazon: The source input was [“SONY”] with [“All
Departments”], and its corresponding output exceeded 2000 items; however, the follow-
up input was [“SONY”] with [“Women’s Fashion Department”], and its corresponding
output exceeded 200,000 items. In this scenario, the estimated difference amounted to

104 metamorphic relation patterns , trees and framework

Figure 27: An HMR2 STC example for Amazon in English

Figure 28: An HMR2 FTC example for Amazon in English

Figure 29: An HMR3 STC example for Amazon in English

Figure 30: An HMR3 FTC example for Amazon in English

198,000, markedly exceeding the source output. Given that the source output drastically
differs from the follow-up output (as the [“All Departments”] category should contain the
[“Women’s Fashion Department”]) and the difference is substantial, this is definitely an
HMR1 violation.

Since the internal code and design of SUT cannot be accessed, it is impossible to ascertain
the reasons of HMR1 violations. Nonetheless, these violations contravene the fundamental
functionalities of e-commerce systems and could potentially impact the user experience:
The Amazon web system explicitly specifies that the [“All Departments”] should contain
all other departments. The users of e-commerce systems may not be familiar with the
technical design details of the SUTs. The HMR1 violations indicate that when a default
setting is used (such as "All Departments"), users may not be able to get a comprehensive
result. This could potentially make it difficult for certain users to find their desired item
and thus, the user experience may be affected.

6.5.3.3 Violations of HMR2

All the three SUTs violated HMR2. Figs. 27 - 28 illustrate an instance of an HMR2 violation
on the (English version of) Amazon: The source input was [“work for women”], and its cor-
responding output exceeded 100,000 items; however, the follow-up input was [“women’s
work”], and its corresponding output exceeded 200,000 items. In this scenario, the esti-
mated difference amounted to 100,000, which was quite substantial. Given that these two
input queries serve the same purpose of searching for identical items, and the difference
between the outputs is considerable, this is definitely an HMR2 violation.

6.6 a case study of map systems 105

6.5.3.4 Violations of HMR3

All the three SUTs violated HMR3. Figs. 29 - 30 illustrate an instance of an HMR3 violation
on the (English version of) Amazon: The source input was [“best selling for women”] with
[“All Departments”], and its corresponding output exceeded 200,000 items; however, the
follow-up input was [“best selling”] with [“Women’s Fashion Department”], and its corre-
sponding output exceeded 1000 items. In this scenario, the estimated difference amounted
to 199,000, markedly surpassing the follow-up output. Given that these two input queries
are employed to search for identical items, and the difference between the outputs is con-
siderable, this is definitely an HMR3 violation.

While the HMR3 violations may not contravene the fundamental functionalities of e-
commerce systems, they could still impact the user experience, as the users of e-commerce
systems may not familiar with the technical design details of the SUTs. The HMR3 viola-
tions indicate that at least one of the outputs is not complete. As different users may adhere
to individual typing habits and employ preferred methods to search for their desired items,
they may struggle to accomplish their objectives, and thus, their user experience may be
affected.

6.6 a case study of map systems

6.6.1 Experimental Design

Systems Under Test: Map systems provide a function for planning a route (producing the
most cost-effective and efficient route from an origin to a destination). They are not only
among the most widely-used Internet applications but also the mobile applications with
the highest number of downloads globally [32]. The underlying geographic data exempli-
fies another instance of big data, making map systems ideal SUTs for this study. In the
empirical experiments, MRPs and the proposed MT framework were employed to allevi-
ate the challenge of identifying MRs for map systems. Two popular map systems were
selected for this experiment: Google Maps [32, 33] and Baidu Maps [174]. To eliminate the
probability of MR violations being caused by the user-account configurations [292], the
experiment was conducted without logging into any accounts. Moreover, to mitigate the
influence of server-side data updates, all experimental results presented in this chapter are
reproducible on different days and machines throughout the experimental process.

Test Case Generation: Locations in both Google Maps and Baidu Maps were randomly
chosen as source inputs, and this process was repeated to generate 100 valid source inputs.

6.6.2 Relations

In total, one MR and one HMR were identified for map systems following the guidance of
MRPs and the MT framework, as presented below.

106 metamorphic relation patterns , trees and framework

MR2: A robust map system ought to produce identical outputs for identical inputs
within very short timeframes. The timeframe represents the duration taken by a map
system to execute an input once, typically approximately one second. This MR draws
inspiration from the Irrelevance MRP, where the short timeframes represents an irrelevant
environment. Considering the same origin and destination through different system func-
tions should result in identical or highly similar outputs.

HMR4: Whether by clicking on the map or inputting location names to determine a
route between the same origin and destination, a robust map system should produce iden-
tical or highly similar routes. This HMR draws inspiration from the Similar MRP: Users
have two methods for selecting origins and destinations, namely, inputting location names
or clicking on the map. Using the same origin and destination through different system
functions should result in identical or highly similar outputs.

6.6.3 Evaluation and Discussion

Throughout the experiment, it was observed that both SUTs satisfied MR2 while violating
HMR4. Out of the 100 generated MGs, four violated HMR4 on Google Maps and five
on Baidu Maps. For brevity, solely the HMR4 violation instances of Google Maps were
presented in this section. It is essential to acknowledge that since software testing can
solely ascertain the existence of failures rather than their absence [98], the absence of
violations in the experimental results for MR2 does not guarantee that MR2 will never be
violated.

Figs. 31 - 32 illustrate an instance of HMR4 violation on Google Maps: The source input
involved typing the destination name ([“Jubilee Park”] in London), resulting in a route
of 0.8 miles long and estimated to take 15 minutes; the follow-up input entailed clicking
on the destination ([“Jubilee Park”]) on the map (situated very close to the source input
destination with no apparent obstacles in between), resulting in a route of 0.2 miles long
and estimated to take 5 minutes. In this scenario, the time difference was 10 minutes and
the distance difference was 0.6 miles, both of which are substantial. Given that these two
inputs share the same origin and their destinations are in close proximity to each other
with no apparent obstacles in between, this is unquestionably an HMR4 violation.

HMR4 violations may not contravene the basic functions of map systems as the exact
destinations are not identical. Nevertheless, map systems are designed for a wide user
base and offer various methods for selecting origins and destinations, given that different
users may opt for different interaction methods with the map system, a robust map sys-
tem should correctly handle inputs that vary but serve the same purpose. In this context,
significant differences in outputs may adversely affect the user experience. For instance,
as shown in Figs. 31 - 32, if the user simply searches for the shortest path to Jubilee Park
without considering the exact destination within the park, violating HMR4 could mean
that the SUT fails to meet the user’s requirements, which may prompt this user to choose
alternative map systems.

6.6 a case study of map systems 107

Figure 31: An HMR4 STC example for Google Maps

Figure 32: An HMR4 FTC example for Google Maps

108 metamorphic relation patterns , trees and framework

6.7 a case study of machine translation systems

6.7.1 Experimental Design

Systems Under Test: Despite the growing popularity of machine translation systems, the
complexity and flexibility of natural language make it frequently impracticable to assess
translation accuracy solely through traditional approaches (such as human translation):
This reveals the presence of an oracle problem within machine translation systems [226].
While MT has been employed for evaluating these systems [129, 226, 264], the process of
MR identification may still encounter hurdles. Given these considerations, this section pre-
sented a case study employing MRPs in conjunction with the proposed MT framework to
identify MRs within machine translation systems. For this experiment, three widely-used
machine translation systems were chosen: Google Translator, Microsoft Bing Translator,
and Baidu Translator [264].

Reason for Applying MRT: Machine translation systems has been repeatedly proven to be
effective in translating clean and in-domain texts [257]. Nonetheless, the majority of user-
generated content, particularly in the social media field, is surrounded by noise such as
typographical errors, idiosyncrasies, dialects, and slang. These noise types are apt to sig-
nificantly reduce the precision of machine translation systems. In light of this context, this
section presented a case study utilizing MRPs and the proposed MT framework to guide
the identification of MRs in MRT, aiming to assess the robustness of machine translation
systems.

Test Case Generation: Simple sentences were manually created as source inputs by (1)
consulting English/Chinese dictionaries; and (2) iteratively repeating this procedure to
generate a total of 100 valid source inputs.

6.7.2 Relations

In total, one MR, one HMR and eight MRRs were identified for machine translation sys-
tems following the guidance of MRPs and the proposed MT framework, as presented
below.

MR3: MR3 states that a robust machine translation system should consistently produce
identical or highly similar outputs for the same input, irrespective of when it is running.
This MR can be easily and quickly identified based on the Fully-Equal MRIP (and also its
super-pattern, the Irrelevance MRP). In particular, the irrelevant condition in this MR is
when to run the machine translation system.

HMR5: If a widely-known abbreviation substitutes a word in the source input to create
the follow-up input without altering the meaning of the inputs, then the follow-up should
be identical or highly similar to the source output. In this study, two popular abbreviations
were selected: “as soon as possible” was used to replace “ASAP”, and “Mister” was used
to replace "Mr.". This HMR can be easily and quickly identified based on the Substitution
MRIP (as well as its super-patterns, the Similar MRP and the Sets MRP). In particular, the

6.7 a case study of machine translation systems 109

source input and the follow-up input in this HMR have the same meaning and only differ
in one specific element: Whether or not an abbreviation is used instead of the complete
word.

MRR1: If an additional blank space is appended to the end of a source input to generate
the follow-up input without altering the meaning of the inputs, then the follow-up output
should be identical or highly similar to the source output. In the experiment, an additional
blank space was inserted between the sentence and the period. This MRR can be easily
and quickly identified based on the Addition MRIP (as well as its super-patterns, Similar
MRP and the Sets MRP). In particular, the notion of "one more component" was further
defined as appending an additional blank space to the end of a sentence (i.e., between the
sentence and the period) to create this MRR. In machine translation systems, it is common
for users to unconsciously type an additional blank space, which may even go unnoticed.
When a space appears within a word, such as when "maybe" is mistakenly typed as "may
be", its meaning can change. However, when a space appears between the last word and
the period in a sentence, the translation outcome should not be significantly affected.

MRR2: If removing a blank space between two sentences from the source input to con-
struct the follow-up input without altering the meaning of the inputs, then the follow-up
output should be identical or highly similar to the source output. This MRR can be easily
and quickly identified based on the Subtraction MRIP (and also its super-patterns, Similar
MRP and the Sets MRP). In particular, the notion of "one less component" was further
defined as eliminating the blank space between two complete sentences, which is also a
common error in machine translation systems, in order to construct this MRR.

MRR3: If the plural morpheme "-s" of a word from the source input is omitted to con-
struct the follow-up input without altering the meaning of the inputs, then the follow-up
output should be identical or highly similar to the source output. This MRR can be easily
and quickly identified based on the Substitution MRIP (as well as its super-patterns, Sim-
ilar MRP and the Sets MRP). When using machine translation systems, the misuse of the
singular/plural form of words is a common error that may go unnoticed, particularly for
words where the plural form is formed by simply adding the letter "s". In this context, to
construct this MRR, the notion of "differ in only one component" was further defined as an
erroneous usage of the singular and plural forms of a word. It is worth noting that in the
experiment, in order to increase the similarity between the source and follow-up inputs,
only the words whose plural form could be obtained by simply adding a letter "s" were
included.

MRR4: If a punctuation mark between two complete sentences from the source input
is omitted to construct the follow-up input without altering the meaning of the inputs,
then the follow-up output should be identical or highly similar to the source output. This
MRR can be easily and quickly identified based on the Substitution MRIP (as well as its
super-patterns, Similar MRP and the Sets MRP). Incorrect usage of punctuation marks is
common in machine translation systems, and a robust machine translation system ought
to be capable of properly handling such errors. In this context, the notion of "one less

110 metamorphic relation patterns , trees and framework

component" was further defined as eliminating a punctuation mark between two complete
sentences to construct this MRR.

MRR5: If an additional identical punctuation mark is inserted between two complete
sentences in the source input to construct the follow-up input without altering the meaning
of the inputs, then the follow-up output should be identical or highly similar to the source
output. This MRR can be easily and quickly identified based on the Addition MRIP (as well
as its super-patterns, Similar MRP and the Sets MRP). In this context, the notion of "one
more component" was further defined as adding an additional identical punctuation mark
between two complete sentences.

MRR6: If a punctuation mark between two complete sentences from the source input
is erroneously used to construct the follow-up input without altering the meaning of the
inputs, then the follow-up output should be identical or highly similar to the source output.
This MRR can be easily and quickly identified based on the Substitution MRIP (as well as
its super-patterns, Similar MRP and the Sets MRP). In this context, the notion of "differ
in only one component" was further defined as modifying the punctuation mark between
two complete sentences, and in this experiment, a comma was used to replace a period.

MRR7: If the uppercase/lowercase character at the beginning of a complete sentence
from the source input is erroneously used to construct the follow-up input without altering
the meaning of the inputs, then the follow-up output should be identical or highly similar
to the source output. This MRR can be easily and quickly identified based on the Substitu-
tion MRIP (as well as its super-patterns, Similar MRP and the Sets MRP). Incorrect usage
of uppercase/lowercase characters in complete sentences is common in machine transla-
tion systems, and a robust machine translation system should be capable of handling such
mistakes appropriately. In this context, the notion of "differ in only one component" was
further defined as changing the first character of a complete sentence from uppercase to
lowercase.

MRR8: If an crucial component that has an impact on the structure/meaning of the
sentence is removed from the source input to construct the follow-up input, then the follow-
up output should differ from the source output. This MRR can be easily and quickly
identified based on the Subtraction MRIP (as well as its super-patterns, Similar MRP and
the Sets MRP), but in a different way than previous MRRs: MRR8 requires that the outputs
must be different from each other, rather than similar. Omission of words in sentences is
also common in machine translation systems, particularly in lengthy texts. In particular, if
a fundamental component of one complete sentence is omitted, the two sentences are likely
to contain different meanings. Therefore, a robust machine translation system should be
capable of producing different outputs for these two inputs. An illustrative example is the
absence of a verb component in a complete sentence with a subject-verb-object structure.
In this context, the notion of "one less component" was further defined as omitting one of
the essential components of a complete sentence.

6.7 a case study of machine translation systems 111

Table 18: Overall Statistical Results of the Experiment
Google Translator Baidu Translator Microsoft Bing Translator

Number of metamorphic groups 100 100 100

Number of MRR1 violations 4 0 6

Number of MRR1 violations
with different fault type

Type A 0 0 1

Type B 3 0 5

Type C 1 0 0

Number of MRR2 violations 11 1 1

Number of MRR2 violations
with different fault type

Type A 4 1 1

Type B 4 0 0

Type C 3 0 0

Number of MRR3 violations 4 4 1

Number of MRR3 violations
with different fault type

Type A 1 3 1

Type B 3 1 0

Type C 0 0 0

Number of MRR4 violations 6 51 13

Number of MRR4 violations
with different fault type

Type A 2 51 10

Type B 3 0 3

Type C 1 0 0

Number of MRR5 violations 7 4 3

Number of MRR5 violations
with different fault type

Type A 3 2 1

Type B 3 2 2

Type C 1 0 0

Number of MRR6 violations 6 43 8

Number of MRR6 violations
with different fault type

Type A 3 42 3

Type B 3 0 4

Type C 0 1 1

Number of MRR7 violations 4 1 3

Number of MRR7 violations
with different fault type

Type A 2 1 2

Type B 1 0 1

Type C 1 0 0

Number of MRR8 violations 18 24 10

Number of MRR8 violations
with different fault type

Type A 0 0 0

Type B 0 0 0

Type C 18 24 10

6.7.3 Evaluation and Discussion

The MRR violation experimental results of the three machine translation systems are pre-
sented in Table 18: All eight MRRs were violated by all the SUTs, while both MR3 and
HMR5 were satisfied by all the SUTs. Because all the SUTs satisfied MR3 and HMR5, only
the overall statistical outcomes for the eight MRRs are provided in this section. Further-
more, to deeply explore and analyze the experimental results, this section conducted an
analysis and categorization of how these MRR violations occurred, and outlined the fol-
lowing three types of faults:

A) Certain words/sentences in the source/follow-up input have not been translated.

B) The identical component in the source/follow-up input has been translated into vary-
ing meanings.

C) Certain words/sentences not present in the source/follow-up input have been trans-
lated.

112 metamorphic relation patterns , trees and framework

Figure 33: An MRR1 violation example for Google Translator

Figure 34: An MRR2 violation example for Google Translator

Figure 35: An MRR3 violation example for Google Translator

Figure 36: An MRR3 violation example for Google Translator

The experimental results revealed that MRR4 and MRR6 identified the highest number
of software robustness failures, followed by MRR8, while MRR7 detected the fewest vio-
lations. MRR4 and MRR6 mainly focus on the incorrect use of punctuation marks, while
MRR8 centers on the omission of important elements in complete sentences. Therefore, it
can be inferred that among the various types of errors in this experiment, the three transla-
tors may excel in handling mistakes related to punctuation marks and omitted important
elements. Notably, Baidu Translator exhibited notably poor performance in Type A. Typical
violation examples are provided for each MRR, accompanied by discussion and analysis of
the experimental results. Additionally, due to the uniformity of MRR violations across all
three machine translation systems, for brevity, only the experimental results from Google
Translator are presented in this chapter.

6.7 a case study of machine translation systems 113

6.7.3.1 Violations of MRR1

Each of the three SUTs was found to violate MRR1. Fig. 33 illustrates an instance of MRR1

violations with Google Translator. In this case, an additional blank space was introduced
between the word "soon" and the period in the source input to generate the follow-up
input. It is notable that while the source input was accurately translated, the follow-up
input was mistranslated: Google Translator failed to translate the word "Apple". Given that
the two inputs carry identical meanings but the translations are different, this is definitely
an MRR1 violation, revealing a failure in robustness.

6.7.3.2 Violations of MRR2

Each of the three SUTs was found to violate MRR2. Fig. 34 illustrates an instance of MRR2

violations with Google Translator. In this instance, a blank space between two complete
sentences in the source input was eliminated to generate the follow-up input. It is notable
that while the source input was accurately translated, the follow-up input was mistrans-
lated: Google Translator duplicated the first input sentence instead of translating it and
omitted the word "It" ("它") in the second input sentence. Given that the two inputs carry
identical meanings but the translations are different, this is definitely an MRR2 violation,
revealing a failure in robustness.

6.7.3.3 Violations of MRR3

Each of the three SUTs was found to violate MRR3. Figs. 35 - 36 illustrate an instance of
MRR2 violations with Google Translator. In this instance, the word "books" was altered to
"book" in the source input to create the follow-up input. To investigate the translations pro-
vided by Google Translator, round-trip translation was employed [7, 158]. This approach
involves translating a text into another language and then back again to ascertain if the
final output maintains a similar meaning to the original text. It is evident that the source
input was correct but was mistranslated, while the follow-up input was incorrect (due to
a missing "s") but its relevant output matched the expected source output. In other words,
Google Translator ought to return “这些是书吗?” for the source input “Are these books?”.
Given that the two inputs carry identical meanings but the translations are different, this
is definitely an MRR3 violation, revealing a failure in robustness.

6.7.3.4 Violations of MRR4

Each of the three SUTs was found to violate MRR4. Figs. 37 - 38 illustrate two representa-
tive instances of MRR4 violations with Google Translator, as explained below.

• In the first scenario shown in Fig. 37, a period between two sentences in the source
input was omitted to create the follow-up input. It is notable that while the source in-
put was accurately translated, the follow-up input was mistranslated: The word "It"
("它") was omitted in the translation. Given that the two inputs carry identical mean-

114 metamorphic relation patterns , trees and framework

Figure 37: The first MRR4 violation example for Google Translator

Figure 38: The second MRR4 violation example for Google Translator

Figure 39: An MRR5 violation example for Google Translator

ings but the translations are different, this is definitely an MRR4 violation, revealing
a failure in robustness.

• In the second scenario shown in Fig. 38, a comma between two sentences in the
source input was removed to create the follow-up input. It is notable that the source
input was a grammatically correct sentence; however, its corresponding output was
incorrect due to the omission of the word "It". In the follow-up input, after the comma
between the two sentences was removed, Google Translator provided an accurate
translation matching the source output. In other words, Google Translator offered
an incorrect translation for the correct sentence, and corrected the (plural) error and
offered a correct translation for the wrong sentence. Given that the two inputs carry
identical meanings but the translations are different, this is definitely an MRR4 vio-
lation, revealing a failure in robustness.

6.7.3.5 Violations of MRR5

Each of the three SUTs was found to violate MRR5. Fig. 39 illustrates a representative
instance of MRR5 violations with Google Translator. In this scenario, the period between
two complete sentences in the source input was duplicated to create the follow-up input.
It is evident that while the source input was a grammatically correct sentence and was

6.7 a case study of machine translation systems 115

Figure 40: An MRR6 violation example for Google Translator.

Figure 41: An MRR6 violation example for Google Translator

Figure 42: An MRR7 violation example for Google Translator

Figure 43: An MRR8 violation example for Google Translator

accurately translated, the follow-up input was mistranslated: Although the follow-up input
contained only two sentences, the follow-up output comprised three sentences. It appears
that Google Translator firstly copied and repeated the follow-up input, and then proceeded
to translate its second sentence. Given that the two inputs carry identical meanings but
the translations are different, this is definitely an MRR5 violation, revealing a failure in
robustness.

6.7.3.6 Violations of MRR6

Each of the three SUTs was found to violate MRR6. Figs. 40 - 41 illustrate a representative
instance of MRR6 violations with Google Translator. In this instance, the period in the
source input was replaced with a comma to create the follow-up input. It is evident that

116 metamorphic relation patterns , trees and framework

while the source input was a grammatically correct sentence and was accurately translated,
the follow-up input was mistranslated: The word "It" is missing. Given that the two inputs
carry identical meanings but the translations are different, this is definitely an MRR6 vio-
lation, revealing a failure in robustness.

6.7.3.7 Violations of MRR7

Each of the three SUTs was found to violate MRR7. Fig. 42 illustrates a representative in-
stance of MRR7 violations with Google Translator. In this scenario, the word "It" in the
source input was changed to "it" to create the follow-up input. It is evident that while the
source input was a grammatically correct sentence, it was mistranslated: The word "It" is
missing. In the follow-up input, the lowercase letter "i" in the word "it" is an error; however,
its output corresponds to the expected source output. In particular, Google Translator of-
fered an incorrect translation for the correct sentence; and corrected the lowercase letter "i"
and offered a correct translation for the incorrect sentence. Given that the two inputs carry
identical meanings but the translations are different, this is definitely an MRR7 violation,
revealing a failure in robustness.

6.7.3.8 Violations of MRR8

Each of the three SUTs was found to violate MRR8. Fig. 43 illustrates an instance of MRR8

violations with Google Translator. In this instance, the characters “更好” (“better”) were
removed from the source input to create the follow-up input. It is evident that while
the source input was a grammatically correct sentence and was accurately translated, the
follow-up input was mistranslated: A significant portion of the source input was omitted to
create the follow-up input, resulting in a completely different meaning from the source in-
put; nevertheless, their outputs remain identical. Google Translator may automatically fill
in the incomplete sentences and translate them. Given that the two inputs carry identical
meanings but the translations are different, this is definitely an MRR8 violation, revealing
a failure in robustness.

6.8 conclusion

The quality of MRs and MGs significantly impacts MT performance, yet identifying ef-
fective MRs remains a significant challenge, which demands innovative thinking, knowl-
edge of MRPs, and a thorough understanding of the SUT [64, 246]. As an advanced MR-
identification technique, MRP has repeatedly demonstrated its effectiveness in guiding
MR identification [33, 170, 243, 245, 280, 295]. However, research on MRP is still in its early
stages, requiring further improvement [64, 246, 280].

This chapter has introduced the concepts of sub-patterns, super-patterns, and MRP fam-
ily trees to systematically define the relationships among multiple MRPs at different ab-
straction levels. Then this chapter has introduced two MRP trees, created by categorizing
previously published MRPs as well as the proposed MRPs, to offer users an easily and

6.8 conclusion 117

quickly means of obtaining their desired MRPs for reuse, reference, or inference. In total,
three MRPs, six MRIPs, and two MROPs have been introduced, each tailored to differ-
ent application fields. Additionally, this chapter has introduced a novel MT framework
designed to facilitate the identification and application of MRPs. Given the current lack
of research on systematically identifying new MRPs, this is the first framework that are
capable of guiding not only the identification but also the application of MRPs (as well as
MRIPs and MROPs). Three case studies have been presented, demonstrating the capabili-
ties of the MRPs and the proposed MT framework to guide the identification of MRs for
MT/ME/MRT. The empirical experiments were conducted using three kinds of popular
big data systems:

• E-commerce Systems: Amazon and JD.com.

• Map Systems: Google Map and Baidu Map.

• Machine Translation Systems: Google Translator, Microsoft Bing Translator and
Baidu Translator.

Through the experiments, multiple MR violations have been successfully detected. Ex-
perimental results indicate that (1) MRPs can effectively guide the identification of MRs
not only for MT but also for ME and MRT; and (2) both the proposed MRPs and the
MT framework offer users direction and guidance in identifying effective MRs and MRPs.
A major limitation of the proposed MRPs and MRP trees is the absence of a systematic
method for measuring the level of abstraction, which will be studied in future work.

Furthermore, MRPs may serve as valuable tools for educating and training future soft-
ware quality assurance professionals [269, 285]. It has been reported that many computer
science students complain that the materials they use in class and independent learning
may appear too theoretical, and they prefer more practical and useful resources, reflecting
the tensions in education and training methods, such as traditional higher education and
vocational and professional education and training [267, 268].

The subsequent chapter of this thesis will introduce a novel MR-MG pair selection algo-
rithm. The rationale behind the next chapter is that since this chapter has proposed MRPs
to facilitate the identification of effective MRs from scratch, and Chapters 4 and 5 have
proposed MG-generation algorithms to construct effective MGs from scratch, the upcom-
ing chapter will concentrate on selecting effective MRs and MGs from existing ones. With
this consideration, the next chapter will introduce a novel MR-MG pair selection algorithm
that exhibit better effectiveness while maintaining high test efficiency compared to MT-RT,
which is currently the most commonly-used MR and MG selection algorithm [64, 246].

7
M E TA M O R P H I C R E L AT I O N A N D G R O U P
S E L E C T I O N A L G O R I T H M

Papers delivered from this chapter (Under Review)

1. Zhihao Ying, Dave Towey, Anthony Bellotti, and Zhi Quan Zhou. MRGS-ART: Meta-
morphic Relation and Group Selection based on Adaptive Random Testing. Submit-
ted to Software Testing, Verification and Reliability, 2023.

7.1 introduction and motivation

Although a great number of studies from various perspectives have conducted to enhance
MT performance, there still exist some challenges in MT [64]. Notably, one challenge re-
lates to the selection of MRs and MGs from existing ones [64]. Over recent years, MRs and
MGs, have been recognized as the core elements of MT, have garnered significant attention
within the MT community. Many techniques have been proposed to guide the identifica-
tion of MRs [82, 103, 155, 156, 182, 232, 247, 261, 271, 287, 292] or the generation of MGs
[8, 19, 21, 84, 120, 143, 147, 177, 238]. Therefore, a large number of MRs and MGs can be
constructed for various kinds of SUTs. Additionally, it has been reported that considering
all available MRs during the MT process could improve the performance of MT [67]. Given
the limited resources available for software testing [246, 260], algorithms are necessary to
guide the selection of effective MRs and MGs from multiple existing ones. A key question,
therefore, is: How can a tester choose the “most appropriate” MR-MG pair in each round
of MT for execution? Nonetheless, there remains a deficiency in metrics or algorithms to
guide the selection of effective MRs and MGs for execution. Some studies aimed to address
the selection issue, albeit by focusing solely on MRs [99, 253, 256] or MGs [143, 144], rather
than both simultaneously.

This chapter introduces a novel MR-MG distribution metric for selecting effective MR-
MG pairs from a black-box perspective: An effective MR, when paired with an MG, should
aim to maximize the distance between this MG and previously-executed ones. This is the
the first study to define the properties of effective MR-MG pairs. Additionally, this metric
can serve as a guiding principle for the design and development of novel MR-MG pair se-
lection algorithms. The rationale behind this metric aligns with that of the MG-generation
algorithms proposed in previous chapters (Chapters 4 - 5): The performance of MT can
be improved by achieving a balanced distribution of STCs and FTCs throughout their re-
spective input domains. Previous algorithms only considered the case in which a single

119

120 metamorphic relation and group selection algorithm

MR was present. This chapter takes a step further and examine the scenario where mul-
tiple MRs are present. Furthermore, this chapter concentrates on the selection of effective
MRs and MGs, as opposed to their generation. In this context, this chapter introduces a
novel MR-MG pair selection algorithm, named Metamorphic Relation and Group Selec-
tion based on Adaptive Random Testing (MRGS-ART), which is inspired by the proposed
metric. MRGS-ART can automatically and dynamically choose suitable MR-MG pairs from
existing ones for execution. Empirical experiments were conducted to assess and compare
the performance of MRGS-ART against other existing MR-MG pair selection algorithms in
the literature. Through experiments, this chapter demonstrates the performance of MRGS-
ART and provides guidance on how to effectively use it.

7.2 metric and algorithm

7.2.1 MR-MG Distribution Metric

ART refers to a family of software test-case generation algorithms aimed at improving the
fault-detection capability of RT by evenly distributing test cases over the input domain [77,
83, 140]. In the previous chapters of this thesis, the concept of ART has been employed to
design and develop MG-generation algorithms. In particular, the proposed MG-generation
algorithms aim to enhance the performance of MT by evenly distributing STCs and FTCs
throughout their respective input domains. This chapter shifts focus to a new perspective:
The selection of effective MR-MG pairs from existing ones. Specifically, by leveraging ART
principles and MT features, this chapter introduces a novel metric, termed MR-MG Distrib-
ution Metric, from a black-box perspective, to guide the selection of effective MR-MG pairs:
An effective MR-MG pair is characterized by the MR maximizing the distance between the
currently executing MG and previously executed MGs.

The following example illustrates the application of the proposed metric:

1. Consider two STCs and N (N > 1) MRs. Each MR possesses its own executed STC
set and executed FTC set, as opposed to a shared executed test set among all MRs.
Consequently, there are a total of N executed STC sets and N executed FTC sets. The
rationale of this step is to avoid the impact of the input-domain difference problem
(introduced in Chapter 4).

2. The tester should choose a distance measure based on SUT features and input types.

3. The tester should generate N FTCs based on the first STC and the N MRs. Each MR
corresponds to one MG in this scenario, resulting in a total of N MGs.

4. For each MR, the tester can use the chosen distance measure to calculate the sum of:

(a) The "distance" between the STC and the nearest executed STC.

(b) The "distance" between the FTC and the nearest executed FTC.

5. The tester should choose the MR with the largest "distance" to form an MR-MG pair.

7.2 metric and algorithm 121

6. The tester should repeat the aforementioned steps for the second STC, choosing the
MR with the largest “distance” to form a new MR-MG pair.

7. The tester should compare the two “distances” and choose the MR-MG pair with the
largest "distance" for execution.

8. Following the execution of the MR-MG pair against the SUT, if no stopping condi-
tions are triggered, the tester should add the executed test cases to their respective
executed test sets.

Various methods can be used to quantify the "distance" between one MG and another.
For instance, the distance between numerical test cases can be quantified using Euclidean
distance [77, 140], while the dissimilarity between two sets can be measured using Jaccard
distance [150]. This chapter assesses the "distance" by dividing the input domain and
choosing test cases from vacant subdomains to ensure that the selected test cases are not
very close to each other.

7.2.2 Selection of Basic Algorithm

A discussion and analysis of various partition-based ART algorithms was given in Section
5.2.1. As IPART is likely to encounter the boundary effect problem [57], while BART does
not, this chapter only chooses BART for designing the algorithm. In particular, with IPART,
the subdomains close to the boundary have fewer neighbors compared to those near the
centre. Consequently, subdomains near the boundary typically have a lower probability
of neighboring non-empty subdomains compared to those near the center, making them
more likely to be selected for generating new test cases. On the other hand, BART does not
suffer from this problem since each subdomain has an equal probability of being chosen
for generating new test cases.

7.2.3 MRGS-ART Algorithm

In this section, based on the MR-MG distribution metric, a new MR-MG pair selection
algorithm was introduced, termed Metamorphic Relation and Group Selection based on
Adaptive Random Testing (MRGS-ART). This algorithm aims to enhance MT performance
by selecting appropriate MR-MG pairs based on the information provided by the executed
and non-MR-violating MGs. In particular, MRGS-ART was designed based on the follow-
ing rationale: The fault-detection capability of MT should be improved through an even
distribution of STCs and FTCs across the respective input domains for all the MRs included
during the process of MT. Algorithm 6 outlines the process of applying MRGS-ART on n
1-1 MRs, accompanied by detailed explanations as follows:

• Step 1: The starting point of MRGS-ART assumes the existence of n MRs, along with
either an STC generation algorithm or a repository of STC datasets. MRs can be
manually or automatically identified through advanced techniques such as MRPs.

122 metamorphic relation and group selection algorithm

Algorithm 6: MRGS-ART for n 1-1 MRs

1 Assume the existence of n 1-1 MRs;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Each MR is given one executed STC set and one executed FTC set;
4 Initialize the n executed STC sets and n executed FTC sets to be empty;
5 Randomly generate one STC for each MR;
6 Generate FTCs based on the MRs and the STCs;
7 for i = 1 → n do
8 Randomly choose an MR containing empty executed STC and FTC sets;
9 Execute the MG against the SUT and check whether the MR is violated;
10 Add the STC and the FTC to the respective executed test sets;
11 end
12 while all stopping conditions are not satisfied do
13 if (a) the quantity of executed STCs/FTCs reaches a threshold or (b) all the subdomains

contain at least one executed STC/FTC then
14 Bisect all the subdomains in the relevant source/follow-up input domain;
15 end
16 Assume the existence of k (k > 0) source candidates;
17 for m = 1 → n do
18 for i = 1 → k do
19 Choose the ith source candidate and construct the follow-up candidate

based on the mth MR;
20 Count the sum of the quantity of source and follow-up candidates located

within empty subdomains, represented by NGi;
21 end
22 Choose the candidate MG with the largest NGi, represented by (NGi)m;
23 if multiple candidate MGs contain the maximum NGi value then
24 Choose one at random;
25 end
26 end
27 Choose the MR-MG pair with the largest (NGi)m;
28 if multiple MR-MG pairs contain the maximum (NGi)m value then
29 Choose one at random;
30 end
31 Execute the MG against the SUT and check whether the MR is violated;
32 Add the executed STC and FTC to their respective executed test sets;
33 end

Another premise is that all MRs used by MRGS-ART must include an identical scope
of source input domains, irrespective of their categorization as 1-1 MRs, M-1 MRs,
or M-N MRs. In particular, if an STC is applicable to one MR employed by MRGS-
ART, then it should also be applicable to all other MRs used by MRGS-ART. Within
the framework of MRGS-ART, the quantity of executed STC sets and FTC sets is
determined by the type of MR. That is, a 1-1 MR has one executed STC set and one
executed FTC set; an M-1 MR has M executed STC sets and one executed FTC set;
and an M-N MR has M executed STC sets and N executed FTC sets. In this scenario,
there are n executed STC sets and n executed FTC sets for n 1-1 MRs. The rationale

7.2 metric and algorithm 123

Figure 44: Examples of Bisecting Subdomains in 2D input domains

of this statement is to circumvent the input-domain difference problem (introduced
in Chapter 4): If all MRs share the same executed test set, the differences between the
source and follow-up input domains may be ignored, which may negatively affect
the even distribution of STCs and FTCs.

• Step 2: MRGS-ART initializes all executed STC sets and executed FTC sets as empty.

• Steps 3-8: MRGS-ART gives each MR an STC in random order, followed by the gener-
ation of the corresponding FTC based on the MR and the STC. The rationale of these
steps is to ensure that each MR is given at least one available MG. Then, MRGS-ART
sequentially executes each MR-MG pair against the SUT and checks for violations.
If no stopping condition is satisfied (i.e., no violation is identified), MRGS-ART ap-
pends each STC to the respective executed STC set and each FTC to the respective
executed FTC set.

• Step 10: If either (A) the quantity of executed STCs/FTCs reaches a threshold; or (B)
all source/follow-up subdomains are occupied by executed STCs/FTCs, MRGS-ART
proceeds to bisect all subdomains within the respective input domain. Condition b is
derived from BART. In order to ensure that the difficulty of achieving Condition 10A
is similar to the difficulty of achieving Condition 10B, the threshold can be defined
as the total number of subdomains. The rationale behind Condition 10A stems from
the random generation of candidate MGs, which could potentially lead to a scenario
where all candidate MGs reside within non-empty subdomains, particularly when
the k value is low. Thus, it is necessary to consider Condition 10A to ensure the
input domain will be partitioned in a timely manner. Two examples illustrating the
application of bisection partitioning to 2D input domains are presented in Fig. 44.

• Step 13: MRGS-ART chooses k (k > 0) STCs as source candidates from an STC dataset
or via a specific STC-generation algorithm, subsequently generating FTCs as follow-
up candidates based on the provided MR and source candidates. It is noteworthy that
MRGS-ART does not construct new MGs or MRs from scratch; rather, it chooses the
"appropriate" MR-MG pair among existing ones for execution. The k value plays an
important role in MRGS-ART. The rationale of using the parameter k is that because
MRGS-ART chooses the "appropriate" MR-MG pair from various MRs and MGs in
each MT iteration, a higher number of candidate MGs expands the selection options,
which may lead to greater diversity in MG distribution. However, given that larger

124 metamorphic relation and group selection algorithm

k values may escalate computational overhead, in Section 7.4, empirical experiments
have been conducted to explore the impact of various k values, aiming to ascertain
the optimal balance between the efficiency and effectiveness of MRGS-ART.

• Steps 15-18: For the ith candidate MG, MRGS-ART calculates the total number of
source and follow-up candidates located within empty subdomains, represented by
NGi. The rationale behind this step is that if an MG contains a higher number of test
cases (STCs/FTCs) within empty subdomains, choosing this MG may lead to a more
balanced distribution of MGs across the relevant input domain.

• Step 19: Following the computation of NGi values for all candidate MGs based on
the first MR, MRGS-ART proceeds to choose the candidate MG exhibiting the highest
NGi value to get a pair of MR-MG. The associated number of valid candidates is
represented by (NGi)1. The rationale behind this step is that an MG containing a
greater NGi value indicates a larger number of source and follow-up candidates
situated within empty subdomains. Such an MG is likely to be further away from
the previously-executed and non-MR-violating MGs.

• Steps 20-22: In the event that multiple candidate MGs possess identical maximum
NGi values, MRGS-ART proceeds to randomly choose one from them.

• Step 24: At this point, MRGS-ART has completed the calculating of valid source and
follow-up candidates for all candidate MGs according to the first MR. More specifi-
cally, MRGS-ART has identified the MG that is capable of achieving a more balanced
distribution of MGs for the first MR from the k candidate MGs. Subsequently, MRGS-
ART repeats the aforementioned steps for all other MRs, in order to get the MR-MG
pair exhibiting the highest (NGi)m value. The rationale behind this step is to assess
the distribution diversity of all MR-MG pairs and choose the one demonstrating a
more even distribution of STCs and FTCs.

• Steps 25-27: If multiple pairs have the same maximum (NGi)m value, then MRGS-
ART randomly chooses one from them.

• Steps 28-29: MRGS-ART proceeds to execute the selected MR-MG pair against the
SUT and examine for MR violations. If no stopping condition is satisfied (i.e., no
violation is identified), then MRGS-ART appends each STC to the relevant executed
STC set and each FTC to the relevant executed FTC set, and returns to Step 9; al-
ternatively, if any of the stopping conditions are met, then MRGS-ART reports the
experimental results and ends the process.

It is important to emphasize that MRGS-ART with k = 1 differs from MT-RT. This
arises from the fact that MRGS-ART computes and compares distribution diversity in two
distinct rounds. The first round is within Steps 15-22 of Algorithm 6. For an MR, MRGS-
ART calculates and compares the distribution diversity of all relevant candidate MGs, with
the aim of choosing the one exhibiting the greatest distribution diversity to obtain a pair
of MR-MG. The second round is within Steps 14-27, wherein MRGS-ART evaluates the

7.2 metric and algorithm 125

Figure 45: Executed STCs Distribution (source candidates are represented by red points, and exe-
cuted STCs are represented by black points)

Figure 46: Executed FTCs Distribution (follow-up candidates are represented by green points, and
executed FTCs are represented by black points)

distribution diversity among all MR-MG pairs, with the aim of choosing the one with the
greatest distribution diversity for execution.

7.2.4 Application of MRGS-ART

This section will illustrate the application of MRGS-ART through a simple example. The
SUT takes two inputs. Two 1-1 MRs (MR1 and MR2) are identified for the SUT, with k
(the number of source candidates) set to 2. When every MR has been executed once using
an MG and the relevant input domains have been partitioned, the distribution of the ex-
ecuted STCs and executed FTCs is illustrated in Figs. 45 - 46. Each MR has one executed
STC and one executed FTC, denoted as black points. The red points represent source can-
didates (SC1 and SC2), and the green points represent follow-up candidates (MR1 − FC1,
MR1 − FC2, MR2 − FC1 and MR2 − FC2). At the same time, only MR1-FC2 is located within
an empty subdomain, while MR1-FC1 is inside a non-empty subdomain. With this consid-
eration, MRGS-ART chooses SC2 and MR1-FC2 for MR1. MRGS-ART then repeats the same
steps for MR2, and chooses SC2 and MR2-FC2. In this context, two MR-MG pairs can be
obtained: (MR1, (SC2, MR1-FC2)) and (MR2, (SC2, MR2-FC2)). MRGS-ART then compares
these two MR-MG pairs: SC2 (from MR2) is located within a non-empty subdomain. At
this point, MRGS-ART chooses (MR1, (SC2, MR1-SC2)) for execution in this iteration. After

126 metamorphic relation and group selection algorithm

the execution of the selected MR-MG pair against the SUT, MRGS-ART appends the cur-
rently executed STC and FTC to the respective executed test sets if no stopping condition
is satisfied (i.e., no MR is violated).

In addition, there are two points to note.

• Given that MRGS-ART solely involves MR-MG pair selection, integrating any ex-
isting MR-identification methods or MG-generation algorithms into the MRGS-ART
framework can further enhance MT performance.

• While MRGS-ART is primarily intended for MR-MG pair selection, it also has the
capability to individually choose one of them: When provided with an MG, the tester
can employ MRGS-ART to choose an effective MR; in contrast, when provided with
an MR, the tester can apply MRGS-ART to choose an effective MG.

7.2.5 Advantages

The following paragraphs offer comparisons between the proposed methodologies (MR-
MG distribution metric and MRGS-ART) and previously-published work:

• From the Viewpoint of Metrics: (1) Previously-published metrics are mainly designed
from the perspective of white-box testing and necessitate access to the SUT source
code. In contrast, the proposed metric was designed from a black-box testing per-
spective, without the need for the source codes of the SUT.

(2) Previous metrics typically require the execution of multiple MGs to acquire SUT
execution behaviors/outputs for guiding the selection of a fixed number of MRs,
which may increase computational overhead. In contrast, the proposed metric only
focuses on the calculation of MG-distribution diversity, and enables adaptive MR
selection throughout each round of MT.

(3) Previous metrics concentrate on the properties of an effective MR, while the pro-
posed metric centers on the properties of an effective MR-MG pair.

• From the Viewpoint of Algorithms: (1) While techniques for MR selection have been
proposed, the majority either choose a fixed number of MRs or necessitate human
participants [64, 246]; only a minority can autonomously and adaptively choose ap-
propriate MRs [256]. In contrast, MRGS-ART is able to autonomously and adaptively
choose an appropriate MR-MG pair in each MT iteration, without the need for hu-
man participants.

(2) The majority of previously-published algorithms mainly concentrate on MR selec-
tion while neglecting MG selection.

(3) Since MRGS-ART was derived from the MR-MG distribution metric, it similarly
does not necessitate access to the source codes of the SUT.

(4) MRGS-ART concentrates on the quality of MGs (including both STCs and FTCs).
In particular, MRGS-ART aims to enhance MT performance by ensuring a uniform

7.3 research questions 127

distribution of STCs and FTCs throughout their respective input domains. Different
from MRGS-ART, feedback-directed MT solely takes into account the quality of STCs
(as introduced in Section 2.2.6, and it is the only algorithm that can adaptively select
MR-STC pairs) [260].

(5) Since MRGS-ART solely involves selecting MR-MG pairs from existing ones, any
MR-identification or MG-generation algorithm can theoretically be integrated into
MRGS-ART to further improve MT performance.

7.3 research questions

The following RQs were formulated to provide guidance for the empirical experiments:
RQ1: Can MRGS-ART achieve a balance between test effectiveness and efficiency?

• Objective: Evaluate whether or not MRGS-ART can outperform MT-RT and achieve
a better balance between test effectiveness and efficiency.

• Motivation: MT-RT is the most popular MR-MG pair selection algorithm, but it some-
times cannot achieve satisfactory fault-detection capability as it does not utilize any
features of the SUT [64, 246]. In this context, MRGS-ART was proposed, in order to
achieve a better balance between test effectiveness and efficiency.

• Baseline algorithms: MT-RT, selected for its widespread adoption — it is the most
widely-used MR-MG pair selection algorithm.

• Methodologies:

1. Select three performance criteria: Test efficiency, test effectiveness, and MG di-
versity.

2. Design sub-RQs to delve deeper into specific aspects of performance.

3. Determine whether or not MRGS-ART can perform better across multiple per-
formance metrics compared to MT-RT.

• Sub-RQs:

1. Can MRGS-ART achieve better test effectiveness (F-measure) than MT-RT?

2. Can MRGS-ART achieve better test efficiency (generation time) than MT-RT?

3. Can MRGS-ART achieve better distribution diversity of MGs (Dispersion and
Discrepancy) than MT-RT?

RQ2: How to effectively apply MRGS-ART?

• Objective: Study the impact of different parameters on the performance of MRGS-
ART, as well as the optimal values of these parameters that can achieve a better
balance between testing effectiveness and efficiency.

128 metamorphic relation and group selection algorithm

Table 19: SUTs and MRs

Programs Input Dimensions
Input Domains

Size (LOC) Number of MRs Number of Mutants Fault Types
From To

Sin 1 0.0 1000.0 120 12 3 CRP, ROR, AOR

Erf 1 0.0 1000.0 763 8 2 CRP

sncndn 2 (0.0,0.0) (100.0,100.0) 64 8 4 CRP, ROR, RSR, AOR

BesselJ 2 (1.0,1.0) (100.0,100.0) 1211 3 2 CRP, ROR

TriSquarePlus 3 (0.0,0.0,0.0) (100.0,100.0,100.0) 31 11 3 CRP, ROR, AOR

rj 4

(0.0,0.0,
0.0,0.0)

(100.0,100.0,
100.0,100.0)

175 6 2 CRP, AOR

PntLinePos 6

(0.0,0.0,0.0,
0.0,0.0,0.0)

(100.0,100.0,100.0,
100.0,100.0,100.0)

23 8 1 CRP

• Motivation: Some of the parameters may have an impact on both test effectiveness
and efficiency of MRGS-ART.

• Methodologies:

1. Select the following three parameters for the experiments: (1) The number of
source candidates (the value of k); (2) the number of MRs; and (3) the SUT
input dimension.

2. Explore whether or not these parameters may have an impact on the perfor-
mance of MRGS-ART.

3. Explore the optional values of these parameters, with the aim of achieving a
better balance between testing effectiveness and efficiency.

7.4 empirical experiments

7.4.1 Experimental Setup

The information of the SUTs and MRs used in the experiments are listed in Table 19. The
experimental settings (the values of the parameters) for investigating RQ2 were as follows:

(1) In order to examine the influence of the number of source candidates (the value of k)
on MRGS-ART performance, the value of k ranged from 1 to 5.

(2) To assess the impact of the number of MRs, different numbers of MRs were chose.
(3) To investigate the effect of the SUT input dimension, systems of varying sizes and

input dimensions were selected.
A total of 10,000 trials were performed to measure the mean F-measure, F-ratio, Co-

hen’s d, generation time, Discrepancy, and Dispersion. For calculating Discrepancy and
Dispersion, MRGS-ART and MT-RT were employed to produce a total of 1000 MR-MG
pairs. While theoretically, any MR-identification or MG-generation algorithm could be in-
tegrated into MRGS-ART to further improve its performance, the major objective of this
empirical study is to examine the performance of the original MRGS-ART. Consequently,
the MRs were derived from previously-published MRs and the MG-generation algorithm
employed in MRGS-ART was MT-RT (the given source candidates were generated ran-
domly in each round). As software testing cannot conclusively verify the absence of faults
[98], and to prevent an unreasonable expenditure of time, the algorithms were terminated

7.4 empirical experiments 129

Table 20: MR-violation Regions and Rates of Each MR for Sin (10,000 trials per algorithm)
Programs Type MRSin1 MRSin2 MRSin3 MRSin4 MRSin5 MRSin6 MRSin7 MRSin8 MRSin9 MRSin10 MRSin11 MRSin12

Sin
mutant 1

MR-Violation
Rate

8.0*10
−4

1.1*10
−3

8.0*10
−4

1.6*10
−3

1.2*10
−3

8.0*10
−4

1.6*10
−3 <1*10

−6
1.1*10

−3
1.9*10

−3
1.2*10

−3
1.2*10

−3

F-measure
of MT-RT

1258.53 939.91 1255.50 625.18 812.73 1243.33 632.70 >1000000 954.62 529.13 826.97 813.18

MR-Violation
Region Type

Block Block Block Block Block Block Block Block Block Block Block Block

Sin
mutant 2

MR-Violation
Rate

1.0*10
−3

9.8*10
−4

1.0*10
−3

1.0*10
−3

1.7*10
−3 <1*10

−6 <1*10
−6

1.3*10
−3

2.0*10
−3

1.7*10
−3

2.7*10
−3

2.7*10
−3

F-measure
of MT-RT

981.81 1021.22 998.16 991.60 593.74 >1000000 >1000000 785.55 499.21 577.77 364.46 366.98

MR-Violation
Region Type

Point Point Point Point Point Point Point Point Point Point Point Point

Sin
mutant 3

MR-Violation
Rate

<1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6
4.0*10

−3 <1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6

4.0*10
−3

4.0*10
−3

F-measure
of MT-RT

>1000000 >1000000 >1000000 >1000000 251.37 >1000000 >1000000 >1000000 >1000000 >1000000 249.96 247.30

MR-Violation
Region Type

NaN NaN NaN NaN Block NaN NaN NaN NaN NaN Block Block

Table 21: MR-violation Regions and Rates of Each MR for Erf (10,000 trials per algorithm)
Programs Type MREr f 1 MREr f 2 MREr f 3 MREr f 4 MREr f 5 MREr f 6 MREr f 7 MREr f 8

Erf
mutant 1

MR-Violation
Rate

9.97*10
−3

5.97*10
−3

5.04*10
−3 <1*10

−6 <1*10
−6

1.98*10
−3

1*10
−3

1*10
−4

F-measure
of MT-RT

100.30 167.47 198.29 >1000000 >1000000 503.81 995.89 10004.08

MR-Violation
Region Type

Block Block Block NaN NaN Block Block Block

Erf
mutant 2

MR-Violation
Rate

3.97*10
−2 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6

F-measure
of MT-RT

25.18 >1000000 >1000000 >1000000 >1000000 >1000000 >1000000 >1000000

MR-Violation
Region Type

Block NaN NaN NaN NaN NaN NaN NaN

Table 22: MR-violation Regions and Rates of Each MR for sncndn (10,000 trials per algorithm)
Programs Type MRsn1 MRsn2 MRsn3 MRsn4 MRsn5 MRsn6 MRsn7 MRsn8

sncndn
mutant 1

MR-Violation
Rate

8.9*10
−4

4.0*10
−4

2.2*10
−4

1.4*10
−4

9.9*10
−5

3.9*10
−4

2.4*10
−3

3.6*10
−3

F-measure
of MT-RT

1118.12 2486.41 4474.78 7032.57 10045.5 2508.91 403.29 276.47

MR-Violation
Region Type

Block Block Block Block Block Block Block Block

sncndn
mutant 2

MR-Violation
Rate

8.9*10
−4

8.8*10
−4

8.8*10
−4

8.8*10
−4

8.9*10
−4

8.9*10
−4

8.9*10
−4

8.9*10
−4

F-measure
of MT-RT

1119.87 1130.53 1127.61 1131.13 1115.84 1116.53 1112.77 1122.54

MR-Violation
Region Type

Point Point Point Point Point Point Point Point

sncndn
mutant 3

MR-Violation
Rate

1.2*10
−3

5.4*10
−4

3.0*10
−4

1.9*10
−4 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6

F-measure
of MT-RT

817.13 1852.71 3281.06 5165.17 >1000000 >1000000 >1000000 >1000000

MR-Violation
Region Type

Block Block Block Block Block Block Block Block

sncndn
mutant 4

MR-Violation
Rate

1.5*10
−3

1.3*10
−3

1.2*10
−3

1.2*10
−3

2.0*10
−3

1.9*10
−3

1.9*10
−3

2.0*10
−3

F-measure
of MT-RT

658.12 751.49 786.96 827.53 494.14 501.49 501.67 494.44

MR-Violation
Region Type

Strip Strip Strip Strip Strip Strip Strip Strip

130 metamorphic relation and group selection algorithm

Table 23: MR-violation Regions and Rates of Each MR for BesselJ (10,000 trials per algorithm)
Programs Type MRBessel J1 MRBessel J2 MRBessel J3

BesselJ
mutant 1

MR-Violation
Rate

2.77*10
−2 <1*10

−6 <1*10
−6

F-measure
of MT-RT

36.12 >1000000 >1000000

MR-Violation
Region Type

Block NaN NaN

BesselJ
mutant 2

MR-Violation
Rate

1.23*10
−2 <1*10

−6 <1*10
−6

F-measure
of MT-RT

81.02 >1000000 >1000000

MR-Violation
Region Type

Block NaN NaN

Table 24: MR-violation Regions and Rates of Each MR for TriSquarePlus (10,000 trials per algo-
rithm)

Programs Type MRTri1 MRTri2 MRTri3 MRTri4 MRTri5 MRTri6 MRTri7 MRTri8 MRTri9 MRTri10 MRTri11

TriSquarePlus
mutant 1

MR-Violation
Rate

<1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6
1.9*10

−3
5.7*10

−4
2.4*10

−4
1.2*10

−4
7.2*10

−5
4.5*10

−5
3.0*10

−5

F-measure
of MT-RT

>1000000 >1000000 >1000000 >1000000 520.24 1744.09 4037.96 7995.4 13754.2 21953.7 32915.3

MR-Violation
Region Type

NaN NaN NaN NaN Block Block Block Block Block Block Block

TriSquarePlus
mutant 2

MR-Violation
Rate

<1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6
9.9*10

−4
1.0*10

−3
1.1*10

−3
1.1*10

−3
1.1*10

−3
1.1*10

−3
1.1*10

−3

F-measure
of MT-RT

>1000000 >1000000 >1000000 >1000000 1008.27 917.35 896.12 889.05 884.19 882.38 881.29

MR-Violation
Region Type

NaN NaN NaN NaN Block Block Block Block Block Block Block

TriSquarePlus
mutant 3

MR-Violation
Rate

7.8*10
−4 <1*10

−6
7.8*10

−4
7.8*10

−4
2.9*10

−4
3.5*10

−4
3.6*10

−4
3.7*10

−4
3.8*10

−4
3.8*10

−4
3.8*10

−4

F-measure
of MT-RT

1273.66 >1000000 1274.53 1271.81 3360.01 2842.48 2720.29 2657.63 2623.42 2607.16 2592.07

MR-Violation
Region Type

Strip NaN Strip Strip Strip Strip Strip Strip Strip Strip Strip

after generating and executing 1,000,000 MGs. As a consequence, the values of Cohen’s d
for these cases were not calculated, represented by NaN (Not a Number).

7.4.2 Experimental Results and Discussion

This section explores and analyzes the experimental results, discusses the findings, and
answers the RQs from Section 7.3.

7.4.2.1 F-ratio and Cohen’s d

In order to comprehensively explore and compare the performance of MRGS-ART and
MT-RT, experiments were conducted to compute the MR-violation regions and rates for
each MR and SUT, as illustrated in Tables 20-26: FMT−RT denotes the F-measure of MT-RT,
indicating the number of MGs required to detect the first MR violation using MT-RT. Table
27 presents the experimental results of F-ratio, while Table 28 presents the experimental
results of Cohen’s d: ⃝ indicates the presence of the specific type of MRVR in the given
mutant and MR, while × indicates its absence. It is important to note that abbreviations
have been used in the MR column to denote the MRs employed. For example, MRSin1-
MRSin3 means that the following three MRs were included: MRSin1, MRSin2, and MRSin3.

7.4 empirical experiments 131

Table 25: MR-violation Regions and Rates of Each MR for rj (10,000 trials per algorithm)
Programs Type MRrj1 MRrj2 MRrj3 MRrj4 MRrj5 MRrj6

rj
mutant 1

MR-Violation
Rate

7.87*10
−3 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6

F-measure
of MT-RT

126.94 >1000000 >1000000 >1000000 >1000000 >1000000

MR-Violation
Region Type

Block NaN NaN NaN NaN Block

rj
mutant 2

MR-Violation
Rate

5.95*10
−3 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6

F-measure
of MT-RT

167.88 >1000000 >1000000 >1000000 >1000000 >1000000

MR-Violation
Region Type

Strip NaN NaN NaN NaN NaN

Table 26: MR-Violation Regions and Rates of Each MR for PntLinePos (10,000 trials per algorithm)
Programs Type MRPnt1 MRPnt2 MRPnt3 MRPnt4 MRPnt5 MRPnt6 MRPnt7 MRPnt8

PntLinePos
mutant 1

MR-Violation
Rate

4.1*10
−3

3.6*10
−4

6.4*10
−5 <1*10

−6 <1*10
−6 <1*10

−6 <1*10
−6 <1*10

−6

F-measure
of MT-RT

243.91 2794.2 15619.8 >1000000 >1000000 >1000000 >1000000 >1000000

MR-Violation
Region Type

Block Block Block NaN NaN NaN NaN NaN

The following observations can be made from the viewpoint of k values:

• When k = 1: With block MRVRs, MRGS-ART with k=2 was capable of performing
at least similarly to, and sometimes significantly better than, MT-RT; while with
point/strip MRVRs, the two algorithms typically performed similar to each other.

• When k = 2: With block MRVRs, the performance of MRGS-ART with k=2 was signif-
icantly better than that of MT-RT and MRGS-ART with k=1; while with point/strip
MRVRs, both algorithms generally performed similarly.

• When k = 3: With block MRVRs, the performance of MRGS-ART continues to im-
prove as the k value increases from 2 to 3; while with point/strip MRVRs, the two
algorithms typically performed similar to each other.

• When k ≥ 4: When the k value increases from 3 to 4, the performance of MRGS-ART
slightly improves or remains similar with all three kinds of MRVRs; and when k ≥ 4,
its performance remains relatively stable.

• According to the Cohen’s d experimental results, it can be observed that among the
cases with block MRVRs, about 15% of the results have values greater than 0.5 (which
means that there are medium effect size strengths), and the largest value is 0.659;
about 50% of the results have values less than 0.5 and greater than 0.2 (which means
that there are small effect size strengths); and about 35% of the results have values
between 0.01 and 0.20 (which means that there are very small effect size strengths).
These results indicate that, under block MRVRs, MRGS-ART can always perform
better than MT-RT, and sometimes even significantly better than MT-RT. However,
there is still room for improvement in the effectiveness of MRGS-ART. With this
consideration, Section 7.5.1 introduced MRGS-ART+, which is an improved version
of the original MRGS-ART.

132 metamorphic relation and group selection algorithm

Table 27: Mean F-ratio Experimental Results (10,000 trials per algorithm)

Programs MRs
Existence of

Block MRVR Point MRVR Strip MRVR k=1 k=2 k=3 k=4 k=5

Sin
mutant 1

MRSin1-MRSin3 ⃝ × × 99.37% 88.45% 85.27% 83.50% 82.78%
MRSin1-MRSin7 ⃝ × × 97.66% 90.64% 88.97% 88.88% 88.34%
MRSin1-MRSin12 ⃝ × × 97.57% 89.51% 88.12% 88.01% 87.86%

Sin
mutant 2

MRSin1-MRSin3 × ⃝ × 99.74% 99.03% 100.81% 99.71% 99.82%
MRSin1-MRSin7 × ⃝ × 100.27% 99.21% 99.38% 100.44% 99.48%
MRSin1-MRSin12 × ⃝ × 100.72% 100.69% 99.35% 100.72% 101.43%

Sin
mutant 3

MRSin1-MRSin2,
MRSin5

⃝ × × 73.37% 60.30% 56.22% 54.02% 53.44%

MRSin5,
MRSin11-MRSin12

⃝ × × 100.00% 83.48% 80.63% 76.92% 75.77%

MRSin1-MRSin7 ⃝ × × 63.08% 54.61% 52.50% 51.50% 51.10%
MRSin1-MRSin5,
MRSin11-MRSin12

⃝ × × 86.42% 77.33% 75.56% 74.67% 73.55%

MRSin1-MRSin12 ⃝ × × 82.50% 76.45% 75.30% 74.81% 75.63%

Erf
mutant 1

MREr f 1-MREr f 3 ⃝ × × 96.60% 81.05% 76.36% 75.20% 73.20%

MREr f 1-MREr f 5 ⃝ × × 88.04% 79.24% 73.56% 74.61% 74.54%

MREr f 1-MREr f 8 ⃝ × × 86.35% 78.43% 76.78% 77.69% 75.68%

Erf
mutant 2

MREr f 1-MREr f 3 ⃝ × × 76.05% 63.95% 60.60% 58.95% 57.44%

MREr f 1-MREr f 5 ⃝ × × 69.31% 60.44% 57.18% 55.64% 55.23%

MREr f 1-MREr f 8 ⃝ × × 65.09% 57.93% 56.94% 55.79% 56.45%

sncndn
mutant 1

MRsn1-MRsn3 ⃝ × × 84.29% 76.22% 73.92% 71.95% 71.82%
MRsn1-MRsn5 ⃝ × × 81.16% 74.56% 72.91% 73.21% 73.14%
MRsn1-MRsn8 ⃝ × × 89.07% 85.90% 85.60% 85.06% 84.89%

sncndn
mutant 2

MRsn1-MRsn3 × ⃝ × 100.07% 99.66% 99.12% 98.91% 98.38%
MRsn1-MRsn5 × ⃝ × 99.96% 97.96% 98.77% 99.44% 97.15%
MRsn1-MRsn8 × ⃝ × 99.27% 100.96% 99.80% 98.66% 99.80%

sncndn
mutant 3

MRsn1-MRsn3 ⃝ × × 87.47% 80.00% 78.56% 78.22% 77.81%
MRsn1-MRsn5 ⃝ × × 84.67% 80.09% 79.51% 78.27% 78.01%
MRsn1-MRsn8 ⃝ × × 83.72% 80.12% 78.92% 78.69% 78.24%

sncndn
mutant 4

MRsn1-MRsn3 × × ⃝ 101.23% 99.95% 100.85% 101.45% 99.30%
MRsn1-MRsn5 × × ⃝ 98.70% 99.57% 99.43% 98.83% 97.94%
MRsn1-MRsn8 × × ⃝ 100.16% 101.11% 101.85% 99.26% 99.56%

BesselJ
mutant 1

MRBessel J1-MRBessel J3 ⃝ × × 78.52% 68.43% 65.80% 65.08% 63.38%

BesselJ
mutant 2

MRBessel J1-MRBessel J3 ⃝ × × 85.74% 76.54% 74.84% 74.99% 73.23%

TriSquarePlus
mutant 1

MRTri1-MRTri3 ⃝ × × 79.87% 68.71% 65.93% 64.03% 63.36%
MRTri1-MRTri7 ⃝ × × 72.62% 65.81% 63.74% 63.28% 62.70%
MRTri1-MRTri11 ⃝ × × 71.09% 66.41% 65.66% 65.57% 65.14%

TriSquarePlus
mutant 2

MRTri1-MRTri3 ⃝ × × 99.49% 90.31% 87.98% 87.32% 85.24%
MRTri1-MRTri7 ⃝ × × 97.70% 91.64% 89.98% 87.44% 88.44%
MRTri1-MRTri11 ⃝ × × 97.48% 91.73% 89.73% 89.02% 88.49%

TriSquarePlus
mutant 3

MRTri1-MRTri3 × × ⃝ 100.31% 100.09% 100.75% 99.29% 99.00%
MRTri1-MRTri7 × × ⃝ 99.06% 100.08% 98.86% 99.55% 98.43%
MRTri1-MRTri11 × × ⃝ 100.20% 98.90% 100.73% 98.23% 100.25%

rj
mutant 1

MRrj1-MRrj3 ⃝ × × 89.87% 80.15% 76.95% 76.91% 75.34%
MRrj1-MRrj6 ⃝ × × 83.33% 76.86% 75.68% 75.04% 74.98%

rj
mutant 2

MRrj1-MRrj3 × × ⃝ 99.41% 96.40% 97.48% 96.83% 97.49%
MRrj1-MRrj6 × × ⃝ 100.96% 98.08% 97.55% 98.14% 97.85%

PntLinePos
mutant 1

MRPnt1-MRPnt3 ⃝ × × 95.07% 91.36% 90.87% 90.45% 90.19%
MRPnt1-MRPnt5 ⃝ × × 92.89% 90.80% 90.08% 88.54% 88.87%
MRPnt1-MRPnt8 ⃝ × × 93.46% 88.99% 89.52% 88.74% 88.18%

7.4 empirical experiments 133

Table 28: Cohen’s d Experimental Results (10,000 trials per algorithm)

Programs MRs
Existence of MRGS-ART vs MT-RT

Block MRVR Point MRVR Strip MRVR k=1 k=2 k=3 k=4 k=5

Sin
mutant 1

MRSin1-MRSin3 ⃝ × × 0.006 0.127 0.167 0.189 0.199

MRSin1-MRSin7 ⃝ × × 0.024 0.102 0.120 0.122 0.128

MRSin1-MRSin12 ⃝ × × 0.005 0.087 0.130 0.132 0.134

Sin
mutant 2

MRSin1-MRSin3 × ⃝ × 0.006 0.018 0.002 0.007 0.006

MRSin1-MRSin7 × ⃝ × -0.003 0.008 0.006 -0.004 0.005

MRSin1-MRSin12 × ⃝ × 0.008 -0.013 0.006 -0.007 -0.006

Sin
mutant 3

MRSin1-MRSin2,
MRSin5

⃝ × × 0.319 0.518 0.586 0.622 0.631

MRSin5,
MRSin11-MRSin12

⃝ × × 0.002 0.190 0.229 0.279 0.296

MRSin1-MRSin7 ⃝ × × 0.465 0.602 0.636 0.652 0.659

MRSin1-MRSin5,
MRSin11-MRSin12

⃝ × × 0.152 0.271 0.296 0.308 0.323

MRSin1-MRSin12 ⃝ × × 0.200 0.28 0.295 0.301 0.291

Erf
mutant 1

MREr f 1-MREr f 3 ⃝ × × 0.035 0.222 0.285 0.302 0.33

MREr f 1-MREr f 5 ⃝ × × 0.129 0.242 0.315 0.305 0.306

MREr f 1-MREr f 7 ⃝ × × 0.18 0.313 0.344 0.33 0.364

Erf
mutant 2

MREr f 1-MREr f 3 ⃝ × × 0.286 0.463 0.518 0.544 0.568

MREr f 1-MREr f 5 ⃝ × × 0.376 0.513 0.562 0.587 0.594

MREr f 1-MREr f 7 ⃝ × × 0.438 0.55 0.568 0.586 0.577

sncndn
mutant 1

MRsn1-MRsn3 ⃝ × × 0.175 0.283 0.315 0.343 0.348

MRsn1-MRsn5 ⃝ × × 0.216 0.305 0.329 0.327 0.329

MRsn1-MRsn8 ⃝ × × 0.12 0.156 0.161 0.167 0.168

sncndn
mutant 2

MRsn1-MRsn3 × ⃝ × -0.001 0.003 0.009 0.011 0.016

MRsn1-MRsn5 × ⃝ × 0 0.021 0.012 0.006 0.029

MRsn1-MRsn8 × ⃝ × 0.007 -0.010 0.002 0.014 0.002

sncndn
mutant 3

MRsn1-MRsn3 ⃝ × × 0.139 0.233 0.255 0.259 0.265

MRsn1-MRsn5 ⃝ × × 0.171 0.231 0.240 0.255 0.260

MRsn1-MRsn8 ⃝ × × 0.184 0.229 0.245 0.250 0.254

sncndn
mutant 4

MRsn1-MRsn3 × × ⃝ -0.012 0.001 -0.008 -0.014 0.007

MRsn1-MRsn5 × × ⃝ 0.013 0.004 0.006 0.012 0.021

MRsn1-MRsn8 × × ⃝ -0.002 -0.011 -0.018 0.007 0.004

BesselJ
mutant 1

MRBessel J1-MRBessel J3 ⃝ × × 0.247 0.384 0.426 0.437 0.461

BesselJ
mutant 2

MRBessel J1-MRBessel J3 ⃝ × × 0.158 0.275 0.298 0.299 0.32

TriSquarePlus
mutant 1

MRTri1-MRTri3 ⃝ × × 0.236 0.397 0.444 0.475 0.486

MRTri1-MRTri7 ⃝ × × 0.329 0.432 0.464 0.472 0.48

MRTri1-MRTri11 ⃝ × × 0.355 0.428 0.441 0.443 0.449

TriSquarePlus
mutant 2

MRTri1-MRTri3 ⃝ × × 0.005 0.106 0.132 0.14 0.164

MRTri1-MRTri7 ⃝ × × 0.021 0.088 0.106 0.137 0.124

MRTri1-MRTri11 ⃝ × × 0.026 0.087 0.109 0.118 0.124

TriSquarePlus
mutant 3

MRTri1-MRTri3 × × ⃝ -0.003 -0.001 0.027 0.007 0.010

MRTri1-MRTri7 × × ⃝ 0.010 -0.001 0.012 0.005 0.016

MRTri1-MRTri11 × × ⃝ -0.002 0.011 -0.007 0.018 -0.002

rj
mutant 1

MRrj1-MRrj3 ⃝ × × 0.109 0.227 0.272 0.274 0.292

MRrj1-MRrj6 ⃝ × × 0.188 0.275 0.291 0.301 0.3

rj
mutant 2

MRrj1-MRrj3 × × ⃝ 0.006 0.036 0.025 0.032 0.026

MRrj1-MRrj6 × × ⃝ -0.01 0.019 0.025 0.019 0.021

PntLinePos
mutant 1

MRPnt1-MRPnt3 ⃝ × × 0.082 0.122 0.127 0.132 0.136

MRPnt1-MRPnt5 ⃝ × × 0.093 0.116 0.124 0.142 0.138

MRPnt1-MRPnt8 ⃝ × × 0.068 0.118 0.111 0.120 0.126

134 metamorphic relation and group selection algorithm

Table 29: Mean Time (in seconds) Experimental Results (10,000 trials per algorithm)

Programs MRs MT-RT
MRGS-ART

k=1 k=2 k=3 k=4 k=5

Sin
MRSin1-MRSin3

0.004s
0.034s 0.037s 0.040s 0.044s 0.047s

MRSin1-MRSin7 0.055s 0.061s 0.065s 0.071s 0.076s
MRSin1-MRSin12 0.098s 0.104s 0.115s 0.125s 0.135s

Erf
MREr f 1-MREr f 3

0.004s
0.034s 0.037s 0.041s 0.044s 0.048s

MREr f 1-MREr f 5 0.045s 0.049s 0.053s 0.058s 0.062s

MREr f 1-MREr f 8 0.061s 0.067s 0.071s 0.078s 0.083s

sncndn
MRsn1-MRsn3

0.005s
0.034s 0.039s 0.044s 0.049s 0.054s

MRsn1-MRsn5 0.039s 0.046s 0.051s 0.058s 0.065s
MRsn1-MRsn8 0.054s 0.061s 0.070s 0.078s 0.087s

BesselJ MRBessel J1-MRBessel J3 0.005s 0.034s 0.039s 0.043s 0.048s 0.055s

TriSquarePlus
MRTri1-MRTri3

0.006s
0.033s 0.040s 0.047s 0.056s 0.062s

MRTri1-MRTri7 0.056s 0.067s 0.080s 0.092s 0.103s
MRTri1-MRTri11 0.076s 0.091s 0.108s 0.127s 0.143s

rj
MRrj1-MRrj3

0.007s
0.025s 0.034s 0.041s 0.048s 0.055s

MRrj1-MRrj6 0.034s 0.044s 0.054s 0.065s 0.075s

PntLinePos
MRPnt1-MRPnt3

0.013s
0.048s 0.062s 0.075s 0.090s 0.106s

MRPnt1-MRPnt5 0.057s 0.077s 0.095s 0.114s 0.132s
MRPnt1-MRPnt8 0.077s 0.104s 0.138s 0.153s 0.178s

• From these observations, the following conclusions can be inferred: With block
MRVRs, the fault-detection capability of MRGS-ART generally increases as the num-
ber of source candidates(the k value) increases, stabilizing within a certain range
after reaching a threshold; while with point/strip MRVRs, the number of source
candidates typically does not have an impact on the fault-detection capability of
MRGS-ART.

• An observation can be obtained that with block MRVRs, regardless of the number
of MRs used, the fault-detection capability of MRGS-ART firstly improves with the
number of source candidates and then stabilizes within a certain range after reaching
a threshold; meanwhile, with point/strip MRVRs, the number of source candidates
typically does not have an impact on the fault-detection capability of MRGS-ART. In
addition, a conclusion can be inferred that with block MRVRs, regardless of the num-
ber of MRs used, MRGS-ART was able to perform at least no worse, and sometimes
significantly better, than MT-RT.

• Considering that different MRs for an SUT are likely to have various MRVRs and MR-
violation rates, directly comparing the performance of MRGS-ART by solely varying
the numbers of MRs may not be fair. With this consideration, in this empirical study,
experiments were not conducted to validate the effect of varying numbers of MRs on
MRGS-ART performance.

• The F-measure was used to quantify the fault-detection capability of MRGS-ART.
However, the F-measure only focuses on the detection of the first failure. In the
future work, the F2-measure may be used to further evaluate the performance of
MRGS-ART for detecting multiple software failures. The F2-measure represents the

7.4 empirical experiments 135

Table 30: Mean Dispersion (Max-Min) Experimental Results (10,000 trials per algorithm)

Programs MRs RT
MRGS-ART

k=1 k=2 k=3 k=4 k=5

Sin

MRSin1-MRSin3 1.3083 1.0064 0.8096 0.7484 0.7200 0.7037

MRSin1-MRSin2,
MRSin5

2.4303 1.8701 1.5042 1.3887 1.3371 1.3064

MRSin5,
MRSin11-MRSin12

2.9735 2.2875 1.8406 1.7019 1.6378 1.6012

MRSin1-MRSin7 7.2047 4.9276 4.1546 3.9195 3.7814 3.7058

MRSin1-MRSin5,
MRSin11-MRSin12

10.3602 7.0830 5.9722 5.6285 5.4357 5.3267

MRSin1-MRSin12 6.6527 4.2969 3.7550 3.6425 3.5962 3.5776

Erf
MREr f 1-MREr f 3 1.3082 1.0065 0.8096 0.7484 0.7200 0.7037

MREr f 1-MREr f 5 2.0603 1.4289 1.1598 1.0713 1.0304 0.9994

MREr f 1-MREr f 8 24.9000 16.7000 14.0005 13.0019 12.5022 12.1318

sncndn
MRsn1-MRsn3 6.2075 5.6827 5.2959 5.1723 5.1144 5.0835

MRsn1-MRsn5 9.6650 8.4786 8.0795 7.9091 7.8284 7.8050

MRsn1-MRsn8 16.0814 14.6660 14.0682 13.9585 13.9327 13.8855

BesselJ MRBessel J1-MRBessel J3 3.1119 2.8389 2.6491 2.5885 2.5573 2.5438

TriSquarePlus
MRTri1-MRTri3 17.5900 11.3675 9.9335 9.5332 9.4116 9.3623

MRTri1-MRTri7 17.7757 16.5473 16.0524 15.6877 15.6600 15.6221

MRTri1-MRTri11 32.1005 29.5955 28.5023 28.0895 28.0450 27.9895

rj
MRrj1-MRrj3 23.7159 22.7200 22.1583 21.8950 21.7450 21.6917

MRrj1-MRrj6 23.4650 22.6233 22.0592 21.9267 21.8575 21.7917

PntLinePos
MRPnt1-MRPnt3 81.9418 62.2007 61.2372 60.2981 60.1115 60.1009

MRPnt1-MRPnt5 81.4503 52.6431 51.9593 51.0566 50.8129 50.8101

MRPnt1-MRPnt8 75.2119 47.3819 46.798 46.2186 46.1252 46.1264

Table 31: Mean Discrepancy (Max-Min) Experimental Results (10,000 trials per algorithm)

Programs MRs RT
MRGS-ART

k=1 k=2 k=3 k=4 k=5

Sin

MRSin1-MRSin3 0.0021 0.0017 0.0011 0.0009 0.0008 0.0008

MRSin1-MRSin2,
MRSin5

0.0021 0.0017 0.0011 0.0009 0.0008 0.0008

MRSin5,
MRSin11-MRSin12

0.0021 0.0017 0.0011 0.0009 0.0008 0.0008

MRSin1-MRSin7 0.0033 0.0022 0.0015 0.0013 0.0012 0.0011

MRSin1-MRSin5,
MRSin11-MRSin12

0.0033 0.0022 0.0015 0.0013 0.0012 0.0011

MRSin1-MRSin12 0.0049 0.0031 0.0021 0.0017 0.0015 0.0014

Erf
MREr f 1-MREr f 3 0.0021 0.0017 0.0011 0.0009 0.0008 0.0008

MREr f 1-MREr f 5 0.0029 0.0023 0.0016 0.0013 0.0012 0.0011

MREr f 1-MREr f 8 0.0037 0.0025 0.0018 0.0016 0.0015 0.0014

sncndn
MRsn1-MRsn3 0.0021 0.0017 0.0013 0.0012 0.0012 0.0011

MRsn1-MRsn5 0.0037 0.0028 0.0024 0.0023 0.0023 0.0023

MRsn1-MRsn8 0.0040 0.0031 0.0027 0.0026 0.0026 0.0026

BesselJ MRBessel J1-MRBessel J3 0.0021 0.0017 0.0013 0.0012 0.0012 0.0011

TriSquarePlus
MRTri1-MRTri3 0.0021 0.0018 0.0015 0.0015 0.0014 0.0014

MRTri1-MRTri7 0.0033 0.0027 0.0025 0.0025 0.0025 0.0024

MRTri1-MRTri11 0.0047 0.0038 0.0035 0.0035 0.0035 0.0035

rj
MRrj1-MRrj3 0.0021 0.0019 0.0018 0.0018 0.0018 0.0018

MRrj1-MRrj6 0.0031 0.0028 0.0026 0.0026 0.0026 0.0026

PntLinePos
MRPnt1-MRPnt3 0.4993 0.002 0.0018 0.0018 0.0018 0.0018

MRPnt1-MRPnt5 0.7991 0.0028 0.0027 0.0026 0.0026 0.0026

MRPnt1-MRPnt8 0.7989 0.0034 0.0033 0.0033 0.0033 0.0033

136 metamorphic relation and group selection algorithm

number of additional MGs needed to discover the second failure after the detection
of the first failure. In particular, the generalization of the F2-measure can be used to
validate the capability of MRGS-ART to reveal the (i + 1)th failure after i failure(s)
have already been revealed.

7.4.2.2 Generation Time

The time taken to select 10,000 MR-MG pairs for each algorithm is presented in Table
29. The following observations can be made based on the generation time experimental
results:

• Typically, the computational overhead of MRGS-ART is affected by two elements:
The number of source candidate (the k value) and the number of MRs. In particular,
the computational overhead of MRGS-ART increases as both the number of source
candidates and the number of MRs increase.

• It can be evident that the generation time of MT-RT is consistently shorter than that
of MRGS-ART in all scenarios, as anticipated. Nonetheless, given that the generation
time of MRGS-ART is either comparable to or sorely marginally higher than that of
MT-RT, the computational overhead of MRGS-ART is deemed acceptable.

• The generation time was used to measure the computational overhead of MRGS-ART,
which measures the time required to generate a certain number of MGs, regardless
of the number of failures, or whether or not the failures are detected. That is, the
generation time is generally not affected by the presence or number of software
failures, and thus, it can also be used to reflect the computational overhead of MRGS-
ART for detecting multiple software failures.

7.4.2.3 Dispersion and Discrepancy

Since MRGS-ART aims to enhance MT performance by making STC and FTCs evenly
distribution throughout their respective input domains for each MR used during the MT
process, this empirical experiment computed the Dispersion and Discrepancy for all the
MRs used. In order to compare the STC and FTC distribution diversity among different
algorithms, the mean Dispersion and mean Discrepancy of all the MRs used in the MT
procedure were computed, as illustrated in Table. 30 - 31.

The following observations can be obtained based on the Dispersion and Discrepancy
experimental results:

• When k = 1: MRGS-ART with k = 1 was able to significantly outperform MT-RT.

• When k = 2: MRGS-ART with k = 2 was able to significantly outperform both MT-RT
and MRGS-ART with k = 1.

• When k = 3: As the k value increases from 2 to 3, the Dispersion and Discrepancy per-
formance of MRGS-ART shows a slight improvement. In particular, the improvement

7.4 empirical experiments 137

in Dispersion and Discrepancy between MRGS-ART with k = 2 and MRGS-ART with
k = 3 is typically lower than the improvement between MRGS-ART with k = 1 and
MRGS-ART with k = 2.

• When k ≥ 4: When k ≥ 4, the Dispersion and Discrepancy performance of MRGS-
ART remains relatively stable.

• Similar conclusions to those drawn from F-ratio and Cohen’s d experimental results
can be inferred: With block MRVRs, the STC and FTC distribution diversity of MRGS-
ART initially increases as the number of source candidates (the k value) increases
and then stabilizes within a certain range after reaching a threshold; while with
point/strip MRVRs, the number of source candidates typically does not have an
impact on the STC and FTC distribution diversity of MRGS-ART.

7.4.3 Answer to Research Question

This section answers the research questions listed in Section 7.3 based on the experimental
results and discussions.

7.4.3.1 Answer to RQ1

Experimental results on F-ratio, Cohen’s d, Dispersion, and Discrepancy indicate that, with
block MRVRs, MRGS-ART was able to significantly outperform MT-RT in terms of test
effectiveness and test-case distribution diversity; while with point/strip MRVRs, both al-
gorithms generally performed similarly to each other. In this context, a conclusion can
be inferred that MRGS-ART is capable of performing at least no worse, and sometimes
significantly better, than MT-RT. This may be attributed to the fact that MRGS-ART inher-
its the characteristics of ART algorithms: They tend to excel in block failure regions. The
experimental results on generation time indicated that MRGS-ART, compared to MT-RT,
required an acceptable computational overhead to choose a certain number of MR-MG
pairs among existing ones. Thus, based on the experimental results, it can be concluded
that MRGS-ART is typically a preferable option for selecting MR-MG pairs than MT-RT.

7.4.3.2 Answer to RQ2

According to the experimental results, the following suggestions can be provided to guide
the application of MRGS-ART:

• The threshold for the number of candidate MGs (the k value) is affected by the
dimensionality of the input domain and the number of MRs used during the MT
process: It decreases as the dimension of the input domain and the number of MRs
increase. For instance, the threshold can be set to 3 for programs with 3D input
domains and three MRs. This differs from traditional ART algorithms, where the
number of candidates is typically set to 10 [77, 140].

138 metamorphic relation and group selection algorithm

Figure 47: Two sets of possible nearby STCs selected by MRGS-ART in 2D input domains

• According to the experimental results on F-ratio, Cohen’s d, Dispersion, and Discrep-
ancy, it can be observed that when the k value increases from 3 to 4, the performance
of MRGS-ART remains similar in most cases, with occasional slight improvements;
and when the value increases from 4 to 5, its performance remains relatively sta-
ble in all cases. Based on the experimental results for the generation time, it can be
concluded that the computational overheads for MRGS-ART increase as the value
increases. Therefore, a conclusion can be drawn that if the primary concern is the
fault-detection capability of MRGS-ART, setting the k value to 4 is sufficient for most
scenarios; alternatively, since the fault-detection capability of MRGS-ART generally
remains unchanged, and sometimes has a little improvement, when the k value in-
creases from 3 to 4, if achieving a balance between test effectiveness and efficiency is
prioritized, the k value can also be set to 3. In addition, some potential future work
may also include exploring the impact of additional k values (such as 6 to 10) on the
performance of MRGS-ART to further support the above conclusions.

7.5 future work

7.5.1 An Enhanced Version of MRGS-ART

7.5.1.1 Introduction and Motivation

Section 7.2 has proposed and introduced a novel MR-MG pair selection algorithm, termed
MRGS-ART. Nevertheless, empirical experiments have revealed a potential performance-
affecting problem, which prompts further investigation and resolution in future work.
Specifically, the following two questions remain to be investigated and answered:

1. Can the MRGS-ART algorithm consistently ensure an even distribution of selected
STCs and FTCs across their respective input domains?

2. Are there methods available to enhance the even distribution of STCs and FTCs, in
order to further enhance the fault-detection capability of MRGS-ART?

The original MRGS-ART algorithm aims to improve MT performance by evenly distrib-
uting STCs and FTCs throughout their respective input domains for all MRs employed
during the MT process. In order to achieve the even distribution of STCs and FTCs, MRGS-

7.5 future work 139

ART partitions the input domain into subdomains and selects MGs from empty ones. How-
ever, it has been observed that the MGs selected by MRGS-ART from empty subdomains
may still be in close proximity to other executed MGs, leading to a potential challenge re-
ferred to as the nearby test-case problem. BART may also encounter this problem [196, 197].
In particular, the MGs chosen via MRGS-ART may closely neighbor the MGs from adjacent
non-empty subdomains. For instance, Fig. 47 illustrates two instances of STC distribution
in a 2D input domain, revealing the uneven distribution of STCs selected by MRGS-ART,
which may negatively affect the performance of MRGS-ART.

7.5.1.2 An Enhanced Version of MRGS-ART (MRGS-ART+)

To address the nearby test-case problem, MRGS-ART was extended to MRGS-ART+. In
MRGS-ART+, subdomains are categorized according to their locations relative to executed
MGs, as follows:

• Empty Subdomains: Subdomains devoid of any executed STCs or FTCs.

• Occupied Subdomains: Subdomains containing at least one executed STCs or FTCs.

• Adjacent Subdomains: Empty subdomains adjacent to occupied subdomains.

The steps of applying MRGS-ART+ to 2D input domains with n 1-1 MRs are outlined
in Algorithm 7. In particular, MRGS-ART+ not only assesses whether or not a candidate
MG is located within an empty subdomain, but also counts its neighboring occupied sub-
domains and measures the distance from this candidate MG to its nearest occupied subdo-
main. The rationale behind these steps is to guarantee a basic distance between the selected
MG and all other executed MGs. The underlined parts are steps that are different from the
original MRGS-ART. The specific explanation is as follows:

• Step 18: When considering the ith candidate MG, MRGS-ART+ identifies the subdo-
main wherein the source/follow-up candidate resides, subsequently calculating the
cumulative count of neighboring occupied subdomains. The underlying rationale of
this step is to assess whether or not the given source/follow-up candidate is located
within adjacent subdomains.

• Steps 19-21: Given the ith candidate MG, if its source/follow-up candidate is located
within an adjacent subdomain, then MRGS-ART+ calculates the distances from it to
all neighboring occupied subdomains and chooses the shortest one, represented by
disi.

• Steps 24-29: MRGS-ART+ chooses one candidate MG for execution according to one
of the following criteria:

1) If there exists exactly one candidate MG with the maximum NGi value, then
MRGS-ART+ chooses this candidate MG.

2) If multiple candidate MGs have the same maximum NGi value, then MRGS-ART+
chooses the one with the maximum disi value.

140 metamorphic relation and group selection algorithm

Algorithm 7: MRGS-ART+ for n 1-1 MRs

1 Assume the existence of n 1-1 MRs;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Each MR is given one executed STC set and one executed FTC set;
4 Initialize the n executed STC sets and n executed FTC sets to be empty;
5 Randomly generate one STC for each MR;
6 Generate FTCs based on the MRs and the STCs;
7 for i = 1 → n do
8 Randomly choose an MR containing empty executed STC and FTC sets;
9 Execute the MG against the SUT and check whether the MR is violated;
10 Add the executed STC and FTC to their respective executed test sets;
11 end
12 while all stopping conditions are not satisfied do
13 if (a) the quantity of executed STCs/FTCs reaches a threshold or (b) all the subdomains

contain at least one executed STC/FTC then
14 Bisect all the subdomains in the relevant source/follow-up input domain;
15 end
16 Assume the existence of k (k > 0) source candidates;
17 for m = 1 → n do
18 for i = 1 → k do
19 Choose the ith source candidate and construct the follow-up candidate

based on the mth MR;
20 Count the sum of the quantity of source and follow-up candidates located

within empty subdomains, represented by NGi;
21 Count the sum of the quantity of neighboring occupied subdomains,

represented by NSi;
22 if NGi > 0 & NSi > 0 then
23 Compute the average distance from the source and follow-up

candidates to their nearest occupied subdomain, represented by disi;
24 end
25 end
26 Choose the candidate MG with the largest NGi, represented by (NGi)m;
27 if multiple pairs contain the maximum (NGi)m value then
28 Choose the one with the smallest NSi, represented by (NSi)m;
29 if multiple pairs contain the maximum (NSi)m value then
30 Choose the one with the largest disi, represented by (disi)m;
31 end
32 end
33 end
34 Choose the MR-MG pair with the largest (NGi)m;
35 if multiple pairs contain the maximum (NGi)m value then
36 Choose the pair with the smallest (NSi)m;
37 if multiple pairs contain the maximum (NSi)m value then
38 Choose the pair with the largest (disi)m;
39 end
40 end
41 Execute the MG against the SUT and check whether the MR is violated;
42 Add the executed STC and FTC to their respective executed test sets;
43 end

7.5 future work 141

Figure 48: Distribution of executed STCs and source candidates

Figure 49: Distribution of executed FTCs and follow-up candidates

3) If multiple candidate MGs possess both the maximum NGi value and the maxi-
mum disi value, then MRGS-ART+ randomly chooses one from them.

After completing the computation and comparison of all candidate MGs based on the
first MR, MRGS-ART+ proceeds to iterate through the above steps for all remaining
MRs to determine an appropriate MR-MG pair.

7.5.1.3 Application of MRGS-ART+

To exemplify the application of MRGS-ART+ to an SUT with a 2D input domain, a simpli-
fied scenario is presented where only one 1-1 MR is employed, and the value of k is set to
2. After four iterations of MRGS-ART+, the input domain and the distribution of test cases
are illustrated in Figs. 48-49. The black points represent executed STCs and FTCs, while
the red points represent two source candidates (SC1 and SC2) and two follow-up candi-
dates (FC1 and FC2). It can be observed that all candidates are situated within adjacent
subdomains. Subsequently, MRGS-ART+ calculates the number of neighboring occupied
subdomains for each candidate STC/FTC.

142 metamorphic relation and group selection algorithm

• SC1 is adjacent to two occupied subdomains (the ones containing STC1 or STC4); and
the distance to its nearest occupied subdomain is dis1, denoted as a black line.

• SC2 is adjacent to three occupied subdomains (the ones containing STC1, STC2 or
STC3); and the distance to its nearest occupied subdomain is dis2, denoted as a
black line.

• FC1 is adjacent to two occupied subdomains (the ones containing FTC1 or FTC4);
and the distance to its nearest occupied subdomain is dis3, denoted as a black line.

• FC2 is adjacent to three occupied subdomains (the ones containing FTC1, FTC2 or
FTC3); and the distance to its nearest occupied subdomain is dis4, denoted as a
black line.

The first candidate MG (SC1, FC1) is selected by MRGS-ART+ for the given MR due to
its fewer neighboring occupied subdomains. Additionally, if two candidate MGs possess
an equal quantity of neighboring occupied subdomains, then MRGS-ART+ compares the
values of (dis1 + dis3)/2 and (dis2 + dis4)/2 and chooses the one with the greater distance
(the first candidate MG) for execution.

7.5.2 Metamorphic Relation and Group Selection based on ART Through Iterative Partitioning
(MRGS-IPART)

In addition to analyzing and comparing the performance of various traditional partition-
based ART algorithms and explaining the rationale of selecting BART to design MR-MG
selection algorithm in Section 7.2.2, this section intends to examine whether or not the MR-
MG pair selection algorithms designed according to IPART and RPART can achieve satis-
factory effectiveness and efficiency. With this consideration, this section proposes a new
algorithm so-called Metamorphic Relation and Group Selection based on ART Through
Iterative Partitioning (MRGS-IPART). The steps of MRGS-IPART with n 1-1 MRs and 2D
input domains are outlined in Algorithm 8. The underlined parts are steps that are differ-
ent from the original MRGS-ART. The specific explanation is as follows:

• Step 3: In this step, MRGS-IPART set the value of the partitioning schema (p) to 1.
The rationale of using the partitioning schema is that MRGS-IPART partitions the
input domain based on its value.

• Steps 10-13: If either (a) the number of executed STCs/FTCs reaches a threshold;
or (b) all source/follow-up subdomains are covered by executed STCs/FTCs or sur-
round a subdomain covered by executed STCs/FTCs, then MRGS-IPART adds the
partitioning schema by 1 (p = p + 1) and partitions the corresponding input do-
main into p ∗ p equally-sized subdomains. In contrast to MRGS-ART, where only
non-empty subdomains are excluded from generating new test cases, MRGS-IPART
avoids generating test cases in both non-empty subdomains and subdomains sur-
rounded by non-empty subdomains.

7.5 future work 143

Algorithm 8: MRGS-IPART for n 1-1 MRs with 2D input domains

1 Assume the existence of n 1-1 MRs;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Each MR is given one executed STC set and one executed FTC set;
4 Initialize the n executed STC sets and n executed FTC sets to be empty;
5 Randomly generate one STC for each MR;
6 Generate FTCs based on the MRs and the STCs;
7 Initialize the value of the partitioning schema (p) to 1;
8 for i = 1 → n do
9 Randomly choose an MR containing empty executed STC and FTC sets;
10 Execute the MG against the SUT and check whether the MR is violated;
11 Add the executed STC and FTC to their respective executed test sets;
12 end
13 while all stopping conditions are not satisfied do
14 if (a) the quantity of executed STCs/FTCs reaches a threshold or (b) every the

subdomains contains at least one executed STC/FTC or is surrounded by non-empty
subdomains then

15 p = p + 1;
16 Partition the relevant input domain into p ∗ p equally-sized subdomains;
17 end
18 Assume the existence of k (k > 0) source candidates;
19 for m = 1 → n do
20 for i = 1 → k do
21 Choose the ith source candidate and construct the follow-up candidate

based on the mth MR;
22 Count the sum of the quantity of source and follow-up candidates that

are located within an empty subdomain and not surrounded by any
non-empty subdomain, represented by NGi;

23 end
24 Choose the candidate MG with the largest NGi, represented by (NGi)m;
25 if multiple candidate MGs contain the maximum NGi value then
26 Choose one at random;
27 end
28 end
29 Choose the MR-MG pair with the largest (NGi)m;
30 if multiple MR-MG pairs contain the maximum (NGi)m value then
31 Choose one at random;
32 end
33 Execute the MG against the SUT and check whether the MR is violated;
34 Add the executed STC and FTC to their respective executed test sets;
35 end

144 metamorphic relation and group selection algorithm

• Step 18: Given the ith candidate MG, MRGS-ART counts the sum of the number of
source and follow-up candidates that are (1) within empty subdomains; and (2) not
surrounded by non-empty subdomains, denoted as NGi. The rationale behind this
step is to measure and compare the quality of the candidate MG, with the aim of
selecting the "most appropriate" one for execution.

Algorithm 9: MRGS-RPART for n 1-1 MRs with 2D input domains

1 Assume the existence of n 1-1 MRs;
2 Determine the scope of the source and follow-up input domains according to the

given MR;
3 Each MR is given one executed STC set and one executed FTC set;
4 Initialize the n executed STC sets and n executed FTC sets to be empty;
5 Randomly generate one STC for each MR;
6 Generate FTCs based on the MRs and the STCs;
7 for i = 1 → n do
8 Randomly choose an MR containing empty executed STC and FTC sets;
9 Execute the MG against the SUT and check whether the MR is violated;
10 Add the executed STC and FTC to their respective executed test sets;
11 end
12 while all stopping conditions are not satisfied do
13 Assume the existence of k (k > 0) source candidates;
14 for m = 1 → n do
15 for i = 1 → k do
16 Choose the ith source candidate and construct the follow-up candidate

based on the mth MR;
17 Map the source and follow-up candidates into the relevant subdomains

and calculate the size of the subdomains, represented by NGi;
18 end
19 Choose the candidate MG with the largest NGi, represented by (NGi)m;
20 if multiple candidate MGs contain the maximum NGi value then
21 Choose one at random;
22 end
23 end
24 Choose the MR-MG pair with the largest (NGi)m;
25 if multiple MR-MG pairs contain the maximum (NGi)m value then
26 Choose one at random;
27 end
28 Execute the MG against the SUT and check whether the MR is violated;
29 Add the executed STC and FTC to their respective executed test sets;
30 Partition the relevant subdomain by drawing horizontal and vertical lines based

on the currently-executed STC/FTC;
31 end

7.6 conclusion 145

7.5.3 Metamorphic Relation and Group Selection based on ART Through Random Partitioning
(MRGS-RPART)

Algorithm 9 presents the steps of MRGS-RPART with n 1-1 MRs and 2D input domains.
The underlined parts are steps that are different from the original MRGS-ART. The specific
explanation is as follows:

• Step 14: MRGS-RPART maps the source candidate into the source input domain and
maps the follow-up candidate into the follow-up input domain. Then MRGS-RPART
computes the sum of the size of all the occupied subdomains, represented by NGi.
The rationale behind this step is to measure and compare the quality of the candidate
MG, with the aim of selecting the "most appropriate" one for execution.

• Step 27: MRGS-RPART maps the currently-executed STC into the source input
domain and partitions the occupied subdomain by using horizontal and vertical
lines based on the executed STC; subsequently, MRGS-RPART maps the currently-
executed FTC into the follow-up input domain and partitions the occupied subdo-
main by using horizontal and vertical lines based on the executed FTC.

7.6 conclusion

It has been reported that the quality of MRs and MGs has a great impact on the perfor-
mance of MT [64, 246]. As the previous chapters (Chapters 4, 5 and 6) of this thesis have
concentrated on the identification of MRs and the generation of MGs from scratch, this
chapter mainly considers the selection of MR-MG pairs from existing ones, which is also
an area that have been neglected by prior studies in MT.

This chapter has integrated partition-based ART algorithms into MT and introduced
a novel black-box testing metric for selecting MR-MG pairs: The MR-MG pair is chosen
to maximize the distance between the current MG and executed and non-MR-violating
MGs. In particular, the rationale of this metric is to improve MT performance by making
STCs and FTCs evenly distributed throughout their respective input domains for all the
MRs included during the process of MT. At this point, a novel MR-MG pair selection al-
gorithm, MRGS-ART, was introduced, which is capable of automatically and adaptively
selecting effective MR-MG pairs according to executed and non-MR-violating MGs. BART,
a widely-used PART algorithm, was chosen to design the algorithm due to its ability to
effectively balance test efficiency and effectiveness [78]. Empirical experiments were con-
ducted to assess the performance of MRGS-ART on systems of varying complexities and
input dimensions. The experimental results have indicated that, compared to MT-RT (the
most commonly-used MR-MG pair selection algorithm [64, 246]), MRGS-ART was able to
detect the first MR violation faster and achieved a more even distribution of STCs and
FTCs throughout their respective input domains, while maintaining an acceptable com-
putational overhead to select MR-MG pairs from existing ones. Section 7.5.1 introduced
MRGS-ART+, which is an improved version of the original MRGS-ART. Sections 7.5.2 -

146 metamorphic relation and group selection algorithm

7.5.3 presented two additional MR-MG selection algorithms based on other widely-used
partition-based ART algorithms (IPART and RPART). Future work will involve evaluating
the performance of these algorithms and comparing them with MRGS-ART.

The subsequent chapter of this thesis will introduce the application of MT and ME as
supplementary approaches for model testing, verification, and selection in the domain of
credit risk assessment.

8
M E TA M O R P H I C T E S T I N G F O R VA L I D AT I N G
C R E D I T S C O R E A S S E S S M E N T M O D E L S

Papers delivered from this chapter (Under Review)

1. Zhihao Ying, Anthony Bellotti, Joe Breeden and Dave Towey. Metamorphic Explo-
ration for Machine Learning Validation and Model Selection. 1. Abstract from Credit
Scoring and Credit Control Conference, Edinburgh, United Kingdom, 2023.

2. Zhihao Ying, Anthony Bellotti, Joseph Lynn Breeden, and Dave Towey. Metamorphic
Testing and Exploration for Machine Learning Credit Score Models. Submitted to
Applied Soft Computing, 2024.

8.1 introduction and motivation

Digital decision tools have found widespread application in automating decision-making
within the financial services industry, supplanting human participants [112]. At the heart
of these tools are prediction models, forecasting individuals’ future behaviors based on
their past information and actions. For instance, credit risk models serve as statistical tools
extensively employed to estimate creditworthiness and forecast the probability of default
on credit commitments [225]. Credit bureaus and lenders rely on credit risk models to
evaluate the lending risk associated with individuals or businesses. Typically, credit risk
models express the probability of default through a credit score, a three-digit number rep-
resenting the creditworthiness of an individual or business. A higher score corresponds
to a lower probability of default, indicating a higher probability of being a responsible
borrower. Generally speaking, credit risk models function as binary classifiers designed
according to debt repayment [133, 274], used to distinguish between default (outstand-
ing loans) and non-default (repaid loans) scenarios. Given that default cases are always
much less common than non-default cases, credit risk models may encounter the highly
imbalanced classification challenge [31].

Employing credit risk models can have various benefits for both lenders and borrowers,
as described below:

• Fast and Cost-effective Decision Making: Automation of the assessment process
through credit risk models enables lenders to make lending decisions more rapidly
and economically compared to human counterparts.

147

148 metamorphic testing for validating credit score assessment models

• Enhance Accuracy and Avoid Risk: Credit risk models utilize statistical algorithms to
analyze large amounts of data, in order to identify potential risks and uncertainties
and provide more precise credit risk predictions compared to manual underwriting
processes.

• Consistency and Fairness: Credit risk models apply consistent standards to assess
creditworthiness, reducing the risk of bias/discrimination (i.e., based on race, gender,
or ethnicity) in loan decisions.

• Tailored Solutions: Lenders have the flexibility to customize credit risk models based
on specific needs (such as lending policies and target markets), enhancing the adapt-
ability of credit decision-making.

• Fraud Prevention: Credit risk models can integrate fraud detection algorithms to
identify and avoid suspicious/fraudulent activities, with the aim of reducing risks.

Credit risk models are therefore of great value to both lenders and borrowers, which
highlights the need for efforts to determine whether or not the credit risk models de-
veloped and applied within the financial services industry meet the needs of users. The
fundamental model evaluation approach needs to ensure a satisfactory model-fit, charac-
terized by a clear distinction between the default and non-default categories. Common
measures employed for this assessment include the Area Under the ROC Curve (AUC),
Kolmogorov-Smirnov statistic or the Gini score, which can be used to measure the dis-
crimination power of the models, thus helping in model selection [26, 124]. Evaluation is
performed on an independent test set or through methodologies like cross-validation in
order to alleviate the risk of model over-fitting.

The implementation of ME represents an optimal strategy for any commercial applica-
tion of prediction algorithms such as credit scoring. A notably evident business rationale,
for instance, suggests that increasing the credit scores of individuals or businesses (with
other factors held constant) ought to enhance their likelihood of obtaining a loan. The
anticipated association between credit score and risk is described as follows:

• "Your credit score is important. The higher your credit rating, the better your chances
of being accepted for credit at the best rates. It can influence your ability to get things
like credit cards, loans, mortgages, mobile contracts and more"1.

• "If you have a low or ’bad’ credit score, you’re more likely to be turned down when
you apply to borrow money, or offered less favourable interest rates, in which case
you should take steps to improve your score"2.

An HMR can be identified based on the anticipated association between credit score and
risk, subsequently followed by empirical validation to assess the quality and performance
of models.

1 https://www.experian.co.uk/consumer/guides/improve
-credit-score.html (3 March 2023)

2 https://www.which.co.uk/money/credit-cards-and-
loans/credit-scores/how-to-improve-your-credit-score
-am4S05w3aUIE (3 March 2023)

8.2 research questions 149

This chapter introduces a novel approach for empirically assessing the quality and per-
formance of credit risk models on the basis of MT and ME: Users are able to identify HMRs
according to business expectations hypothesized by users, and forecast the potential im-
pact of specific input modifications on the output. This, to the best of our knowledge, is
the first exploration of using ME in evaluating credit risk models. Conventional ML-based
model evaluation methodologies typically compare the predicted outputs with the actual
results to determine the accuracy of the test set classification. In contrast, the proposed
approach assesses whether or not the outputs conform to the anticipated changes, as de-
clared in the HMRs. This chapter presents a case study investigating and comparing the
application of conventional evaluation metrics with the proposed approach for assessing
ML-based credit risk models. Specifically, this chapter applies the proposed approach to
evaluate the performance of models chosen via conventional model-fit evaluation metrics.
Empirical experimentation revealed that the models under test frequently violated the
HMRs, and the number of violations increases with the grow of model size/complexity.
Thus, it might be advantageous to employ the proposed approach for re-validating ex-
isting credit risk models and incorporate it into the credit risk model testing, evaluation
and selection process. Additionally, given that HMR identification and ME implementa-
tion do not require expertise or familiarity with software testing, the proposed approach
is generally straightforward and user-friendly.

8.2 research questions

The following RQs were formulated to provide guidance for the empirical experiments:
RQ1: What are the relations between conventional evaluation metrics and ME in evalu-
ating ML-based credit risk models?

• Objective: Explore whether or not HMR violations can be identified on the models
chosen based on conventional evaluation metrics of model-fit (such as AUC).

• Motivation: This chapter presents a novel approach for empirically assessing the
quality and the performance of credit risk models according to ME, an examination
of the relations between conventional evaluation metrics and ME in evaluating ML-
based credit risk models should be conducted.

• Methodologies: Apply ME to evaluate the models chosen through conventional eval-
uation metrics of model-fit (i.e., AUC)

RQ2: What factors may have an impact on the performance of ME in evaluating credit
risk models?

• Objective:

1. Explore the impact on lenders and customers of deploying credit risk models
based on ME or conventional evaluation metrics (such as AUC).

150 metamorphic testing for validating credit score assessment models

2. Provide lenders and customers with suggestions for the effective selection, ap-
plication and validation of credit risk models.

• Motivation: Since this chapter presented proposed to apply ME to empirically assess
the quality and the performance of credit risk models, an investigation of how to
effectively apply ME should be conducted.

• Methodologies:

1. Select three possible factors that are likely to have an impact on the performance
of ME:

a) The size/complexity of a model, as it is a factor that has an impact on the
performance of the model on traditional evaluation metrics (i.e., AUC) [26,
124] and interpretability [16]: Complex models are models with a non-linear
structure and a larger number of parameters and hence more flexibility in
fitting the training data. For example, the complexity of a neural network
is based on the number of layers and neurons [2, 105, 160], while for a
gradient-boosting decision tree, it is the number and depth of trees [114],
amongst other possible parameters. Classically, the size/complexity and ac-
curacy of a model are often positively correlated, and a model with a larger
size or higher complexity can mean that the model is likely to have lower in-
terpretability. In general, overly complex models can lead to over-fitting. In
the context of MT, it is expected that overly complex models may also lead
to higher chance of HMR violations, since any particular decision on a new
customer may be based on idiosyncratic fit to training data or influenced
by noise in training data, rather than expressing a general rule genuinely
related to the business area and expressed in the HMRs.

b) The specific models used, as it is also a factor that has an impact on the
performance of the model on traditional evaluation metrics (illustrated in
Section 2.5.5).

c) The specific HMRs used, as previous researches [64, 246] on MRs and HMRs
have repeatedly demonstrated their impacts on the performance of MT and
ME.

2. Modify the values of the factors that may have an impact on the performance of
ME to investigate the best performance of ME.

3. Design sub-RQs to delve deeper into specific aspects of performance.

• Sub-RQs:

1. Will the performance of ME in evaluating credit risk models be affected by the size
or complexity of the models? The major factor considered in this sub-RQ is the
size/complexity of the models. Loosely speaking, the number of neurons was
modified to change the size/complexity of neural networks, and the numbers
of trees in gradient-boosting trees and random forests were modified to change
the sizes/complexities.

8.3 case study of credit risk models 151

2. Will the performance of ME in evaluating credit risk models be affected by the specific
HMRs used? This sub-RQ investigates whether or not some particular HMRs
are more likely to be violated than others. Specifically, five different HMRs were
identified and explored.

3. Will the performance of ME in evaluating credit risk models be affected by the specific
models used? This sub-RQ investigates that given the same set of HMRs and
datasets, whether or not different models would lead to different numbers of
HMR violations and which ones were more or less vulnerable to HMR viola-
tions.

8.3 case study of credit risk models

8.3.1 Experimental Setup

The publicly available dataset of Freddie Mac US mortgages3 in 2016 and 2018 was selected
for these experiments. The user guide for Freddie Mac mortgage loan data [188] provides
a detailed introduction to the dataset The rationale for choosing the 2018-oriented dataset
is that when the project began in 2022, it was the latest dataset allowing for a 3-year
observation period. In the experiments, to ensure that the experimental results were not
affected by the COVID-19 outbreak, the 2016-oriented dataset (with a 3-year observation
period), which does not contain the COVID-19 outbreak, was also considered. In these
two datasets, default is defined as at least 90 consecutive days of delinquent on mortgage
repayments or all real estate acquisitions within 3 years of account opening. The raw 2016-
oriented dataset consists of 43,232 clients with 1,360 default loans, while the raw 2018-
oriented dataset consists of 44,672 clients with 1,467 default loans. In each iteration of the
experiments, the two datasets were randomly divided into training and testing sets, with
a segmentation ratio of 3 : 1, where 75% of the dataset were added to the training set and
25% were added to the testing set.

These experiments include two types of tests:

1. Timely and out-of-sample testing: Test a model independently to avoid over-fitting
and validate the generalization ability of the model [127, 283]. Over-fitting represents
when a model can only give accurate predictions for training data but performs
poorly on unseen data [127, 283]. By employing an independent test set for model
validation, the training set can be used to train the model, and the test set can be
used to validate the performance of a model on unseen data, in order to detect and
prevent over-fitting. The testing set and training set have the same distribution.

2. Predictive analytics [161, 208]: Evaluate the forecast performance of a model, which
is a realistic scenario that matches how the finance practitioners use the model.

It should be noted that the class imbalance problem (that is, lower default rate) is likely
to have an impact on the performance of models. In order to alleviate the problem and im-

3 https://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page (9 August 2023)

152 metamorphic testing for validating credit score assessment models

prove the experimental performance, re-sampling was considered [31]. That is, the defaults
in the training dataset were tripled in order to re-sample the datasets. For example, the
raw 2018-oriented training dataset consists of 32,404 non-defaults and 1,101 defaults. After
re-sampling (tripling the defaults), the new training dataset consists of 32,404 non-defaults
and 3 ∗ 1101 = 3303 defaults. Additionally, the testing dataset was not re-sampling, with
the aim of ensuring that the true distribution of the results were reflected. Table 32 de-
scribes the detailed information of the training and testing datasets.

Based on the findings of previous researchers on machine learning used for credit scor-
ing (as illustrated in Section 2.5.5), three popular ML-based models were chosen, including
neural networks, gradient-boosting decision trees and random forests. The functions from
Scikit-learn in Python4 were adopted to build models. Particularly, the following steps
were adopted to build models with various sizes/complexities:

• The number of hidden neurons and the number of hidden layers were modified
to vary the sizes/complexities of multi-layer neural networks. More specifically, the
MLPClassifier function was chosen to build multi-layer neural networks, and the
values of the hidden_layer_sizes parameter in the MLPClassifier function were edited
to vary model sizes/complexities. The number of hidden neurons in each layer in-
cludes 1, 2, 3, 4 and 5; while the number of hidden layers includes 1, 2 and 3. In this
context, there are a total of 15 sets of multi-layer neural networks of different sizes/-
complexities. It is noteworthy that a neural network with no hidden layers and only
one output node corresponds to logistic regression: This scenario was not considered
as it is essentially a linear model, if weights from each parameter are in the correct
direction [28], no HMR violations should be detected.

• The number of trees was modified to vary the sizes/complexities of gradient-
boosting decision trees. In particular, the GradientBoostingClassifier function was
used to build gradient-boosting decision trees, and the values of the n_estimators pa-
rameter in this function were edited to vary model sizes/complexities. The input
values of n_estimators included 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500 and 1000.

• The number of trees was modified to vary the sizes/complexities of random forests.
Particularly, the RandomForestClassifier function was applied to build random
forests and the values of n_estimators parameter in this function were edited to
change model sizes/complexities. The input values of n_estimators included 1, 50,
100, 500, 1000, 5000, 10000 and 20000. Note that in our experiments, only the val-
ues of above-mentioned parameters were modified, while all other parameters were
default values.

With the aim of robustly investigating the performance of credit-risk models, all the
experiments were repeated 100 times to compute the average number of HMR violations,
average AUC value, and average standard deviation value. The rationale behind is to
account for randomness in the model-building process, such as initial parameter settings

4 https://scikit-learn.org (9 August 2023)

8.3 case study of credit risk models 153

Table 32: Credit Dataset Size

Year Dataset
Test Cases

Total
Defaults Non-Defaults

Number Percentage Number Percentage

2016

Training Set 34,464 1020*3=3060 8.88% 31,404 91.12%
Testing Set 10,808 340 3.15% 10,468 96.85%

2018

Training Set 35,707 1101*3=3303 9.25% 32,404 90.75%
Testing Set 11,167 366 3.28% 10,801 96.72%

or bootstrap sampling. The percentage of HMR violations was used in order to clearly
illustrate the magnitude of the problem, rather than absolute numbers.

One-hot encoding [242] is a widely-used methodology in the field of credit-risk assess-
ment [107, 255]: It uses an indicator variable for each category to encode categorical vari-
ables. The following categorical parameters from the datasets were one-hot encoded: “Loan
Purpose”, “Property Type”, “Channel”, “Property State”, “Occupancy Status”, and “First
Time Home-buyer”. After one-hot encoding, the 2016-oriented dataset consists of 80 input
parameters, while the 2018-oriented dataset consists of 79 input parameters.

In order to facilitate data processing, the remaining parameters that were not one-hot
encoded were standardized based on the following formula:

x′ =
x − µ

σ
(11)

• x: The input parameters.

• µ: The sample mean in the training set for x.

• σ: The standard deviation in the training set for x.

• x′: The value of the parameter after standardization.

8.3.2 Input Parameters

A total of 15 attributes were included as input parameters for the ML-based models, with
their basic information summarized below.

• Credit Score: This represents the creditworthiness of borrowers, and forecasts their
potential ability to repay future debts punctually. The possible range of the input
parameter is [300, 850], where 9999 indicates unavailable.

• Loan-To-Value (LTV): Assuming the acquisition of a mortgage loan, this LTV ratio can
be computed by dividing the original mortgage loan amount by the appraised value
of the mortgaged property. The possible range of the input parameter is [1%, 98%],
where 999 indicates unavailable.

• Debt-To-Income (DTI): This denotes the percentage of the monthly income that goes
to debt payments. The possible range of the input parameter is [0%, 65%], where 999
indicates unavailable.

154 metamorphic testing for validating credit score assessment models

• Original Loan Term: This denotes the terms involved when borrowing money. For
instance, the period (expressed in months or years) over which a home-buyer should
pay back the initial principal balance plus interest.

• Number of Borrowers: This reflects the number of borrowers responsible for repaying
the mortgage note secured by the property. The possible range of the input parameter
is [1, 10], where 99 indicates missing data.

• Original Interest Rate (OIR): This denotes the initial interest rate specified in the mort-
gage agreement. The possible range of the input parameter is [2.5, 6].

• Unpaid Principal Balance (UPB): This represents the UPB of the mortgage as of the
note date.

• Mortgage Insurance Rate: This represents the rate of coverage for loan losses. The
possible range of the input parameter is [1%, 55%], where 999 indicates unavailable.

• Number of Units: This represents the property-units numbers. The possible range of
the input parameter is [1, 4], where 99 represents unavailable.

• First Time Home-buyer: This represents whether or not a borrower (1) acquires the
mortgaged property; (2) intends to use it as a primary residence; and (3) has not
owned a residence within three years before acquiring the mortgaged property. The
possible values of the input parameter contain Y (Yes) and N (No), where 9 indicates
unavailable.

• Occupancy Status: This represents the category of the mortgage loan. The possible
values of the input parameter contain P (Primary Residence), I (Investment Property),
and S (Second Home), where 9 indicates unavailable.

• Channel: This indicates the involvement of a broker or correspondent in the mort-
gage loan origination process. The possible values of the input parameter contain R
(Retail), B (Broker), and C (Correspondent), where 9 indicates unavailable.

• Property State: This represents the territory/state of the mortgaged property, repre-
sented by a two-letter abbreviation (i.e., AL for Alabama, FL for Florida, and LA for
Louisiana). There are a total of 56 potential values for this input parameter, consist-
ing of 50 states, one district (D.C. for Washington), and five territories (including the
U.S. Virgin Islands, Puerto Rico, Northern Mariana Islands, Guam, and American
Samoa).

• Property Type: This represents the category of property subject to the mortgage. The
possible values of the input parameter contain CO (Condominium), PU (Planned
Unit Development), MH (Manufactured Home), SF (Single-Family Home), and CP
(Cooperative Share), where 99 denotes unavailable.

• Loan Purpose: This indicates the category of mortgage loan. The possible values of the
input parameter contain P (Purchase Mortgage), C (Cash-Out Refinance Mortgage),

8.3 case study of credit risk models 155

N (No Cash-Out Refinance Mortgage), and R (Not Specified Refinance Mortgage),
where 9 denotes unavailable.

8.3.3 HMRs

In the experiment, this thesis identified a total of five HMRs for the models. This thesis
used different operators (additive and multiplicative) to construction different HMRs, in
order to increase the diversity of the HMRs. The definitions of the five HMRs are as follows.

• HMR1: If multiplying the credit score in the source inputs using a specific percentage
p(p > 100%) to construct the follow-up inputs, the probability of default is expected
to decrease or remain the same. In this experiment, the value of P was set to 110%.
This MR was identified according to the credit score business rationale analyzed in
in the Section 8.1.

• HMR2: If multiplying the DTI in the source inputs using a specific percentage P(P <

100%) to construct the follow-up inputs, then the probability of default is expected
to decrease or remain unchanged. In this experiment, the value of P was set to 90%.
The business rationale behind this HMR is that a lower debt corresponds to less risk.

• HMR3: If multiplying the LTV in the source inputs using a specific percentage P(P <

100%) to construct the follow-up inputs, then the probability of default is expected to
decrease or remain unchanged. In this experiment, the value of P was set to 90%. The
business rationale behind this HMR is that a higher LTV denotes higher credit risk.
Different from credit score, in general, to be eligible for the best mortgage products,
a home purchaser would be advised by a mortgage advisor to keep a low LTV.

• HMR4: If multiplying the credit score in the source inputs using a specific percent-
age P1(P1 > 100%), and multiplying the LTV in the source inputs using a specific
percentage P2(P2 < 100%) to construct the follow-up inputs, then the probability of
default is expected to decrease or remain unchanged. In the experiment, the value of
P1 was set to 110% and the value of P2 was set to 90%. HMR4 is identified based on
the composition [182] of HMR1 and HMR3.

• HMR5: If multiplying the credit score in the source inputs using a specific percent-
age P1(P1 > 100%), multiplying the LTV in the source inputs using P2(P2 < 100%),
and multiplying the DTI using P3(P3 < 100%, to generate follow-up inputs, then the
probability of default is expected to decrease or remain unchanged. In this experi-
ment, the value of P1 was set to 110%, the value of P2 was set to 90%, and the value
of P3 was set to 90%. HMR5 is identified based on the composition [182] of HMR1,
HMR2 and HMR3.

HMR4 and HMR5 are both composite MRs used to identify violations under joint condi-
tions [182]. This allows for tests that are more realistic, since testers would expect multiple
variable values to change simultaneously.

156 metamorphic testing for validating credit score assessment models

8.3.3.1 Difference Range in HMR Violations

In order to explore the range of differences between the source and follow-up outputs,
an instance of gradient-boosting decision tree with 1000 trees was trained according to
HMR1 and the 2018-oriented dataset, as illustrated in Fig. 50: The vertical axis represents
the range of differences between the source and follow-up outputs, while the horizontal
axis denotes the number of violations within different ranges. It can be seen that most of
the violations fall within the range of [10−3, 10−0]. Since a change of 10−2 is relatively large
in the probabilities of default and an HMR violation with a difference of less than 10−2

between the source and follow-up outputs may not have a significant impact, the concepts
of strong violations and weak violations are defined as follows:

• Definition 8.1 (Strong (HMR) Violations): The (HMR) violations with a difference of no
less than 10−2 between the source output and subsequent outputs.

• Definition 8.2 (Weak (HMR) Violations): The (HMR) violations with a difference of less
than 10−2 between the source output and subsequent outputs.

Figure 50: An instance of the number of HMR violations in different ranges

8.3.3.2 A Strong HMR Violation Example

The following is a typical example of a strong HMR violation. A gradient-boosting decision
tree with 1000 trees was built using HMR1 and the 2018-oriented dataset. The description
of this model and the experimental results are as follows:

• Non-standardized values of the input parameters from the STC: Credit Score=661,
Mortgage Insurance Rate=0, Number of Units=1, DTI=32, UPB=227000, LTV=67,
OIR=5.875, Original Loan Term=360, and Number of Borrowers=1.

• Values of the input parameters from the FTC: Keep unchanged, except for Credit
Score = 661*110% ≈ 727.

8.3 case study of credit risk models 157

• Source output: 0.150.

• Expected follow-up output: ≤ 0.150.

• Actual follow-up output: 0.177.

This HMR1 violation indicates that increasing the value of the credit score resulted in
an unexpected increase in the value of probability of default.

8.3.4 Experimental Results

This section provides the experimental results of the three ML-based models using the
2016-oriented and 2018-oriented datasets, as illustrated in Table 33 - 38. It can be observed
that, in all experiments, the AUC standard deviation is relatively low than the mean, indi-
cating that the models are stable and the experimental results are reliable.

8.3.4.1 Neural Network Experimental Results

The neural network experimental results are illustrated in Tables 33 - 34. It can be observed
that, in both datasets, one layer with three neurons achieved the largest AUC value, with
AUC = 0.728 for 2016 and AUC = 0.759 for 2018. Except for HMR3, the proportion of
HMR violations is usually low (no more than 1%). The proportion of HMR violations
usually increases with the number of layers and neurons. Even in the worst-case scenario
(5 ∗ 3), the proportion of HMR violations is still greater than 1%.

8.3.4.2 Gradient-boosting Decision Tree Experimental Results

The gradient-boosting decision trees experimental results are illustrated in Tables 35 - 36.
The following observations can be made:

• In the 2016-oriented dataset: The proportion of HMR violations was high, with strong
violations exceeding 1%. The highest AUC value (0.731) was achieved for 80 trees.

• In the 2018-oriented dataset: The proportion of HMR violations was typically lower
than that of the 2016-oriented dataset. The highest AUC value (0.760) was achieved
for 90 trees.

• In both scenarios, the proportion of HMR violations usually increases with the num-
ber of trees.

8.3.4.3 Random Forests Experimental Results

The random forests experimental results are illustrated in Tables 37 - 38. The following
observations can be made:

158 metamorphic testing for validating credit score assessment models

Table 33: Back-propagation neural networks experimental using the 2016-oriented dataset (n*m =
(number of neurons in each layer) * (number of layers))

Hidden
Layer Size

1*1 2*1 3*1 4*1 5*1 1*2 2*2 3*2 4*2 5*2 1*3 2*3 3*3 4*3 5*3

HMR1

Strong 0.01% 0.10% 0.07% 0.23% 0.36% 0% 0.25% 0.27% 0.76% 1.60% 0% 0.01% 0.59% 1.88% 3.41%
Weak 0.02% 0.19% 0.11% 0.31% 0.45% 0.03% 0.39% 0.30% 0.96% 1.87% 0% 0.07% 0.89% 2.11% 3.57%

HMR2

Strong 0% 0.03% 0.13% 0.18% 0.29% 0% 0.05% 0.38% 0.84% 1.87% 0% 0.09% 0.51% 1.43% 3.40%
Weak 0.01% 0.12% 0.74% 0.97% 1.39% 0% 0.51% 1.00% 3.29% 5.15% 0% 0.42% 1.78% 5.20% 8.21%

HMR3

Strong 0% 0.14% 0.74% 0.85% 1.83% 0% 0.40% 1.04% 3.05% 4.93% 0% 0.37% 1.52% 4.29% 5.98%
Weak 0.01% 0.58% 2.48% 4.42% 7.92% 0% 1.81% 4.88% 9.03% 13.02% 0% 2.13% 7.43% 13.66% 15.23%

HMR4

Strong 0.01% 0.08% 0.08% 0.15% 0.27% 0% 0.21% 0.16% 0.60% 1.28% 0% 0.01% 0.49% 1.58% 2.96%
Weak 0.02% 0.14% 0.08% 0.21% 0.30% 0.03% 0.38% 0.31% 0.66% 1.48% 0% 0.08% 0.76% 2.03% 2.71%

HMR5

Strong 0.01% 0.05% 0.02% 0.08% 0.17% 0% 0.15% 0.05% 0.42% 0.85% 0% 0.01% 0.35% 1.22% 2.20%
Weak 0.02% 0.11% 0.10% 0.13% 0.19% 0.02% 0.15% 0.18% 0.48% 1.13% 0% 0.09% 0.62% 1.73% 2.32%

AUC
Mean 0.685 0.718 0.728 0.722 0.717 0.635 0.693 0.721 0.709 0.703 0.585 0.673 0.700 0.704 0.699

Standard
Deviation

0.096 0.051 0.004 0.007 0.007 0.115 0.085 0.011 0.031 0.012 0.112 0.097 0.056 0.014 0.013

Table 34: Back-propagation neural networks experimental using the 2018-oriented dataset (n*m =
(number of neurons in each layer) * (number of layers))

Hidden
Layer Size

1*1 2*1 3*1 4*1 5*1 1*2 2*2 3*2 4*2 5*2 1*3 2*3 3*3 4*3 5*3

HMR1

Strong 0% 0.03% 0.03% 0.02% 0.02% 0% 0.02% 0.16% 0.26% 0.47% 0% 0.02% 0.34% 0.52% 1.42%
Weak 0% 0.05% 0.05% 0.02% 0.06% 0% 0.15% 0.09% 0.25% 0.48% 0% 0.25% 0.20% 0.56% 1.29%

HMR2

Strong 0% 0.08% 0.21% 0.56% 0.67% 0% 0.10% 0.64% 1.09% 2.48% 0% 0.07% 0.73% 1.67% 3.96%
Weak 0% 0.31% 1.46% 1.69% 2.70% 0% 0.39% 1.87% 3.91% 6.70% 0% 0.84% 2.05% 4.33% 8.53%

HMR3

Strong 0% 0.14% 0.75% 1.14% 2.11% 0% 0.22% 0.98% 2.85% 4.79% 0% 0.19% 1.58% 3.10% 5.29%
Weak 0% 1.11% 2.75% 5.92% 8.21% 0% 1.17% 4.45% 10.39% 14.05% 0% 1.05% 4.48% 13.26% 13.48%

HMR4

Strong 0% 0.01% 0.01% 0.01% 0.01% 0% 0.01% 0.15% 0.24% 0.42% 0% 0.02% 0.28% 0.43% 1.27%
Weak 0% 0.03% 0.04% 0.02% 0.01% 0% 0.15% 0.09% 0.27% 0.45% 0% 0.24% 0.30% 0.45% 1.23%

HMR5

Strong 0% 0.01% 0.01% 0% 0% 0% 0% 0.11% 0.18% 0.31% 0% 0.01% 0.20% 0.36% 0.86%
Weak 0% 0.02% 0.04% 0.01% 0% 0% 0.13% 0.09% 0.16% 0.32% 0% 0.24% 0.20% 0.44% 0.92%

AUC
Mean 0.747 0.755 0.759 0.753 0.748 0.659 0.733 0.748 0.747 0.740 0.570 0.682 0.744 0.741 0.731

Standard
Deviation

0.059 0.038 0.003 0.005 0.006 0.133 0.080 0.006 0.010 0.009 0.118 0.123 0.048 0.012 0.012

• In the 2016-oriented dataset: The proportion of HMR violations was very high
(greater than 10%). The best AUC value (0.696) was achieved when the number of
trees was 5000.

• In the 2018-oriented dataset: The proportion of HMR violations was very high
(greater than 10%). The best AUC value (0.721) was achieved when the number of
trees was 5000.

• In both scenarios, the proportion of HMR violations usually increases with the num-
ber of trees and stabilizes after reaching 5000.

• Gradient-boosting decision trees and random forests are likely to perform well for
number of HMR violations until the number of trees reaches a certain threshold. For
instance, the experimental results shown in Table 35 indicate that when the number
of trees was less than 70, the number of strong HMR violations was less than 2%, and
the number of strong HMR violations increases with the number of trees, typically
greater than 14%.

• In all experiments, HMR3 was able to achieve the highest proportion of HMR vio-
lations, followed by HMR2. HMR1 has the lowest proportion of HMR violations, as
well as the composite HMR4 and HMR5.

8.3 case study of credit risk models 159

Table 35: Gradient-boosting decision trees experimental using the 2016-oriented dataset
Number
of Trees

1 10 20 30 40 50 60 70 80 90 100 500 1000

HMR1

Strong 0% 0.02% 0.02% 2.05% 2.11% 1.89% 1.62% 26.07% 24.82% 24.20% 23.96% 22.15% 14.76%
Weak 0% 0.02% 0.96% 23.66% 20.64% 19.94% 19.57% 13.79% 14.75% 14.65% 14.95% 12.94% 8.91%

HMR2

Strong 0% 0.03% 0.19% 0.11% 0.15% 0.21% 0.25% 0.24% 0.25% 0.35% 0.36% 3.94% 5.46%
Weak 0% 0.46% 0.46% 0.44% 0.76% 0.54% 0.62% 1.22% 1.21% 1.21% 1.20% 6.11% 11.91%

HMR3

Strong 0% 0% 0.01% 0.03% 0.19% 0.26% 0.17% 0.26% 0.98% 0.96% 1.17% 19.45% 33.28%
Weak 0% 0% 0% 0.01% 0.41% 0.52% 0.61% 0.68% 0.56% 0.57% 0.57% 31.47% 23.94%

HMR4

Strong 0% 0.02% 0.03% 1.75% 1.55% 1.24% 0.99% 24.64% 23.33% 22.65% 22.34% 24.18% 20.31%
Weak 0% 0.02% 0.88% 23.40% 20.12% 19.46% 19.01% 14.27% 14.90% 14.80% 14.93% 12.54% 10.89%

HMR5

Strong 0% 0.03% 0.03% 0.39% 0.34% 0.25% 0.22% 18.98% 17.86% 17.10% 16.62% 16.59% 13.88%
Weak 0% 0.01% 0.12% 14.79% 12.78% 11.90% 11.63% 11.55% 11.94% 11.94% 12.24% 11.72% 9.47%

AUC
Mean 0.680 0.712 0.721 0.726 0.727 0.729 0.730 0.730 0.731 0.730 0.730 0.707 0.679

Standard
Deviation

1*10
−16

1*10
−16

1*10
−16

1*10
−16

1*10
−16

6*10
−7

8*10
−7

7*10
−7

8*10
−7

9*10
−7

9*10
−6

3*10
−5

4*10
−5

Table 36: Gradient-boosting decision trees experimental using the 2018-oriented dataset
Number
of Trees

1 10 20 30 40 50 60 70 80 90 100 500 1000

HMR1

Strong 0% 0.17% 0.23% 0.29% 0.28% 0.33% 0.32% 0.35% 0.36% 0.37% 0.36% 0.86% 1.76%
Weak 0% 0.01% 0.04% 0.14% 0.27% 0.07% 0.09% 0.34% 0.33% 0.80% 0.84% 0.43% 1.13%

HMR2

Strong 0% 0.18% 0.38% 0.40% 0.42% 0.51% 0.55% 0.61% 0.62% 0.68% 0.66% 5.88% 8.51%
Weak 0% 1.46% 0.19% 0.57% 0.59% 0.59% 1.97% 1.97% 1.94% 1.97% 1.01% 10.23% 14.93%

HMR3

Strong 0% 0% 0.06% 0.37% 0.49% 0.47% 0.44% 0.43% 0.46% 0.45% 0.52% 4.35% 7.20%
Weak 0% 0% 0.27% 1.92% 1.76% 1.28% 1.24% 0.86% 0.84% 0.85% 0.89% 12.53% 14.78%

HMR4

Strong 0% 0.17% 0.22% 0.32% 0.33% 0.31% 0.31% 0.32% 0.33% 0.33% 0.33% 0.67% 1.49%
Weak 0% 0.01% 0.17% 0.70% 0.77% 0.47% 0.46% 0.40% 0.42% 0.55% 0.57% 0.60% 1.56%

HMR5

Strong 0% 0.23% 0.35% 0.35% 0.30% 0.37% 0.37% 0.36% 0.39% 0.41% 0.38% 0.82% 1.60%
Weak 0% 0.02% 0.09% 0.61% 0.71% 0.55% 0.61% 0.60% 0.57% 0.66% 0.60% 0.57% 1.44%

AUC
Mean 0.707 0.733 0.746 0.752 0.753 0.755 0.757 0.758 0.759 0.760 0.759 0.749 0.734

Standard
Deviation

1*10
−16

1*10
−16

1*10
−6

1*10
−6

1*10
−6

2*10
−6

2*10
−6

2*10
−6

2*10
−6

2*10
−6

5*10
−6

1*10
−4

2*10
−4

8.3.5 Forecast Performance

To comprehensively investigate the performance of the models, the forecast performance of
the models was also considered, as it is common in the development of credit risk models:
In forecasting, historical information is used to predict a range of probable future out-
comes. In particular, the models were trained according to the 2016-oriented dataset and
then tested according to the 2018-oriented dataset. Because the gradient-boosting decision
tree achieved the best performance in terms of AUC, it is selected as the baseline model.
The experimental results are illustrated in Table 39. It can be observed that multiple HMR
violations were detected. It is worth further comparing the forecast results with those fore-
casts for 2018 based on training in the same year (Table 36). The 80 tree gradient-boosting
decision tree will be selected if the best AUC for 2016 is given priority. Nevertheless, it can
be observed that this will lead to an increasing number of HMR violations. Alternatively,
20 trees would be a good choice if prioritizing reducing the number of HMR violations
as well as improving AUC values. In general, the forecast performance of the models is
highly identical to that of the real-time testing model. This indicates that it is a good idea
to choose a credit risk model with fewer HMR violations.

160 metamorphic testing for validating credit score assessment models

Table 37: Random forests experimental results using the 2016-oriented dataset
Number
of Trees

1 50 100 500 1000 5000 10000 20000

HMR1

Strong 3.21% 42.45% 45.88% 42.35% 41.74% 41.67% 41.55% 41.59%
Weak 0% 0% 2.96% 12.37% 13.76% 14.65% 14.79% 14.81%

HMR2

Strong 1.27% 18.89% 19.50% 11.03% 10.13% 9.34% 9.20% 9.10%
Weak 0% 0% 3.54% 18.63% 21.38% 24.15% 24.55% 24.75%

HMR3

Strong 1.47% 26.47% 28.80% 20.39% 19.01% 18.26% 18.11% 18.07%
Weak 0% 0% 4.64% 24.21% 27.98% 31.80% 32.53% 32.86%

HMR4

Strong 3.87% 44.79% 47.87% 44.53% 43.90% 43.83% 43.75% 43.77%
Weak 0% 0% 2.78% 11.15% 12.36% 13.23% 13.46% 13.52%

HMR5

Strong 3.47% 40.29% 42.93% 38.57% 37.76% 37.70% 37.59% 37.66%
Weak 0% 0% 2.49% 11.26% 12.64% 13.57% 13.72% 13.77%

AUC
Mean 0.517 0.660 0.677 0.691 0.695 0.696 0.696 0.696

Standard
Deviation

8*10
−3

9*10
−3

6*10
−3

3*10
−3

2*10
−3

9*10
−4

7*10
−4

5*10
−4

Table 38: Random forests experimental results using the 2018-oriented dataset
Number
of Trees

1 50 100 500 1000 5000 10000 20000

HMR1

Strong 1.49% 16.20% 16.94% 9.44% 8.46% 7.86% 7.76% 7.69%
Weak 0% 0% 2.83% 16.80% 19.37% 22.60% 23.11% 23.56%

HMR2

Strong 1.60% 19.94% 20.23% 11.78% 10.69% 9.91% 9.76% 9.74%
Weak 0% 0% 3.81% 18.45% 21.24% 24.41% 24.90% 25.21%

HMR3

Strong 1.44% 26.45% 28.54% 19.98% 18.81% 17.72% 17.48% 17.44%
Weak 0% 0% 4.85% 24.32% 28.56% 32.90% 33.69% 34.28%

HMR4

Strong 2.00% 22.10% 23.43% 14.88% 13.60% 12.70% 12.41% 12.38%
Weak 0% 0% 2.89% 17.04% 19.56% 22.06% 22.37% 22.59%

HMR5

Strong 2.05% 20.83% 21.68% 12.66% 11.27% 10.33% 10.11% 10.05%
Weak 0% 0% 2.41% 15.14% 17.23% 19.26% 19.57% 19.81%

AUC
Mean 0.527 0.693 0.707 0.718 0.719 0.721 0.721 0.721

Standard
Deviation

7*10
−3

7*10
−3

6*10
−3

2*10
−3

2*10
−3

1*10
−3

7*10
−4

4*10
−4

8.3.6 Answers to Research Questions

8.3.6.1 Answer to RQ1

The following conclusions can be inferred on the basis of the experimental results and
discussions:

• HMR violations still can be detected even when employing ME on the model exhibit-
ing the highest AUC value.

• The model with minimal HMR violations (0 violations) did not necessarily demon-
strate the highest AUC value. These models include a neural network containing one
hidden layer and one hidden neuron, a neural network containing two hidden layers
with one hidden neuron each, a neural network containing three hidden layers and
one hidden neuron in each layer, and a gradient-boosting decision tree containing
one tree.

8.3 case study of credit risk models 161

Table 39: The forecast experimental results of gradient-boosting decision trees
Number
of Trees

1 10 20 30 40 50 60 70 80 90 100 500 1000

HMR1

Strong 0% 0% 0.02% 3.81% 3.04% 3.05% 2.79% 21.11% 19.65% 18.71% 18.49% 18.82% 12.64%
Weak 0% 0.04% 1.11% 18.98% 16.30% 15.17% 15.05% 13.25% 14.26% 14.40% 14.49% 9.75% 7.74%

HMR2

Strong 0% 0.08% 1.79% 1.81% 2.07% 2.29% 2.35% 2.27% 2.34% 3.84% 3.81% 6.94% 8.41%
Weak 0% 0.38% 0.54% 0.44% 0.88% 0.66% 0.71% 1.87% 1.80% 2.53% 2.52% 8.60% 18.64%

HMR3

Strong 0% 0% 0% 0.01% 0.24% 0.39% 0.34% 0.67% 1.54% 1.55% 1.77% 18.97% 32.05%
Weak 0% 0% 0% 0.01% 0.41% 0.91% 0.89% 0.82% 0.80% 0.80% 0.81% 29.55% 24.69%

HMR4

Strong 0% 0% 0.02% 3.35% 2.15% 2.05% 1.73% 19.46% 18.25% 16.91% 16.62% 20.89% 18.11%
Weak 0% 0.04% 1.05% 18.90% 16.24% 15.37% 15.19% 13.87% 14.33% 14.39% 14.46% 9.72% 10.19%

HMR5

Strong 0% 0.01% 0.81% 2.27% 2.24% 2.16% 1.98% 15.54% 14.51% 13.68% 13.21% 14.22% 13.12%
Weak 0% 0.01% 0.51% 11.14% 9.17% 8.58% 8.52% 10.54% 10.70% 10.22% 10.39% 9.03% 8.70%

AUC
Mean 0.715 0.747 0.753 0.754 0.754 0.755 0.754 0.753 0.753 0.750 0.749 0.719 0.695

Standard
Deviation

1*10
−16

2*10
−16

2*10
−16

2*10
−16

3*10
−16

1*10
−3

1*10
−3

1*10
−3

2*10
−3

2*10
−3

2*10
−3

2*10
−3

2*10
−3

• The relation between the number of HMR violations and the sizes/complexities of
models suggests that simpler models are less likely to violate HMRs.

• In this context, it can be concluded that the credit risk models selected according to
the number of HMR violation and the values of AUC are not the same.

8.3.6.2 Answer to RQ2.1

Based on the experimental results regarding the number of HMR violations and the values
of AUC, when keeping models, datasets, and HMRs unchanged, the number of detected
HMR violations varied significantly among models of differing sizes/complexities. In this
context, it can be inferred that the performance of ME is affected by the sizes/complexi-
ties of credit risk models. Given an HMR, more complex models typically cause a higher
number of HMR violations, exhibiting more deviations from business rationale.

8.3.6.3 Answer to RQ2.2

Based on the experimental results on the number of HMR violations and the values of
AUC, when keeping models and datasets unchanged, the number of detected HMR viola-
tions varied significantly when different HMRs were used. HMR3 (constructed by modify-
ing the credit score) typically exhibits the highest number of HMR violations, while HMR1

(constructed by modifying the LTV) demonstrates the lowest. Consequently, it is apparent
that, on the whole, LTV serves as a less dependable parameter in the models, given its
propensity to produce more HMR violations. In this context, it can be inferred that the
performance of ME is affected by the specific HMR used, which highlights the importance
of HMR identification and selection.

8.3.6.4 Answer to RQ2.3

Based on the experimental results regarding the number of HMR violations and the values
of AUC, when keeping HMRs and datasets unchanged, the number of detected HMR
violations varied significantly when different models were used. The following conclusions
can be drawn on the basis of the experimental results:

162 metamorphic testing for validating credit score assessment models

• Among the three models under test, gradient-boosting decision trees typically had
the highest AUC performance; however, it did not contain the lowest number of
HMR violations.

• In general, neural networks contained slightly lower AUC values, and had a signifi-
cantly fewer number of HMR violations.

• Random Forests exhibited the poorest performance across both metrics.

• In this context, it can be inferred that the performance of ME is affected by the specific
HMR used, which highlights the importance of HMR identification and selection.

8.3.6.5 Answer to RQ2

The following conclusions can be inferred on the basis of the experimental results and
discussions:

• More specifically, it can be concluded that adopting an ML-based model solely based
on optimal model-fit is likely to result in the model with substantial deviations from
business rationale.

• The default patterns vary among models. That is, across numerous iterations of
gradient-boosting decision trees and random forests, the number of HMR violations
remains relatively constant, with a minute standard deviation. However, in the case
of neural networks, the number of HMR violations exhibits significant variability. For
instance, in the case of the neural network with 3 ∗ 1 neurons, no HMR violations
were detected in 85 out of 100 trials; in contrast, in instances where HMR violations
did occur, their number was notably increased. This suggests that the stability of
the neural network decreases with variations in the orientation of network weights
across different iterations. Consequently, this observation proposes the possibility of
selecting neural networks according to the lower numbers of HMR violations, or
ideally, no violations.

• When applying ME to a model with the highest AUC value, HMR violations can still
be identified. This implies that a model exhibiting strong AUC performance may
struggle to consistently forecast the probability of default for customers with similar
profiles, which may pose significant implications for both lenders and borrowers.
Consider two loan applicants with comparable profiles, for example, one boasting a
higher credit score. Nevertheless, the experimental results revealed that the adoption
of an AUC-centric model may lead to a scenario where the applicant with the larger
credit score is denied the loan, while the other applicant, despite comparable profiles
but with a lower credit score, secures the loan. Such outcomes could significantly
impact customer satisfaction. In addition, extending loans to individuals with lower
likelihood of repayment may increase the risk of capital loss.

• In conclusion, the credit risk models constructed according to the number of HMR vi-
olations are different from those constructed according to the values of AUC, which

8.4 conclusion and future work 163

could significantly affect both lenders and borrowers. Furthermore, the application
of ME necessitates no specialized software-testing experience or expertise, making it
advantageous for re-validating existing credit risk models and informing the selec-
tion of such models.

8.4 conclusion and future work

With the increasing popularity of digital financial services, there is an increasingly urgent
need for efficient and effective methods for evaluating credit risk models. This chapter
has introduced a new systematic approach for users to easily and effectively evaluate
ML-based credit risk models from the business rationale perspective. Then this chapter
reported on a case study exploring the implementation of traditional evaluation metrics
and the proposed approach for ML-based credit risk model evaluation and the relation-
ships and differences between them. In the experiment, a total of three ML-based models
have been chosen: Neural networks, gradient-boosting decision trees and random forests.
In total, five HMRs have been identified these models, and multiple HMR violations have
been detected amongst a significant minority of cases. This is the first study on the topic
of using MT and ME to evaluate credit risk models. Since the process of identifying HMRs
and implementing ME typically does not require (1) knowledge or experience in software
testing; and (2) an available oracle (no need to know the outcome of the loan), the proposed
approach can be used as an effective live testing procedure as loans are originated and ex-
isting credit risk models can be easily re-validated using it. Users and programmers are
able to obtain an in-depth understanding of the models under test by using the proposed
approach, making it easy and effective to validate and select credit risk models.

The empirical experiments revealed that the credit risk models selected using ME and
traditional model evaluation techniques (such as AUC) are different: A model that per-
forms well in terms of predictive performance (i.e., AUC on the independent test set) may
still cause a large number of HMR violations. Since the HMRs used in the empirical exper-
iments focus on slightly modifying the feature values to simulate customers with similar
situations, a conclusion may be drawn that a model with well-predictive performance may
have difficulty predicting the probability of default for customers with similar situations.
This issue may have a serious impact on the user experience of both lenders and cus-
tomers. For example, it may happen that a customer with a higher credit score may not
be able to obtain a loan, while another customer with almost identical circumstances but
a lower credit score may obtain a loan. In this way, by using both traditional model eval-
uation techniques and the proposed approach, potential problems can be detected much
faster than using only the methods that rely on measuring the outcomes. In this context,
this chapter recommends ME as an additional selection indicator for ML-based credit risk
model-selection in the development process. In addition, experimental results indicated
that although more complex models may be able to better fit an independent test set, they
generally result in more HMR violations. Based on the results, this chapter also recom-

164 metamorphic testing for validating credit score assessment models

mends ME as an additional evaluation indicator in the validation stage of the ML-based
credit risk models.

The experimental results suggested that ME should be considered as an additional
model-selection and validation indicator when applying ML-based credit risk models in
financial services. Currently, credit scorecard developers can examine model coefficient
estimates as a way to validate linear models against business rationale [28]. This study
presented how this approach can be extended to non-linear ML-based models using ME.
From the perspective of recommendations for validation procedures, the following two
methods can be considered.

• Identify the models that is within the same AUC confidence interval band as the best
model (based on AUC) and then select the model with the fewest HMR violations.

• Determine an acceptable HMR violation proportion threshold and reject any model
that exceeds this threshold.

The next chapter of this thesis will conclude the whole thesis.

9
C O N C L U S I O N , C O N T R I B U T I O N A N D F U T U R E
W O R K

9.1 discussion and conclusion

The field of computer science is experiencing complexity and sophistication; however, the
advancement of SQA tools and processes has not been able to match the rapid evolution of
these intricate systems, which has consequently led to an increasing number of challenges
[17, 81, 246, 293]. Software testing constitutes a necessary component of SQA, requiring
comprehensive consideration: This includes the execution of an SUT to assess the behav-
ior/outputs. As an advanced property-based software-testing methodology, MT uses MRs
and MGs to identify the existence of potential faults within the SUT. Previous research
on MT has repeatedly proven the effectiveness of MT in not only alleviating the oracle
problem, but also providing a novel approach for test-case generation and test-output veri-
fication [64, 246, 292]. Nevertheless, despite the growing popularity of MT, its performance
still requires further research and improvement [64, 246].

Through a comprehensive examination of the literature on MT, this thesis identified the
absence of a straightforward and quick method to assess MT performance, which was
referred to as the MT-performance evaluation challenge. In contrast, simulations are fre-
quently employed to verify the performance of conventional software testing methodolo-
gies, with the aim of reducing the difficulties and time overheads that may be encountered
during the verification process. Nevertheless, a challenge lies in the inapplicability of tra-
ditional simulations to MT due to: (1) Their reliance on an accessible oracle, which is a
premise not assumed by MT; and (2) MT detects software failures through the identifica-
tion of MR violations, rather than conventional test-case failures. To address this challenge,
the concept of MR-Violation Region (MRVR) was introduced in Chapter 3. Subsequently,
Chapter 3 developed and presented an MT simulation framework based on MRVRs. The
proposed MT simulation framework has the potential to reduce the computational com-
plexity and time overheads associated with MT performance assessment, making it easier
and faster for testers to set up MT-related experiments.

The performance of MT, particularly its fault-detection capability, is highly dependent
on the MGs and MRs. By conducting a thorough review of the literature on MG genera-
tion, the concept of the input-domain difference problem was identified and introduced in
Chapter 4. This problem may have an impact on the performance of MG-generation algo-
rithms. Then, a case study was reported in which the proposed MT simulation framework

165

166 conclusion, contribution and future work

was applied to investigate the impact of this problem on the performance of a previously-
published MG generation algorithm (MT-ART [144]). Empirical studies revealed that the
potential cause of the input-domain difference problem lies in neglecting the differences
between STCs and FTCs: Previous MG-generation algorithms process the FTCs in the same
manner as the STCs. Taking this into account, this thesis introduced a solution to alleviate
this issue: Treating FTCs differently from STCs. Building upon this solution, this thesis sub-
sequently introduced a novel MG-generation algorithm, SFIDMT-ART, with new distance
metrics to facilitate this algorithm. This algorithm is designed as an improved version of
MT-ART. The rationale behind this algorithm is to achieve even spread STCs and FTCs
over their respective input domains. In particular, SFIDMT-ART prioritizes the generation
of MGs with the following features: 1) Making the STCs evenly distributed across the
corresponding source input domain; and 2) making the FTCs evenly distributed across
the corresponding follow-up input domain. Empirical experiments were conducted and
the results demonstrated that SFIDMT-ART surpassed the original algorithm (MT-ART) in
terms of test effectiveness and efficiency.

Nonetheless, there is still one problem with the proposed MG-generation algorithm:
The test efficiency. The time complexity of SFIDMT-ART and MT-ART is excessively high,
potentially resulting in considerable overheads for MG generation. To address this prob-
lem, Chapter 5 integrated partition-based ART into MT and proposed a family of two
MG-generation algorithms, MT-BART and MT-IPART. Notably, to generate n MGs, the
time-complexity of both MT-BART and MT-IPART is O(n), which is significantly lower
than that of SFIDMT-ART and MT-ART. Given that certain constants might be overlooked
in time complexity calculations, empirical experiments have been conducted to assess and
compare the performance of MT-BART and MT-IPART with other MG-generation algo-
rithms (SFIDMT-ART and MT-ART). The experimental results demonstrated that both
MT-BART and MT-IPART exhibit markedly superior performance to SFIDMT-ART and
MT-ART in terms of test efficiency, while retaining high test effectiveness. Additionally,
between the two proposed algorithms, MT-BART excels in efficiency, whereas MT-IPART
excels in effectiveness.

In addition to MGs, MRs also play an important role in the successful implementation
and performance of MT. With this consideration, Chapter 6 introduced a set of novel MRPs,
intended to guide the identification of effective MRs tailored to various system type; MRPs
serve as abstractions/templates encompassing multiple concrete MRs. This chapter has
also presented a novel MT framework designed to guide the identification and application
of MRPs. Furthermore, the concept of MRP trees was also introduced to categorize MRPs
for enhancing user accessibility, providing users with an easy and quick way to find their
target MRPs for reuse, reference, or inference. In this chapter, by collecting and classifying
the proposed MRPs along with existing MRPs in the MT literature, two MRP trees were
proposed. This chapter also reported on three case studies that employ the MRPs and MT
framework to identify MRs for big data systems, resulting in the detection of multiple
MR violations. Popular big data systems [87] have been tested and investigated, including
e-commerce systems (Amazon and JD.com), map systems (Google Maps and Baidu Maps)

9.2 main contributions 167

and machine translation systems (Google Translator, Microsoft Bing Translator and Baidu
Translator).

In addition to identifying MRs and generating MGs from scratch, the performance of
MT can be further augmented through the selection of appropriate MRs and MGs from
existing ones. Nevertheless, despite certain studies delving into the selection of either MRs
or MGs and presenting respective algorithms, only a few studies have considered both
aspects simultaneously. In this context, Chapter 7 has introduced a novel metric from a
black-box perspective for assessing the effectiveness of an MR-MG pair. This metric was
designed following the same rationale that underlies the development of MG-generation
algorithms (SFIDMT-ART, MT-BART, and MT-IPART): That is, achieving even distribution
of STCs and FTCs throughout their respective input domains. Employing this metric as
a foundation, this thesis has introduced a novel MR-MG pair selection algorithm, MRGS-
ART. Subsequently, through empirical experimentation, this thesis has evaluated and com-
pared its performance on public systems and MRs from previous studies related to MT,
with the experimental results revealing that, in contrast to RT (the most commonly-used
existing MR-MG pair selection algorithm [64]), MRGS-ART generally required fewer MGs
to detect the first MR violation, while using an acceptable computational overhead to pro-
duce a group of MR-MG pairs.

Finally, Chapter 8 proposed employing MT and ME as supplementary testing, valida-
tion, and model-selection tools alongside traditional evaluation metrics for credit risk
models. More specifically, the proposed method utilizes model attributes or properties
based on business expectations and intuition to enable testers/researchers to predict how
particular input alterations will impact model behavior or output. Subsequently, a case
study was reported exploring the application of the proposed method for testing and val-
idating popular credit risk models, including neural networks, gradient-boosting decision
trees, and random forests. This chapter examined how models chosen through traditional
model-fit evaluation metric (AUC) perform when evaluated with ME. Empirical experi-
ments revealed multiple instances of MR violations. Furthermore, as the complexity of
the model increases, the HMR violations become more extensive. Therefore, in the context
of ML-based credit risk modeling, this chapter proposed the application of MT/ME as
supplemental testing, validation, and model-selection tools, complementary to traditional
model-fit measurements.

9.2 main contributions

The specific contributions of this thesis are introduced as follows:

1. This thesis identified the MT-performance evaluation problem and the input-domain
difference problem existing in the design, application, and evaluation of MG-
generation algorithms. These two problems may negatively affect the performance
of MG-generation algorithms. To improve the effectiveness and efficiency of MT, this
thesis presented solutions to address them.

168 conclusion, contribution and future work

2. In order to improve the effectiveness and efficiency of MT, this thesis focused on the
MRs and MGs. In particular, this thesis made the following achievements:

a) This thesis presented a series of new MRPs (and MRIPs and MROPs) to guide
the identification of effective MRs from scratch, as well as an MT framework
designed to facilitates the identification and implementation of MRPs.

b) By addressing the input-domain difference problem in a previously-published
MG generation algorithm, this thesis presented a new MG-generation algorithm
(SFIDMT-ART), which is capable of outperforming the original algorithm in
terms of effectiveness and efficiency.

c) By incorporating partition-based ART into MT, this thesis presented two new
MG-generation algorithms (MT-BART and MT-IPART), which are able to per-
form significantly better than SFIDMT-ART in terms of efficiency while main-
taining similar (or slightly worse) effectiveness.

d) This thesis presented a new MR-MG pair selection algorithm (MRGS-ART) to
automatically and adaptively select effective MR-MG pairs for execution from
existing ones.

3. This thesis proposed using MT and ME as supplementary model testing, validation,
and selection methodologies, in order to improve the performance of software testing
(especially for ML-based credit risk models).

9.3 limitation and future work

This section discusses the main limitations of the research work presented in this thesis
from the following three aspects, as well as the extensions to address those limitations and
improve this thesis: Limitation and extensions to algorithms, limitation and extensions to
MRPs and MRP trees, and limitation and extensions to the MT framework.

9.3.1 Limitations and Extensions to Algorithms

Although the proposed MG-generation algorithms and the MR-MG pair selection algo-
rithm were capable of outperforming other algorithms in terms of effectiveness and/or
efficiency, they still have drawbacks require research to further improve their performance:
For example, SFIDMT-ART may require high computational complexity and time overhead
to generate MGs; MT-BART and MT-IPART may sometimes require more MGs to detect
the first MR violation compared to SFIDMT-ART; and the efficiency of MRGS-ART is still
slightly higher than MT-RT, which is the most popular MR and MG selection algorithm in
the literature of MT. With this consideration, future work will include exploring ways to
address these limitations that may arise with the proposed algorithms, to further improve
their performance. One possible solution is that, as the rationale behind these algorithms
is inspired by ART, some advanced ART algorithms, or advanced methods proposed to en-
hance the performance of ART algorithms, may be applicable for enhancing the proposed

bibliography 169

algorithms. Therefore, it is worth researching whether or not the performance of the pro-
posed algorithms can be further enhanced based on the techniques from the ART-related
studies, and how to incorporate those techniques into the four proposed algorithms.

9.3.2 Limitations and Extensions to MRPs and MRP trees

A primary limitation of the proposed MRPs and MRP trees is the lack of systematic meth-
ods for measuring the abstraction levels of MRPs. Typically, the identification of the ab-
straction level of MRPs still relies on human participants, such as MT experts. Considering
this, this thesis will explore methods for formally and automatically measuring the ab-
straction levels of MRPs.

9.3.3 Limitations and Extensions to the MT Framework

In Chapter 6, an MT framework was proposed to facilitate the identification and applica-
tion of MRs and MRPs (as well as MRIPs and MROPs). However, as shown in Section 2.2,
the implementation of MT consists of many steps, each of which may have an impact on its
performance. In addition, this thesis has also proposed methodologies to improve the per-
formance of MT from different aspects, but the impact and relationships among them have
not been studied yet. In this case, an overall framework can be proposed that can facilitate
not only the identification and application of MRs and MRPs, but also other steps such
as the generation of MGs and selection of MRs and MGs. This MT framework, for exam-
ple, can include MRPs (for identifying MRs from scratch), SFIDMT-ART or MT-PART (for
generating MGs from scratch), and MRGS-ART (for selecting MR-MG pairs from existing
ones). Therefore, this thesis will explore the impact and relationships among these pro-
posed algorithms and methodologies, with the aim of proposing an overall MT framework
including all algorithms and methodologies proposed in this thesis to further improve the
performance of MT. Once developed, this thesis will also apply it to the field of credit risk
assessment to evaluate its performance and try to further improve the performance of MT
as an supplementary testing tool.

B I B L I O G R A P H Y

[1] ISO/IEC 25010:2011. Systems and software engineering - systems and software quality requirements and eval-
uation (SQuaRE) - system and software quality models. https://www.iso.org/standard/35733.html.
[Online; accessed 15 May 2024]. 2011.

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Nachaat Ab-
dElatif Mohamed, and Humaira Arshad. “State-of-the-art in artificial neural network applications: A
survey”. In: Heliyon 4.11 (2018). DOI:10.1016/j.heliyon.2018.e00938, e00938.

[3] Amina Adadi and Mohammed Berrada. “Peeking inside the black-box: A survey on explainable artifi-
cial intelligence (XAI)”. In: IEEE access 6 (2018). DOI:10.1109/ACCESS.2018.2870052, pp. 52138–52160.

[4] Wilhelmina Afua Addy, Adeola Olusola Ajayi-Nifise, Binaebi Gloria Bello, Sunday Tubokirifuruar
Tula, Olubusola Odeyemi, and Titilola Falaiye. “AI in credit scoring: A comprehensive review of mod-
els and predictive analytics”. In: Global Journal of Engineering and Technology Advances 18.02 (2024).
DOI:10.30574/gjeta.2024.18.2.0029, pp. 118–129.

[5] Prathima Agrawal and Vishwani D. Agrawal. “Probabilistic analysis of random test generation
method for irredundant combinational logic networks”. In: IEEE Transactions on Computers 100.7 (1975).
DOI:10.1109/T-C.1975.224289, pp. 691–695.

[6] Saurabh Agrawal, Purnima Ahirao, Saurabh Kumar, and Pinak Dere. “Credit Score Evaluation of
Customer Using Machine Learning Algorithms”. In: Proceedings of the 4th International Conference on
Advances in Science & Technology (ICAST’21) (2021). DOI:10.2139/ssrn.3867420.

[7] Milam Aiken and Mina Park. “The efficacy of round-trip translation for MT evaluation”. In: Translation
Journal 14.1 (2010), pp. 1–10.

[8] Eman Alatawi, Tim Miller, and Harald Søndergaard. “Generating source inputs for metamorphic test-
ing using dynamic symbolic execution”. In: Proceedings of the 1st International Workshop on Metamorphic
Testing. DOI:10.1145/2896971.2896980. 2016, pp. 19–25.

[9] Paul Eric Ammann and John C. Knight. “Data diversity: An approach to software fault tolerance”. In:
IEEE Transactions on Computers 37.4 (1988). DOI:10.1109/12.2185, pp. 418–425.

[10] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolfgang Grieskamp,
Mark Harman, Mary Jean Harrold, and Phil Mcminn. “An Orchestrated Survey of Methodolo-
gies for Automated Software Test Case Generation”. In: Journal of Systems and Software 86.8 (2013).
DOI:10.1016/j.jss.2013.02.061, pp. 1978–2001.

[11] Stevão Alves de Andrade, Ítalo Santos, Claudinei Brito Junior, Misael Júnior, Simone R.S. de
Souza, and Márcio E. Delamaro. “On applying metamorphic testing: An empirical study on acad-
emic search engines”. In: 2019 IEEE/ACM 4th International Workshop on Metamorphic Testing (MET).
DOI:10.1109/MET.2019.00010. IEEE. 2019, pp. 9–16.

[12] Andrea Arcuri and Lionel Briand. “Adaptive random testing: An illusion of effectiveness?” In: Proceed-
ings of the 2011 International Symposium on Software Testing and Analysis. DOI:10.1145/2001420.2001452.
Association for Computing Machinery, 2011, pp. 265–275.

[13] Muhammad Ashfaq, Rubing Huang, Dave Towey, Michael Omari, Dmitry Yashunin, Patrick Kwaku
Kudjo, and Tao Zhang. “SWFC-ART: A cost-effective approach for Fixed-Size-Candidate-Set Adap-
tive Random Testing through small world graphs”. In: Journal of Systems and Software 180 (2021).
DOI:10.1016/j.jss.2021.111008, p. 111008.

[14] Mahmuda Asrafi, Huai Liu, and Fei-Ching Kuo. “On testing effectiveness of metamorphic relations: A
case study”. In: 2011 Fifth International Conference on Secure Software Integration and Reliability Improve-
ment. DOI:10.1109/SSIRI.2011.21. IEEE. 2011, pp. 147–156.

[15] Franz Aurenhammer. “Voronoi diagrams-a survey of a fundamental geometric data structure”. In:
ACM Computing Surveys (CSUR) 23.3 (1991). DOI:10.1145/116873.116880, pp. 345–405.

[16] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. “Using neural network rule
extraction and decision tables for credit-risk evaluation”. In: Management science 49.3 (2003).
DOI:10.1287/mnsc.49.3.312.12739, pp. 312–329.

[17] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. “The oracle prob-
lem in software testing: A survey”. In: IEEE Transactions on Software Engineering 41.5 (2014).
DOI:10.1109/TSE.2014.2372785, pp. 507–525.

171

https://www.iso.org/standard/35733.html
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.30574/gjeta.2024.18.2.0029
https://doi.org/10.1109/T-C.1975.224289
https://doi.org/10.2139/ssrn.3867420
https://doi.org/10.1145/2896971.2896980
https://doi.org/10.1109/12.2185
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1109/MET.2019.00010
https://doi.org/10.1145/2001420.2001452
https://doi.org/10.1016/j.jss.2021.111008
https://doi.org/10.1109/SSIRI.2011.21
https://doi.org/10.1145/116873.116880
https://doi.org/10.1287/mnsc.49.3.312.12739
https://doi.org/10.1109/TSE.2014.2372785

172 bibliography

[18] Arlinta C. Barus, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Robert Merkel, and Gregg Rothermel.
“A novel linear-order algorithm for adaptive random testing of programs with non-numeric inputs”.
In: Technical Report TR-UNL-CSE-2014-0004 (2014).

[19] Arlinta Christy Barus, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and Heinz W. Schmidt. “The
impact of source test case selection on the effectiveness of metamorphic testing”. In: 2016 IEEE/ACM 1st
International Workshop on Metamorphic Testing (MET). DOI:10.1145/2896971.2896977. IEEE. 2016, pp. 5–
11.

[20] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. “A genetic approach for ran-
dom testing of database systems”. In: Proceedings of the 33rd international conference on Very large data
bases. 2007, pp. 1243–1251.

[21] Gagandeep Batra and Jyotsna Sengupta. “An efficient metamorphic testing technique using genetic
algorithm”. In: International Conference on Information Intelligence, Systems, Technology and Management.
DOI:10.1007/978-3-642-19423-8_19. Springer. 2011, pp. 180–188.

[22] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966).
DOI:10.1126/science.153.3731.34, pp. 34–37.

[23] Imane Rhzioual Berrada, Fatima Zohra Barramou, and Omar Bachir Alami. “A review of Artificial
Intelligence approach for credit risk assessment”. In: 2022 2nd International Conference on Artificial Intel-
ligence and Signal Processing (AISP). DOI:10.1109/AISP53593.2022.9760655. IEEE. 2022, pp. 1–5.

[24] Peter G. Bishop. “The variation of software survival time for different operational input profiles (or
why you can wait a long time for a big bug to fail)”. In: FTCS-23 The Twenty-Third International Sympo-
sium on Fault-Tolerant Computing. DOI:10.1109/FTCS.1993.627312. IEEE. 1993, pp. 98–107.

[25] Pierre Bourque and Richard E. Fairley. “SWEBOK v3.0: Guide to the software engineering body of
knowledge”. In: IEEE Computer Society, Los Alamitos, CA (2014), pp. 1–335.

[26] Andrew P. Bradley. “The use of the area under the ROC curve in the evaluation of machine learning
algorithms”. In: Pattern Recognition 30.7 (1997). DOI:10.1016/S0031-3203(96)00142-2, pp. 1145–1159.

[27] Joseph Breeden. “A Survey of Machine Learning in Credit Risk”. In: Journal of Credit Risk 17.3 (2021).
DOI:10.13140/RG.2.2.14520.37121.

[28] Joseph L. Breeden and Nikolay Dobrinov. “Quantifying Model Selection Risk in Macroeconomic Sen-
sitivity Models”. In: Journal of Risk Model Validation 16.3 (2022). DOI:10.21314/JRMV.2022.021.

[29] Leo Breiman. “Bagging predictors”. In: Machine Learning 24.2 (1996). DOI:10.1007/BF00058655, pp. 123–
140.

[30] Leo Breiman. “Random forests”. In: Machine Learning 45.1 (2001). DOI:10.1023/A:1010933404324, pp. 5–
32.

[31] Iain Brown and Christophe Mues. “An experimental comparison of classification algorithms
for imbalanced credit scoring data sets”. In: Expert Systems with Applications 39.3 (2012).
DOI:10.1016/j.eswa.2011.09.033, pp. 3446–3453.

[32] Joshua Brown, Zhi Quan Zhou, and Yang-Wai Chow. “Metamorphic Testing of Navigation Software:
A Pilot Study with Google Maps”. In: Proceedings of the 51st Annual Hawaii International Conference on
System Sciences (HICSS-51). DOI:10.24251/HICSS.2018.713. 2018, pp. 5687–5696.

[33] Joshua Brown, Zhi Quan Zhou, and Yang-Wai Chow. “Metamorphic Testing of Mapping Software”.
In: Towards Integrated Web, Mobile, and IoT Technology. DOI:10.1007/978-3-030-28430-5_1. Springer, 2019,
pp. 1–20.

[34] Paulo M.S. Bueno, Mario Jino, and W. Eric Wong. “Diversity oriented test data generation using meta-
heuristic search techniques”. In: Information Sciences 259 (2014). DOI:10.1016/j.ins.2011.01.025, pp. 490–
509.

[35] Paulo M.S. Bueno, W. Eric Wong, and Mario Jino. “Improving random test sets using the diversity
oriented test data generation”. In: Proceedings of the 2nd international workshop on Random testing: co-
located with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2007).
DOI:10.1145/1292414.1292419. 2007, pp. 10–17.

[36] Massimo Buscema. “Back propagation neural networks”. In: Substance use & misuse 33.2 (1998).
DOI:10.3109/10826089809115863, pp. 233–270.

[37] Yuxiang Cao, Zhi Quan Zhou, and Tsong Yueh Chen. “On the correlation between the effectiveness of
metamorphic relations and dissimilarities of test case executions”. In: 2013 13th International Conference
on Quality Software. DOI:10.1109/QSIC.2013.43. IEEE. 2013, pp. 153–162.

[38] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. “Machine learning interpretability: A
survey on methods and metrics”. In: Electronics 8.8 (2019). DOI:10.3390/electronics8080832, p. 832.

https://doi.org/10.1145/2896971.2896977
https://doi.org/10.1007/978-3-642-19423-8_19
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1109/AISP53593.2022.9760655
https://doi.org/10.1109/FTCS.1993.627312
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.13140/RG.2.2.14520.37121
https://doi.org/10.21314/JRMV.2022.021
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.eswa.2011.09.033
https://doi.org/10.24251/HICSS.2018.713
https://doi.org/10.1007/978-3-030-28430-5_1
https://doi.org/10.1016/j.ins.2011.01.025
https://doi.org/10.1145/1292414.1292419
https://doi.org/10.3109/10826089809115863
https://doi.org/10.1109/QSIC.2013.43
https://doi.org/10.3390/electronics8080832

bibliography 173

[39] F. T. Chan, Tsong Yueh Chen, I. K. Mak, and Yuen-Tak Yu. “Proportional sampling strategy:
Guidelines for software testing practitioners”. In: Information and Software Technology 38.12 (1996).
DOI:10.1016/0950-5849(96)01103-2, pp. 775–782.

[40] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. “Restricted Random Testing”. In: Software Qual-
ity — ECSQ 2002. DOI:10.1007/3-540-47984-8_35. Springer Berlin Heidelberg, 2002, pp. 321–330.

[41] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. “Forgetting test cases”. In: Proceedings of
the 30th Annual International Computer Software and Applications Conference (COMPSAC’06). Vol. 1.
DOI:10.1109/COMPSAC.2006.43. IEEE. 2006, pp. 485–494.

[42] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. “Restricted random testing: Adaptive random
testing by exclusion”. In: International Journal of Software Engineering and Knowledge Engineering 16.04

(2006). DOI:10.1142/S0218194006002926, pp. 553–584.

[43] Kwok Ping Chan, Yueh Chen Chen, and Dave Towey. “Adaptive Random Testing with Filtering: An
Overhead Reduction Technique”. In: Proceedings of the 17th International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’05). 2005, pp. 292–299.

[44] Wing Kwong Chan, Tsong Yueh Chen, Heng Lu, T. H. Tse, and Stephen S Yau. “Integration testing of
context-sensitive middleware-based applications: A metamorphic approach”. In: International Journal of
Software Engineering and Knowledge Engineering 16.05 (2006). DOI:10.1142/S0218194006002951, pp. 677–
703.

[45] Wing Kwong Chan, Shing Chi Cheung, and Karl R. P. H. Leung. “A metamorphic testing approach
for online testing of service-oriented software applications”. In: International Journal of Web Services
Research (IJWSR) 4.2 (2007). DOI:10.4018/jwsr.2007040103, pp. 61–81.

[46] Yung-Chia Chang, Kuei-Hu Chang, and Guan-Jhih Wu. “Application of eXtreme gradient boosting
trees in the construction of credit risk assessment models for financial institutions”. In: Applied Soft
Computing 73 (2018). DOI:10.1016/j.asoc.2018.09.029, pp. 914–920.

[47] Jinfu Chen, Fei-Ching Kuo, Tsong Yueh Chen, Dave Towey, Chenfei Su, and Rubing Huang. “A simi-
larity metric for the inputs of OO programs and its application in adaptive random testing”. In: IEEE
Transactions on Reliability 66.2 (2016). DOI:10.1109/TR.2016.2628759, pp. 373–402.

[48] Jinfu Chen, Lili Zhu, Tsong Yueh Chen, Dave Towey, Fei-Ching Kuo, Rubing Huang, and Yuchi Guo.
“Test case prioritization for object-oriented software: An adaptive random sequence approach based
on clustering”. In: Journal of Systems and Software 135 (2018). DOI:10.1016/j.jss.2017.09.031, pp. 107–125.

[49] Leilei Chen, Lizhi Cai, Jiang Liu, Zhenyu Liu, Shiyan Wei, and Pan Liu. “An optimized method for gen-
erating cases of metamorphic testing”. In: 2012 6th International Conference on New Trends in Information
Science, Service Science and Data Mining (ISSDM2012). IEEE. 2012, pp. 439–443.

[50] M. H. Chen, Michael R. Lyu, and W. Eric Wong. “Effect of code coverage on software reliability mea-
surement”. In: IEEE Transactions on reliability 50.2 (2001). DOI:10.1109/24.963124, pp. 165–170.

[51] Mei-Hwa Chen, Michael R. Lyu, and W. Eric Wong. “An empirical study of the correlation between
code coverage and reliability estimation”. In: Proceedings of the 3rd International Software Metrics Sympo-
sium. DOI:10.1109/METRIC.1996.492450. IEEE. 1996, pp. 133–141.

[52] Tsong Yueh Chen, Shing Chi Cheung, and Siu Ming Yiu. “Metamorphic testing: A new approach
for generating next test cases”. In: Department of Computer Science, Hong Kong University of Science and
Technology, Tech. Rep. HKUST-CS98-01 abs/2002.12543 (1998). DOI:10.48550/arXiv.2002.12543.

[53] Tsong Yueh Chen and De Hao Huang. “Adaptive random testing by localization”. In: 11th Asia-Pacific
Software Engineering Conference. DOI:10.1109/APSEC.2004.17. IEEE. 2004, pp. 292–298.

[54] Tsong Yueh Chen, De Hao Huang, and Fei-Ching Kuo. “Adaptive Random Testing by Balancing”.
In: Proceedings of the 2nd International Workshop on Random Testing: Co-Located with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2007). DOI:10.1145/1292414.1292418.
ACM New York, NY, USA, 2007, pp. 2–9.

[55] Tsong Yueh Chen, De Hao Huang, T. H. Tse, and Zongyuan Yang. “An innovative approach to tackling
the boundary effect in adaptive random testing”. In: 2007 40th Annual Hawaii International Conference
on System Sciences (HICSS’07). DOI:10.1109/HICSS.2007.67. IEEE. 2007, 262a–262a.

[56] Tsong Yueh Chen, De Hao Huang, T. H. Tse, and Zhi Quan Zhou. “Case studies on the selection of
useful relations in metamorphic testing”. In: Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC 2004). Citeseer. 2004, pp. 569–583.

[57] Tsong Yueh Chen, De Hao Huang, and Zhi Quan Zhou. “On adaptive random testing through iterative
partitioning”. In: journal of information science and engineering 27.4 (2011). DOI:10.1007/11767077_13,
pp. 1449–1472.

https://doi.org/10.1016/0950-5849(96)01103-2
https://doi.org/10.1007/3-540-47984-8_35
https://doi.org/10.1109/COMPSAC.2006.43
https://doi.org/10.1142/S0218194006002926
https://doi.org/10.1142/S0218194006002951
https://doi.org/10.4018/jwsr.2007040103
https://doi.org/10.1016/j.asoc.2018.09.029
https://doi.org/10.1109/TR.2016.2628759
https://doi.org/10.1016/j.jss.2017.09.031
https://doi.org/10.1109/24.963124
https://doi.org/10.1109/METRIC.1996.492450
https://doi.org/10.48550/arXiv.2002.12543
https://doi.org/10.1109/APSEC.2004.17
https://doi.org/10.1145/1292414.1292418
https://doi.org/10.1109/HICSS.2007.67
https://doi.org/10.1007/11767077_13

174 bibliography

[58] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. “Distribution metric driven adaptive random testing”.
In: 2007 7th International Conference on Quality Software (QSIC 2007). DOI:10.1007/11767077_13. IEEE.
2007, pp. 274–279.

[59] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. “Enhancing adaptive random testing through
partitioning by edge and centre”. In: 2007 Australian Software Engineering Conference (ASWEC’07).
DOI:10.1109/ASWEC.2007.20. IEEE. 2007, pp. 265–273.

[60] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. “On test case distributions of adaptive random test-
ing”. In: Proceedings of the 19th International Conference on Software Engineering & Knowledge Engineering
(SEKE’07). DOI:10.1109/TSE.2019.2942921. 2007, pp. 141–144.

[61] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. “Distributing test cases more evenly in adaptive
random testing”. In: Journal of Systems and Software 81.12 (2008). DOI:10.1016/j.jss.2008.03.062, pp. 2146–
2162.

[62] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. “Adaptive random testing based on distribution
metrics”. In: Journal of Systems and Software 82.9 (2009). DOI:10.1016/j.jss.2009.05.017, pp. 1419–1433.

[63] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. “Application of a failure driven test profile in random
testing”. In: IEEE Transactions on Reliability 58.1 (2009). DOI:10.1109/TR.2008.2011687, pp. 179–192.

[64] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan
Zhou. “Metamorphic testing: A review of challenges and opportunities”. In: ACM Computing Surveys
(CSUR) 51.1 (2018). DOI:10.1145/3143561, pp. 1–27.

[65] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and W. Eric Wong. “Does adaptive random testing deliver
a higher confidence than random testing?” In: 2008 8th International Conference on Quality Software.
DOI:10.1109/QSIC.2008.23. IEEE. 2008, pp. 145–154.

[66] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and W. Eric Wong. “Code coverage of adaptive random
testing”. In: IEEE Transactions on Reliability 62.1 (2013). DOI:10.1109/TR.2013.2240898, pp. 226–237.

[67] Tsong Yueh Chen, Fei-Ching Kuo, Ying Liu, and Antony Tang. “Metamorphic Testing and Testing with
Special Values”. In: Proceedings of the 5th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD’04). 2004, pp. 128–134.

[68] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Jeffrey Voas, and Zhi Quan
Zhou. “Metamorphic Testing for Cybersecurity”. In: Computer 49.6 (2016), pp. 48–55. doi: 10.1109/MC.
2016.176.

[69] Tsong Yueh Chen, Fei-Ching Kuo, and Robert Merkel. “On the Statistical Properties of the
F-Measure”. In: Fourth International Conference onQuality Software, 2004. QSIC 2004. Proceedings.
DOI:10.1109/QSIC.2004.1357955. IEEE Computer Society, Los Alamitos, CA, 2004, pp. 146–153.

[70] Tsong Yueh Chen, Fei-Ching Kuo, and Robert Merkel. “On the Statistical Properties of Testing Effective-
ness Measures”. In: Journal of Systems and Software 79.5 (2006). DOI:10.1016/j.jss.2005.05.029, pp. 591–
601.

[71] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and Sebastian P. Ng. “Mirror Adaptive Random
Testing”. In: Information & Software Technology (2003). DOI:10.1109/QSIC.2003.1319079, pp. 4–11.

[72] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and Sebastian P. Ng. “Mirror adaptive random
testing”. In: Information and Software Technology 46.15 (2004), pp. 1001–1010.

[73] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. “Adaptive random testing: The
art of test case diversity”. In: Journal of Systems and Software 83.1 (2010). DOI:10.1016/j.jss.2009.02.022,
pp. 60–66.

[74] Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey, and Zhi Quan Zhou. “A Revisit of Three Studies
Related to Random Testing”. In: Science China Information Sciences 58 (2015). DOI:10.1007/s11432-015-
5314-x, pp. 1–9.

[75] Tsong Yueh Chen, Fei-Ching Kuo, and Zhi Quan Zhou. “On the Relationships between the Distribution
of Failure-Causing Inputs and Effectiveness of Adaptive Random Testing”. In: Proceedings of the 17th
International Conference on Software Engineering & Knowledge Engineering (SEKE’05). 2005, pp. 306–311.

[76] Tsong Yueh Chen, Fei-Ching Kuo, and Zhi Quan Zhou. “On favourable conditions for adaptive ran-
dom testing”. In: International Journal of Software Engineering and Knowledge Engineering 17.06 (2007).
DOI:10.1142/S0218194007003501, pp. 805–825.

[77] Tsong Yueh Chen, Hing Leung, and I. K. Mak. “Adaptive random testing”. In: Proceedings of the 9th
Asian Computing Science Conference (ASIAN’04). Vol. 3321. DOI:10.1007/978-3-540-30502-6_23. Lecture
Notes in Computer Science, 2004, pp. 320–329.

https://doi.org/10.1007/11767077_13
https://doi.org/10.1109/ASWEC.2007.20
https://doi.org/10.1109/TSE.2019.2942921
https://doi.org/10.1016/j.jss.2008.03.062
https://doi.org/10.1016/j.jss.2009.05.017
https://doi.org/10.1109/TR.2008.2011687
https://doi.org/10.1145/3143561
https://doi.org/10.1109/QSIC.2008.23
https://doi.org/10.1109/TR.2013.2240898
https://doi.org/10.1109/MC.2016.176
https://doi.org/10.1109/MC.2016.176
https://doi.org/10.1109/QSIC.2004.1357955
https://doi.org/10.1016/j.jss.2005.05.029
https://doi.org/10.1109/QSIC.2003.1319079
https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1007/s11432-015-5314-x
https://doi.org/10.1007/s11432-015-5314-x
https://doi.org/10.1142/S0218194007003501
https://doi.org/10.1007/978-3-540-30502-6_23

bibliography 175

[78] Tsong Yueh Chen, R. Merkel, P. K. Wong, and G. Eddy. “Adaptive Random Testing Through
Dynamic Partitioning”. In: Proceedings of the Quality Software, Fourth International Conference.
DOI:10.1109/QSIC.2004.1357947. IEEE Computer Society, Los Alamitos, CA, 2004, pp. 79–86.

[79] Tsong Yueh Chen and Robert Merkel. “Efficient and Effective Random Testing Using the Voronoi Di-
agram”. In: Proceedings of the Australian Software Engineering Conference. DOI:10.1109/ASWEC.2006.25.
IEEE Computer Society, Los Alamitos, CA, 2006, pp. 300–299.

[80] Tsong Yueh Chen and Robert Merkel. “Quasi-random testing”. In: IEEE Transactions on Reliability 56.3
(2007). DOI:10.1145/1101908.1101957, pp. 562–568.

[81] Tsong Yueh Chen and Robert Merkel. “An upper bound on software testing effective-
ness”. In: ACM Transactions on Software Engineering and Methodology (TOSEM) 17.3 (2008).
DOI:10.1145/1363102.1363107, pp. 1–27.

[82] Tsong Yueh Chen, Pak-Lok Poon, and Xiaoyuan Xie. “METRIC: METamorphic Relation Identifi-
cation based on the Category-choice framework”. In: Journal of Systems and Software 116 (2016).
DOI:10.1016/j.jss.2015.07.037, pp. 177–190.

[83] Tsong Yueh Chen, T. H. Tse, and Yuen-Tak Yu. “Proportional sampling strategy: A compendium
and some insights”. In: Journal of Systems and Software 58.1 (2001). DOI:10.1016/S0164-1212(01)00028-0,
pp. 65–81.

[84] Tsong Yueh Chen, T. H. Tse, and Zhi Quan Zhou. “Fault-based testing without the need of oracles”.
In: Information and Software Technology 45.1 (2003). DOI:10.1016/S0950-5849(02)00129-5, pp. 1–9.

[85] Tsong Yueh Chen, T. H. Tse, and Zhi Quan Zhou. “Semi-proving: An integrated method for pro-
gram proving, testing, and debugging”. In: IEEE Transactions on Software Engineering 37.1 (2010).
DOI:10.1109/TSE.2010.23, pp. 109–125.

[86] Tsong Yueh Chen, Zhi Quan Zhou, and De Hao Huang. “Adaptive random testing through itera-
tive partitioning”. In: International Conference on Reliable Software Technologies. DOI:10.1007/11767077_13.
Springer. 2006, pp. 155–166.

[87] Xue-Qi Cheng, Xiao Long Jin, Yuanzhuo Wang, Jiafeng Guo, Tieying Zhang, and Guojie
Li. “Survey on big data system and analytic technology”. In: Journal of software 25.9 (2014).
DOI:10.13328/j.cnki.jos.004674, pp. 1889–1908.

[88] Cliff Chow, Tsong Yueh Chen, and T. H. Tse. “The art of divide and conquer: An innovative approach
to improving the efficiency of adaptive random testing”. In: 2013 13th International Conference on Quality
Software. DOI:10.1109/QSIC.2013.19. IEEE. 2013, pp. 268–275.

[89] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. “ARTOO: adaptive random testing
for object-oriented software”. In: Proceedings of the 30th international conference on Software engineering
(ICSE). DOI:10.1145/1368088.1368099. 2008, pp. 71–80.

[90] Jacob Cohen. Statistical power analysis for the behavioral sciences (2nd ed.) Hillsdale, MI, USA: Hillsdale,
1988.

[91] Andrew T. Collins, John M. Rose, and Stephane Hess. “Interactive stated choice surveys: A study of
air travel behaviour”. In: Transportation 39.1 (2012). DOI:10.1007/s11116-011-9327-z, pp. 55–79.

[92] Kristof Coussement and Dries F. Benoit. “Interpretable data science for decision making”. In: Decision
Support Systems 150 (2021). DOI:10.1016/j.dss.2021.113664, p. 113664.

[93] Randall Davis, Andrew W. Lo, Sudhanshu Mishra, Arash Nourian, Manish Singh, Nicholas Wu, and
Ruixun Zhang. “Explainable Machine Learning Models of Consumer Credit Risk”. In: SSRN Electronic
Journal (2022). DOI:10.2139/ssrn.4006840.

[94] Rober Hunter Davis, D. B. Edelman, and A. J. Gammerman. “Machine-learning algorithms for credit-
card applications”. In: IMA Journal of Management Mathematics 4.1 (1992). DOI:10.1093/imaman/4.1.43,
pp. 43–51.

[95] Alexandru M. Degeratu, Arvind Rangaswamy, and Jianan Wu. “Consumer choice behavior in online
and traditional supermarkets: The effects of brand name, price, and other search attributes”. In: Inter-
national Journal of research in Marketing 17.1 (2000). DOI:10.1016/S0167-8116(00)00005-7, pp. 55–78.

[96] Deloitte. Global Powers of Retailing 2022. https://www.deloitte.com/cbc/en/Industries/consumer/
analysis/global-powers-of-retailing-2022.html. [Online; accessed 15 May 2024]. 2022.

[97] Vijay S. Desai, Jonathan N. Crook, and George A. Overstreet Jr. “A comparison of neural networks and
linear scoring models in the credit union environment”. In: European Journal of Operational Research 95.1
(1996). DOI:10.1016/0377-2217(95)00246-4, pp. 24–37.

[98] Edsger W. Dijkstra. “The Humble Programmer”. In: Communications of The ACM - CACM 15.10 (1972).
DOI:10.1145/355604.361591, pp. 859–866.

https://doi.org/10.1109/QSIC.2004.1357947
https://doi.org/10.1109/ASWEC.2006.25
https://doi.org/10.1145/1101908.1101957
https://doi.org/10.1145/1363102.1363107
https://doi.org/10.1016/j.jss.2015.07.037
https://doi.org/10.1016/S0164-1212(01)00028-0
https://doi.org/10.1016/S0950-5849(02)00129-5
https://doi.org/10.1109/TSE.2010.23
https://doi.org/10.1007/11767077_13
https://doi.org/10.13328/j.cnki.jos.004674
https://doi.org/10.1109/QSIC.2013.19
https://doi.org/10.1145/1368088.1368099
https://doi.org/10.1007/s11116-011-9327-z
https://doi.org/10.1016/j.dss.2021.113664
https://doi.org/10.2139/ssrn.4006840
https://doi.org/10.1093/imaman/4.1.43
https://doi.org/10.1016/S0167-8116(00)00005-7
https://www.deloitte.com/cbc/en/Industries/consumer/analysis/global-powers-of-retailing-2022.html
https://www.deloitte.com/cbc/en/Industries/consumer/analysis/global-powers-of-retailing-2022.html
https://doi.org/10.1016/0377-2217(95)00246-4
https://doi.org/10.1145/355604.361591

176 bibliography

[99] Junhua Ding, Tong Wu, Jun Lu, and Xin-Hua Hu. “Self-checked metamorphic testing of an image
processing program”. In: 2010 Fourth International Conference on Secure Software Integration and Reliability
Improvement. DOI:10.1109/SSIRI.2010.25. IEEE. 2010, pp. 190–197.

[100] Guowei Dong. “Metamorphic testing techniques for error detection efficiency”. PhD thesis. Nanjing,
China: School of Computer Science and Engineering, Southeast University, 2009.

[101] Guowei Dong, Tao Guo, and Puhan Zhang. “Security assurance with program path analysis and
metamorphic testing”. In: 2013 IEEE 4th International Conference on Software Engineering and Service
Science (ICSESS). DOI:10.1109/ICSESS.2013.6615286. IEEE. 2013, pp. 193–197.

[102] Guowei Dong, Changhai Nie, Baowen Xu, and Lulu Wang. “An effective iterative metamorphic testing
algorithm based on program path analysis”. In: 2007 7th International Conference on Quality Software
(QSIC 2007). DOI:10.1109/QSIC.2007.4385510. IEEE. 2007, pp. 292–297.

[103] Guowei Dong, Baowen Xu, Lin Chen, Changhai Nie, and Lulu Wang. “Case studies on testing with
compositional metamorphic relations”. In: Journal of Southeast University (English Edition) 24.4 (2008),
pp. 437–443.

[104] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. “A survey on ensemble learning”.
In: Frontiers of Computer Science 14 (2020). DOI:10.1007/s11704-019-8208-z, pp. 241–258.

[105] A. D. Dongare, R. R. Kharde, and Amit D. Kachare. “Introduction to artificial neural network”. In:
International Journal of Engineering and Innovative Technology (IJEIT) 2.1 (2012), pp. 189–194.

[106] Robert Dorfman. “A formula for the Gini coefficient”. In: The review of economics and statistics (1979).
DOI:10.2307/1924845, pp. 146–149.

[107] Bernard Dushimimana, Yvonne Wambui, Timothy Lubega, and Patrick E. McSharry. “Use of Machine
Learning Techniques to Create a Credit Score Model for Airtime Loans”. In: Journal of Risk and Financial
Management 13.8 (2020). DOI:10.3390/jrfm13080180, p. 180.

[108] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Letters 27.8 (2006).
DOI:10.1016/j.patrec.2005.10.010, pp. 861–874.

[109] FICO. Machine learning and FICO scores. https://www.fico.com/en/resource-access/download/6559.
[Online; accessed 15 May 2024]. 2018.

[110] Roy Thomas Fielding. “Architectural styles and the design of network-based software architectures”.
PhD thesis. University of California, Irvine, 2000.

[111] George B. Finelli. “NASA software failure characterization experiments”. In: Reliability Engineering &
System Safety 32.1-2 (1991). DOI:10.1016/0951-8320(91)90052-9, pp. 155–169.

[112] Steven Finlay. Credit scoring, response modeling, and insurance rating: A practical guide to forecasting con-
sumer behavior. Springer, 2012.

[113] Justin E. Forrester and Barton P. Miller. “An Empirical Study of the Robustness of Windows NT
Applications Using Random Testing”. In: Proceedings of the 4th Conference on USENIX Windows Systems
Symposium - Volume 4. Vol. 4. USENIX Association, 2000, pp. 59–68.

[114] Jerome H. Friedman. “Greedy function approximation: A gradient boosting machine”. In: Annals of
Statistics 29.5 (2001). DOI:10.1214/AOS/1013203451, pp. 1189–1232.

[115] Halina Frydman, Edward I. Altman, and Duen-Li Kao. “Introducing Recursive Partitioning for
Financial Classification: The Case of Financial Distress”. In: The Journal of Finance 40.1 (1985).
DOI:10.1111/j.1540-6261.1985.tb04949.x, pp. 269–291.

[116] Jixin Geng and Jiongmin Zhang. “A new method to solve the "boundary effect" of adaptive
random testing”. In: 2010 International Conference on Educational and Information Technology. Vol. 1.
DOI:10.1109/ICEIT.2010.5607704. IEEE. 2010, pp. V1–298.

[117] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering, 2nd ed. Pear-
son, 2002.

[118] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. “Explain-
ing explanations: An overview of interpretability of machine learning”. In: 2018 IEEE 5th International
Conference on data science and advanced analytics (DSAA). DOI:10.1109/DSAA.2018.00018. IEEE. 2018,
pp. 80–89.

[119] Anthony T. C. Goh. “Back-propagation neural networks for modeling complex systems”. In: Artificial
intelligence in engineering 9.3 (1995). DOI:10.1016/0954-1810(94)00011-S, pp. 143–151.

[120] Arnaud Gotlieb and Bernard Botella. “Automated metamorphic testing”. In: Proceedings of
the 27th Annual International Computer Software and Applications Conference (COMPSAC’03).
DOI:10.1109/CMPSAC.2003.1245319. IEEE Computer Society, Los Alamitos, CA. 2003, pp. 34–40.

https://doi.org/10.1109/SSIRI.2010.25
https://doi.org/10.1109/ICSESS.2013.6615286
https://doi.org/10.1109/QSIC.2007.4385510
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.2307/1924845
https://doi.org/10.3390/jrfm13080180
https://doi.org/10.1016/j.patrec.2005.10.010
https://www.fico.com/en/resource-access/download/6559
https://doi.org/10.1016/0951-8320(91)90052-9
https://doi.org/10.1214/AOS/1013203451
https://doi.org/10.1111/j.1540-6261.1985.tb04949.x
https://doi.org/10.1109/ICEIT.2010.5607704
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1016/0954-1810(94)00011-S
https://doi.org/10.1109/CMPSAC.2003.1245319

bibliography 177

[121] Jean-Christophe Goulet-Pelletier and Denis Cousineau. “A review of effect sizes and their confi-
dence intervals, Part I: The Cohen‘s d family”. In: The Quantitative Methods for Psychology 14.4 (2018).
DOI:10.20982/tqmp.14.4.p242, pp. 242–265.

[122] Brandon M. Greenwell. “pdp: An R package for constructing partial dependence plots”. In: The R
Journal 9.1 (2017), p. 421.

[123] Richard Hamlet. “Random testing”. In: Encyclopedia of software Engineering (2002).
DOI:10.1002/0471028959.sof268.

[124] James A. Hanley and Barbara J. McNeil. “The meaning and use of the area under a receiver operating
characteristic (ROC) curve”. In: Radiology 143.1 (1982). DOI:10.1148/radiology.143.1.7063747, pp. 29–36.

[125] Mark Harman and Phil McMinn. “A theoretical and empirical study of search-based test-
ing: Local, global, and hybrid search”. In: IEEE Transactions on Software Engineering 36.2 (2009).
DOI:10.1109/TSE.2009.71, pp. 226–247.

[126] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Boosting and additive trees”. In: The elements
of statistical learning. DOI:10.1007/978-0-387-84858-7_10. Springer, 2009, pp. 337–387.

[127] Douglas M. Hawkins. “The problem of overfitting”. In: Journal of chemical information and computer
sciences 44.1 (2004). DOI:10.1021/ci0342472, pp. 1–12.

[128] Jane Huffman Hayes and A. Jefferson Offutt. “Increased software reliability through input validation
analysis and testing”. In: Proceedings 10th International Symposium on Software Reliability Engineering (Cat.
No. PR00443). DOI:10.1109/ISSRE.1999.809325. IEEE. 1999, pp. 199–209.

[129] Pinjia He, Clara Meister, and Zhendong Su. “Structure-invariant testing for machine trans-
lation”. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
DOI:10.1145/3377811.3380339. IEEE. 2020, pp. 961–973.

[130] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Reducing the cost of model-based testing through
test case diversity”. In: Testing Software and Systems. DOI:10.1007/978-3-642-16573-3_6. Springer Berlin
Heidelberg, 2010, pp. 63–78.

[131] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Empirical investigation of the effects of test suite
properties on similarity-based test case selection”. In: 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation. DOI:10.1109/ICST.2011.12. IEEE Computer Society, 2011,
pp. 327–336.

[132] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Achieving scalable model-based testing through
test case diversity”. In: ACM Transactions on Software Engineering and Methodology (TOSEM) 22.1 (2013).
DOI:10.1109/ICST.2011.12, pp. 1–42.

[133] Akhil Bandhu Hens and Manoj Kumar Tiwari. “Computational time reduction for credit scoring: An
integrated approach based on support vector machine and stratified sampling method”. In: Expert
Systems with Applications 39.8 (2012). DOI:10.1016/j.eswa.2011.12.057, pp. 6774–6781.

[134] M. S. Hossain. “Challenges of software quality assurance and testing”. In: International Journal of Soft-
ware Engineering and Computer Systems 4.1 (2018). DOI:10.15282/ijsecs.4.1.2018.11.0044, pp. 133–144.

[135] J. C. Huang. “An approach to program testing”. In: ACM Computing Surveys (CSUR) 7.3 (1975).
DOI:10.1145/356651.356652, pp. 113–128.

[136] Rubing Huang, Haibo Chen, Weifeng Sun, and Dave Towey. “Candidate test set reduction for adaptive
random testing: An overheads reduction technique”. In: Science of Computer Programming 214 (2022).
DOI:10.1016/j.scico.2021.102730, p. 102730.

[137] Rubing Huang, Chenhui Cui, Dave Towey, Weifeng Sun, and Junlong Lian. “VPP-ART: An Efficient
Implementation of Fixed-Size-Candidate-Set Adaptive Random Testing Using Vantage Point Partition-
ing”. In: IEEE Transactions on Reliability 72.4 (2023). DOI:10.1109/TR.2022.3218602, pp. 1632–1647.

[138] Rubing Huang, Huai Liu, Xiaodong Xie, and Jinfu Chen. “Enhancing mirror adaptive ran-
dom testing through dynamic partitioning”. In: Information and Software Technology 67 (2015).
DOI:10.1016/j.infsof.2015.06.003, pp. 13–29.

[139] Rubing Huang, Weifeng Sun, Haibo Chen, Chenhui Cui, and Ning Yang. “A nearest-neighbor divide-
and-conquer approach for adaptive random testing”. In: Science of Computer Programming 215 (2022).
DOI:10.1016/j.scico.2021.102743, p. 102743.

[140] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and Xin Xia. “A sur-
vey on adaptive random testing”. In: IEEE Transactions on Software Engineering 47.10 (2021).
DOI:10.1109/TSE.2019.2942921, pp. 2052–2083.

https://doi.org/10.20982/tqmp.14.4.p242
https://doi.org/10.1002/0471028959.sof268
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1109/TSE.2009.71
https://doi.org/10.1007/978-0-387-84858-7_10
https://doi.org/10.1021/ci0342472
https://doi.org/10.1109/ISSRE.1999.809325
https://doi.org/10.1145/3377811.3380339
https://doi.org/10.1007/978-3-642-16573-3_6
https://doi.org/10.1109/ICST.2011.12
https://doi.org/10.1109/ICST.2011.12
https://doi.org/10.1016/j.eswa.2011.12.057
https://doi.org/10.15282/ijsecs.4.1.2018.11.0044
https://doi.org/10.1145/356651.356652
https://doi.org/10.1016/j.scico.2021.102730
http://dx.doi.org/10.1109/TR.2022.3218602
https://doi.org/10.1016/j.infsof.2015.06.003
https://doi.org/10.1016/j.scico.2021.102743
https://doi.org/10.1109/TSE.2019.2942921

178 bibliography

[141] Rubing Huang, Xiaodong Xie, Jinfu Chen, and Yansheng Lu. “Failure-detection capability analysis of
implementing parallelism in adaptive random testing algorithms”. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing. DOI:10.1145/2480362.2480562. 2013, pp. 1049–1054.

[142] Zhanwei Hui and Song Huang. “A formal model for metamorphic relation decomposition”. In: 2013
Fourth World Congress on Software Engineering. DOI:10.1109/WCSE.2013.14. IEEE. 2013, pp. 64–68.

[143] Zhanwei Hui and Song Huang. “MD-ART: A Test Case Generation Method without Test Oracle Prob-
lem”. In: Proceedings of the 1st International Workshop on Specification, Comprehension, Testing, and Debug-
ging of Concurrent Programs. DOI:10.1145/2975954.2975959. ACM New York, NY, USA, 2016, pp. 27–
34.

[144] Zhanwei Hui, Xiaojuan Wang, Song Huang, and Sen Yang. “MT-ART: A Test Case Generation Method
Based on Adaptive Random Testing and Metamorphic Relation”. In: IEEE Transactions on Reliability
70.4 (2021). DOI:10.1109/TR.2021.3106389, pp. 1397–1421.

[145] Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand. “Combining search-based and adaptive
random testing strategies for environment model-based testing of real-time embedded systems”. In: In-
ternational Symposium on Search Based Software Engineering. DOI:10.1007/978-3-642-33119-0_11. Springer.
2012, pp. 136–151.

[146] “ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary”. In:
ISO/IEC/IEEE 24765:2010(E) (2010), pp. 1–418. doi: 10.1109/IEEESTD.2010.5733835.

[147] Joxan Jaffar and Jean-Louis Lassez. “Constraint logic programming”. In: Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages. DOI:10.1145/41625.41635. 1987,
pp. 111–119.

[148] Herbert L. Jensen. “Using neural networks for credit scoring”. In: Managerial Finance (1992).
DOI:10.1108/eb013696.

[149] Yue Jia and Mark Harman. “An analysis and survey of the development of mutation testing”. In: IEEE
Transactions on Software Engineering 37.5 (2011). DOI:10.1109/TSE.2010.62, pp. 649–678.

[150] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and T. H. Tse. “Adaptive random test case
prioritization”. In: 2009 IEEE/ACM International Conference on Automated Software Engineering.
DOI:10.1109/ASE.2009.77. 2009, pp. 233–244.

[151] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, and Zuohua Ding. “Testing central processing unit
scheduling algorithms using metamorphic testing”. In: 2013 IEEE 4th International Conference on Soft-
ware Engineering and Service Science (ICSESS). DOI:10.1109/ICSESS.2013.6615365. IEEE. 2013, pp. 530–
536.

[152] Hao Jin, Yanyan Jiang, Na Liu, Chang Xu, Xiaoxing Ma, and Jian Lu. “Concolic Metamorphic De-
bugging”. In: 2015 IEEE 39th Annual Computer Software and Applications Conference. Vol. 2. IEEE. 2015,
pp. 232–241. doi: 10.1109/COMPSAC.2015.79.

[153] René Just and Franz Schweiggert. “Automating software tests with partial oracles in in-
tegrated environments”. In: Proceedings of the 5th Workshop on Automation of Software Test.
DOI:10.1145/1808266.1808280. 2010, pp. 91–94.

[154] René Just and Franz Schweiggert. “Automating unit and integration testing with partial oracles”. In:
Software Quality Journal 19.4 (2011). DOI:10.1007/s11219-011-9151-x, p. 753.

[155] Upulee Kanewala. “Techniques for automatic detection of metamorphic relations”. In: 2014
IEEE Seventh International Conference on Software Testing, Verification and Validation Workshops.
DOI:10.1109/ICSTW.2014.62. IEEE. 2014, pp. 237–238.

[156] Upulee Kanewala and James M. Bieman. “Using machine learning techniques to detect metamorphic
relations for programs without test oracles”. In: 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). DOI:10.1109/ISSRE.2013.6698899. IEEE. 2013, pp. 1–10.

[157] Roger E. Kirk. “Practical significance: A concept whose time has come”. In: Educational and psychological
measurement 56.5 (1996). DOI:10.1177/0013164496056005002, pp. 746–759.

[158] Philipp Koehn and Christof Monz. “Manual and automatic evaluation of machine translation
between European languages”. In: Proceedings on the Workshop on Statistical Machine Translation.
DOI:10.3115/1654650.1654666. 2006, pp. 102–121.

[159] Ron Kohavi and Roger Longbotham. “Online experiments: Lessons learned”. In: Computer 40.9 (2007).
DOI:10.1109/MC.2007.328, pp. 103–105.

[160] Harsh Kukreja, N. Bharath, C. S. Siddesh, and S. Kuldeep. “An introduction to artificial neural
network”. In: International Journal of Advance Research and Innovative Ideas in Education 1.5 (2016).
DOI:10.1016/j.patrec.2005.10.010, pp. 27–30.

https://doi.org/10.1145/2480362.2480562
https://doi.org/10.1109/WCSE.2013.14
https://doi.org/10.1145/2975954.2975959
https://doi.org/10.1109/TR.2021.3106389
https://doi.org/10.1007/978-3-642-33119-0_11
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1145/41625.41635
https://doi.org/10.1108/eb013696
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ASE.2009.77
https://doi.org/10.1109/ICSESS.2013.6615365
https://doi.org/10.1109/COMPSAC.2015.79
https://doi.org/10.1145/1808266.1808280
https://doi.org/10.1007/s11219-011-9151-x
https://doi.org/10.1109/ICSTW.2014.62
https://doi.org/10.1109/ISSRE.2013.6698899
https://doi.org/10.1177/0013164496056005002
https://doi.org/10.3115/1654650.1654666
https://doi.org/10.1109/MC.2007.328
https://doi.org/10.1016/j.patrec.2005.10.010

bibliography 179

[161] Vaibhav Kumar and M. L. Garg. “Predictive analytics: A review of trends and techniques”. In: Interna-
tional Journal of Computer Applications 182.1 (2018). DOI:10.5120/ijca2018917434, pp. 31–37.

[162] Fei-Ching Kuo. “An indepth study of mirror adaptive random testing”. In: 2009 9th International Con-
ference on Quality Software. DOI:10.1109/QSIC.2009.15. IEEE. 2009, pp. 51–58.

[163] Fei-Ching Kuo, Tsong Yueh Chen, Huai Liu, and W. K. Chan. “Enhancing adaptive random testing
in high dimensional input domains”. In: Proceedings of the 2007 ACM symposium on Applied computing.
DOI:10.1145/1244002.1244316. 2007, pp. 1467–1472.

[164] Fei-Ching Kuo, Tsong Yueh Chen, Huai Liu, and Wing Kwong Chan. “Enhancing adaptive random
testing for programs with high dimensional input domains or failure-unrelated parameters”. In: Soft-
ware Quality Journal 16.3 (2008). DOI:10.1007/s11219-008-9047-6, pp. 303–327.

[165] Fei-Ching Kuo, Tsong Yueh Chen, and Wing K. Tam. “Testing embedded software by metamorphic
testing: A wireless metering system case study”. In: 2011 IEEE 36th Conference on Local Computer Net-
works. DOI:10.1109/LCN.2011.6115306. IEEE. 2011, pp. 291–294.

[166] Fei-Ching Kuo, Kwan Yong Sim, Chang-Ai Sun, S.-F. Tang, and Zhi Quan Zhou. “Enhanced random
testing for programs with high dimensional input domains”. In: Software Quality Journal 16 (2007).
DOI:10.1109/QSIC.2006.8, pp. 135–140.

[167] Fei-Ching Kuo, Zhi Quan Zhou, Jun Ma, and Guang Quan Zhang. “Metamorphic testing of decision
support systems: A case study”. In: IET software 4.4 (2010). DOI:10.1049/iet-sen.2009.0084, pp. 294–301.

[168] Janusz W. Laski and Bogdan Korel. “A data flow oriented program testing strategy”. In: IEEE Transac-
tions on Software Engineering 3 (1983). DOI:10.1109/TSE.1983.236871, pp. 347–354.

[169] Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler validation via equivalence modulo inputs”. In:
ACM SIGPLAN Notices 49.6 (2014). DOI:10.1145/2666356.2594334, pp. 216–226.

[170] Dickson T. S. Lee, Zhi Quan Zhou, and T. H. Tse. “Metamorphic Robustness Testing of Google Trans-
late”. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops
(ICSEW’20). DOI:10.1145/3387940.3391484. ACM New York, NY, USA, 2020, pp. 388–395.

[171] Stefan Lessmann, Bart Baesens, Hsin-Vonn Seow, and Lyn C. Thomas. “Benchmarking state-of-the-art
classification algorithms for credit scoring: An update of research”. In: European Journal of Operational
Research 247.1 (2015). DOI:10.1016/j.ejor.2015.05.030, pp. 124–136.

[172] Jing Li, Ji hang Cheng, Jing yuan Shi, and Fei Huang. “Brief introduction of Back Propagation (BP)
neural network algorithm and its improvement”. In: Advances in Computer Science and Information Engi-
neering. DOI:10.1007/978-3-642-30223-7_87. Springer. 2012, pp. 553–558.

[173] Yu Li. “Credit risk prediction based on machine learning methods”. In: 2019 14th International Confer-
ence on Computer Science & Education (ICCSE). DOI:10.1109/ICCSE.2019.8845444. IEEE. 2019, pp. 1011–
1013.

[174] Song Lin, Zhiguo Gao, and Ke Xu. “Web 2.0 Traffic Measurement: Analysis on Online Map Applica-
tions”. In: Proceedings of the 18th International Workshop on Network and Operating Systems Support for
Digital Audio and Video. DOI:10.1145/1542245.1542248. ACM New York, NY, USA, 2009, pp. 7–12.

[175] Yu Lin, Xucheng Tang, Yuting Chen, and Jianjun Zhao. “A divergence-oriented approach to adaptive
random testing of Java programs”. In: 2009 IEEE/ACM International Conference on Automated Software
Engineering. DOI:10.1109/ASE.2009.13. IEEE. 2009, pp. 221–232.

[176] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explainable AI: A review of
machine learning interpretability methods”. In: Entropy 23.1 (2020). DOI:10.3390/e23010018, p. 18.

[177] Mikael Lindvall, Dharmalingam Ganesan, Sigurthor Bjorgvinsson, Kristjan Jonsson, Haukur Steinn
Logason, Frederik Dietrich, and Robert E Wiegand. “Agile metamorphic model-based testing”. In:
2016 IEEE/ACM 1st International Workshop on Metamorphic Testing (MET). DOI:10.1145/2896971.2896979.
Association for Computing Machinery, 2016, pp. 26–32.

[178] Steve Lipner. “The trustworthy computing security development lifecycle”. In: 20th Annual Computer
Security Applications Conference. DOI:10.1109/CSAC.2004.41. IEEE. 2004, pp. 2–13.

[179] Huai Liu and Tsong Yueh Chen. “An innovative approach to randomising quasi-random sequences
and its application into software testing”. In: 2009 9th International Conference on Quality Software.
DOI:10.1109/QSIC.2009.16. IEEE. 2009, pp. 59–64.

[180] Huai Liu and Tsong Yueh Chen. “Randomized quasi-random testing”. In: IEEE Transactions on Comput-
ers 65.6 (2015). DOI:10.1109/TC.2015.2455981, pp. 1896–1909.

[181] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. “How effectively does metamor-
phic testing alleviate the oracle problem?” In: IEEE Transactions on Software Engineering 40.1 (2013).
DOI:10.1109/TSE.2013.46, pp. 4–22.

https://doi.org/10.5120/ijca2018917434
https://doi.org/10.1109/QSIC.2009.15
https://doi.org/10.1145/1244002.1244316
https://doi.org/10.1007/s11219-008-9047-6
https://doi.org/10.1109/LCN.2011.6115306
https://doi.org/10.1109/QSIC.2006.8
https://doi.org/10.1049/iet-sen.2009.0084
https://doi.org/10.1109/TSE.1983.236871
https://doi.org/10.1145/2666356.2594334
https://doi.org/10.1145/3387940.3391484
https://doi.org/10.1016/j.ejor.2015.05.030
https://doi.org/10.1007/978-3-642-30223-7_87
https://doi.org/10.1109/ICCSE.2019.8845444
https://doi.org/10.1145/1542245.1542248
https://doi.org/10.1109/ASE.2009.13
https://doi.org/10.3390/e23010018
https://doi.org/10.1145/2896971.2896979
https://doi.org/10.1109/CSAC.2004.41
https://doi.org/10.1109/QSIC.2009.16
https://doi.org/10.1109/TC.2015.2455981
https://doi.org/10.1109/TSE.2013.46

180 bibliography

[182] Huai Liu, Xuan Liu, and Tsong Yueh Chen. “A new method for constructing metamorphic relations”.
In: 2012 12th International Conference on Quality Software. DOI:10.1109/QSIC.2012.10. IEEE. 2012, pp. 59–
68.

[183] Huai Liu, Xiaodong Xie, Jing Yang, Yansheng Lu, and Tsong Yueh Chen. “Adaptive random test-
ing by exclusion through test profile”. In: 2010 10th International Conference on Quality Software.
DOI:10.1109/QSIC.2010.61. IEEE. 2010, pp. 92–101.

[184] Huai Liu, Xiaodong Xie, Jing Yang, Yansheng Lu, and Tsong Yueh Chen. “Adaptive random testing
through test profiles”. In: Software: Practice and Experience 41.10 (2011). DOI:10.1002/spe.1067, pp. 1131–
1154.

[185] Hui Liu and Hee Beng Kuan Tan. “Covering code behavior on input validation in functional testing”.
In: Information and Software Technology 51.2 (2009). DOI:10.1016/j.infsof.2008.07.001, pp. 546–553.

[186] Zhifang Liu, Xiaopeng Gao, and Xiang Long. “Adaptive random testing of mobile appli-
cation”. In: 2010 2nd International Conference on Computer Engineering and Technology. Vol. 2.
DOI:10.1109/ICCET.2010.5485442. IEEE. 2010, pp. V2–297.

[187] Wei-Yin Loh. “Classification and regression trees”. In: Wiley interdisciplinary reviews: Data mining and
knowledge discovery 1.1 (2011). DOI:10.1038/nmeth.4370, pp. 14–23.

[188] Freddie Mac. Single-Family Loan-Level Dataset General User Guide. https://www.freddiemac.com/fmac-
resources/research/pdf/user_guide.pdf. [Online; accessed 15 May 2024]. 2023.

[189] Milad Malekipirbazari and Vural Aksakalli. “Risk assessment in social lending via random forests”.
In: Expert Systems with Applications 42.10 (2015). DOI:10.1016/j.eswa.2015.02.001, pp. 4621–4631.

[190] Rashmi Malhotra and Davinder K. Malhotra. “Evaluating consumer loans using neural networks”. In:
Omega 31.2 (2003). DOI:10.1016/S0305-0483(03)00016-1, pp. 83–96.

[191] Rajib Mall. Fundamentals of software engineering. PHI Learning Pvt. Ltd., 2018.

[192] Chengying Mao, Tsong Yueh Chen, and Fei-Ching Kuo. “Out of sight, out of mind: A distance-aware
forgetting strategy for adaptive random testing”. In: Science China Information Sciences 60.9 (2017).
DOI:10.1007/s11432-016-0087-0, p. 092106.

[193] Chengying Mao, Xuzheng Zhan, T. H. Tse, and Tsong Yueh Chen. “KDFC-ART: A KD-tree approach
to enhancing Fixed-size-Candidate-set Adaptive Random Testing”. In: IEEE Transactions on Reliability
68.4 (2019). DOI:10.1109/TR.2019.2892230, pp. 1444–1469.

[194] David Martens, Jan Vanthienen, Wouter Verbeke, and Bart Baesens. “Performance of classification
models from a user perspective”. In: Decision Support Systems 51.4 (2011). DOI:10.1016/j.dss.2011.01.013,
pp. 782–793.

[195] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. “Effective test suites for
mixed discrete-continuous stateflow controllers”. In: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering. DOI:10.1145/2786805.2786818. Association for Computing Machinery,
2015, pp. 84–95.

[196] Johannes Mayer. “Adaptive random testing by bisection and localization”. In: International Workshop
on Formal Approaches to Software Testing. DOI:10.1007/11759744_6. Springer. 2005, pp. 72–86.

[197] Johannes Mayer. “Adaptive random testing by bisection with restriction”. In: International Conference
on Formal Engineering Methods. DOI:10.1007/11576280_18. Springer. 2005, pp. 251–263.

[198] Johannes Mayer. “Adaptive random testing with randomly translated failure region”. In: Proceedings
of the 1st international workshop on Random testing. DOI:10.1145/1145735.1145746. 2006, pp. 70–77.

[199] Johannes Mayer. “Efficient and Effective Random Testing based on Partitioning and Neighborhood”.
In: Proceedings of the 18th International Conference on Software Engineering & Knowledge Engineering
(SEKE’06). 2006, pp. 479–484.

[200] Johannes Mayer. “Towards effective adaptive random testing for higher-dimensional input do-
mains”. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation.
DOI:10.1145/1143997.1144323. 2006, pp. 1955–1956.

[201] Johannes Mayer and Ralph Guderlei. “An empirical study on the selection of good metamorphic
relations”. In: Proceedings of the 30th Annual International Computer Software and Applications Conference
(COMPSAC’06). Vol. 1. DOI:10.1109/COMPSAC.2006.24. IEEE. 2006, pp. 475–484.

[202] Johannes Mayer and Christoph Schneckenburger. “Adaptive random testing with enlarged input do-
main”. In: 2006 6th International Conference on Quality Software (QSIC’06). DOI:10.1109/QSIC.2006.8.
IEEE. 2006, pp. 251–258.

https://doi.org/10.1109/QSIC.2012.10
https://doi.org/10.1109/QSIC.2010.61
https://doi.org/10.1002/spe.1067
https://doi.org/10.1016/j.infsof.2008.07.001
https://doi.org/10.1109/ICCET.2010.5485442
https://doi.org/10.1038/nmeth.4370
https://www.freddiemac.com/fmac-resources/research/pdf/user_guide.pdf
https://www.freddiemac.com/fmac-resources/research/pdf/user_guide.pdf
https://doi.org/10.1016/j.eswa.2015.02.001
https://doi.org/10.1016/S0305-0483(03)00016-1
https://doi.org/10.1007/s11432-016-0087-0
https://doi.org/10.1109/TR.2019.2892230
https://doi.org/10.1016/j.dss.2011.01.013
https://doi.org/10.1145/2786805.2786818
https://doi.org/10.1007/11759744_6
https://doi.org/10.1007/11576280_18
https://doi.org/10.1145/1145735.1145746
https://doi.org/10.1145/1143997.1144323
https://doi.org/10.1109/COMPSAC.2006.24
https://doi.org/10.1109/QSIC.2006.8

bibliography 181

[203] Johannes Mayer and Christoph Schneckenburger. “An empirical analysis and comparison of random
testing techniques”. In: Proceedings of the 2006 ACM/IEEE international symposium on Empirical software
engineering. DOI:10.1145/1159733.1159751. 2006, pp. 105–114.

[204] Johannes Mayer and Christoph Schneckenburger. “Statistical Analysis and Enhancement of Random
Testing Methods also under Constrained Resources.” In: Software Engineering Research and Practice. Cite-
seer. 2006, pp. 16–23.

[205] Michael McBurnett, Peter Maynard, and John Power. Comparing scores and reason codes in credit scoring
systems. https://www.equifax.com/resource/-/asset/white-paper/comparing-scores-and-reason-
codes-in-credit-scoring-systems/. [Online; accessed 15 May 2024]. 2020.

[206] Michael McBurnett, Peter Maynard, and John Power. Putting Neural Network Models to the Test. https:
//www.equifax.com/resource/- /asset/white- paper/putting- neural- network- models- test/.
[Online; accessed 15 May 2024]. 2020.

[207] Phil McMinn. “Search-based software test data generation: A survey”. In: Software testing, Verification
and reliability 14.2 (2004). DOI:10.23919/CSMS.2022.0027, pp. 105–156.

[208] Nishchol Mishra and Sanjay Silakari. “Predictive analytics: A survey, trends, applications, oppurtuni-
ties & challenges”. In: International Journal of Computer Science and Information Technologies 3.3 (2012),
pp. 4434–4438.

[209] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable.
2nd ed. Lulu.com, 2020.

[210] Sandro Morasca and Stefano Serra-Capizzano. “On the analytical comparison of testing techniques”.
In: Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing and analysis.
DOI:10.1145/1007512.1007533. ACM New York, NY, USA, 2004, pp. 154–164.

[211] Larry J. Morell. “A theory of fault-based testing”. In: IEEE Transactions on Software Engineering 16.8
(1990), pp. 844–857.

[212] Vincenzo Moscato, Antonio Picariello, and Giancarlo Sperlí. “A benchmark of machine learn-
ing approaches for credit score prediction”. In: Expert Systems with Applications 165 (2021).
DOI:10.1016/j.eswa.2020.113986, p. 113986.

[213] Woramet Muangsiri and Shingo Takada. “Random GUI testing of android application using behav-
ioral model”. In: International Journal of Software Engineering and Knowledge Engineering 27.09n10 (2017).
DOI:10.1142/S0218194017400149, pp. 1603–1612.

[214] Christian Murphy, Gail E. Kaiser, and Lifeng Hu. “Properties of machine learning applications for use
in metamorphic testing”. In: Proceedings of the 20th International Conference on Software Engineering &
Knowledge Engineering (SEKE’08) (2008). DOI:10.1007/978-3-642-19423-8_19, pp. 867–872.

[215] John D. Musa. “Software reliability-engineered testing”. In: Computer 29.11 (1996).
DOI:10.1109/2.544239, pp. 61–68.

[216] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software testing. John Wiley & Sons, 2011.

[217] Anthony J. Myles, Robert N. Feudale, Yang Liu, Nathaniel A. Woody, and Steven D. Brown. “An
introduction to decision tree modeling”. In: Journal of Chemometrics: A Journal of the Chemometrics Society
18.6 (2004). DOI:10.1002/cem.873, pp. 275–285.

[218] Shin Nakajima and Hai Ngoc Bui. “Dataset coverage for testing machine learning computer programs”.
In: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC). DOI:10.1109/APSEC.2016.049. IEEE.
2016, pp. 297–304.

[219] Changhai Nie and Hareton Leung. “A survey of combinatorial testing”. In: ACM Computing Surveys
(CSUR) 43.2 (2011). DOI:10.1145/1883612.1883618, pp. 1–29.

[220] Janping Nie, Yueying Qian, and Nan Cui. “Enhanced Mirror Adaptive Random Testing Based
on I/O Relation Analysis”. In: Software Engineering and Knowledge Engineering: Theory and Practice.
DOI:10.1007/978-3-642-03718-4_5. Springer, 2012, pp. 33–47.

[221] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun Wanapu. “Us-
ing of Jaccard coefficient for keywords similarity”. In: Proceedings of the international multiconference of
engineers and computer scientists. Vol. 1. 2013, pp. 380–384.

[222] Alessandro Orso and Gregg Rothermel. “Software Testing: A Research Travelogue (2000-2014)”. In:
Future of Software Engineering Proceedings. DOI:10.1145/2593882.2593885. ACM New York, NY, USA,
2014, pp. 117–132.

[223] Thomas J. Ostrand and Marc J. Balcer. “The category-partition method for specifying and generating
fuctional tests”. In: Communications of the ACM 31.6 (1988). DOI:10.1145/62959.62964, pp. 676–686.

https://doi.org/10.1145/1159733.1159751
https://www.equifax.com/resource/-/asset/white-paper/comparing-scores-and-reason-codes-in-credit-scoring-systems/
https://www.equifax.com/resource/-/asset/white-paper/comparing-scores-and-reason-codes-in-credit-scoring-systems/
https://www.equifax.com/resource/-/asset/white-paper/putting-neural-network-models-test/
https://www.equifax.com/resource/-/asset/white-paper/putting-neural-network-models-test/
https://doi.org/10.23919/CSMS.2022.0027
https://doi.org/10.1145/1007512.1007533
https://doi.org/10.1016/j.eswa.2020.113986
https://doi.org/10.1142/S0218194017400149
https://doi.org/10.1007/978-3-642-19423-8_19
https://doi.org/10.1109/2.544239
https://doi.org/10.1002/cem.873
https://doi.org/10.1109/APSEC.2016.049
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1007/978-3-642-03718-4_5
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.1145/62959.62964

182 bibliography

[224] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. “Feedback-Directed Ran-
dom Test Generation”. In: Proceedings of the 29th International Conference on Software Engineering (ICSE).
DOI:10.1109/ICSE.2007.37. IEEE Computer Society, Los Alamitos, CA, 2007, pp. 75–84.

[225] Trilok Nath Pandey, Alok Kumar Jagadev, Suman Kumar Mohapatra, and Satchidananda Dehuri.
“Credit risk analysis using machine learning classifiers”. In: 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS). IEEE. 2017, pp. 1850–1854. doi: 10.1109/
ICECDS.2017.8389769.

[226] Daniel Pesu, Zhi Quan Zhou, Jingfeng Zhen, and Dave Towey. “A Monte Carlo method for metamor-
phic testing of machine translation services”. In: 2018 IEEE/ACM 3rd International Workshop on Metamor-
phic Testing (MET). DOI:10.1145/3193977.3193980. Association for Computing Machinery, 2018, pp. 38–
45.

[227] Rob Pooley and Perdita Stevens. Component-Based Software Testing with UML. Addison-Wesley,
Novermber 1998.

[228] Pak-Lok Poon, Fei-Ching Kuo, Huai Liu, and Tsong Yueh Chen. “How can non-technical end users
effectively test their spreadsheets?” In: Information Technology & People 27.4 (2014). DOI:10.1108/ITP-01-
2013-0004, pp. 440–462.

[229] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical recipes 2nd
edition. Cambridge university press, 1992.

[230] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical recipes 3rd
edition: The art of scientific computing. Cambridge university press, 2007.

[231] I. Putu Edy Suardiyana Putra and Petrus Mursanto. “Centroid Based Adaptive Random Testing for
object oriented program”. In: 2013 International Conference on Advanced Computer Science and Information
Systems (ICACSIS). DOI:10.1109/ICACSIS.2013.6761550. IEEE. 2013, pp. 39–45.

[232] Kun Qiu, Zheng Zheng, Tsong Yueh Chen, and Pak-Lok Poon. “Theoretical and empirical analyses
of the effectiveness of metamorphic relation composition”. In: IEEE Transactions on software engineering
48.3 (2020). DOI:10.1109/TSE.2020.3009698, pp. 1001–1017.

[233] Peter Quell, Anthony Graham Bellotti, Joseph L. Breeden, and Javier Calvo Martin. Machine Learning
and Model Risk Management. Tech. rep. Model Risk Managers’ International Association (MRMIA), 2021.

[234] Quora. Why does Google only return 50 pages of 10 results when it claims that there are 560,000 results?
https://www.quora.com/. [Online; accessed 15 May 2024]. 2012.

[235] John Regehr. “Random testing of interrupt-driven software”. In: Proceedings of the 5th ACM international
conference on Embedded software. DOI:10.1145/1086228.1086282. 2005, pp. 290–298.

[236] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why should I trust you?" Explaining the
predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining. DOI:10.1145/2939672.2939778. 2016, pp. 1135–1144.

[237] Robert Rosenthal, Harris Cooper, and Larry Hedges. “Parametric measures of effect size”. In: The
handbook of research synthesis 621.2 (1994), pp. 231–244.

[238] Prashanta Saha and Upulee Kanewala. “Fault detection effectiveness of source test case generation
strategies for metamorphic testing”. In: 2018 IEEE/ACM 3rd International Workshop on Metamorphic Test-
ing (MET). DOI:10.1145/3193977.3193982. 2018, pp. 2–9.

[239] Shlomo S. Sawilowsky. “New effect size rules of thumb”. In: Journal of modern applied statistical methods
8.2 (2009). DOI:10.56801/10.56801/v8.i.452, pp. 467–474.

[240] Christoph Schneckenburger and Johannes Mayer. “Towards the determination of typical failure pat-
terns”. In: Fourth international workshop on Software quality assurance: in conjunction with the 6th ESEC/FSE
joint meeting. DOI:10.1145/1295074.1295091. 2007, pp. 90–93.

[241] Christoph Schneckenburger and Franz Schweiggert. “Investigating the dimensionality problem of
Adaptive Random Testing incorporating a local search technique”. In: 2008 IEEE International Con-
ference on Software Testing Verification and Validation Workshop. DOI:10.1109/ICSTW.2008.24. IEEE. 2008,
pp. 241–250.

[242] Cedric Seger. An investigation of categorical variable encoding techniques in machine learning: Binary versus
one-hot and feature hashing. https://api.semanticscholar.org/CorpusID:250534659. [Online; accessed
15 May 2024]. 2018.

[243] Sergio Segura, Juan C. Alonso, Alberto Martin-Lopez, Amador Durán, Javier Troya, and Antonio Ruiz-
Cortés. “Automated generation of metamorphic relations for query-based systems”. In: Proceedings of
the 7th International Workshop on Metamorphic Testing. DOI:10.1145/3524846.3527338. 2022, pp. 48–55.

https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICECDS.2017.8389769
https://doi.org/10.1109/ICECDS.2017.8389769
https://doi.org/10.1145/3193977.3193980
https://doi.org/10.1108/ITP-01-2013-0004
https://doi.org/10.1108/ITP-01-2013-0004
https://doi.org/10.1109/ICACSIS.2013.6761550
https://doi.org/10.1109/TSE.2020.3009698
https://www.quora.com/
https://doi.org/10.1145/1086228.1086282
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/3193977.3193982
https://doi.org/10.56801/10.56801/v8.i.452
https://doi.org/10.1145/1295074.1295091
https://doi.org/10.1109/ICSTW.2008.24
https://api.semanticscholar.org/CorpusID:250534659
https://doi.org/10.1145/3524846.3527338

bibliography 183

[244] Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés. “A template-based approach
to describing metamorphic relations”. In: 2017 IEEE/ACM 2nd International Workshop on Metamorphic
Testing (MET). DOI:10.1109/MET.2017.3. IEEE. 2017, pp. 3–9.

[245] Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés. “Metamorphic relation patterns
for query-based systems”. In: 2019 IEEE/ACM 4th International Workshop on Metamorphic Testing (MET).
DOI:10.1109/MET.2019.00012. IEEE. 2019, pp. 24–31.

[246] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. “A survey on metamor-
phic testing”. In: IEEE Transactions on software engineering 42.9 (2016). DOI:10.1109/TSE.2016.2532875,
pp. 805–824.

[247] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. “Metamorphic testing of RESTful
web APIs”. In: IEEE Transactions on Software Engineering 44.11 (2017). DOI:10.1145/3180155.3182528,
pp. 1083–1099.

[248] Elmin Selay, Zhi Quan Zhou, and Jingjie Zou. “Adaptive random testing for image comparison in
regression web testing”. In: 2014 International Conference on Digital Image Computing: Techniques and
Applications (DICTA). DOI:10.1109/DICTA.2014.7008093. IEEE. 2014, pp. 1–7.

[249] Ali Shahbazi, Andrew F. Tappenden, and James Miller. “Centroidal Voronoi Tessellations - A
New Approach to Random Testing”. In: IEEE Transactions on Software Engineering 39.2 (2013).
DOI:10.1109/TSE.2012.18, pp. 163–183.

[250] Lloyd S. Shapley. Notes on the n-person game—ii: The value of an n-person game. DOI:10.7249/RM0670.
Rand Corporation, 1951.

[251] Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. “Testing container
classes: Random or systematic?” In: International Conference on Fundamental Approaches to Software Engi-
neering. DOI:10.1007/978-3-642-19811-3_19. Springer. 2011, pp. 262–277.

[252] Alessio Signorini and Tomasz Imielinski. “If You Ask Nicely, I Will Answer: Semantic Search and
Today’s Search Engines”. In: Proceedings of the 2009 IEEE International Conference on Semantic Computing.
DOI:10.1109/ICSC.2009.31. IEEE Computer Society, Los Alamitos, CA, 2009, pp. 184–191.

[253] Gurdeepak Singh. “An automated metamorphic testing technique for designing effective metamorphic
relations”. In: Contemporary Computing: 5th International Conference, IC3 2012, Noida, India, August 6-8,
2012. Proceedings 5. DOI:10.1007/978-3-642-32129-0_20. Springer. 2012, pp. 152–163.

[254] Yan-Yan Song and Lu Ying. “Decision tree methods: Applications for classification and prediction”. In:
Shanghai archives of psychiatry 27.2 (2015). DOI:10.11919/j.issn.1002-0829.215044, p. 130.

[255] Yu Song, Yuyan Wang, Xin Ye, Dujuan Wang, Yunqiang Yin, and Yanzhang Wang. “Multi-view ensem-
ble learning based on distance-to-model and adaptive clustering for imbalanced credit risk assessment
in P2P lending”. In: Information Sciences 525 (2020). DOI:10.1016/j.ins.2020.03.027, pp. 182–204.

[256] Helge Spieker and Arnaud Gotlieb. “Adaptive metamorphic testing with contextual bandits”. In: Jour-
nal of Systems and Software 165 (2020). DOI:10.1016/j.jss.2020.110574, p. 110574.

[257] Felix Stahlberg. “Neural machine translation: A review”. In: Journal of Artificial Intelligence Research 69

(2020). DOI:10.1613/jair.1.12007, pp. 343–418.

[258] Kwanho Suk, Jiheon Lee, and Donald R. Lichtenstein. “The influence of price presentation order on
consumer choice”. In: Journal of Marketing Research 49.5 (2012). DOI:10.1509/jmr.11.0309, pp. 708–717.

[259] Bo Sun, Yunwei Dong, and Hong Ye. “On enhancing adaptive random testing for AADL model”. In:
2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference
on Autonomic and Trusted Computing. DOI:10.1109/UIC-ATC.2012.77. IEEE. IEEE Computer Society,
2012, pp. 455–461.

[260] Chang-Ai Sun, Hepeng Dai, Huai Liu, and Tsong Yueh Chen. “Feedback-Directed Metamorphic Test-
ing”. In: ACM Transactions on Software Engineering and Methodology 32.1 (2023). DOI:10.1145/3533314.

[261] Chang-Ai Sun, An Fu, Pak-Lok Poon, Xiaoyuan Xie, Huai Liu, and Tsong Yueh Chen. “METRIC+: A
metamorphic relation identification technique based on input plus output domains”. In: IEEE Transac-
tions on Software Engineering (2019). DOI:10.1109/TSE.2019.2934848.

[262] Chang-Ai Sun, Baoli Liu, An Fu, Yiqiang Liu, and Huai Liu. “Path-directed source test case gen-
eration and prioritization in metamorphic testing”. In: Journal of Systems and Software 183 (2022).
DOI:10.1016/j.jss.2021.111091, p. 111091.

[263] Chang-Ai Sun, Guan Wang, Baohong Mu, Huai Liu, Zhaoshun Wang, and Tsong Yueh Chen. “Meta-
morphic testing for web services: Framework and a case study”. In: 2011 IEEE International Conference
on Web Services. DOI:10.1109/ICWS.2011.65. IEEE. 2011, pp. 283–290.

https://doi.org/10.1109/MET.2017.3
https://doi.org/10.1109/MET.2019.00012
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/3180155.3182528
https://doi.org/10.1109/DICTA.2014.7008093
https://doi.org/10.1109/TSE.2012.18
https://doi.org/10.7249/RM0670
https://doi.org/10.1007/978-3-642-19811-3_19
https://doi.org/10.1109/ICSC.2009.31
https://doi.org/10.1007/978-3-642-32129-0_20
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1016/j.ins.2020.03.027
https://doi.org/10.1016/j.jss.2020.110574
https://doi.org/10.1613/jair.1.12007
https://doi.org/10.1509/jmr.11.0309
https://doi.org/10.1109/UIC-ATC.2012.77
https://doi.org/10.1145/3533314
https://doi.org/10.1109/TSE.2019.2934848
https://doi.org/10.1016/j.jss.2021.111091
https://doi.org/10.1109/ICWS.2011.65

184 bibliography

[264] Liqun Sun and Zhi Quan Zhou. “Metamorphic testing for machine translations: MT4MT”. In: 2018
25th Australasian Software Engineering Conference (ASWEC’18). DOI:10.1109/ASWEC.2018.00021. IEEE.
2018, pp. 96–100.

[265] Andrew F. Tappenden and James Miller. “A novel evolutionary approach for adaptive random testing”.
In: IEEE Transactions on Reliability 58.4 (2009). DOI:10.1109/TR.2009.2034288, pp. 619–633.

[266] Krishnaiyan Thulasiraman and Madisetti N. S. Swamy. Graphs: Theory and algorithms. John Wiley &
Sons, 1992, p. 118.

[267] Dave Towey, James Walker, and Ricky Ng. “Traditional higher education engineering versus vocational
and professional education and training: What can we learn from each other?” In: Proceedings of the
2018 International Conference on Open and Innovative Education (ICOIE’18). 2018, pp. 474–486.

[268] Dave Towey, James Walker, and Ricky Ng. “Embracing ambiguity: Agile insights for sustainability in
engineering in traditional higher education and in technical and vocational education and training”.
In: Interactive Technology and Smart Education 16.2 (2019). DOI:10.1108/ITSE-10-2018-0088, pp. 143–158.

[269] Dave Towey, Sen Yang, Zhihao Ying, Zhi Quan Zhou, and Tsong Yueh Chen. “Learning by doing:
Developing the next generation of software quality assurance professionals”. In: Proceedings of the 2019
International Conference on Open and Innovative Education (ICOIE’19). The Open University of Hong
Kong, 2019, pp. 347–355.

[270] Shrawan Kumar Trivedi. “A study on credit scoring modeling with different feature selection and
machine learning approaches”. In: Technology in Society 63 (2020). DOI:10.1016/j.techsoc.2020.101413,
p. 101413.

[271] Kanewala Upulee, Bieman James M., and Ben-Hur Asa. “Predicting metamorphic relations for testing
scientific software: A machine learning approach using graph kernels”. In: Software testing, verification
and reliability 26.3 (2016). DOI:10.1002/stvr.1594, pp. 245–269.

[272] Apostol Vassilev and Christopher Celi. “Avoiding Cyberspace Catastrophes through Smarter Testing”.
In: Computer 47.10 (2014). DOI:10.1109/MC.2014.273, pp. 102–106.

[273] Alfredo Vellido, Paulo JG. Lisboa, and J. Vaughan. “Neural networks in business: A survey of applica-
tions (1992–1998)”. In: Expert Systems with applications 17.1 (1999). DOI:10.1016/S0957-4174(99)00016-0,
pp. 51–70.

[274] Thomas Verbraken, Cristián Bravo, Richard Weber, and Bart Baesens. “Development and application
of consumer credit scoring models using profit-based classification measures”. In: European Journal of
Operational Research 238.2 (2014). DOI:10.1016/j.ejor.2014.04.001, pp. 505–513.

[275] Willem Visser, Corina S. Pasareanu, and Radek Pelánek. “Test input generation for Java containers
using state matching”. In: Proceedings of the 2006 International Symposium on Software Testing and Analysis.
DOI:10.1145/1146238.1146243. Association for Computing Machinery, 2006, pp. 37–48.

[276] Neil Walkinshaw and Gordon Fraser. “Uncertainty-driven black-box test data generation”.
In: 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST).
DOI:10.1109/ICST.2017.30. IEEE. 2017, pp. 253–263.

[277] Yuyan Wang, Dujuan Wang, Xin Ye, Yanzhang Wang, Yunqiang Yin, and Yaochu Jin. “A tree ensemble-
based two-stage model for advanced-stage colorectal cancer survival prediction”. In: Information Sci-
ences 474 (2019). DOI:10.1016/j.ins.2018.09.046, pp. 106–124.

[278] David West. “Neural network credit scoring models”. In: Computers & Operations Research 27.11-12

(2000). DOI:10.1016/S0305-0548(99)00149-5, pp. 1131–1152.

[279] Lee J. White and Edward I. Cohen. “A domain strategy for computer program testing”. In: IEEE
Transactions on Software Engineering SE-6.3 (1980). DOI:10.1109/TSE.1980.234486, pp. 247–257.

[280] Chaohua Wu, Liqun Sun, and Zhi Quan Zhou. “The impact of a dot: Case studies of a noise meta-
morphic relation pattern”. In: 2019 IEEE/ACM 4th International Workshop on Metamorphic Testing (MET).
DOI:10.1109/MET.2019.00011. IEEE. 2019, pp. 17–23.

[281] Xiaoyuan Xie, Joshua W. K. Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and Tsong Yueh Chen.
“Testing and validating machine learning classifiers by metamorphic testing”. In: Journal of Systems and
Software 84.4 (2011). DOI:10.1016/j.jss.2010.11.920, pp. 544–558.

[282] Xiaoyuan Xie, Jingxuan Tu, Tsong Yueh Chen, and Baowen Xu. “Bottom-up integration testing with
the technique of metamorphic testing”. In: 2014 14th International Conference on Quality Software.
DOI:10.1109/QSIC.2014.29. IEEE. 2014, pp. 73–78.

[283] Xue Ying. “An overview of overfitting and its solutions”. In: Journal of physics: Conference series. Vol. 1168.
DOI:10.1088/1742-6596/1168/2/022022. IOP Publishing. 2019, p. 022022.

https://doi.org/10.1109/ASWEC.2018.00021
https://doi.org/10.1109/TR.2009.2034288
https://doi.org/10.1108/ITSE-10-2018-0088
https://doi.org/10.1016/j.techsoc.2020.101413
https://doi.org/10.1002/stvr.1594
https://doi.org/10.1109/MC.2014.273
https://doi.org/10.1016/S0957-4174(99)00016-0
https://doi.org/10.1016/j.ejor.2014.04.001
https://doi.org/10.1145/1146238.1146243
https://doi.org/10.1109/ICST.2017.30
https://doi.org/10.1016/j.ins.2018.09.046
https://doi.org/10.1016/S0305-0548(99)00149-5
https://doi.org/10.1109/TSE.1980.234486
https://doi.org/10.1109/MET.2019.00011
https://doi.org/10.1016/j.jss.2010.11.920
https://doi.org/10.1109/QSIC.2014.29
https://doi.org/10.1088/1742-6596/1168/2/022022

bibliography 185

[284] Zhihao Ying, Anthony Bellotti, Dave Towey, Tsong Yueh Chen, and Zhi Quan Zhou. “Using Metamor-
phic Relation Violation Regions to Support a Simulation Framework for the Process of Metamorphic
Testing”. In: 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC’22).
DOI:10.1109/COMPSAC54236.2022.00274. IEEE. 2022, pp. 1722–1727.

[285] Zhihao Ying, Dave Towey, Anthony Bellotti, Zhi Quan Zhou, and Tsong Yueh Chen. “Preparing SQA
Professionals: Metamorphic Relation Patterns, Exploration, and Testing for Big Data”. In: Proceedings
of the 2021 International Conference on Open and Innovative Education (ICOIE’21). The Open University of
Hong Kong, 2021, pp. 22–30.

[286] Shin Yoo and Mark Harman. “Regression testing minimization, selection and prioritization: A survey”.
In: Software testing, verification and reliability 22.2 (2012). DOI:10.1002/stv.430, pp. 67–120.

[287] Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong Mei. “Search-based
inference of polynomial metamorphic relations”. In: Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. DOI:10.1145/2642937.2642994. 2014, pp. 701–712.

[288] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. “A survey on neural network inter-
pretability”. In: IEEE Transactions on Emerging Topics in Computational Intelligence 5.5 (2021).
DOI:10.1109/TETCI.2021.3100641, pp. 726–742.

[289] Zhirui Zhang, Dave Towey, Zhihao Ying, Yifan Zhang, and Zhi Quan Zhou. “MT4NS: Metamorphic
Testing for Network Scanning”. In: 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing
(MET). DOI:10.1109/MET52542.2021.00010. IEEE. 2021, pp. 17–23.

[290] Bo Zhou, Hiroyuki Okamura, and Tadashi Dohi. “Enhancing performance of random testing
through Markov chain Monte Carlo methods”. In: IEEE Transactions on Computers 62.1 (2011).
DOI:10.1109/TC.2011.208, pp. 186–192.

[291] Zenghui Zhou, Zheng Zheng, Tsong Yueh Chen, Jinyi Zhou, and Kun Qiu. “Follow-up Test Cases are
Better Than Source Test Cases in Metamorphic Testing: A Preliminary Study”. In: 2021 IEEE/ACM 6th
International Workshop on Metamorphic Testing (MET). DOI:10.1109/MET52542.2021.00018. IEEE. 2021,
pp. 69–74.

[292] Zhi Quan Zhou, Liqun Sun, Tsong Yueh Chen, and Dave Towey. “Metamorphic Relations for En-
hancing System Understanding and Use”. In: IEEE Transactions on Software Engineering 46.10 (2020).
DOI:10.1109/TSE.2018.2876433, pp. 1120–1154.

[293] Zhi Quan Zhou, Dave Towey, Pak Poon, and T. H. Tse. “Introduction to the special issue on test
oracles”. In: Journal of Systems and Software, Editorial 136 (2018). DOI:10.1016/j.jss.2017.08.031, pp. 187–
187.

[294] Zhi Quan Zhou, T. H. Tse, Fei-Ching Kuo, and Tsong Yueh Chen. “Automated Functional Testing of
Web Search Engines in the Absence of an Oracle”. In: Department of Computer Science, The University of
Hong Kong, Tech. Rep. TR-2007-06 (2007).

[295] Zhi Quan Zhou, T. H. Tse, and Matt Witheridge. “Metamorphic robustness testing: Exposing hidden
defects in citation statistics and journal impact factors”. In: IEEE Transactions on Software Engineering
47.6 (2021). DOI:10.1109/TSE.2019.2915065, pp. 1164–1183.

[296] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. “Metamorphic testing for software qual-
ity assessment: A study of search engines”. In: IEEE Transactions on Software Engineering 42.3 (2016).
DOI:10.1109/TSE.2015.2478001, pp. 264–284.

[297] Zhi Quan Zhou, Junting Zhu, Tsong Yueh Chen, and Dave Towey. “In-place metamorphic test-
ing and exploration”. In: Proceedings of the 7th International Workshop on Metamorphic Testing.
DOI:10.1145/3524846.3527334. Association for Computing Machinery, 2023, 1–6.

[298] Hong Zhu. “JFuzz: A tool for automated Java unit testing based on data mutation and metamorphic
testing methods”. In: Proceedings of the 2015 Second International Conference on Trustworthy Systems and
Their Applications. DOI:10.1109/TSA.2015.13. IEEE Computer Society, Los Alamitos, CA, 2015, pp. 8–
15.

https://doi.org/10.1109/COMPSAC54236.2022.00274
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/2642937.2642994
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.1109/MET52542.2021.00010
https://doi.org/10.1109/TC.2011.208
https://doi.org/10.1109/MET52542.2021.00018
https://doi.org/10.1109/TSE.2018.2876433
https://doi.org/10.1016/j.jss.2017.08.031
https://doi.org/10.1109/TSE.2019.2915065
https://doi.org/10.1109/TSE.2015.2478001
https://doi.org/10.1145/3524846.3527334
https://doi.org/10.1109/TSA.2015.13

A
A P P E N D I X 1

In the domain of Sin Function
assuming that

• The input contains one parameter: x.

• The output consists of one parameter: S(x).

the following metamorphic relation(s) should hold

• MRSin1:

if x2 = −x1,

then S(x1) = −S(x2).

• MRSin2:

if x2 = π − x1,

then S(x1) = S(x2).

• MRSin3:

if x2 = x1 + 2 ∗ π,

then S(x1) = S(x2).

• MRSin4:

if x2 = 2 ∗ π − x1,

then S(x1) = −S(x2).

• MRSin5:

if x2 = x1 * 3, x3 = 5 ∗ x1,

then 16 ∗ S(x1)
5 − 10 ∗ S(x1) = S(x3)− 5 ∗ S(x2).

• MRSin6:

if x2 = x1 ∗ 3,

then 3 ∗ S(x1)− 4 ∗ S3(x1) = S(x2).

• MRSin7:

if x2 = x1 + π,

187

188 appendices

then S(x1) = −S(x2).

• MRSin8:

if x2 = π/2 − x1,

then S(x1) ∗ S(x1) = 1 − S(x2) ∗ S(x2).

• MRSin9:

if x2 = x1 ∗ 3, x3 = −x1,

then 3 ∗ S(x1) = S(x2)− 4 ∗ S3(x3).

• MRSin10:

if x2 = x1 ∗ 3, x3 = π ∗ 2 − x1,

then 4 ∗ S3(x1) = −S(x2)− 3 ∗ S(x3).

• MRSin11:

if x2 = x1 * 3, x3 = 5 ∗ x1, x4 = −x1,

then 10 ∗ S(x1) = 5 ∗ S(x2)− S(x3)− 16 ∗ S(x4).

• MRSin12:

if x2 = x1 * 3, x3 = 5 ∗ x1, x4 = π − x1,

then 10 ∗ S(x1) = 5 ∗ S(x2)− S(x3) + 16 ∗ S(x4).

• MRSin13:

if x2 = x1/3,

then S(x1) = 3 ∗ S(x2)− 4 ∗ S3(x2).

In the domain of tanh Function
assuming that

• The input contains one parameter: x.

• The output consists of one parameter: t(x).

the following metamorphic relation(s) should hold

• MRtanh :

if x2 = x1 ∗ 3,
then t(x2) = (t3(x1) + 3 ∗ t(x1))/(1 + 3 ∗ t2(x1)).

In the domain of Erf Function
assuming that

• The input contains one parameter: x.

• The output consists of one parameter: E(x).

appendices 189

the following metamorphic relation(s) should hold

• MREr f 1:

if x2 = −x1,

then E(x1) = −E(x2).

• MREr f 2:

if x2 = x1 + 1,

then E(x1) ≤ E(x2).

• MREr f 3:

if x2 = x1 + 5,

then E(x1) ≤ E(x2).

• MREr f 4:

if x2 = x1 + 10,

then E(x1) ≤ E(x2).

• MREr f 5:

if x2 = x1 + 100,

then E(x1) ≤ E(x2).

• MREr f 6:

if x2 = x1 ∗ 5,

then E(x1) ≤ E(x2).

• MREr f 7:

if x2 = x1 ∗ 10,

then E(x1) ≤ E(x2).

• MREr f 8:

if x2 = x1 ∗ 100,

then E(x1) ≤ E(x2).

In the domain of sncndn Function
assuming that

• The inputs contain two parameters: x, y.

• The outputs consist of three parameters: sn, cn, and dn.

the following metamorphic relation(s) should hold

190 appendices

• MRsncndn1:

if x2 = x1 ∗ 2, y2 = y1 ∗ 2,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn2:

if x2 = x1 ∗ 3, y2 = y1 ∗ 3,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn3:

if x2 = x1 ∗ 4, y2 = y1 ∗ 4,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn4:

if x2 = x1 ∗ 5, y2 = y1 ∗ 5,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn5:

if x2 = x1 + 1, y2 = y1 + 1,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn6:

if x2 = x1 + 2, y2 = y1 + 2,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn7:

if x2 = x1 + 5, y2 = y1 + 5,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

• MRsncndn8:

if x2 = x1 + 10, y2 = y1 + 10,

then (1 − y1) ∗ sn2
1 + dn2

1 = (1 − y2) ∗ sn2
2 + dn2

2.

In the domain of BesselJ Function
assuming that

• The inputs contain two parameters: x, y.

• The outputs consist of one parameter: Jy(x).

the following metamorphic relation(s) should hold

• MRBessel J1:

appendices 191

if x3 = x2 = x1, y2 = y1 + 1, y3 = y1 − 1,

then (Jy2(x2) + Jy3(x3)) = (2 ∗ y1 ∗ Jy1(x1))/x1.

• MRBessel J2:

if x1 = 0, y1 = 0, x2 = x1 + a, y2 = y1 + b (a, b ∈ [1, 100]),

then Jy2(x2) < Jy1(x1).

• MRBessel J3:

if x2 = x1 = 0, y1 = x1 + a, y1 = x1 + b (a, b ∈ [1, 100]),

then Jy2(x2) = Jy1(x1).

In the domain of TriSquare Function
assuming that

• The inputs contain three parameters: x, y, z.

• The outputs consist of one parameter: T(x, y, z).

the following metamorphic relation(s) should hold

• MRTriSquare1:

if x2 = z1, y2 = x1, z2 = y1,

then T1 = T2.

• MRTriSquare2:

if x2 = y1, y2 = x1, z2 = z1,

then T1 = T2.

• MRTriSquare3:

if x2 = x1, y2 = z1, z2 = y1,

then T1 = T2.

• MRTriSquare4:

if x2 = z1, y2 = y1, z2 = x1,

then T1 = T2.

• MRTriSquare5:

if x2 = x1 ∗ 2, y2 = y1 ∗ 2, z2 = z1 ∗ 2,

then 4 ∗ T1 = T2.

• MRTriSquare6:

if x2 = x1 ∗ 3, y2 = y1 ∗ 3, z2 = z1 ∗ 3,

192 appendices

then 9 ∗ T1 = T2.

• MRTriSquare7:

if x2 = x1 ∗ 4, y2 = y1 ∗ 4, z2 = z1 ∗ 4,

then 16 ∗ T1 = T2.

• MRTriSquare8:

if x2 = x1 ∗ 5, y2 = y1 ∗ 5, z2 = z1 ∗ 5,

then 25 ∗ T1 = T2.

• MRTriSquare9:

if x2 = x1 ∗ 6, y2 = y1 ∗ 6, z2 = z1 ∗ 6,

then 36 ∗ T1 = T2.

• MRTriSquare10:

if x2 = x1 ∗ 7, y2 = y1 ∗ 7, z2 = z1 ∗ 7,

then 49 ∗ T1 = T2.

• MRTriSquare11:

if x2 = x1 ∗ 8, y2 = y1 ∗ 8, z2 = z1 ∗ 8,

then 81 ∗ T1 = T2.

In the domain of TriSquarePlus Function
assuming that

• The inputs contain three parameters: x, y, z.

• The outputs consist of one parameter: T(x, y, z).

the following metamorphic relation(s) should hold

• MRTriPlus1:

if x2 = z1, y2 = x1, z2 = y1,

then T1 = T2.

• MRTriPlus2:

if x2 = y1, y2 = x1, z2 = z1,

then T1 = T2.

• MRTriPlus3:

if x2 = x1, y2 = z1, z2 = y1,

then T1 = T2.

appendices 193

• MRTriPlus4:

if x2 = z1, y2 = y1, z2 = x1,

then T1 = T2.

• MRTriPlus5:

if x2 = x1 ∗ 2, y2 = y1 ∗ 2, z2 = z1 ∗ 2,

then 4 ∗ T1 = T2.

• MRTriPlus6:

if x2 = x1 ∗ 3, y2 = y1 ∗ 3, z2 = z1 ∗ 3,

then 9 ∗ T1 = T2.

• MRTriPlus7:

if x2 = x1 ∗ 4, y2 = y1 ∗ 4, z2 = z1 ∗ 4,

then 16 ∗ T1 = T2.

• MRTriPlus8:

if x2 = x1 ∗ 5, y2 = y1 ∗ 5, z2 = z1 ∗ 5,

then 25 ∗ T1 = T2.

• MRTriPlus9:

if x2 = x1 ∗ 6, y2 = y1 ∗ 6, z2 = z1 ∗ 6,

then 36 ∗ T1 = T2.

• MRTriPlus10:

if x2 = x1 ∗ 7, y2 = y1 ∗ 7, z2 = z1 ∗ 7,

then 49 ∗ T1 = T2.

• MRTriPlus11:

if x2 = x1 ∗ 8, y2 = y1 ∗ 8, z2 = z1 ∗ 8,

then 81 ∗ T1 = T2.

• MRTriPlus12 :

if x2 = x1/3, y2 = y1/3, z2 = z1/3,
then T1 = 9 ∗ T2.

In the domain of rj Function
assuming that

• The inputs contain three parameters: x, y, z, p.

• The outputs consist of one parameter: R(x, y, z, p).

194 appendices

the following metamorphic relation(s) should hold

• MRrj1:

if x2 = x1 ∗ 3, y2 = y1 ∗ 3, z2 = z1 ∗ 3, p2 = p1 ∗ 3,

then R1 ≥ R2.

• MRrj2:

if x2 = y1, y2 = x1, z2 = z1, p2 = p1,

then R1 = R2.

• MRrj3:

if x2 = z1, y2 = y1, z2 = x1, p2 = p1,

then R1 = R2.

• MRrj4:

if x2 = x1, y2 = z1, z2 = y1, p2 = p1,

then R1 = R2.

• MRrj5:

if x2 = z1, y2 = x1, z2 = y1, p2 = p1,

then R1 = R2.

• MRrj6:

if x2 = y1, y2 = z1, z2 = x1, p2 = p1,

then R1 = R2.

In the domain of PntLinePos Function
assuming that

• The source inputs contain six parameters: x1s, y1s, x2s, y2s, x3s, y3s.

• The follow-up inputs contain six parameters: x1 f , y1 f , x2 f , y2 f , x3 f , y3 f .

• The two endpoints of the line segment are represented by (x1, y1) and (x2, y2).

• The point is represented by (x3, y3).

• The source output consists of one parameter: Ps.

• The follow-up output consists of one parameter: Pf .

the following metamorphic relation(s) should hold

• MRPnt1:

if x1 f = x1s ∗ 2, y1 f = y1s ∗ 2, x2 f = x2s ∗ 2, y2 f = y2s ∗ 2, x3 f = x3s ∗ 2, y3 f = y3s ∗ 2,

appendices 195

then Ps = Pf .

• MRPnt2:

if x1 f = x1s ∗ 3, y1 f = y1s ∗ 3, x2 f = x2s ∗ 3, y2 f = y2s ∗ 3, x3 f = x3s ∗ 3, y3 f = y3s ∗ 3,

then Ps = Pf .

• MRPnt3:

if x1 f = x1s ∗ 4, y1 f = y1s ∗ 4, x2 f = x2s ∗ 4, y2 f = y2s ∗ 4, x3 f = x3s ∗ 4, y3 f = y3s ∗ 4,

then Ps = Pf .

• MRPnt4:

if x1 f = x1s + 1, y1 f = y1s + 1, x2 f = x2s + 1, y2 f = y2s + 1, x3 f = x3s + 1, y3 f =
y3s + 1,

then Ps = Pf .

• MRPnt5:

if x1 f = x1s − 1, y1 f = y1s − 1, x2 f = x2s − 1, y2 f = y2s − 1, x3 f = x3s − 1, y3 f =
y3s − 1,

then Ps = Pf .

• MRPnt6:

if x1 f = x1s + 5, y1 f = y1s + 5, x2 f = x2s + 5, y2 f = y2s + 5, x3 f = x3s + 5, y3 f =
y3s + 5,

then Ps = Pf .

• MRPnt7:

if x1 f = x1s + 10, y1 f = y1s + 10, x2 f = x2s + 10, y2 f = y2s + 10, x3 f = x3s + 10, y3 f =
y3s + 10,

then Ps = Pf .

• MRPnt8:

if x1 f = x2s, y1 f = y2s, x2 f = x1s, y2 f = y1s, x3 f = x3s, y3 f = y3s,

when Ps ∈ {1, 2},

then Ps = Pf ;

when Ps ∈ {0, 3},

then Ps ̸= Pf .

	Abstract
	Contents

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgments
	Publications
	Acronyms
	Introduction
	Literature Review
	Conventional Software Testing
	Overview
	Random Testing
	Adaptive Random Testing

	Metamorphic Testing
	Overview
	Metamorphic Relation Patterns
	Metamorphic Exploration and Metamorphic Robustness Testing
	Advantages and Disadvantages of Metamorphic Testing
	MT Test Case Generation
	MR and MG Selection

	Evaluation Metrics
	Test Effectiveness (F-measure and F-ratio)
	Test Effectiveness (Cohen's d)
	Test Efficiency (Generation Time)
	Test-Case Diversity (Dispersion)
	Test-Case Diversity (Discrepancy)
	Receiver Operating Characteristics (ROC) and Area Under the ROC Curve (AUC)

	Experiments Setup
	Machine Learning
	Neural Networks
	Decision Trees
	Gradient Boosting Decision Trees
	Random Forests
	Machine Learning in Credit Risk Assessment

	A Simulation Framework for the Process of Metamorphic Testing
	Introduction and Motivation
	An MT Simulation Framework
	Deterministic Metamorphic Relations (DMRs)
	Metamorphic Relation Violation Regions (MRVRs)
	Relationship between MRVRs and Failure Regions

	Empirical Experiments
	Conclusion

	Addressing the Problems in Metamorphic Group Generation Algorithms
	Introduction and Motivation
	SFIDMT-ART Algorithm
	Motivation, Problem and Solution
	Distance Measurements and SFIDMT-ART Algorithm
	Characteristics of SFIDMT-ART

	Research Questions
	Empirical Experiments
	Experimental Setup
	Experimental Results and Discussion

	Conclusion

	Metamorphic Group Generation Algorithms for Improving Test Efficiency and Effectiveness
	Introduction and Motivation
	MT-PART Algorithms
	Selection of Basic Algorithms
	MT-based ART by Bisection (MT-BART)
	MT-based ART through Iterative Partitioning (MT-IPART)
	Comparison between MT-BART and MT-IPART

	Research Questions
	Empirical Experiments
	Experimental Setup
	Experimental Results, Discussions, and Conclusions

	Future Work
	MT-based ART by Random Partitioning (MT-RPART)
	A Combination of SFIDMT-ART and MT-BART

	Conclusion

	Metamorphic Relation Patterns, Trees and Framework
	Introduction and Motivation
	Definitions
	Sub-MRP (Sub-Pattern) and Super-MRP (Super-Pattern)
	Metamorphic Relation Pattern Tree

	Metamorphic Relation Patterns and Trees
	Sets MRP
	Similar MRP for Big Data Systems
	MRIPs for Query-based Systems
	MRIPs for Machine Translation Systems
	Irrelevance MRP for Big Data Systems
	MROPs for Big Data Systems
	Symmetry MRP Tree and Sets MRP Tree
	Existing Application of the Proposed MRPs

	A New Metamorphic Testing Framework
	Introduction and Motivation
	Framework
	Application of the MT Framework

	A Case Study of Query-based Systems
	Experimental Setup
	Relations
	Experimental Results, Evaluation and Discussion

	A Case Study of Map Systems
	Experimental Design
	Relations
	Evaluation and Discussion

	A Case Study of Machine Translation Systems
	Experimental Design
	Relations
	Evaluation and Discussion

	Conclusion

	Metamorphic Relation and Group Selection Algorithm
	Introduction and Motivation
	Metric and Algorithm
	MR-MG Distribution Metric
	Selection of Basic Algorithm
	MRGS-ART Algorithm
	Application of MRGS-ART
	Advantages

	Research Questions
	Empirical Experiments
	Experimental Setup
	Experimental Results and Discussion
	Answer to Research Question

	Future Work
	An Enhanced Version of MRGS-ART
	Metamorphic Relation and Group Selection based on ART Through Iterative Partitioning (MRGS-IPART)
	Metamorphic Relation and Group Selection based on ART Through Random Partitioning (MRGS-RPART)

	Conclusion

	Metamorphic Testing for Validating Credit Score Assessment Models
	Introduction and Motivation
	Research Questions
	Case Study of Credit Risk Models
	Experimental Setup
	Input Parameters
	HMRs
	Experimental Results
	Forecast Performance
	Answers to Research Questions

	Conclusion and Future Work

	Conclusion, Contribution and Future Work
	Discussion and Conclusion
	Main Contributions
	Limitation and Future Work
	Limitations and Extensions to Algorithms
	Limitations and Extensions to MRPs and MRP trees
	Limitations and Extensions to the MT Framework

	Bibliography
	Appendices
	Appendix 1

