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Abstract

In the past decade, there has been much interest in analyzing Keller-Segel
models with tensorial flux. However, it is not yet well understood whether
there are solutions that blow-up in a finite amount of time. This thesis aims
to bridge this gap by developing a comprehensive approach capable of yield-
ing sharp results regarding global existence and blow-up phenomena across
various systems characterized by the interplay between vorticity and one or
more chemotactic signals. Furthermore, significant progress has been made
in resolving numerous open problems pertaining to the existence of solutions
for diverse mathematical models in the realms of mathematical physics and
biology, cf. [82], 87, 02, 03]. Moreover, Significant advancements have been
made in analyzing Keller-Segel models with tensorial flux in both two and
higher dimensions, achieved through the introduction of a novel technique.
This technique showcases the possibility of finite-time blowup solutions in the
Keller-Segel model, even under highly general conditions on the tensorial flux.
On the other hand, cells encounter a diverse array of physical and chemical
signals as they navigate their natural surroundings. However, their response
to the simultaneous presence of multiple cues remains elusive. Particularly,
the impact of topography alongside a chemotactic gradient on cell migratory
behavior remains insufficiently explored. So, it is noteworthy that among the
innovations of this thesis, we also delve into analyzing the conditions that pre-
dict or prevent cell aggregation when obstacles interfere during the process.



Acknowledgements

I extend my deepest gratitude to my supervisors Professor Behrouz
Emamizadeh, Dr. Elio Espejo, and Dr. Richard Rankin for their mentor-
ship and guidance throughout my doctoral journey. While each played a role
in my academic development, it is with profound appreciation that I acknowl-
edge the exceptional support and dedication of Dr. Elio Espejo. His tireless
commitment, insightful guidance, and unwavering encouragement have been
instrumental in shaping both my research endeavors and personal growth. Dr.
Espejo’s leadership and mentorship extended beyond scholarly pursuits, offer-
ing invaluable assistance during challenging times and instilling confidence in
my abilities.

[ am also deeply thankful to the examiners of my thesis, Dr. Hayk
Mikayelyan and Professor Benoit Perthame, for their thorough evaluation, in-
sightful comments, and constructive suggestions, which have greatly improved
the quality of this work.

I also wish to express my gratitude to the reviewers and staff members
of the University of Nottingham Ningbo China (UNNC) for their generous
assistance. Furthermore, I am thankful to the Faculty of Science and Engi-
neering for their confidence in my research, exemplified by the prestigious PhD
scholarship (20083FOSE) awarded to me at UNNC. This scholarship not only
provided crucial financial support but also afforded me the privilege of joining
an international community of esteemed scholars.

Finally, I want to give a huge shoutout to my amazing family. My mom,
Eliana Rodriguez, my grandma, Anira Estella Sanchez, and my dads, Hec-
tor Cuentas and Juan David Ruiz, have been my biggest cheerleaders, always
believing in me and pushing me forward. They’ve been there with love, ad-
vice, and encouragement every step of the way. I also want to give a massive
shoutout to my grandparents Luz Marina Barros, Ismael Cuentas, and Ale-
jandro Rodriguez. Though their physical presence is missed, their unwavering
love and encouragement were a guiding force throughout my doctoral jour-
ney. Their belief in me has been a constant source of strength, and I just
know they’d be bursting with pride right now. And I can’t forget to thank my
boyfriend, Santiago Morales, for being my rock through it all. His constant
support and unwavering belief in me have kept me going, even when things
got tough. I couldn’t have done it without them!



Contents

(1__Introductionl 6
2_literature review 10
[3 Optimal critical mass for the multi-species Keller-Segel model |
[__with rotational flux terms| 16
(3.1 Local existencel . . . . . . .. ... 22
3.2 Global existencel . . . . . . ... oo 42
321 Caseaj,an € (=2, 2) ... 42

322 Caseaj,as € (—m,—2|U [Z,7||. ... ... .. .. 87

[3.3  Finite time blow-up|. . . . . . ... ..o 0 0oL 88

[4 Mathematical analysis of the origin of CTCs clusters| 93
4.1  Global existencel. . . . . . .. ..o o 100
4.1.1 Proof of theorem133. . . . . . ... ... ... .. .... 101

[4.1.2 Proof of theoremI34f. . . . . ... ... ... ... ... 125

[4.2  Finite time blow-up|. . . . . . . . ... ... L 127
4.3 Discussionl . . . . . ... 130

[> Blow-up of solutions to the two-dimensional Keller-Segel |
[__model with tensorial flux| 132
H.1  Local existencel . . . . . . .. .. oL 135
[5.2  Blow-up for the case Tr(A), det(A) > 0. . . . .. .. ... ... 135
0.3 Global existence for small initial massl. . . . . ... ... .. .. 140

[6  Blow-up of solutions to the Keller-Segel model with tensorial |
[ flux in high dimensions| 145
6.1 local existencel . . . . . . .. . ... L 146
6.2 Blow-up| . . .. ... ... ... 147
6.3  Global existencel . . . . . . . ... oo o 151

[7 Remarks on Keller-Segel models describing Cell Aggregation |
L with Obstacle Interferencel 155
7.1 'The role of topography| . . . . .. ... ... ... ... ... .. 157

7.2 Global existence for the case y(x) oc |«|" 7| . . . . .. ... ... 161
[References| 163



Chapter 1

Introduction

Over the past decade, significant attention has been directed towards analyzing
Keller-Segel models incorporating tensorial flux. While numerous papers have
delved into the scientific literature, elucidating enough conditions for global
existence, the qualitative dynamics of these models remain inadequately com-
prehended. Specifically, the inquiry into whether solutions exhibit finite-time
blow-up remains a lingering question in the general case. Thus, despite strides
in establishing global existence criteria, a comprehensive understanding of the
qualitative behavior of Keller-Segel models with tensorial flux continues to
elude researchers.

To provide the essential background and highlight the relevance of this
research, it is necessary to revisit key definitions and mathematical results of
the models under scrutiny.

Initially, it is imperative to introduce the fundamental concept surrounding
the mathematical description of organismal response to a chemical stimulus,
known in biological contexts as chemotaxis. It can be categorized into posi-
tive chemotaxis, where movement occurs towards higher concentrations of the
chemical, and negative chemotaxis, where movement is directed away from the
chemical gradient. This topic holds significant prominence in contemporary re-
search literature, as it is pivotal for understanding various biological processes.
Examples include the spontaneous aggregation of the amoeba Dictyostelium
Discoideum to locate food sources [52], coral fertilization [53], embryonic de-
velopment [70], and the spreading of cancer cells [21] , among others.

The fundamental features of cell aggregation through chemotaxis can be de-
scribed in the two-dimensional case by the next version of the classical Keller—
Segel model [52]

u = Au—xV - (uVv) ze€R?t >0,
—Av=u reRAt >0, (1.1)
u(z,0) = ug(x) r € R%

Here u denotes the density of cells and v represents the concentration of the
chemoattractant. When y > 0 the motion is in direction to the gradient of
concentration of v. The case x < 0 describes the motion in the opposite
direction of the gradient of concentration of v.



When y > 0 the cells aggregate. In this case, it is natural to ask whether
the solution of the Keller-Segel model blows up. A conclusive answer regarding
the blow-up phenomenon was provided for the model in 2004 (e.g. [32])
showing that in the case 0 < [, ug(x)dz < 87” the solution exists globally
in time, meanwhile if [o, uo(x)dx > 8;” a blow-up is possible. This threshold
phenomenon for the model has brought the attention of the research
community and thousands of papers analyzing the qualitative behavior of the
Keller-Segel model have been published, cf. [3].

An interesting variation of model arise when taking into account that
chemotactic migration in certain situations, is not necessarily parallel to the
gradient of the signal. An example is given by the dynamics of a type of
bacteria known as peritrichously flagellated when swimming close to surfaces
(e.g. [31, 92, ©3]). In this case the evolution of the density of bacteria is
described in two dimensional case by

uy = Au— V- (uA(z,u,v)Vo), x € R* t > 0,

where the symbol A(z,u,v) represents a 2 X 2 matrix, which makes quite chal-
lenging or even impossible the application of the standard techniques, known
for the case A = I, to find the conditions for having either blow-up or global
existence of solutions. To the best of our knowledge, there are two main open
problems related to this system:

1. It has not been found a full description of the structure of the matrix
A allowing to conclude the existence of global solutions. However, it
is worth to mentioning that there are several partial results for similar
Keller-Segel type systems when A satisfies quite restricted conditions of
decayment; see for instance [58] [84] [86, 87] and the references therein.

2. The problem of showing the existence of solutions blowing up in a finite
time remains open in the general case.

A meaningful result in this direction, was recently reported for the
parabolic-elliptic model

u = Au— xV - (uAVv) e R%t >0,
—Av=u reR%t >0, (1.2)
u(z,0) = up(x) r € R?,

where x represents a positive constant and

Aa — < COsSty —SsIn« ) (13)

sin  cosa

denotes a rotation matrix with a € (—m, 7| constant. Namely, the au-

thors in [38] proved that If @ € (—%,%), and the initial data g satisfies

0 < [fpo uo(z)dz < —2Z— then the solution exists globally in time, meanwhile

x cosa’
the condition [, ug(x)dz > mij;a implies the possibility of having blow-up.
Z z ﬂ the solution

Meanwhile it was shown that in the case o € (—7r, —5} U [5,
exists globally in time independently on the value of [p, uo(z)dz.




Note that, by taking different values of a in , we recover several math-
ematical models arising in mathematical biology. The simplest case occurs
when a = 0, and therefore the matrix A, becomes the identity matrix re-
covering the classical Keller-Segel model . In the case a = 7w, we have

that A, = —1I, and therefore we rescue the Keller-Segel model with negative
chemotaxis
uy = Au+xV - (uVv) zeR?t >0,
—Av=u r €R%,t >0,
u(z,0) = ug(x) r € R%

When a = —7/2, we get

0 1
Aa_(_l 0)7

and, by taking y = 1 we obtain the vorticity equation for a two-dimensional
flow (cf. [45], Section 2.1.])

uy = Au+V - (uVtv), ze€R3t >0,
—Av = u, r €R2t>0, (1.4)
u(z,0) = ug(x), r € R?,

where the differential operator V+ is called the anti-gradient operator, and is

defined by
— 0,V
VJ_ . T2
v ( Oy, v ) '

The vorticity is a fundamental physical quantity in fluid dynamics, used
to quantify the rotation of a fluid. It serves as a crucial tool in understand-
ing various atmospheric and oceanic flows. The vorticity equation can
be derived from the Navier-Stokes equations by applying the curl differential
operator, cf. [45, Section 2.1.].

In this regard, the significant contribution in [38] lies in its revelation that
several important systems of partial differential equations found in mathemat-
ical biology, fluid dynamics, and electrokinetics can be encompassed within
a unified framework. Specifically, the authors introduce a Keller-Segel-type
system with rotational flux terms. Nevertheless, there remains a significant
amount of work to be done in the analysis of Keller-Segel models that incor-
porate tensorial flux.

In Chapter 2 a more detailed literature review delves deeper into the
Keller-Segel model, offering an analysis of its historical development, theoreti-
cal underpinnings, and notable advancements. By synthesizing a wide array of
scholarly contributions, this review serves as a foundation for the subsequent
analyses and discussions presented in this thesis, offering readers a nuanced
understanding of the model’s significance and relevance within the broader
scientific landscape.

In Chapter[3] we consider a mathematical model describing the aggregation
of multiple kinds of cells when the response to a chemical signal undergoes
a rotation. We were able to find sharp conditions on the initial data for
deciding if we have either global existence or blow up in finite time of solutions.



In addition, we were able to apply the proposed technique to solve an open
question regarding the possibility of having blow up for a system describing
the dynamics of two-species Brownian vortices with different signs, cf. [82] p.
174]. In Chapter , motivated by the dynamics of circulating tumor cells, we
constructed a mathematical model considering the tensorial attraction of two
types of cells and two types of chemicals. We obtained a sharp result of global
existence and blow-up for this system.

In Chapter 5], we extended the theory of blow-up of solutions for the Keller-
Segel parabolic-elliptic system when there is a tensorial flux induced by chemo-
tactic signals of the form yAVw, where A € Ms(R) represents an arbitrary
matrix with constant components satisfying 7'r(A), det(A) > 0. We obtained
this result by designing a new technique to prove blow-up using the decom-
position of the matrix A into its polar form and analyzing the evolution of
a generalized second moment associated with the system. In Chapter [, we
provided evidence that finite-time blowup solutions are indeed possible in di-
mensions n > 3, when utilizing a tensorial flux expressed in the form of AVv,
where A denotes a matrix with constant components and satisfies quite general
conditions.

In Chapter [7], we explored the impact of topographical obstacles on chemo-
taxis. Our approach entails modifying the Keller-Segel model to incorporate a
spatially dependent coefficient of chemotaxis. Through our analysis, we illus-
trate the critical role of this coefficient in preventing blow-up phenomena in
cell concentration.



Chapter 2

Literature review

Chemotaxis is a fundamental process that facilitates the aggregation of species.
It is characterized by the movement of organisms toward a concentration gradi-
ent of chemicals. Keller and Segel proposed a well-known model for chemotaxis
(e.g. [52]). A simplified but still biologically meaningful version of this model
is given by the system

ur = Au— xV - (uVv),

evy = Av — v 4 u, (2.1)

where u(x,t) denotes the density of cells and v(x,t) the chemical concentration
at a given point  and time ¢. About the Keller-Segel model (£2.1), Nanjundiah
[67] and Childress-Percus [26] introduced the following conjecture:

e In an one-dimensional domain setting, the solution exists globally in
time.

e In a two-dimensional domain setting, there exists a critical mass M, such
that if an initial data ug satisfies fQ updxr < M, then the corresponding
solution exists globally in time, and for any M > M, there are initial
data ug, vg such that fQ upgdxr = M and the corresponding solution blows
up in finite time.

e In a higher-dimensional domain setting, blow-up can occur even though
Jo, uodz is small.

The verification of the Childress-Percus conjecture has brought the at-
tention of the research community and thousands of papers analyzing the
qualitative behavior of the Keller-Segel model on bounded domain or the
whole space case, for radial and nonradial solutions, have been published (e.g.
[15], 29, 32], 47, 63, [66]).

Focusing on the two-dimensional parabolic-elliptic Keller-Segel model

u = Au— xV - (uVv) r€R%t>0, (2.2)
—Av=u,v(z,t) = —5 [In|z —y|lu(y,t)dy = €R*t>0. '
Under the assumptions of the initial data
up € LY (R?%, (1 + |2|*) dz) ,ugInug € L' (R? dz) (2.3)

10
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Blanchet, Dolbeault and Perthame [15] proved that the condition on the initial
data fR2 updx < 8 /x implies the existence of global solutions meanwhile when
ng ug > 8m/x the blow-up of solutions in finite time is possible. The key idea
is based on the bounds of the free energy functional defined by

E(t) ::/ ulnuda:—z/ uvdz.
R2 2 R2

The free energy functional is a well known tool that was introduced for chemo-
tactic models by Nagai, Senba and Yoshida in [66], by Biler in [§], and by
Gajewski and Zacharias in [43]. The first term in E is called the entropy and
second is called a potential energy. They gave a priori estimates for the en-
tropy to prove global existence ( “entropy method”) by using the dissipation
inequality

¢
+//u|V1nu—XVv|2dxds§E(O), (2.4)
0 Jr2

and the next two-dimensional version of the logarithmic Hardy-Littlewood-
Sobolev inequality [I8], for non-negative f € L'(R?) such that fIn f and
fIn(1 4+ [z[*) belong to L'(R?). If [, fdz = M >0, then

M

3 [msdas [ @@= yldyds

R2xR2 (25)
M2
>C(M) := T(l +Inm+1InM).

They analyzed the quantity [p, u(z,t) 2| da for proving blow-up (”second
moment technique”) by using the identity

d ) XM
— t de=4M (1 —=—].
i [ utenlel e —an (1- 22

™

This approach operates on frameworks of free-energy solutions, which are non-
negative weak solutions such that u satisfies

(1+ 2> + |Inul) u € Ly, (RT, L' (R?)),

and the dissipation inequality (2.4)). Following [77], we say that u €
L (RT, LY( R?)) is a weak solution to (2.2) with initial data wug if for all

loc

test functions ¢ € C§°(R?)

/ pu(z, t)da:—/ pup(x)dx
[ ot

e /0 /R - Vo(z) — Vo)) - ——Lu(a, Huly, t)dadydr.

|z —y|

Moreover, In [14] was proved that the critical case [, updz = 87 /x also implies
the existence of global free-energy solutions with initial data satisfying (2.3)).
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It is worth mentioning that many authors have endeavored to avoid the
assumptions necessary to apply the free energy framework (e.g., [64, [65],
85]). A notable achievement in this sense was reported in [85], being proved
that for all non-negative initial data in L' (R?), the global existence holds if and
only if the total mass M < 8m. The proof of this result relies on monotonicity
formulas derived from nonnegative mild solutions. We say that a function u
on [0,T) x R? is a mild solution of on [0, T) with initial data ug € L' (R?)
if

we O ([0,7); L' (R?)) N C((0,T): LY* (R?)), sup ¢/ [|us(t)]| paa ey < 00
o<t<T
and u(t) satisfies the following Duhamel integral equation for all t € (0,7).
t
u(t) = e ug — X/ et =92V - (u(s)Vo(s)) ds,

0

where
1 T —y

2 Jre |z —y?

Vo(z,s) == u(y, s)dy,

and e'® is the heat semigroup defined by

OOf = Gyxf, Gyim e il
A7t

On the other hand, a number of studies and modeling approaches indicate
that external influences may severely affect cells’ responses to chemicals in the
environment. For example, when swimming bacteria like E. coli or Salmonella
swim near a surface, they may undergo a rotational force and form spiral
patterns (e.g. [42]). Consequently, it has been found that rotational flow com-
ponents may also participate in chemotactic migration despite being oriented
along the gradient of the chemical substance. In this sense, the next mathe-
matical model was proposed in [03] to describe the dynamics of E. coli when
swimming near to a surface

Ou=Au—V - (u(x1Vv+ x2V*tv)), =€ R%t >0,
—Av =u, x € R?t>0,
u(z,0) = ug(x) >0, r € R%

Here u denotes cell density, v denotes chemical concentration, yi, 2 are posi-
tive constants.

We can rewrite the first equation in the previous mathematical model in

the form
8tu:Au—V-<u(Xl _X2>VU),
X2 X1

Ou = Au— xV - (uAVY),
with x = v/x2 + x3 > 0 and

= ()

or equivalently
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The matrix A is a rotation matrix and therefore it can be written in the form
= < cos —sina > |
sina cosa
with o € (=3, 7) is fixed.

Therefore the system becomes

O = Au — xV - (UAVY), € Rt >0,
—Av =u, reR%t>0,
u(z,0) = up(x) >0, r € R%

Considerable mathematical challenges arise from the rotational dynamics
introduced by this model. One key reason is that rotational fluxes in chemo-
taxis systems complicate the construction of an energy framework suitable
for the qualitative analysis of these models. Analyzing the possibility of hav-
ing solutions blowing-up in finite time has proven particularly challenging.
To the best of our knowledge, the first result demonstrating that a rotated
chemotactic response can delay or even prevent blow-up was published in
[38]. It was proved that if @ € (—2,%), and the initial data u satisfies

0 < Jpo uo(x)da < ngrsa, then the solution exists globally in time, meanwhile
8m

the condition fR2 ug(z)dr > —7— implies the possibility of having blow-up.
Meanwhile it was shown that in the case o € (—7r, —g} U [%, ﬂ the solution
exists globally in time independently on the value of [g, ug(z)dz. It was also
shown that for any angle of rotation there is a dissipative energy structure.

Many papers have been published in the scientific literature describing
enough conditions for the global existence of solutions for this kind of models
with tensorial chemotaxis of the form AVwv, where A := A(x,u,v) represents
an arbitrary matrix, see for instance [58, 84) 80}, [87] and the references therein.
However, the possibility of having solutions blowing-up in finite time remains
unclear when the chemoattractant is being produced by the cells itself. The
only case well-understood in this sense is for the case A being an rotational
matrix [3§].

It is important to note that in nature, multiple types of cells often interact.
Essentially, a mathematical model representative of this situation, together
with the qualitative analysis, will be more complex, but at the end, it will be
biologically more relevant. One main example is the next two species Keller-
Segel model describing the interaction between two kinds of cells with densities
uy and up and one chemoattractant v presented in [28]

Oy = pAuy — x1V - (u1 Vo) r€R2t>0,

Oiuy = Auy — X2V - (uVv) r €R2t >0, (2.6)
U(:Cat) = _%fRzln’x_y’(ul(y7t)+u2(yat>>dy .’L’ERQ,t>O, '
ul(x,O) = U9 > O,UQ(J?,O) = Uyy > 0, WS Rz,

where 11, x1, X2 represent positive constants. About the multi-species Keller-
Segel model in a two-dimensional domain, Wolansky [89] formulated the fol-
lowing natural question: What is the analogue for the critical mass obtained
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for the self-attracting single species system? A partial answer was given for
the model (2.6)) in 2011 (see [28]) showing that any of the inequalities

8 8
0, > ﬂ, or fp > —ﬂ-, (27)
X1 X2
o 4 r 1
TG T, — (0 + 0,)° < 0, (2.8)
X1 X2 2
implies the possibility of having blow-up. Here 61 = |luiol|pi(ge), 02 =

[[uzo]| 11 g2y denote the total initial mass of each species. For condition (2.8),
the key idea of the proof is based on the monotonicity of the second moment
for the whole population defined

T

m(t) := —/ uy(z,t) |z do + —/ uy(z,t) |z|* de, (2.9)
X1 JRr2 X2 JRr2

which is strictly decreasing in the region defined by equation ([2.8]) and increas-

ing otherwise, due to

—m(t) = —0 + —0, — = (01 +0)".

"= R

This idea is a generalization of the usual technique of the second moments (cf.

[15]) for proving blowup for single species to the multi-species case. However,

the authors proved that the second moment (2.9) can be increasing and the

solutions of system (12.6)) can still blow-up by considering the radial case. In

fact, for initial radial conditions w0, ugg, the second moments my (t), mo(t) with

respect to the origin for each variable defined by

mitt) = [ wia,t)of? i = 1,2,

satisfy

d X101 d X202
— <4 1— — <4 1— .
dtm1<t> ~ 91 ( 871'#) and dtmg(t> ~ 92 ( S )

The authors also proved that the system ([2.6) has a dissipative energy struc-
ture. i.e., they defined the following free-energy functional

1
E(t) = ﬂ/ up log uyde + — ug log usdx
X1 JRr2 X2 JRr2

1 1
- —/ wvdx — —/ ugvdx,
2 R2 2 R2

and proved that it satisfies

d 1
%E(t) = o L wy |V loguy — Vyqol® da
1
— — | wy|Vlegus — Vyou|* dz
X2 JR?

<0.
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Based on the monotonicity of the free-energy functional E(t) and the logarith-
mic HLS inequality ({2.5)), it was also proved that the inequalities

8
91+62<—7Ty p=>1,
X2

8
01+92<—7T,u, w<l1,
X2

guarantee global existence. In [36], the authors improved the results of global
existence from [28] by the two-dimensional version of the logarithmic Hardy-
Littlewood-Sobolev inequality for systems (See [78, Theorem 4.]) to deduce
that the inequalities

8 8 4
0, < STH g, < T and g, 4

4 1
o, — =
X1 X2 X1 X2 2

(61 + 02)2 > 0,

guarantee global existence. In consequence, there exists a critical curve in the
plane of initial masses 61605 delimiting on one side global existence and blow-up
on the other side.



Chapter 3

Optimal critical mass for the
multi-species Keller-Segel model
with rotational flux terms

Abstract

This chapter demonstrates how a single Keller-Segel model with ro-
tational flux terms can address questions regarding the global existence
and blow-up of solutions for several other Keller-Segel-type models aris-
ing in mathematical biology and physics. In the case of aggregating two
species on a two-dimensional domain, a threshold curve is identified in
the plane of masses that allows determination of whether the solution
of the system blows up or remains global in time. Additionally, this re-
search provides a novel blow-up result for a mathematical model recently
introduced in the literature. The research discussed in this chapter has
been accepted for publication in the journal Differential and Integral
Equations (Volume 37, Issues 11-12, November/December 2024) under
the title: Optimal Critical Mass for the Multi-species Keller-Segel Model
with Rotational Flux Terms.

A number of studies and modeling approaches indicate that external in-
fluences may severely affect cells’ responses to chemicals in the environment.
Consequently, it has been found that rotational flow components may also
participate in chemotactic migration despite being oriented along the gradient
of the chemical substance. A detailed discussion of this subject can be found
in [92] and [93]. The two-dimensional study of rotational flows is particularly
important in mathematical modeling when considering thin layers or rapidly
rotating fluids, where the Coriolis force strongly disfavors displacement along
the axis of rotation. Geophysical flows and the effects of the Earth’s rotation
are two interesting examples of how a two-dimensional approximation can be
accurate and useful, cf. [24]. Because of this rotational dynamics significant
mathematical difficulties arise in the analysis of cells’ aggregation surrounded
by these kind of fluids. The reason for this is that rotational fluxes in chemo-
taxis systems make it hard to find an energy functional that could be used
in the qualitative analysis of these models. Analyzing a possible blow-up, in
particular, has been challenging. To the best of our knowledge, the first result

16
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showing that rotated chemotactic response can delay or even avoid the blow-up
was published in [38]. It was also shown that for any angle of rotation there
is a dissipative energy structure. The purpose of this chapter is to extend the
analysis in [38] from the one-species to the multi-species case. In this context,
we take the next Keller-Segel model with rotational flux terms

@ul = ,ulAul — le . (u1A1Vv) T e R2, t > 0,
8tu2 = ILLQAUQ — ng . (UQAQV’U) x € RQ, t >0, (3 1)
—Av = a1uy + agus, reR? t>0, '

up(2,0) = uyo > 0,us(x,0) = ugy >0 x € R

where

A = ( cosqay —sinog )7 Ay — < CoS vy — Sin oy )7 (3.2)

sino;  cosag Sinag  CoS vy

the parameters pq, f2, X1, X2 represent positive constants, ay,a, € R are arbi-
trary constants non-vanishing simultaneously, and aq,ay € (—7, 7] are fixed.
In the context of mathematical biology, u; and us can be interpreted as the
density variables for two different species meanwhile v can be interpreted as
the concentration of a chemoattractant. In system , the equations for
up and uy indicate that the motion of both species is driven by self-diffusion
and the gradient of concentration of the chemical, while the equation for the
concentration of the chemical describes that it is either produced or consumed
by the species, depending on the sign of the coefficients a; and asy, and it is
diffusing into the environment.

Taking into account that the elliptic equation for v does not have unique
solutions, we will work simply with the fundamental solution

1
V=g In|-|x*(a1u; + agus). (3.3)

We also assume that we have nonnegative initial data g, ugg satisfying

0, ::/ urp(x)dxr >0 and 6, ::/ ugo(x)dx > 0. (3.4)
R2 R2

A remarkable property of this mathematical model is that it rescues several
classical mathematical models in biology and physics when we change the value
of the parameters arising in this model. For instance, the case ay = 0 gives

Ouy = pnduy — x1V - (u1 A1 Vo),

—Av = ajuq,

which corresponds to the one species Keller-Segel model with rotational flux
terms proposed in [38]. In particular, the case oy = as = 0 is very interesting
since it rescues the classical parabolic-elliptic Keller-Segel model. As shown
in [I5] a blow-up of the solutions is possible in this case. On the other hand,
taking ay = 7 and ay; = 0, we obtain the Keller-Segel model with negative
chemotaxis, which never blows-up. Surprisingly, this model also includes as
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a particular case the vorticity equation in fluid dynamics which arises for the
values of the parameters oy = —7/2, u; = x1 = 1 and ag = 0.

It must be noticed that in nature quite often not only one but several
kinds of cells interact. The analysis of a mathematical model describing this
interaction is typically more complex, but closer to reality in the context of
biology. One main example is the next two species Keller-Segel model describ-
ing the interaction between two kinds of cells with densities u; and uy and one
chemoattractant v

Oyuy = Auy — x1V - (ug Vo),
Opug = polNug — X2V - (uaVv),
—Av = u; + us.

The qualitative analysis that outlines the conditions for having global ex-
istence of solutions or blow-up for this model can be found in [36]. Notice that
this model arises, as a particular case, from our proposed mathematical model
by taking a; = as = 0 and a; = ay = us = 1. A relevant highlight of
system (i3.1]) is that it not only rescues several well-known mathematical mod-
els as particular cases, but it also includes new models whose theory of global
existence of solutions has not yet been developed. For instance, consider the
system

Oy = i Auy — X,V - (1 Vo) — V - (ugV+o),
Ouy = palug — XV - (ugVo) — V - (ugV+),
—Av = uy + us,

with positive parameters puq, pi2, X, and Y. It describes the dynamics of two
types of bacteria producing chemoattractant and swimming near a surface,
where they may be subject to a net rotational force and form spirals, cf. [5] [4§].
We realize that this system has the same structure as the proposed model
when taking

Al:(yl/\/lwf —1/\/1+Y%) AF(%/\/HX% —1/\/1+%§>
1/vVi+xi xi/V1i+x: )’ 1/V1I+% Xo/V1+X5 )

and coefficients y; = 1/1 + X3 and x2 = /1 + X3. As far as we know, neither
the global existence nor the blow-up of solutions has been reported. Another

interesting example is the mathematical model

Oy = i Aug — X1V - (u Vo) — V - (uaV4o),
Brus = palug + X2V - (1 Vo) — V - (up Vo), (3.5)

—Av = u; — Us.

This system was proposed in [23, Eqgs. 120-122] to describe the dynamics of
two-species Brownian vortices with different signs. It is also worth mention-
ing that this model constitutes an extension of the Debye-Hueckel model of
electrolytes (cf. [10]), where the like charges repel each other. The question
of blow-up for the solutions of system was proposed in the reference [82,
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p. 174] and it remains open up to the best of our knowledge. In summary,
the main goal of this chapter is not only to provide new results on global ex-
istence and blow-up for several mathematical models, but also to propose a
mathematical approach that unifies the theory of global existence of solutions
for several Keller-Segel type models and the vorticity equation.

From a mathematical point of view, a main feature in the analysis of system
(3.1)) is that traditional approaches to constructing energy functional (e.g. [15]
30}, 28], 64]) become challenging. A main reason for this is the lack of symmetry
caused by tensorial chemoattraction making it difficult to deal with entropy
functionals fRQ w;Inu;dr,i = 1,2. Following a technique introduced in [46],
we showed in this chapter how to modify these entropy functionals by another
ones that have lower bounds and still allow finding optimal conditions on the
initial data to obtain global solutions. Similarly, due to tensorial chemotaxis,
it is difficult to find conditions that guarantee a blow-up of the solutions.
Nevertheless, we find conditions on radial initial data that allow us to decide
whether the solutions of model blow up within finite time.

Introducing our results, let us begin by defining a weak solution for (3.1).

Definition 1 (Weak solution) Let puq,p2, x1,x2 be positive constants,
meanwhile oy, ay are constants restricted to the interval (—m,w| and ay,ay
arbitrary constants satisfying a2 + a3 > 0. Let A; with i = 1,2 be the 2 x 2
matrices defined by . Given T > 0, the vector-valued function (uy,us) is
a weak solution on R? x (0,T) of system , with initial data satisfying

0 < uyp € LY(R?) N L=¥(R?), uiplnuyg € L'(R?), uypln(l + |z|°) € LY(R?),

(3.6)

fori=1,2,f

i) u; € C([0,7); L' (R?)) N LY3((0,T) x L*3(R?)), and

i1) (uy,uq) verify in the weak sense, that is to say

/ ou;(z, t)dr — / ou(z)de

R2 R2
t t

= ,Ui/ / u; Apdrdr + Xi/ V- (u;A;Vv) dedr,
0 JR? 0 JR2

fori=1,2, for any ¢ € C(R?), 0 <t < T, and for v being defined by

ex]

Our main result of global existence now read as follows.

Theorem 2 (Global existence) Assume that ai,as are non-negative con-
stants. Let us denote by 0; with 1 = 1,2 the total initial masses define by

.

1. If ay, a0 € (—%, %), i.€., both species move toward the gradient of chem-
ical concentration and 0; with i = 1,2 satisfy the inequalities

8 8
91 < 77—//61’ 02 < — W/L2 )
101 COS Oy < X2a2 COS Qig (3.7)
UG T2
and H1a1 0, + Haa2 0y — (a191 —|—a292)2 >0,

X1 COS O X2 COS (g
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then system has a global weak solution.

2. If ay,an € (—7r, —%] U [%, ﬂ, i.e., both species move away of the gradient
of chemical concentration, then for any initial masses 0;, i = 1,2, the

system has a global weak solution

On the other hand, assuming cosajcosay > 0 and i, ugy € L*(R?, (1+
|z[*)dx), and denoting by sgn the sign function, we have that the free-energy
functional defined by

E(t) == B nugde + — 222

X1 |cos aq| Jp2 X2 |cos an| Jge

_ sgnlcosan)ar / wyodz — IS 02)a2 / uvdr,  (3.8)
R2 R

U9 In usdx

2 2

satisfies the following dissipation inequality

E(t) + —/ / up |V(p Inuy — x1 Cosalv)| dx
X1 \cosa1| R

(3.9)
+—// Uy |V (12 In gy — x5 cos apv) > da < E(0).
X2 |cos as| R2
Remark 3 Notice that the inequality
8 8
T 91 + THat 62 - (a191 -+ a292)2 > O, (310)
X1 COS (1 X2 COS (2

corresponds to the interior of a rotated parabola in the plane 0,65. Choosing the
parameters appropriately, conditions 6, < Xﬁ’“— and Oy < =32 may be

ai cos aq X2a2 COS a2
relevant or can be simply ignored. In fact, if the parabola

8muia 8T usa
A 91 + il 02 — (a181 -+ CL262)2 = 0,
X1 COS (1 X2 COS (g
does not intersect either of the lines 0 = —1 — or fy = —S2__ jp the

X1a1 COS a1
M1~ xicosai

X2a2 COS a2

first quadrant of the plane 0,0y (when 22 2 S acosar = —M“—) then inequality

3.10}) is enough to guarantee the global existence result in Theorem@ item 1.
Moreover, we observe the following phenomena of blow-up.

Theorem 4 (Blow-up) Let us denote by 0; with i = 1,2 the total initial
masses define by . Consider a weak solution (uq,us) of system and
let [0, Timax) be the corresponding mazimal interval of existence. Assume that
the initial data uig,usg satisfy (5.0 (-) and radially symmetric and g, usy €

LY(R?, (1 + |z|*)dz). Then, we have

1. if aycosaq,ascosas > 0 and the initial masses 0;,1 = 1,2, satisfy the
inequality

8 8
TH1a71 0, + T 209

X1 COS (1 X2 COS (g

0y — (a191 -+ a202)2 < 0, (311)

then Tha.x < 00;
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2. if ajay >0, a;cosa; > 0 for at least one index i € {1,2} and the initial
mass 0; satisfies the inequality

87 [l

0; > (3.12)

XiCi COS
then Tpax < 00.

Remark 5 Notice that this result includes the model , which describes
the dynamics of two-species Brownian vortices with different signs, since in
this case a1 = 1,a0 = —1 and

Alz(xl/\/Hx% —1/\/1+x?)

V14X xa/V1i+x3 )’

AQZ(—XZ/\/1+X% —1/V1+X5 >
1/V1+x3  —xo/V1I+x3

To the best of our knowledge, this is the first result of blow-up reported for this
system.

Corollary 6 Assume that ai,as are non-negative constants and oy, ap € (=7,
%), i.e., both species move toward the gradient of chemical concentration. Con-
sider a weak solution (uy,us) of system and let [0, Thax) be the corre-
sponding maximal interval of existence. Assume that the initial data are non-
negative, radially symmetric and uyo, uso € LY(R2, (1 + |z|*)dx). If 6, and 6,
satisfy any of the inequalities

8mpyay 8T o

) + 0y — (@101 + az65)?* < 0, (3.13)
X1 COS O X2 COS (g
8 8
or 0> L, or 0y > &, (3.14)
X147 COS (g X202 COS (X9

then, Thax < 00.

Remark 7 Note that if oy = as = 0,01 = p, po = 1 and a; = ay = 1, we
rescue the two-species Keller-Segel model with one chemical in R? proposed in
28]

Oy = pAuy — 1V - (w1 Vo) z € R34t >0,

Opuy = Ny — X2V - (uaVv)  z € R%t >0,

—Av = uy + ug, r € R2t>0.

Corollary [0 guarantees that we can always construct initial data with masses
0, and 0 such that if they satisfy any of the inequalities

8 8 8 8
L,M01+_7792_(01+(92)2 <0, or 01 > Llu, or 02 > —7T,
X1 X2 X1 X2

then Thax < 00, which coincides with the sharp result given in [36, [28].
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Remark 8 In the case ay = 0, a; > 0, we rescue the one species Keller-Segel
model with rotational flux terms

Ouy = i duy — x1V - (ulAlvv)a

—Av = ajuq,

proposed in [38]. C’omllary@ and Theorem @ guarantee that if a € ( z E),

T 202
and the initial mass 61 satisfies 07 < XCS;Q, then the corresponding solution

exists globally in time, meanwhile the condition 61 > J:(i;a implies the possi-

bility of having blow-up. On the other hand, Theorem[d also shows that in the
case o € (—7r, —g} U [g,w] the solution exists globally in time independently
on the value of 01. These results coincide with the sharp result given in [38].

3.1 Local existence, uniqueness, regularity,
mass conservation and positivity

In light of [44], [51] and [64], we establish the local existence, uniqueness,
regularity, mass conservation and positivity of mild solutions to (3.1). This
approach piques interest as it solely considers the initial data in L'(R?).

Let us begin by defining a mild solution for (3.1).

Definition 9 (Mild Solution) Given uyg,ug € L'(R?), we define (uy,us)
to be a mild solution of on [0,T) with initial data (uyg,uso) if

i) u; € C([0,T); L (R*))NC ((0,T); L3 (R?)) fori=1,2,

i) sup t'/4 [wi (D) | pajs g2y < 00 fori=1,2,
0<t<T

i11) (u1,us) satisfies the following Duhamel integral equations for all t €

0,7).

¢
u(t) = ety — Xi/ V - etilt=92 (4,(5) A Vu(s)) ds, (3.15)
0

for i = 1,2, where Vv = VK * (a1u; + agus), with K(z) :=
—% In |z|, 7 € R2\{0} and e*'2 is the heat semigroup defined by
eMtBf = G * [y Gy, = L eIz /4uit,
47w1t

Moreover, (uy,us) is a global mild solution of if (u1,u9) is a mild
solution of on [0,T) for any 0 < T < oo.

Let us write (3.15) as

(ur(t),us(t)) = (e“ltAulo, e“Qmum) — B ((u1,u9), (u1,u2)) (t),0 <t < T,
(3.16)
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where B := (x1Bi, x2B2) is a bilinear form in which B; and B, are bilinear
forms definded by

Bi ((uq,uz), (wy,ws)) (t) (3.17)

/ V- e092 (4y(s) Ay (VK * (awy + agws)) (s)) ds, for i = 1,2.

For the construction of local-in-time solutions to (3.1), we make now some
remarks that will be useful.

First, we recall the following L9 — LP estimates of heat semigroup et*2.
For any 1 < ¢ < p < 00, there holds

. 11

HQMZtAfHLp(Hp) S (47T,Uit)p ? HfHLQ(RQ)> (318)

IV # 2 F|| gy < CE 2570 (||l (3.19)

where C' = C(p,q, ;) is a constant depending only on p,q and p;. These

inequalities are a consequences of Young’s inequality for the convolution (For
example, see [45 Subsection 4.1.2. p. 145]).

Secondly, we also recall the following inequality

1

]

<C, . € (2, : 3.20
o SOl s Trany 7 € @to0), (320

where C, = C(r) is a constant depending only on r (See [81, Theorem 1 (b),
p. 119].
For the case r = oo, we have that for a constant C;, depending only on ¢,

1

|z]

<G ||9H2(fn§2) HgHi(qq(R? : (3.21)
OO(RQ)

for all g € L'(R?*) N LY(R?), 2 < ¢ < oo (See [64, Lemma 2.5]).

Now, we define the Banach space X1 by

{ (ur(-, ), us(-, ) € (C ((0,7); L¥? (B2)))”, } (3.22)

XT =
SUPo<t<T ¢/ ||U1('>t)||L4/3(R2) + ||u2('7t)||L4/3(R2) < 00

with norm |-/

Il = sup 84 (furDlgongee) + ol D)) - (3:23)

And we recall well-known simple result on solving quadratic equations like
3.16) via contraction mapping argument (For example, see [64, Lemma
2.3.],[12, Lemma 2.2.] and [57, Theorem 13.2. p. 124]):
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Lemma 10 (The Picard contraction principle) Let X be a Banach space
with norm ||| and B : X x X — X a bilinear continuous form satisfying

1B (u, )l < Crllullx [[vllx for allu,ve X,

where Cg > 0 is a constant independent of u,v € X. Then, for every y € X
such that ||y||y < 1/(4Cg), the equation uw = y+ B(u, u) has a solution u € X.
Moreover, this solution is such that

1—/1—-4Cs |yl
< = < 2ylly

Jully < =5

and unique in the open ball of radius 1/(2Cg). The solution continuously de-
pends ony : If ||z||x <e <1/(4Cp),v =z + B(v,v) and ||v||y < 2¢, then

lu —vllx < (1 —4Cpe)" Iy — 2llx -

In the following proposition, the local existence in time of mild solutions

o (3.1) is proved by applying , and also we establish some important
properties of the solutions.

Proposition 11 (Local existence) Given uj,usy € L'(R?), there exists
T € (0,00) such that has a unique mild solution (uy,us) on [0,T"). More-
over, (uy,us) satisfies the following properties:

(i) mass conservation, i.e., [o, uidx = 60;, for i =1,2;
(ii) integrability, i.e., for every 1 < p < oo, there holds u; € C'((0,T); LP(R?))

and supg;or (tlil/p ||Ui(t)||Lp(R2)) < oodfori=1,2

nd 1 <

(iii) decay rates, i.e., for every m € Z, | € Z+ a
(0 P(R?)) and

p < oo, there holds 9mdu; € C((0,7);L
SUP( o (ti/PHI/2Hm H@[’L@iuiHLp(RQ)) < oo, fori=1,2;
(iv) regularity, i.e., (uy,us) is a classical solution of (3.1]) in R* x (0,7);
(v) if uyg, uge € HY(R?), then uw; € BC ([0, T); H'(R?)), for i = 1, 2;

(vi) positivity, i.e., if ujp, ugp > 0 and 6q,0y > 0, then u; > 0 for all (x,t) €
R2 x (0,7T) for i = 1,2;

Proof. Local ezistence. By (3.19)), we have

”BZ ((ula u2)7 (wla w2))||L4/3(R2)

1 3

t
< 01/ (t =) 7271 [Jui(s) Ai (VK * (aywy + agws)) (5)][| 11 ge) ds
0
t 3
< 01/0 (t =) [[ui(s) || parsmey 1A (VK x (1w + asw2)) ()] page ds

t
_3
e / (t = 5) 1us(5) | sy |V * (arton + astwn) (5)][| oy .
0
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Using ([3.20]) we obtain

||B2 ((ulu u2)7 (wla w2>>HL4/3(R2)

<3 (=) ) e ﬁ o an) B

<5 (= )T a9l oy laren () + o)l sy s

< %— Ot (t— )70 () pasoee (“1 lwr(s)ll Lasagge) + a2 ”wQ(S)”L“‘”’(RQ)) s
< maX{|a12|7;|a2|} & /Ot ((t _ s)_% s—is—i) ds || (ur, ua)|l x,. [[(w1, w2)| .
_ maX{|a12|7;|a2|} & /Ot ((t — )i ! s%*) ds [ (u1, uz)|l ., [l (wr, w2)l x, -

Using (3.47)), we get

HBZ ((ula u2)7 (wla w2))HL4/3(R2)
Cp

7

<

0 || (ur, w2) | ., | (w1, w3) ., s for i =1,2.

So, we have that

1B ((u, u2), (w1, w2))ll x, < Cp [(un, u2)lx, (w1, wa)llx, (3.24)

where Cp = C(x1, X2, a1, a2, i1, 12) is a constant. Moreover, if wujg,uz €
L'(R?), we claim that

/4 <H6M1tAu10HL4/3(]R2) + He"QtAWOHLMB(W)) —0ast—0. (3.25)
Indeed, let {u?},i = 1,2, be a sequence of functions in C§°(R?) satisfying
u?) — uy in L'(R?) as n — oo. By (3.18)), we get

e

< t1*%(47r,ui)4 e ||U¢0||Lq(R2) —0ast—0forl<g<oo,

and

t1/4 HGMtAU €“ZtA " HL4/3(R2)

= /4 He“itA (uio — g HL4/3(R2)

< (47wi)_i [[wio — wipll 1 (gey — 0 as n — oo.

Therefore, for every § > 0, there exist N(J) € N and Ts € (0, 00) such that

e o] oo ey
< 1174 He‘“mu — eHithy, NHL4/3 &) + $1/4 ||€HztA NHL4/3 -
0
(471-/1’1 Huzo ui0||L1(R2) + t<47rui>% Huz]'gHLoo(Rz) < Z_l’
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for all t € (0,T5],i = 1,2. Therefore, for every 0 < § < 1/(2Cp), there exists
Ts > 0 such that H(e“lmum, 6“2tAU20)||XT < /2 and by applying the Lemma
, we have that the integral equation 1} has a solution (u1,us) € Xr.
Moreover, this solution is such that ||(u1, u2)| y, < ¢ and unique in the open
5
ball of radius 6. The solution is in BC ((0,Ty); L' (R%))?, and hence a mild
solution of (3.1)) on [0, Ts), since (e"**uyg, e*2"®uy) and B ((uy,us) , (ug, us))
belong to BC ((0,Ty); L' (R?))* . Indeed, applying (3.18), (3.19) and (3.20), we
obtain

”uiHLl(R2)
Hith, B,
S €0 W0 L1(R2) + Xi ||Bl ((u17u2) ) (u17u2))|lL1(R2)

t 1
< lwioll 1 mey + CS/O (t —s) 2 [[Jui(s) A (VK * (a1u1 + asuz)) ()] 11 (ge) ds

[NIE

t 2
< llwioll 1 g2y + Ci / (t = )72 (Il (), + 628l poges) ) s

t
1 1
< Nl + Cs [ (6= 9857 ),
0
) .
< luioll 1 ge) + Cs ||(U1»U2)||XT5 =12

Uniqueness. Based on [16], we can prove that if (u1,us) € X7 is a mild solution

of (3.1) on [0,7) with initial data (u,(0),u2(0)). Then
£t/ (||U1(t)||L4/3(R2) + ||u2(t)||L4/3(R2)> —0ast—0. (3.26)
Indeed, for 7 € (0,7/2], the function ¢ — (uy(t+7), ug(t+7)) is a mild solution
of (3.1) on [0,7/2) C [0,T — 7) with initial data (u1(7),ua(7)). We rewrite the
integral equation ((3.15) as
wi(t 4 7) = ey (T)
t
— Xz’/ iR L ((ui(s + 7)A; (VK x (a1uq + agus)) (s +7))) ds
0
= el B, (T)

t+T1
— Xi/ iR - (14;(5) A; (VK * (ayur + agug)) (s))) ds.
On the one hand, by a density argument as (3.25)), we have

£/ (||emmu1(7)||L4/3(R2) + [|e#2 2 un(7)]| aya (R2)> —0ast—0,
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since u; € C'([0,T); L' (R?)),i = 1,2. On the other hand, notice that
t+1 A
t1/4/ He‘“(t”_s) V- ((ui(8)A; (VK x (aqug + agusg)) (s)))“L4/3(R2) ds

t+7
S 06t1/4/ (t‘i‘T_S)_% Siédsl‘(uhuQ)H?(T

t 1/4  ,1 5 L )
(i) [ -9 il

1/4  p1

t _3

SC'G( ) / (1—2s) is_%ds||(u1,u2)||§(T—>0ast—>0,i:1,2.
t+71 0

It is follows that
O (a6 + 7)oy + st + 7l o)) = O s £ 0. (3.27)

Using the fact that the set Y; := {u;(7) € L' (R?);7 € (0,T/2]},i = 1,2, is
precompact (then totally bounded i.e., for all § > 0, there is a finite subset
Y = {w (), uz(r;) € L' (R?*);7; € (0,7/2],5 € {1,2,...,n},n € N} such
that Y; C U,_, B(ui(7;),0/4)) in L'(R?) since u; € C'([0,T); L' (R?)) i = 1,2
and by a density argument as ([3.25)), we have that: for every 0 < 6 < 1/(2Cp),
there exists T € (0,7/2) such that

| (e"1*%uy (1), e“QtAUQ(T))HX < §/2 for all T € (0,7/2].
Ts

By Lemma (10| and the uniqueness condition (3.27)) applied to the initial con-

dition (e"*2uy(7), €2 us(7)), we know that

sup /4 (JJun (¢ + 1)l sy + It + ) sy ) < 8 for all 7 € (0,7/2).

0<t<Ts
(3.28)
As 7 — 0 in (3.28) (with ¢ € (0,T5) being fixed), we obtain

$1/4 <||U1(t)||L4/3(R2) + HU2(t)HL4/3(R2)> < 4.

Then, we are reduced to the uniqueness condition (|3.26]).
(i) Mass conservation. Fix t > s > 0. Define f; : R? — R? by

filx) = et =98 (4, (s) Ay (VK * (aquq + agus)) (s)) (z),i=1,2.
By (3.18), (3.19) and (3.20)), we have that

11illl 21 ey
< [Mui(s)Ai (VK * (a1ur + agua)) ()] 11 re)
< uils)ll s ey II(VK * (a1un + azuz)) (s)] 4 ey

< Cr ()l sy (1| s ) s + laa] o) g ) < o0,
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and

IV - fill 11 rey
< C(t — )72 |[ui(s) Ai (VK x (arus + azuz)) (5)]]] 11 g

< Colt = )72 ) L ey (Il a(5) gy + ! o (5) e

< oQ.

The proposition in [45, p. 179] gives

V- fide =0,i=1,2.

RZ

/ el yde = / Upde,
R2 R2

since [o, Gy, dx =1 (See [45] p. 14]).Then, we obtain

/ u;dx
R2

t
= / elitByodr — Xi/ / V- etilt=s)A (ui(s)A;Vo(s)) dxds
R2 0o Jr2

t
R2 0 JR2 R2

(ii) Integrability. From (3.15), using (3.18)), (3.19)), we have for any 1 < g <

p < oo that

Moreover, recall that

HuiHLp(R?)
t
< [l o] sy + xi / [e#C=IAY - (wi(8) AV 0(9)) | 1y g s
0
1_
< (dmpit) ™ [lwioll 1 ey

t
+ Crovs / (t = )35 [ua(5) AT 0(3) | g, 4
0

Now we recall the following extension of Holder’s inequality: For all f €
LP(R?),g € LY(R?),1 < p,q < oo such that 1 = 1 42 <1, then fg € L"(R?)
and

1790 r @2y < 1l o2y 91| Lacro) - (3.29)
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By (3.29), we get that
il Lo (g2

< () ol o ey
t
+ Cuoxs / (t = )5 Nl 2 g AT OO e

— (mpt)s " Nl s ey

2+q

t
+ ClOXi/ (t—s)p™ 20 [Ju(s )HL2+r (B2) [[(VK * (a1uy + aguy)) (3)|HLT(R2) ds
0

1
< (Arpit)? " ||wiol | (R2)

ChoXi 1_24g
| G /Oa—s) E a(s)|

where r = 24qu > 2(So ¢ < 2). Now, we use ([3.20]) to deduce

ds,
L (R2)

(El\ * (ajug + a2u2)) (s)

2r
L2+7 (R2)

HUZHLP(RZ)
1
< (dmpgt )” Hlwioll 11 ey

ChoXi
27

2
a

+ (t —s)r

[1i($)]] Lo (re) llarun(s) + aguz(s)| page) ds

[e=]

1
< (4mpt)r ! ||uiOHL1(R2)

2t
1_2 2_
N (I Py A T iy B R T

0<t<T
where a = ﬁ’q = 2% < 2(Since r = 2. If ]lj — 241 > 0,0r equivalently
a > IQTP, we have that
_1
£ il =) (3.30)
(477,%) ”uzOHLl (R2)
2
+ Cra(p, a) ( sup ¢!~ (Hul( )HLa(R?) + ||U2(t)||La(R2)>) :
0<t<T

Therefore, we need to choose a € <12f ,2) . For 1 < p < 2, taking a = 4/3 so

that ¢ =1, r = 4, and%—%+1—5—5>0, |D becomes
_1 1_ 2
T HUiHLp(R2) < (dmp;)? ' Huz'OHLl(R2) + Ci2 H(UbUz)HXT-
For p = 2, taking a = 5/3 so that ¢ = 10/7, r = 10, and ; — 2 +1= 3§ > 0,
(3-30) becomes
1
£2 [|ugl| o (e

_1
< (dmpi) 2 il p ey

2
2
+ Chp ( sup t5 <||u1(t)||L5/3(]R2) + ||u2<t)||L5/3(R2)>> :

0<t<T
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For 2 < p < ootaking @ = —2- < 2 so that ¢ = 22 < p, r = 4p, and

1+2p

%_§+1:2Lp>0, 1) becomes

_1
t HuiHLP ®

1+p

< (i) 7 o o oy

2
+Coa (s, ¢ (10, + D], ) )

For p = oo, from (3.21)) with ¢ = 3, we have

|HVU|HL<><>(R2) = [[[(VK x (a1u1 + azuz)) (s )H|Loo(R2)
3/4
(5) + aztia(s) | Faggey

< Cus llavur () + azuz(s)| e laru

1
1
< Cua ( () s ey + Nz () ey ) * (111 ()l ey + () e )

Therefore

[ ] oo 2

3
1

t
< Heﬂit/QAui(t/Z)HLw(RQ) + Xi //2 He#z‘(tfs)Av . (Uz( )A VU HLOO(RQ) ds
t

t

< (2mpt) ! [wi(t/2)]| 1. gy + 015Xi/ (t—s)727% [lui(s) A Vu(s)|| s (re) ds

t/2
< @rt)™ sup [us(3)] 1 e
0<s<T
t
O [0 9 IO 14T
t/2
< (27r,uit)_1 sup ||Uz‘(5)||L1(R2)

0<s<T

R

t
4o [ (0= 9 (s + a5 )

t/2
< (2mpt)~t sup ”ui<5)HL1(R2)

0<s<T

/4 et
2 1 4 _1_
+ Ciexi < sup t3 (||u1(t)HL3(IR2) + ||u2(t)||L3(IR2)>> / (t — S)6 le=51ds
0<t<T t/2

Then

il oo (g2
< (27Tui)_1 sup ||Uz‘(5)||L1(1R2)
0<s<T

7/4
2
+ Ci7xi ( sup ts (”ul(t)”L3(R2) + ”u2(t)”L3(R2)>)

0<t<T

(iii) Decay rates. Following [64, Proposition 2.3.], we introduce D* =

for all real k£ > 0 defined by

Df=F il FLf| for f e,

(~a)""
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where S’ is the space of tempered distributions on R?. Here F and F lare the
Fourier transform and the inverse Fourier transform in R?, respectively. For
f €8S, where S is the Schwartz space of rapidly decreasing smooth functions
on R?,

FINO =57 [ e s,

FUA@ = 5 [ e

:27r

The heat semigroup e**2 has the following properties (c.f. [84, Lemma 2.1,
Proposition 2.1], [5I, Lemma 1.1]): Let f € L9R?), ¢ > 1, k € Ry and
m € Z.. Then, there exists a constant C; = C;(k,m,p,q, jt;),7 = 1,2, 3, such
that, for any 1 < g <p < oo

(a) HDkeMAf”Lp(Rz) < Oy t—k/2=0/a=1/p) ||f||Lq(R2) with k > 0,

(b) HDkzv . euitAFHLp(RQ) < Cyt—k/2=1/2=(1/a=1/p) HFHLq(Rz) with k& > 0,
(c) HaZnDkeuitAfHLp(Rz) < C«Bt—k/2+m—(1/tI—1/P) HfHLq(RQ) with k +m > 0

Let R;f,j = 1,2, be the Riesz transforms of f € S’ defined by

L&
R.f=F1];>L
2 {Zm

The Riesz transforms R; has the following properties (c.f. [81])

(A) R; are bounded linear operators on LP(R?) for any 1 < p < oo,

(B) (RI+R3) f=—f, RiRof = RiRyf for f € §,

(C) DRjf =R;Df, OyR;f = R;0xf for f € S,

(D) RURR DI = 90k f for f € S/, where | = (Iy,ls) € Z2 with |I| > 1.

Now, we can adapted the techniques used in [51] for the vorticity equation
in R? to show that the mild solution (u1,us) to on [0,T) satisfy D*u; €
C((0,T); LP(R?)) and

Fifl] i=12

sup (tl—l/p+k/2 HDkuz
0<t<T

< oo, forallreal k >0, 1 <p<oo, i=1,2.

(3.31)
We use induction for k. First we note that (3.31) is equivalent to (ii) for
k = 0. Assuming that (3.31)) is true for some k > 0, we prove it for k + h,
where 0 < h < 1. Fix such k£ and h, we have to prove

||LP(]R2)>

sup (tl—l/p+(k+h)/2 HDk+h
o<t<T

ui”LP(RQ)) < oo,forany 1 < p < o0,i=1,2.

To this end we take § = 1 — i + % > 0, and we note that u; satisfies the
integral equation
t t
w;(t) :5t_5/ e“i(t_s)As‘s_lui(s)ds—Xit_(s/ V- etil=98 69 (4,(5) A;Vu(s)) ds.
0 0
(3.32)

'Note that ||Dk8f‘e“itAf||Lp(R2) = ||DkAmeuitAf||Lp(R2) since JyeitA f = 11; AehitA f.
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This can be verified upon deducing a differential equation for w = t’u, anal-
ogous to (3.1)) but containing the term 6¢~'w, and then convert it back to an
integral equation, obtaining (3.32)). Then, we have

¢
DFtha(t) = 5t_5/ Dhetit=5)2g0=1( Dy (s))ds
0

¢
— Xit_‘s/ D'V - etit=9)A 5 DF (1,(5) A;Vu(s)) ds.
0
So

1D | 1 o)

t
< ot7° /Dhe’”(t_s)As‘S_l(Dkui(s))ds
0

LP(R2)

t
+ Xt ° / D'V - et DR (4,(5) AV (s)) ds
0

Lr(R2)
= Il + Ig.

By induction hypothesis and (a), we have

t
I =6t / Dhetilt=9)2g0=1( Dy (s))ds
0

Ly (R?)

t
< 0186t_6/ (t — S)—h/285—1 H(Dkui(s))HLP(R?) ds
0

t
< Cigdt ™" sup (¢171/PH2 ”DkuZHLP(RQ))/ (t —s)~"2s"2 1ds
0

0<t<T
< Cigbt™° sup (t11/PHk/2 ||DkulHLp(R2)) (3.33)
0<t<T
For the second term, we begin by showing that: for 2 < p < oo if £ = 0, and
1 <p < ooif k>0, we have that D¥(VK * u;) € C((0,7T); L?(R?)) and
sup (£1/27V/PHR2 || DF(VK * u;)
0<t<T
are consequences of (3.31). In fact, note that D(9,K * ;) = Rju;, where
= 1,2 and 1 < p < oo. Thus, Dk(f) K xu;) = D¥"'Rju; = R;DF ;. If
k > 1, - thus follows from If 0 < k < 1, D¥! is a bounded
operator on LP(R?) onto LI(R?) w1th =5 Lk (c.f. [81, Theorem 1. p.
119]). Then

HLP(RQ)) < 09, for ¢ = 1727 (334)

1
p

HDk*luz'HLq(RQ) < Cao il o ey
< C,2175_1+1/1u
= Cyyt~ /22,

If £ =0, From (3.20)) and (3.31)), it follows that

HVK * ul”LP(RQ < 022 Hu7’HL2+ (RQ)

< Cygt 1 @HP)/20
_ C23t71/2+1/p.
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Now, from (b) we have that

t
I =x;it™? Dh/ V - etilt=92 0 DF (4,(5) A;Vu(s)) ds
0

LP(R2)

t
< 024Xit_5/0 (t—s)t/2h2 s* || DF (ui(s) AiVu(s ))HLP(RQ) ds

S CZ4X1t
(K ' 1/2-h/2 8 || pk—
Y / (t—s)" 104 (ui(5)) A DT (V0(9)) | 5, s
—o \J/ Jo
By Holder’s inequality for
! = ! + 1,7" > 2
p q T
we obtain
1
Wl
k t
<32 (5) [ 0= D AL
=3 () 1= D T
=0
By induction hypothesis, we have
1 "k
B 1=1/q+(k=35)/2 || k=3,
TEREEDS () e P
t1/2 1/r+5/2 Djv
s | (L2
/t<t _ S)1/2h/2811/p+(k+h)/283/2+1/pk/2ds>
0 ) )
_ {1=1/a+(=3)/2 || ph=iy,.
((%) s 1051
sup (t1/2 Y H {DJVUH Lr R2
o<t<T
/t(t _ S)l/?—h/2—1s—1/2+h/2d8)
0
k
k , .
—1/q+(k—3)/ k=3,
<023 (5) 0 10
sup (272N DIV] || o) (3.35)
0<t<T

Combining ([3.33)) and - 3.35)) yields (3.31]). Now, we can also apply induction
form e Z, to prove that

sup (tl—l/p+k/2+m HaZnDkUzH
o<t<T

LP(RQ)) < o0, (3.36)
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foralm e Z,, k € Z,, 1 < p < o0, i = 1,2. First we note that (3.36) is

equivalent to (3.31) for m = 0. Assuming that (3.36)) is true for any k € Z
and m < N for some positive integer N, we can prove it for any k € Z,

and m = N. The proof relies on direct calculation and the properties of the
heat semigroup e#'® (c.f. [84, Theorem 3.3]). At length, by and the
properties of the Riesz transforms R;, we have proved (iii).

(iv) Regularity. By (iii) which implies that (u,us) € (C*'(R? x (0,7))?
and the fact that V- and e#* commute on C'(R%* R?) N L*(R?;R?), we can
conclude that (ug,us) is a classical solution of in R? x (0,7). It remains
to show that u;,7 = 1,2, satisfies the initial condition u; — u; in L'(R?) as
t — 0. So, it is suffices to show that

[[wi(t) = wioll 1 (re)

< He'uitAuiO — uiOHLl(RQ) + xi || Bs ((u, u2) , (u1, U2))HL1(R2) — 0,
as t — 0,7 = 1, 2. But notice that this is true since
£/ (U (Ol arsany + [850) | parsgaey ) — 0 a5 £ 0.
(v) We define the Banach space Y by
Y = {(ul(.’t),uz(.’t)) e C([0,Ty); L' (R?) N Hl(R2))2} ,

with norm |-[|y

[ (w1, ua)ly
= sup (Jluas )l ey + 2l Ol o))
0<t<Top
+ sup (Hul('>t)HH1(R2) + H“2('at)HH1(R2)> :
0<t<Ty
Since V - A; (VK x (ajw; + aswsy)) = — cos a (ajwy + aswy), the bilinear form

B;,i = 1,2, defined by (3.17)) is rewritten as

B; ((ur, us), (wy, ws)) (¢)

- / LAy (ui(s)A; (VK * (aywy + asws)) (s)) ds
_ / eHIB (Tuy(s) - A (VK % (arwy + aswy)) (s)) ds
+ /0 t et t=8,(5)V - (A; (VK * (a1wy + asws)) (s)) ds
- /0 t et IR (Vuy(s) - A; (VK * (aywy + asw,)) (s)) ds

t
— cosa/ et =8, (s) (a1wy + agws) (s)ds
0

=: Biy ((u, uz), (w1, wz)) (t) + B ((u1, uz), (i, wz)) (t),
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for i = 1,2. By (3.18]) and (3.19), we obtain

[Bir (w1, u2), (w1, w2)) ()| 12 ge)
< [ U909 Ay (VK v+ ) ()l
and
IV Bit (w1, us), (w1, w2)) ()| 2ge)

t
< 026/ (t =) 2 [ Vui(s) - Ai (VK * (aywy + agws)) (5)][] 22 ds-
0

Observing that, by Holder’s inequality and (3.21)) with ¢ € (2,00), we have
that

[IVui(s) - Ai (VK (a1wy + azws)) (5)]|[ p2(re)
< IVui($)ll ey [Ai (VK * (a1w1 + azw2)) ()| ]| oo re)

1
S o HVW(S)HLz(Rz) 11/ |z] % (a1w1 + azws) ()| oo g2y
027

HVUZ( 8)|| L2 mey Il (@rwr + asws) (s )Hz(lez) | (a1wy + agws) (s )ngquz)

Now, we recall the following Gagliardo—Nirenberg inequality (See [45], p. 190.]):
For all g € L'(R?) N H'(R?), there exist a constant C'= C(q),q > 1 such that

I9llzacey < C NgllAGaey [Vl agasy (3.37)
letting g = aywy + asws, we get
[1Vui(s) - Ai (VK x (a1wr + azw2)) ()] 2 (gey
< Cos [[Vui(s)]| p2grey [ (@1w1 + asws) (8)||%1(R2) [(a1 Vwr + azVws) (3)||%2(R2) :
Using the Young’s inequality for products, we have that

[IVui(s) - Ai (VK x (1w + azw2)) ()] 2 (gey

Cos

< T3l ey Ion + ) () | s
028

T g 01 T+ @ V102) (52
Cos max{|a1], |az|}

< | (ur, u2)ly [[(wr, wa)|ly

- 2
= Oy [|(ur, u) ||y [|(wr, wa2)l]y

Therefore, we obtain
1Bir (w1, u2), (w1, w2)) ()| p2mzy < Coot || (un, w2) Iy || (wr, wa)lly

and

11V Bix (1, ua), (wi,w3)) ()[[] 2 g2y < Coot"? [[(wn, ua) ||y [[(wr, ws)ly -
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Now, by (3.18)) and (3.19)), we obtain

| Biz (1, u2), (wi, w)) (¢)| 12(r2)
< feosal [ o) arin + o) () e
and
11V Bia (u1, u2), (w1, w2)) (O] 2(ge)
< |cos | Cs4 /Ot(t — S)_1/2 |wi(s) (arwy + asws) (S)HL?(R?) ds.
By Holder’s inequality, we have that
[ui(s) (arwr + asws) ()| p2(re)
1/2
< |u; (s | |(a1wy + asws) (s)|2 dx)
<

/
2
i) P gy [ (areos + @) (5) )
= [Jui(s)] L4 (R2) [(a1w1 + azws) (8)||L4(]R2) :

Using the Gagliardo—Nirenberg inequality (3.37) and Young’s inequality for
products yields that

[[ui(s) (arwr + a2w2) ()l z2re)

3/4
< O |lui(s )” 1(R2) V(s )HL/? R2)
3/4

(@ywn + azws) ()| ht s, (a1 Veor + V) ()| 25,

3C3 max{|ai|, |az|}
< T (| (w1, u2)lly [[(wr, wa)|ly

= Cs3 |[(u1, u2) ||y || (w1, we)lly

Therefore,
| Biz (w1, u2), (wi, ws)) (t)HL2(R2)
< |cos a| Csst ||(u1,u2)||y | (w1, w2)”ya
and
11V Bia ((u1,u2), (wi,ws)) (t)|HL2(]R2)
< Jcos al Caat"? [|(u, uz) ||y [ (wr, w)lly -
Hence

1B ((u1, u2), (w1, w2)) ()] g1 gey (3.38)
< Cs(t + t'72) || (ur, u2) ly | (w, w)]ly -
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On the other hand, by (3.19)),(3.20), Gagliardo-Nirenberg inequality (i3.37)

and Young’s inequality for products, we get
HBZ ((ula u2)7 (wla w2>>HL1(R2)

t 1
< 036/ (t =) 2 lJui(s)A; (VK (a1w1 + a2ws)) ()] 11 g2y ds
Ut )
< 037/0 (t = )72 (i)l parsgey (le(s)“m/s(w) + sz(S)Hsz/s(W)) ds

t
1
< 037/ (t—s)"% s 2ds sup s/ i ()]l /5 (re)
0 0<s<t

sup s'/* <||w1(s)||L4/3(R2) + ||“’2(5)||L4/3(R2))

0<s<t
= C sup 57 () oy 50 57 (a9l oy + ) o))
0<s<t 0<s<t
< Cagt? || (u, uz) [ly | (w1, w2) |y -
Then
||B((U’17u2)7 (wlaw2))”L1(R2) (339)

< Caot'? || (ur, uz) [y (| (w1, w2) |y
From (3.38) and (3.39) we deduce

||B ((ula uQ)v (wh wQ)) ||L1(]R2)OH1(R2)

< Cur(t+ 12 [ (ur, u2)|ly [[(w1,w2) ]y -
Therefore
1B ((u1, uz), (w1, wa)) ||y (3.40)
< Cun(Ty + Ty %) | (ury ua) |y || (wr, ws)ly

and

| B ((u1,u2), (ur,uz)) — B (w1, w2), (w1, wa))]ly
< Cp(To+T,") (|| (ur, u2)lly + | (wr, ws)|ly) (3.41)

[ (w1, uz) = (wi, w2y -
Now, we consider the closed set
S = {(ur,u2) €Y, (u1(-,0),u2(+,0)) = (w10, u20) and |[|(ur, ua)lly < R},
where
R = [Juioll 1 ey + [[u2oll 11 ey + [[wroll g ey + w20l o mey + 1-
For (uy,ug) € S we set

D ((ug,ug)) := (e‘“tAulg, e'LLQtAUQO) — B ((u1,us9), (ug,uz)) (t),for t € (0,T).
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It is clear that (e“lmulg,emmum) € Y due to 1} and the fact that
U0, U0 € LI(R2) N HI(RQ) In fact,

162 e )]

S ||u10||L1(R2) + ||U20||L1(R2) + ||u10||H1(R2) + ||u20||H1(]R2) =R-1 (342)

Then, we have that ® maps S into Y. Taking Ty € (0,7) small enough small
enough such that

Cu(To+ Ty*)R? < 1, and 2Cy (Ty + Ty*)R < 1/2,
we get from (3.42),(3.40) and (3.41) that for (uy,us), (wy,ws) € S holds

19 ((ur, u2))lly < [ (e S uro, € Pun) ||y + 1B (w1, u2), (w1, u2)) |y < R.

and

1 ()~ (Cwr, )y < 5 |

Hence the contraction mapping theorem ensures that the integral equation
has a unique solution (@, 4s) € S on [0,Tp]. By the fact that a; €
C ([0, To]; L' (R*) N H'(R?)),7 = 1,2, and Gagliardo-Nirenberg inequality
, we see 4; € C ([0, Tp]; L' (R?) N LY3(R?)) ,i = 1,2, which implies that
(1, u2) is a mild solution of . By uniqueness we have (uy,ug) = (t1, Usg)
on [0, Ty], and hence (uy,us) € BC ([0,T); H'(R?)).

(vi) Let {uly},i = 1,2, be a sequence of nonnegative functions in C5°(R?)
satisfying uf — w; in L'(R?) as n — oo. Notice that, using , we have
that

(u1,u2) — (wr, w2)||y .

sup /4 He‘“mu%

0<t<T HL4/3(R2)

< OiltlfT t1/4 HeuitAuiO”L‘lm(lRQ) + OileT t1/4 HemtA (u?o - uiU) HL4/3(R2)

) _1 .
< sup t1/4 HemtAui0||L4/3(R2) + (47le“lt) 4 ||U?0 - ui0||L1(R2) =12
o<t<T

Therefore, for every 6 > 0,there is Ty € (0,7) such that, for sufficiently large
n, we have that

210, O ([l 2 s + e ol e ) <5

Now, we can apply the lemmal[L0]to get that there is Ts- € (0,7),6* < 1/(4Cp)
such that, for sufficiently large n, the system , with initial data (uf,, ul,),
has a mild solution (u?,u?) € C ((0,Ts); L* (R%))*N C((0,Ty) ; L3 (R2))2.
Moreover, this solution is such that

sup 19 ([ (1) — wa (0) ngay + 130 = wa(6) o)

0<t<Tsx

< (1—40p6")7"

0<Stlilj)ﬂ t1/4 <||€'u1tA (u?() - ulO) HL4/3(R2) + H€M2tA (ugﬁ - u20) HL4/3(R2)>
5*

< (1 —4Cpo")~"

- 1.
((47?/11) - ol g ey + (47 p2) ™7 [ugy — u20HL1(R2)> :
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This implies that un u? — u; in C ((0, Ts+) ; L*3 (R?)) as n — 00, = 1,2. By
item (iv) we known that each (uf,u}) is a classical solution of

atu? = /’LIAUEL - le : (U?AIV’U”), HAIS R27t € <O7T5*) )
Ol = poAul — xoV - (uf A Vor), x € R%t € (0,Ts),

Vo' = VK x (aru} + ayuf) reRte(0,Ty), O
uft(z,0) = ufy(z), ul(z,0) = uly(z), =€ R
Multiplying the first equation of system (3.43) by (u?)” := max{0, —ul'},
integrating over R? and integrating by parts
1d s — 12
= ,ul/ (u})” Aufdr — Xl/ (ut)” V- (uf A Vo™)dz
R? R?
_2 _
— [ V@) P [ V) @AV
R? R?
-2 n n\— n
=—mw [ |V (u})] dx+xl/ uyV (uy)” - (A1 Vo™)dx
R2 R2
2 _2 n
—,ul/ IV (u)”"|" dx + % V|(f) |- (A Vo) da
= —m/ IV (u5) | da — / (@) V- (A Vo) da
Using the identity V- A Vo™ = cos aAv™,we deduce that
2
s J o Fas
(2 X1 COS & (2 n
:—Ml/ |V (u})" | dx + 12 / |(u?)™|” (—Av™)da.
R? R?
Note that by Holder’s inequality, we get
_2
L1 e + ) (9] de
n\— 2 n n
< H‘(ul) | ‘LQ(RQ) | (@yuy +a2u2)HL2(R2)
n\— 2 n n
= H|(U1> H|L4(R2) |auf + G2U2HL2(R2)' (3.44)

At this stage, we use item (v) to claim that u?' € BC ([0, Ts]; H'(R?)),i =
1,2, and

sup (1 (0) | aqay + N Ol ) < oo,
0<t<Ty»

for some constant Cys = C'(n) together with (3.44]) to derive

d s — 12

%/Rz‘(ul) | dx

§—2u1/ ’V(u?)_lzda@
R2

+ x1 |cos a] max{|aq|, |as| }Cyo |H(u7f)_|Hi4(R2) )
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Notice that (uf)” € C ([0, Ts], H'(R?)) since u} € C ([0, Ts|; H'(R?)) (See
[40, Theorem 4 p. 130.]). Now, we recall the following Interpolation inequality
of Gagliardo-Nirenberg-Sobolev (See [45, p. 190.]): There exists a constant

C(G4 ])V p such that

4 1/2 1/2
]l pagey < Coitep Nl oty V0]l oty » for all w € HY(R?),  (3.45)

letting w = (u}')™ , we get
H(U?)_ < 042 H(U?)_ |v(u711>_”L2(R2)'

s e |2 |

In consequence

o[ Ny s

<=2 [ V@) o

+%( | (u) \dx) (zul/ |V (u}) |dx> -
<u1/\vu1 }d+4m (/\ |2dx)
<cu( [ Jtyfae).

Integrating the last inequality

/Rz ()| do < (/R !(u’f(x,O))_]zdx) eCut — ()

and therefore (uf)” = 0 on [0, T5+] x R%. Hence, u} > 0 on [0, T5<] x R? which
implies u; > 0 on [0, Ts] x R?. From

/ uy(z,t)de =60, > 0, for all t € [0,7T), (3.46)
R2

we have that uy (-, t9) # 0,uy(z,t9) > 0 for any ¢y € [0, Ts+) . Similarly, we also
obtain that us(-,tg) # 0,us(x,t9) > 0 for any ¢y € [0,Ts). Since (u1,us) €
BC ([to, T) x R2)* i =1,2, for ty € (0,T5*) and is a classical solution of

Oy = i Aug — x1 (A1 Vo) - Vug — xq cosalAvuy, © € Rt € (ty,T),
Orug = poAuy — Xz(A2VU) - Vuy — x2 cos fAvuy, x € RQat S (7507T) )

and |Vv|,Av € BC ([to, T) x R?|the strong maximum principle (See [39,
Theorem 12 p. 376.]) ensures that u;(z,t) > 0,4 = 1,2, on (ty,T) x R
Indeed, notice that the change of variable w; = u,e™*, with

A= X1 |cos af HAUHLOO([tO,T)XR2) + 1.

*By item (ii) , we have that [lu) (t)]| L g2y + [[u2(t)|| o g2y < Ot < Ctgtt € [t, T).
3Notice that

VO] e g2y < C larun () + azua ()| A gy llarua (8) + azuz(t) [ 3z,

<Cty'? et T),

and

[AV(E)]] oo (r2) < [[(@rur + azuz) ()| oo 2y < Ctyt,t € [to,t) .
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Then w, satisfies
Oywy = p1Awy — x1(A1 Vo) - Vwy — (x1 cos aAv + \) wy,

for z € R%t € (ty,T), and

X1 cos aAv(z,t) + A = x3 (cos aAv(z,t) + |cos o HAUHLOO(UO’T)XRQ)) +1
=:¢(z,t) > 0.
We assume that u; has a negative value at (x1,t;) € R? x (¢y,T), and we will
arrive at a contradiction. By definition of wy, we have that —a = w;(xy,t;) <
0. Notice that if there is a point (o, t2) in R* x (¢, t1] at which infga (4, 4, w1 <
—a < 0 is attained, then w; is a negative constant on B, (0) x (tg, 2], for all
r > |zo|, which implies that w; is a negative constant on R? x (tg,t,] and
this contradicts (3.46]). Unfortunately, since R? is unbounded, we do not know
whether there exists a point at which infge, , ¢, w1 is attained. Therefore, we

use the following trick presented in ([45, p. 56.]). Let b > 0 and 6 > 0 be
constants to be determined later, and set

w =wy + 6 (bt + |2]°) .
Then, we have that w{ satisfies
o’ = i Awd — x1(A; Vo) - V'l — cu?
+ 0 (b+ c(z, t)bt + c(z, ) 2> 4+ 2x1 (A, V) - & — Aps) -
We choose b > 0 such that

2
b= sup {4gn + 21 o] 11Vl oo iy = I
re

and conclude that
6 (b+ c(z, t)bt + c(x, t) z|” + 2x1 (A, Vo°) - — 4pr) > 0in R? x (to, t1).
Now, we fix such an b and take § > 0 so small that
wl(21,t1) = wi(x1,t1) + 6 (bt1 + |x1]2) < —a/2 <0.
Since u; € BC ([tg, T) x R?), we also have that w; € BC ([ty, T') x R?). More-
over, if
R2x (t,T

1/2
|lz| > 671/2 <— inf )w1> = R, v € R?

then w(z,t) > 0 (t € (to,T)). Since the function w? is continuous in R? x
[to,t1], w{ has a minimum value on Bg (0) X [to,?1]. So, there exists a point
(Ig,tg) € Br (0) X [to,tl] such that

wd (z3,t3) = inf  wd(x,t) < wl(zy,ty) <O.
BR(O)X[to,tl]

So, since wi(z,tp) > 0 (v € R?) and wi(z,t) > 0 (|z] = R,t € [to,t1]), we
have that w{ attains its minimum at a point (x3,t3) € Bg (0) X (o, 1], then
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w? is a negative constant on Bp (0) x (to,t3] but this is not possible due to

the continuity of w{ in R? x [to,#;]. Therefore, ui(z,t) > 0 on (to,T) x R2.
Moreover, if there is a point (z4,t4) in R? x (to,T) at which uy(z4,t4) = 0,
then wy(z4,t4) = 0 and wy; = 0 in B, (0) x (to,t4], for all r > |x4|, which
implies that w; = 0 in R? x (¢, t4] and this contradicts . So, we conclude
that uy(z,t) > 0 on (to, T) x R?. and hence the positivity of u; on (0,T) x R?
follows because ¢, is an arbitrary number in the interval (0, Ts-). Similarly, we
also obtain the positivity of uy on (0,7) x R?. m

Remark 12 Notice that

¢ 1
/ (t—s)" " s¥7lds = t/ (t —ts)" " (ts)' " ds
0 0
1
= rtvt / (1—s)""s¥tds
0
=" (x,y), (3.47)

where the function § is called the Beta function, and is defined by f(z,y) :=
fol (1 —s)" ' s¥~'ds, which converges when z,y > 0. We observe

1
/ (1—s)"'s¥tds
0
1/2 1
= / (1—s)""'s¥ds+ / (1—s)""s¥7ds
0 1

/2

1/2 1 1 1
< / sv"1ds +/ (1—s)""ds = — + < 0.
0 1/2 vy 2%z

3.2 Global existence

Our purpose in this section is to prove the two parts of theorem [2

3.2.1 Case aj, a2 € (—%, %)

Theorem 13 Assume that aq,as are non-negative constants and oy, €
(=%, 5), t.e., both species move toward the gradient of chemical concentra-

tion. Let us denote by 6; with i = 1,2 the total initial masses define by .
If 01 and 0y satisfy the inequalities

871y 8T Lo

0 < ———, 0 <
X1a1 COS (1

8mpiaq 8T oas
—91 4+ —
X1 COS (Y1 X2 COS (i

X202 COS vy (3.48)
and 92 — (a191 + a202)2 > 0,

then system has a global weak solution satisfying the energy dissipation
under the additional hypothesis uyy |z|”, us |2|> € L' (R?).
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We decompose the proof of the theorem (13| into three parts. In the first
part, we constructed a regularized version of the system having smooth
solutions and introduced some of its properties like mass conservation, inte-
grability, and positivity. Then, we showed in the second part how to obtain
uniform estimates of the regularized system to pass to the limit, and obtained
the result of global existence of weak solutions for the system . In the
third part, we showed that the weak solutions of the system satisfy the

free-energy inequality (3.9)).

Regularized Problem and some important properties Due to the un-
boundedness of the convolution kernel K(z) := —% In |x| and its singularity
at zero, we need to introduce a regularized version of our system.

We consider the regularized problem for 0 < & < 1/v/2

ous = i Aus — 1V - (uSA Vos), xeR2t >0,
Ol = paAus — X2V - (u5A:VF), 1 e R2t >0,

Vv := VK® * (ayu§ + agus), € R2,t >0, (3.49)
ui(z,0) = uyo(x), u(z,0) = ug(z), =€ R
Here K¢ is defined as . X
Ko(z) = (3.50)

yr N

Simple computations show that

1 x 1 g2
VKe =———— — AK° =
@) = =T @ = E P
Notice that ] 1
VK* < — VK* < ——
VK@) < o IVKE @) < o
and ||[AK*® = 252/ ;dr =1
|| ||L1 0 (7’2 _|_ 52)2

This regularization has been already used for different kinds of Keller-Segel-
type models (e.g. [19,20]). The advantage of this regularized version subject to
initial conditions satisfying is that it possesses a unique positive global
smooth solution with fast decay in space (u$,u5) € BC ([0,T); L' (R?)) N
C*!' (R? x (0,T)) N X7, where X7 is the Banach space defined by with
norm 3.23] Moreover, for any 1 < p < oo, there holds u§ € L®((0,T); LP(R?)),
i = 1,2. In particular, the masses [, ui(-,¢)dz and [, us(-,t)dx remain con-
stants in time. This result can be proved by adapting the techniques in [64],
as illustrated in the following proposition.

Proposition 14 Assume that uqg, usg satisfy (@ and . Then there is a
unique classic solution (u5,us) € BC ([0,T); L' (R*))NC*! (R? x (0,T))NXr,
of with 0 < & < 1/v/2 on [0,T), for any 0 < T < oo. Then (u$,u5)
satisfies the following properties:

(i) mass conservation, i.e., [q, uS(x,t)dx = 0;, for i =1,2 and t € [0,T);
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(i) integrability, i.e., for every 1 < p < oo, there holds ui € L>((0,T); L?
(R%)) for i =1,2;

(iii) positivity, i.e., u(x,t) > 0 for all (z,t) € R? x (0,T) for i = 1,2;
(iv) usIn(1+ [z[*) € L=((0,T); LY(R?)) for i = 1,2;
(v) usInus € L=((0,T); L*(R?)) for i =1,2;
(vi) |V (Vu5)l € L*((0,T); L*(R?)) for i = 1,2;
(vil) wSv® € L=((0,T); L'(R?)) for i = 1,2;
(viii) for every 2 < p < oo, there holds Vv© € L>=((0,T); Whr(R?))>.

Proof. The local existence and mass conservation results of a unique classical
solution (u§,u5) € BC ([0,T); L' (R*))NC*! (R?* x (0,7)) N Xt of with
e > 0 can be proved by the same argument of Proposition with minor
modifications.

(ii) Integrability. Notice that the smoothness of the solution (uj, u§) allows
us to apply the Duhamel integral formula to obtain

t
us (t) = el uyy — Xi/ iR L (uE(5) A; V% (s)) ds. (3.51)
0

Using (3.18)), (3.19)), we get for any 1 < ¢ < p < oo that
||Uf||Lp(R2)
t
JtA i(t—s)A € €
< He“ uio||Lp(R2) —|—X1~/0 He”( AT - (uf(s) AV (s))||Lp(R2) ds
¢ 1,11
< lwioll 1o re) +01Xi/ (t—s) 2" 0 [[uf () AV ()| pagey ds. - (3.52)
0
For 1 < p < 2, taking ¢ = 1 so that —%—i—%—%—i—l = %—% > 0, 1} becomes

Huﬂ|LP(R2)
< [lioll o2y + Crx /Ot(t - 3)%7% |15 (8) Ai VU ()| 11 gey ds
< wioll 1o ey + Crxi VK[| oo g2
t
J = sy s+ 0205) (3

+ max{]all : ’aﬂ}XiCl /t(t — s)%*%ds
0

< ||ui0||LP(R2) dre

2
<||U§||Loo((o,T);L1(R2)) + HUEHLOO((QT);D(R?)))

pmax{|ai|,|az|}x:Ch
27(2 — p)e

= Hui0||LP(R2) +

N

21
(Hui”Loo((O,T);Ll(RQ)) + ||u§||L°°((O,T);L1(]R2))> tr
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For p = 2, taking ¢ = 4/3 < 2, (3.52)) becomes
Huf”p(ﬂ@)
t
_3
< l[uioll p2ggey +01Xz'/ (= )73 [Jui (5) AV 0" (5)[| pass (o) ds
0

i el [
dre 0

< [luioll 2 (g2

e o myzosscay (105 e oy ey + NSl e ormncaey)

[ ug ”LOO((O,T);L4/3(R2))

/4,

max{|ai|, [az|}x;Ch
= HuioHLz(Rz) +
£
(Hui:HLOO((O,T);Ll(RQ)) + HUSHL‘X’((O,T);Ll(RQ))>
: B 1,11 _ 1
For 2 < p < oo,taking ¢ = 2 so that —3 + ; — -+ 1= >0, 1) becomes
65 [l o rey

t
1
< ||ui0||LP(R2) + ClXi/ (t—s) ' ||u§(S)Aivva(S)HL2(R2) ds
0

ma‘X{|a1| ) |a2|}XiCI t 1_q
< luioll 1o re) + - i (t—s)r 'ds

HUfHLw((o,T);LZ’(RZ’)) (HUﬂ’Lw((o,T);LI(RQ)) + HugHLw((O,T);Ll(R?)))

pmax{|ai], |az|}x:C1
dre

= ||Uz'0HLp(R2) ||Uf||Loo((o,T);L2(R2))
<HU§HL0<>((0,T);L1(R2)) + ||u§||L°°((0,T);L1(R2))> t/r.
For p = +o00, taking ¢ = 4 so that —% + % — % +1= % > 0, 1) becomes

[ ]| oo (re)
t
_3
< HuiOHLOO(RQ) + Cle'/ (t—s)"1 |’Uf(5)AiVUE(3)HL4(R2) ds
0

sl oG [y,
4re 0

< lwioll oo re)

||Uf||Loo((o,T);L4(R2)) (|‘u§||L°°((O,T);L1(R2)) + ||U§HL<><>((0,T);L1(R2))>

N max{|ai|, |as|} x;Ch
TE

= ||ui0||L°°(R2) ||Uf||Loo((o,T);L4(R2))

<||U§||Loo((o,T);L1(R2)) + ||u§||L°°((0,T);L1(R2))> £/,

(iii) Multiplying the first equation of system (3.49) by (u$)™ := max{0, —us},
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integrating over R? and integrating by parts

2
g AR

:ﬂM/Jvmﬂw%x+m/LVW9<@ﬁ%Vfﬂx
=~ [ V@) [Pdw+ | V) [ (Ve

/ IV (u)"|" do — I/RQ\(ui)fv-(Alw&)dx.

Using the identity V - A;Vv® = cos a; Av®,we deduce that

2dt/ ‘ul ’ dx
=—u1/ IV ()| dx+W/ () [* (—Av)d.
R2 R2

Note that by Hoélder’s inequality and Young’s inequality for convolutions, we
have that

/ ()™ [P | (—AK® * (a1t + au)) (s)] de
<HWM\‘HWHPAW*WW%wwﬂMma
<10y 1K ey s+ e
—112
= H|(U§) H|L4(R2) ||CL1U§ +a2u;”L2(R2) ' (353)

At this stage, we use item (ii) to claim that v € L>((0,7); L*(R?)), for
1 =1,2,and

[ (Ol oo o.ry:r2®2y) F 10O Lo (07):12R2)) < Cos

for some constant Cy = C'(¢) together with (3.53)) to derive

d v (2
%/Rz |(u5)" | dx (3.54)
< =21 /2 A% (ui)_‘de + x1 cos ay max{ay, az }Cs || ‘(ui)_}H;(Rz) :

R

Notice that (u$)~ (-,t) € H'(R?) since u§(-,t) € H'(R?) (See [40, Theorem 4 p.
130]). By the interpolation inequality of Gagliardo-Nirenberg-Sobolev ([3.45]),
we get

< C | ) gy 19 (025)” (3.55)

2
H(ui) HL4(R2) HLQ(RQ)'
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It follows from estimates ([3.54]) and (3.55))

d _ _
p |(uf) ‘2dx < —2,ul/ IV (u)) |2dx
R2 R2

S (Llorta) (o )
et e ([ )

< 05( 5 |(u§)—\2dx).

Integrating the last inequality

/RQ ()| do < (/RZ |(u5(, 0))|2d:1:) st — (),

and therefore (u$)” = 0 on [0,T) x R% Hence, u5 > 0 on [0,7) x R% From
/ ui(z,t)de =60, >0, for all t € [0,7T), (3.56)
R2

we have that u§(-,t) # 0,ui(z,t) > 0 for any ¢ € [0,7"). Similarly, we also
obtain that u§(-,t) # 0,u5(z,t) > 0 for any t € [0,7).

Now, we proceed to show that non-negativity of uj and uj together with
the fact that (us,us) € BC ([0,T) x R2)?, for i = 1,2, is a classical solution of

Ous = mAus — x1 (A1 Vo®) - Vui — xq cosmAv'ug, = € R%t e (0,7),
Opus = praAus — X2(A2V©) - Vus — xa cos apAvuy, € R%t € (0,7T),

and the strong maximum principle (See [39, Theorem 12 p. 376]) implies that
ui(z,t) > 0,4 = 1,2, on (0,7) x R%. With this end in mind, we start by
defining w$ = uSe ™, with \ := x; cos ay [AV| poo 0,7y xR2) - Then wi satisfies

Ows = u Aws — x1(A;Vo©) - Vws — c(z, t)ws, = €R*te (0,T),
and
c(x,t) := x1 cos r Av®(z,t) + A
= Y1 COS (Avg(x,t) + HAUEHLOO([O,T)XRQ)) > 0.

Moreover, notice that |[Vv¢|, Av® € BC ([0,T) x R2f] We assume by contra-
diction w5 (x1,t;) = 0 at (xq,t1) € R? x (to,T), then w$(xy,t;) = 0 and by the
strong maximum principle w§ = 0 in B, (0) x (0,t], for all » > |z1|, which
implies that w$ = 0 in R? x (0,¢;] and this contradicts (3.56)). So, we conclude

that u§(x,t) > 0 on (0,7) x R?. Similarly, we also obtain the positivity of u§
on (0,T) x R?.

4Notice that 1 3/4
[V (Ol oo g2y < C llarui(t) + azui(t)]] i gy llarui(t) + azug ()]s ge) »
and

HAUE(t)HLoo(W) < |[(a1uf + azu3) (t)HLOC(]RQ) :
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To establish global existence, we employ a proof by contradiction (See [85]):
Let Thax be the maximal existence time of the mild solution (u5,u§) of the
(3.49)) with initial data (w19, us) and Tyax < +00, (3.51)) implies

t
emTAuzg(t) _ 6M<T+t)Aui0 _ Xi/ phi(THt=s)A%7 (uf(s)szve(S)) ds,
0

for all 7 > 0,t € (0, Thnax) - We claim that

sup 7[R | sy — 0 85 = T (357
TE(O,Q(Tmax_t))

Indeed, by (3.18) we have that

sup -1 /4 H e,uz‘(T+t)A
7€(0,2(Tmax—t))

1/4
T
= Sup ( ) (4mpas) ™ [|uag

7€(0,2(Tmax—t)) T+t H HLI(RQ)

- (2 (Tmax —t

) 1/4
2T ; ) (47r,ui)_1/49i — 0ast— Thax.

On the other hand, by (3.19)) we get

ui0||L4/3(]R2)

t
[ (AT 6D

N[N

t
_1 _
< / (r 41— 5 [0 () Ar (VEE x (ars + as5) ()] 1 oy
0
t
<Gy / (r+t— )73 6, [|VK® % (a1 + azu) ()] oo sy ds
0
t
_3
< max{la] [asl} (61 + 02)? [IVEE [ o o) Co / (rtt—s)tds
0

OB C [
47T€ 0

2
_ max{fay ], |as|} (61 +65)" Ci <(T +o) 71/4)
e
< max{|a1, as|} (61 + 62)° Cg (r+ )
e
Then
t
sup Tl/4 / eHilTH=IRT (42 (5) A V% (s)) ds
7€(0,2(Tmax—t)) 0 LA/3(R2
2
< max{|ai|,|az|} (61 + 62)" Cs sup VA (r 1)
e 7€(0,2(Tmax—1))

_ max{fay ], [as|} (61 + 02)° Cs (2 (T — D) (2T — )4 5 0
TE ’

as t — Tax. However, (3.57) contradicts Ti.x < +oo. In fact, for 0 < § <
1/ (4Cp), there exists ty € (0, Tiax) such that

sup /4 <He“”Aui (t0)||L4/3(R2) + ||eu27Au§(t0)HL4/3(R2)) <o
0<7<2(Tmax—t0)
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By doing so, we can extend the solution to the time 27},., — to starting from
the time ty. Thus T« = +00.
(iv) Note that

4
(1+ )~

Multiplying the first equation of system (3.49) by In(1 + |#|?) and integrating
over R?, we get

d 3
pr /]1@2 uS In(1 + |z|*)dz

= ,ul/ uiAIn(1 + |z)*)dx + Xl/ Vin(l + |z*) - (u5A;Vof)da
R2 R2

2
=1 <1, and |Aln(1+ \x|2)‘ =

In(1 Ol =
]Vn( —|—|a:|)} 1+]:c|2_

< 44,6, + Xl/
R

< A + xa Wi (O] pars ey VO (O]l 4 Rey -

Using ([3.20]), we have that
d
—/ uS In(1 + |z)*)dz < 4p16,
dt R2

max{|a1], |az| }C7xa 2
+ o <Hui||L°°((0,T);L4/3(]R2)) + ||u§||L°°((0,T);L4/3(R2))> :

ui |Vo©| de
2

By (ii), we have that

d
— [ wIn(1 + |z[*)dz < Cs(e).
dt Jge

Integrating on the interval (0,¢), we obtain that
/R2 uS In(1 + |z|*)dz < /R2 wyoIn(1 + |z|*)dz + Cy(e)T, (3.58)
for any ¢ € [0, 7. Similarly,
/2 w1 + z)de < / uso In(1 + |2[2)dz + Co()T, (3.59)
R R

for any ¢t € [0, 7.
(v) Notice that

€ e _ €1 €1
_1{uf§1}uz 1rl U/z- = 1{uf§(1+‘x|2)74}ui ln ui + 1{(1+|x‘2)74§uf§1}ui 1H uf
— £ 1 13 2
- 1{uf§(1+\x|2)_4} (ul)2 + 1{(1+|x\2)_4§u§§1}4ui ln(l + "1.’ )
< (1427 + 4w In(1 + [2*),i = 1,2, (3.60)

Then,
/ u; In~ uidr < / (1+ |.1'|2)72 dx + 4/ us In(1 + |z)*)da (3.61)
R? R2 R?

=T +4/ wIn(1 + |z|*)dz,i = 1,2.
R2
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Therefore

ui Inui|de = [ wilntuide + | ulln uSde
R2 R2 R2

< oy + 744 [ (U4, = 12
RQ

(vi) Multiplying the first equation of system (3.49) by In w5, integrating over
R? and integrating by parts, we get

d
—/ uilnuidx:—4u1/ ’V\/ui
dt R?

RZ

2
— Xl/ uiV - (A Vo).
RQ

Using the identity V - A;Vv® = cos a1 Av®, we deduce that

d 3 (3
E/Rz ui lnujde = —4p, /R2

By Holder’s inequality and Young’s inequality for convolutions, we have that

2
dx + x1 cos oy / uj (—Av) dx

RQ

3
V/ui

5 (AK s (ar + ) o < e o + 021 e

Then,

d 3 3
7 /R2 uj Inujdz

§—4u1/ ’V ug
RQ

+ x1 max{|ai|, [az[} [cos a4 <||ui||L°°((O,T);L2(R2)) + ||U§||Loo((0,T);L2(R2))> :

2
dx

Integrating over (0,7"), we get

T
4/,61 / / V\/Ui
0 R2

< x1max{|ai], |az|} |cos a] <||U§||Loo((o,T);L2(JR2)) + Hug|lL°°((0,T);L2(R2))> T

2
dx

—|—/ ulolnulodaf;—/ ui(z, T) Inui(z, T)dzx. (3.62)
R? R?
Similarly,
T 2
4u2/ / Vyus| dz
0o Jr2

< xemax{|ai[, [az|} |cos az] <||U§||Loo((o,T);L2(R2)) + ||U§||Loo((o,T);L2(R2))> T
—|—/ Usp In ugodx — / us(z, T) Inus(z, T)dx. (3.63)
R? R?

(vii) Using that v® := K* * (ajuf 4 aguj), we have that

/\ufzﬂdw
R2
1
_ 1 / 1
4 R2 x[R2

1
n—
[z —y|*+ e

ug (2, t) |arui(y, t) + agus(y, t)| dydz.
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On the one hand, notice that

1
In" ———m——u (z,1) [arui (y, ) + azus(y, t)| dydzx
/R2X]R2 z — y2 + &2 i (@,8) larui(y, t) + azuz(y, )] dy
1
- In U, x,t) |aju y,t +CL2UE y,t dydx
/lvx y|2+52<1 ‘aj_y‘Q_i_ 2 ( >| 1( ) 2( )|

1
- (2111 g) 6,(]a] 61 + |az) 6).

On the other hand, since €2 < 1 — 2, we have

1
ln_—zxt a1ui(y,t) + asus(y, t)| dydw
/RQXW iz — Y2 + 2 (2,1) larui(y, t) + agus(y, t)| dy

= [ alle g et e (0.0) + eau5 (0. 0] dyda

|z—y|2+e2>1

< / In(|lz —y|? + 1 —)us(x,t) |arus (y, t) + agus(y, t)| dyda
|z—y|2+e2>1

</ (02 + 10 fo — 9f?) w5 (o, ) (ares (v, ©) + asuiy(y, )y
|lz—y|2+e2>1

Using the inequality
In|z —y|* <n2+In(l+ |z|*) + In(1 + |y]). (3.64)

It is follows that,

1
™ —— Wt £) + st (y, t)| dyd
o i) o (.0 + a2, 0] dyd

< <(21n2) 0; +/ u; In(1 + \x!Q)d:z:) (la1| 61 + |as| O2)
R2

+\a1\9i/ uiln(1+|x\2)dfv+|a2|9i/ (1 + |2]2)de
RQ

R2
Then,

|u;v®| dx
R2

< (2 In(2—¢)6; —1—/ u; In(1 + |m|2)d:13) (la1] 01 + |as| B2)
R2

il ei/ (1 + 2)dx + |as) 92-/ (1 + 2] da
R? R?
(viii) Let 2 < p < oo, Notice on one hand

|||VK5(3E)|||” »(R2)
2r- 17TP 1/ (r2 +e2)?
rp“ 1 o pptl
< dr
2p— 17rp vy (2re)? 2p Lpp=1 [ 2P

=: (Cho(e, p))"-

|
+

B 22p7rp lep (p—2) 2p—lgp=1
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On the other hand, simple computations show that for ¢,7 = 1,2,

0?Ke

6xj8x,~

B 1 0 T < 1 1
| 27 0x; \JxP+e2)| T 27 |zf2 42
Therefore

aQKE
8l’jaxi

l

Using ([I7, Lemma 9.1]), we conclude

0K®
a.TZ‘

P < 1 / > 2r J
<~ T
LP(R?) 2prp~1 0 (72 + 52)1)

1
(p — 1)2pp—1g2(r—1) = (C(e,p))’.

* (aguf + agus) € Wl’p(RQ),z’ =1,2,

and
S * (aqug + agus)
8xj 8@ . 272

PK° -

= x (a1ui + agus) 1,5 =1, 2.
axjaxz (1 1 22) J

The Young’s convolution inequality gives

ov®
' 0% || 1o (g2
<

OK*® . .

O - [laruy +a2u2|lL1(R2)
i llLe(r2)

< MIVE o ey llarui + asus| pr e

< Ciole, p)(|ar] 01 + |az| B2) < oo,

and
0?v° 0’Ke
< |ayuf + agus|
‘ 02;07; || 1y g2 ’ 02;07; || 1 g2 ' HHEED
< Cule,p)(Jar] 01 + |az] 02) < oo.
m

Dissipative energy structure We define the free-energy functional E.(t)
associated to system ([3.49)) by

E.(t) = ﬂ/ uj lnuidm%—ﬂ/ ug Inusde (3.65)
X1COS 1 JRp2 X2 COS 2 JRr2

ai

az
— — [ ujvider — = [ wusvide.
2 R2 2 R2

In this step, we show that the free energy functional E.(t) enjoys a basic energy
law such that it is monotone non-increasing with respect to time.
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Theorem 15 Let (u5,us) be a classical solution of system .Then,

d a1 e € €\|2
EEE(t) = cosa /R2 uf |V (1 Inuf — x1 cos av%)|” do (3.66)
a2 € € e\ |2
— —/ us |V (pe Inus — o cos av®)|” dx,
X2 COS G2 JR2
for allt > 0.

Proof. Using the first equation of system and the decomposition

, we obtain
o = V- (u5V (pr Inus — xy cos ayvf)) — V- (x1u5 sinay, V2of). (3.67)
Multiplying by py Inu$ — x1 cos ayv® and integrating over R?
/2(8tui)(u1 Inu] — x1 cos ayv°)dx
R
= /Q(Ml Inuj — x1cosa1v°)V - (uiV (i Inuj — x1 cos aqv®))dx
R
— /Q(ul Inuf — x; cos ayv®)V - (x1u5 sin a V>of)da.
R
Integrating by parts, we have that
/Q(Gtui)(,ul Inuf — x1 cos ayv®)dx
R
= /2 uS |V (pq InuS — xq cos aqv?)|? da
R
+ /2 (,M1X1 sin a; Vug - V4ioE — X%ui sin oy cos a; Vo© - Vng) dx
R
= — /2 us |V (pq Inu — xq cos ayv?)|? da
R

— X1 Sinaq uiV - V4ivide — Xf sin ap cos o ui Vo - V4oide
R2 ~ R2 ~

2
= —/ ul |V (1 Inuf — xq cos aqv®)|” du.
]RQ
In conclusion

/ (Opu3) (p1 Inuj — x1 cos aqv®)dx = —/ ui |V (g Inui — x1 cos alva)|2 dx.
R2

R2
(3.68)
Similarly

/ (Opu3) (2 Inug — x2 cos agv®)dr = —/ us |V (pg Inus — o cos agva)IQ dx.
R2 R2
(3.69)



3.2. GLOBAL EXISTENCE 54
On the other hand, we have that

/2(8tu§)(u1 Inuj — x1 cos aqv°)dz
R

= [ O(uilnui —ui)dr — x1cosa; / (Opus)vedz
R2

RQ
d
:,ul—/ ui Inujdx (3.70)
dt RQ
X1COS ( 1
_— 1 B a € ,t € ,t + c 7t d d .
m /szm ! Ix—yl2+€2< wui (1)) (a1ui(y, t) + axus(y, t))dyde
Simalarly
d
/Rz (Gyuz) (2 In g — X2 cos azv®)da = Hamy R2 u§ In usdr (3.71)
X2 COS (g 1
- /R2 /R2 In m(ﬁtug(x,t))(alui(y,t) + agus(y, t))dydz.
The expression chaolsal +_X2cao2m2 gives
a1
X1 COS aq /Rz(atui)(m Inuj — x1 cos ayo®)dx
ag
- - 6 15 1 £ __ e d
Y2 COS (s /n@( tuz)(,uz N Uy — X2 COS AoV ) T

piay  d poay  d

ui Inujde + — | ujlnuidx
X2 COS g dt Jp2

B X1 cosalﬁ R2
S A ) + ()
- n——————— a1u\r Ao2UsH\ T
47 R2 xR2 ’I—y’2+82 AT 272
(alui (yv t) + a2u§(y7 t))dydl‘
H1a1 d H2G2 d

ui Inujdr + — [ uilnuidr
X2 COS Qg dt o

1 d 1
I 1 - c t . t

87T dt /RQXRQ n |aj _ y|2 + 52 (alul(xy ) + CLQUQ(:L’, ))
(a1ui(y,t) + agus(y, t))dydz.

Thus

d a a
—(— / ui Inujdx + = / us In usdx
dt \ x1cosa; Jpe X2 COS (g 2

1 1
S In—— (qgus (x,t) + agus(z, t
o it + ae.0)
(a1ui(y, 1) + agus(y, t))dydz)
= —L/ us |V (g Inuf — xq cos ayv?)|? da
X1COS 1 JRp2
a2

- m /R2 ug |V(,u2 IDU; — X2 COsS 062U€>|2 dr.
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We conclude

d Hiay Haa2
— | ———— [ uilnhujde + ——— | u5Inusdr
dt \ x1cosay Jpe X2 COS (g J2

aq a9
—— [ ujvidr — — | usvide

2 R2 2 R2

aq 2
=——— | ui|V(uInuj — x5 cosaqv)|” dx
X1COS 1 JRp2
az

Rv—— /]1@2 u§ |V (pia In 1§ — X cos apv®)|? du,

which is equivalent to .

In the remaining of this chapter, we denote by ¢, a cut-off function in the
space C5°(R?) such that 0 < ¢ < 1 and

) {1 if |z <1,

21T =0 if |u| > 2.

We define furthermore the sequence

pr(x) == ¢i(z/R), (3.72)

which satisfies pr(z) — 1 as R — oo. We also notice that for the con-
stant C* 1= max{[[Ve1 | gz . [A¢1 [ e (g2}, We have [Vipr(z)| < G and

|Apr(z)| < T

Boundedness of [, u; In" usdw  Our goal in this step is to show that the
positive part of the corresponding entropy functionals, i.e.,

ST (t) = / u§ In" uidr, with i =1,2;
R2

are bounded on the time interval (0,7") uniformly in €. The standard proce-
dure for doing this is to use the monotonicity of the free energy functional
E.(t) combined with the two-dimensional version of the logarithmic Hardy-
Littlewood-Sobolev inequality for systems (See [78]) to get a bound for the
entropy functionals

Sus] (t) == / u; Inufde = / uf Int uSde —/ u; In~ uidx
R? R? R?
— 5[] () — 5[] (), i = 1,2

2

&€

Therefore, if the functionals S~ [uf] are bounded, then also the functionals

ST [uf] are bounded. The boundedness of the functionals S~ [uf] is usually
proved for Keller-Segel-type models using estimates like the one given in (|3.61))
which in turn depends on the control of the moment. One disadvantage of this
approach is that the attempt to implement the second moment leads us to deal
with integrals that cannot be estimated due to the strong lack of symmetry
caused by the tensor flux. Alternatively, we could try to control the logarithmic

moment following an approach like the one used in Proposition [14] item (iv).
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However, this technique does not work since it requires uniform estimates of
|65 | oo ((0,7):14/3(r2)) » @ = 1,2 which we do not have at this stage of our analysis.
In consequence, we follow in this subsection a totally different approach to
control the functional ST [u5], which is based in a technique introduced in
[46]. The idea consists in modifying the entropy functional arising in the free
energy functional F. by a new one that is lower bounded by a constant

that depends only on #; and 6,.

Let 6 > 0 be a any small constant, we introduce the modified free energy
ET as follows:

Hiaq HaG2
El(t) .= ——— T (u)dr + ———— :T(u)d 3.73
M) = [ rnde s L2 [ g (373)
) ujvedr — a2 usvede.
2 ]RQ RQ

where I' is defined as

Inu, u>mn;

P = { 477 w—mn) = L(u—mn)?2 u<n. (3.74)

0
:=min< 1, .
7 { 2 (pay + poas) (a1 + as6s) }

The T function is chosen such that it matches with Inw when v > n, but
In (n + (u—n)) is replaced by its degree two Taylor expansion centred at 7
when u < 7. The advantage of this modification is that the function I' is
bounded from below by Inn — %

It is well known that the minimum of two functions in a Sobolev space
remains in the same space (By [4, Corollary 5.8.2]). However, it is not obvious
that min {f, K} € W'"(R?) when f € W'P(R?) and K is constant since
K ¢ W'P(R?). For the sake of completeness, we provide in the next lemma a
statement that considers this special case which will turn out to be fundamental
for this research.

Lemma 16 Let f € W'?(R?), 1 < p < oo. Then, min{f, K} belongs to
WhP(R?), and
V (min{f, K}) = 1<y Vf ae.,

where K € R.

Proof. Observe that min{f, K} = f — (f — K),, and we claim that (f —
K). e Wh(R?) and V ((f — K)4) = 1iy>k3 V. f. Indeed, It is clear that (f —
K), € LP(R?) because min{f, K} < f € LP(R?). On the other hand, set
g% = or (f — K), where pr € C5°(R?) is a sequence of cut-off defined as in

(3.72). Thus, g € W'?(R?) (By M4, Lemma 5.1.2]). By [40, Theorem 4 p.
130], we also have that g% € W?(R?) and

\Y% (gf) = 1{gR20}ng a.e. on R%.
It follows easily from the dominated convergence theorem that

9i=pr(f-K), = (f - K), in L’(R?).
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Moreover, note that

V (¢5) = Ypn-r200V (9r (f = K))
= ly>myerV I+ (f = K)+Vep.

and o
1(f = K)+Vorl poe) < = 1(f = K) 4|l o2y — O

Then, we have that
V(9f) = L= VS,

The following theorem shows that, despite the possibility of a slow-growing
modified free energy, at most linear growth is possible.

Theorem 17 Let (uf,u5) be a solution of system (3.49). Then,

d
—EY (1) < 3.75
AOR) (3.75)

for allt > 0. Furthermore, the following quantity is bounded:
€ € -1 3
w;D(uf)de > | —lnn™ — = | 6, (3.76)
u§ <1 2

where 1 = 1, 2.

Proof. Taking the time derivative of ET(¢), we have that

d d 10 / ity /
dopgy_d (Cman [ pmay [
o v di <X1 cos R2UI (u) x+X2cosa2 R2u2 (u3)dx
1 1
87 I —s— ? )+ 2 't
8 /11{2XR2 n|m—y|2+52(alul($ )+ axu§(x,t))

(a1u(y, 1) + agus(y, t))dydz)

a
=8 [ @) ur ) — xacosan s
a
)@TQS% /2 (Oru3) (pol'(u3) — x2 cos azv®)d
R
Hiay ETV(, € e JIYe2; . )
Cicosa o, L) Qi) o = | T () (D1i3) dr
+chosa1 /RQU1 (u1) (Qpuy) $+X2COSOQ /R2u2 (u5) (Oyu3) dw

Using that

oS =V - (usV (i Inus — x; cos a;v)) — V - (yus sin o Vo),
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for ¢ = 1,2, and Integrating by parts, we get

d
—EY(t
dt 8( )
ai
=———— | V(uiI'(uf) — x1cosav?) - (uiV (g Inuf — x1 cos ayv))d
X108 1 Jgo (pal'(ug) — x1 cos a1v%) - (uiV (p1 Inuf — x1 cos aqv®))de
a
—— [ V(I (uf) — X1 cos arv9) - (145 sina; Vof)de
X1 CO8aq Jp2
H1a1
X1 Cos ay Jpe
H1ay

X1 COS 1 Jr2

V (uiT(u])) - (uiV (1 Inuf — xq cos aqv®))de

V (WS (1)) - (1S sin ag V*2of)da

a2
——— [ V(usl ) - (us V(g Inus, — Nd
% cosag/ (ol (u3) — x2 cos agv®) - (u5V (g Inug — x2 cos agv®))dx
V (ol (1) — X2 cos av®) - (xous sin ap Vo7 )da
2COSO[2 R2
fata / V (usT(u5)) - (ugV (g Inu§ — xo cos azv®)) da
X2 COS (X2 Jp2
_ He2G2

V (U5l (u3)) - (xous sin e V*o®) da
X2 COS (2 Jp2

= E i
i=1

To estimate the second term 75 and the fourth term 7}, we define the following
functions:

£(u) = /0 Csl(s)ds,  c(u) = /0 " 2T (s)ds,

Then, we have that

p1ay sin g Le : EXT 0 . ULt
Ty = ——— VE(uS) - Vootda — ayx; sina uiVo© - Voolde
2 cos oy - 5( 1) 1X1 1/]R2 1 ~- ,
(1@ Sin o . L e
= ul)V - V—uide =0,
COS (/1 R2€< 1)T
and
H1a1 sin aq , i
Ty= ——-— uiV (uiI(u3)) - V>o'de
e A G )
ap sin o
e ( VEWS) - Vividr + | Ve(us) - VJ'?}Edl‘>
coS (rp R2 R2
[1aq sin aq

=0 Lot € ol, e _
B Cos (g ( R? f(ul)\_\V’__/dw—k/l; S(u))V Z v dx) 0.

Similarly, we have that Ty = Tg = 0. On the other hand, simple computations
show that
Mu)=2n"t—n"2u for u<n.
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Now we estimate the terms 717 + T3 as follows:

Ty +1T;
S - V(p1 Inug — x1 cos ayv®) - (uiV(pr Inuj — x1 cos ayv®))de
X1 COS (1 us >n

— L/ (I (ug)Vug — x1 cos a1 Vo) - (u1 Vui — x1 cos aqui Vo©)dx

X1 COS (Y1

e / V (uil(u])) - (11 Vui — x1 cos ayui Vo©)dx

 x1cosa;
_ _—/ ui |V (g1 Inui — xq cos alve)|2d:c
X1 COS (1 >
2
_ e / (4™t = 30~2u%) |V 2 d
X1€08 a1 Jye <
+M1a1/ ((477_1 —3n Ul)u1vul Vu'dz
uj<n

— aiY1Cos / uj |Vv€|2 dr + praq / Vui - Voda.
uj<n

Using the Cauchy—Schwarz inequality, we have

T +Ty < _L/ ui |V (pr Inuf — xq cos a105)|2 dx
Xl COS O[l 5>,,7
2
_ M / (47" — 3725) |Vl P dr
X1 COS (' <n

+ ,ulal/ (4n~t — 3~ 2u)us | Vs | |[Vo©| do
u§<n

2
— ayY1 COS / ui [Vo°|" dx + pyaq / Vui - Vo'dz.
ui<n uf<n

Notice that

2v/3

sup /(407! = 3n~2u)u < 3 < 2,

which implies,

a1

T +T; < — / uS |V (g Inus — x1 cos aq0®)|* da
u§>n

X1 COS (1

2
__po / (" — 3y25) |V P de
n

X1 COS (1
2v/3u1a
§ 2Ty ) 19 9 e
uj<n
— ayX1Cos / ug |Vv8|2 dzr + paq / Vui - Vo'dz.
u§<n ui<n

Completing a square using the 2nd, 3rd, 4th terms in the last line, we obtain
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that
T + Ty < _L/ uS |V (g Inus — x1 cos agvf)|” de
X1 COS (1 us>n
—2u%a1 / (4n~' = 372 | VS| dx
3X1€os o Jys <y ! !
2
V'3
— L S 4—1_3—25va_ evs d
aleCOSOQ/u§<77 <3X1008a1 \/< n n2ug) [Vui| — /ui [V |> z

+ piaq / Vui - Vode.
ui<n
Next,we have that

ulal/ Vui - Voidr = pay / V(min {u3,n}) - Voidx

us<n R?

= ,ulal/ min {uf, n} (—Av®)dz

R2

< ,ulam/ (—AKE * (a1u] + agus)) dx
R2

)
< pan |AKE |1 (@101 + agbs) < )

Here we have applied that min {u$,n} € W'?(R?*) and V (min{u,n}) =
LiyemyVu ace. since u§ € WP(R?), for 1 < p < oo (By Lemma [16]). More-
over, to justify the integration by parts, we can use a sequence of functions
¥, € C°(R?) such that 1, — min{us,n} in WH¥/3(R?).We also notice that
Voe € WHP(R?)? for p € (2,00). Therefore

/ Vi, - Vofde = — | Avida. (3.77)
RQ RQ

Now, we can pass to the limit in (3.77) when n — oo, since

/ (Vip, — V (min{uj,n})) - Voodz
R2
<V =V (minfui, n})l| s gz V[l s g2y = 0,

and

/ (¢, — min{ui, n}) Avdx
R2
< [¢n — min{ul, 3 Las ey A0 s g2y = 0.
Thus,
/ V (min{ui, n}) - Vodr = —/ min{uj, n}Avdz.
R? R?
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In summary

)
T4 Ty<s——2
2 xpcosaq

/ (" = 3y7%5) |V do
uj<n

/ uS |V (py Inus — xq cos aq )| da
ugy2n

2piay
3x1 Cos aq

3x1 cos aq

2
3
— ajx1 COS al/ (L\/(éln_l —3n72u3) |Vui| — J/us |VUE|> dx
u§<n

<

N |

Similarly, we obtain that Ty + 77 < %.Therefore, the estimate 1} follows.
Estimate (3.76]) follows from the fact that the function I' is bounded from
below by —Inn~' — 2 < 0. Indeed,

/ u; T (uf)dx > <— Innp~* — §) / u;dr > (— Innp~t — §) 0;.
u§ <1 2 u§ <1 2

|
We now recall the logarithmic Hardy-Littlewood-Sobolev inequality for sys-
tems. We define the space

Tu(R?) = {5: (Pi)ier + pi > 0, /2 pi|In pi| d < oo,
R
/ pi = Mi,/ piIn(1 + |z)*)de < 00, Vi € I} :
R? R2

where M = (M;);cs is given. Next we define the functional F : I'p;(R?) — R
by

Z%//ﬁmmmw@@mm
R2 JRR2

ijel

1
Flp| = pi In p;d —
i€l
and the polynomial

Ay(M)=8r) M= > ayM;M;,¥J C 1,7 #0.
ieJ ijed
Then we have the following result.
Theorem 18 (Logarithmic Hardy-Littlewood-Sobolev inequality for systems)

Let A = (a;j) a symmetric matriz such that a;; > 0 for all i,j € I and
M € R%. Then Ar(M) =0 and

Aj(M) >0, forall JCI,J#0,
If Aj(M) =0 for some J, then a;; + Ap (M) >0, Vi€ J,

are necessary and sufficient conditions for the boundedness from below of F' on
I (R?).
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Proof. See 78, Theorem 4]. m
In order to apply this last theorem in the region of the plane 6,6, defined
by (3.7)), we introduce the next technical lemma

Lemma 19 Let us assume that (01, 60) satisfies

87 87 fua

0 < —1L <2
ap1X1 COS (q agX2 COS (g

8 8
ST gy STB g (an6y + aghy)? > 0.

and 1
X1 COS (Y1 X2 COS (g

Then there are constants by € (x1,00) and by € (x2,00) depending on the
parameters 61,05, X1, X2, J41, [, a1, Az, COS a; and cos aq, such that

0, 8 0, < 8T po

IN

(3.78)

y V2 > )
a1by cos o asbs COS (g

and
8miaq 8T o

92 — (a191 + 02(92)2 =0. (379)

1
by cos o by COS (o

Proof. By hypothesis 6; € (0,%) and it is clear that 6#; €
(O, 61 + “2—92) :

2a1
Then, we have that 6; € <0, al;f%) N (O, 0, + ‘%’f) which implies the
existence of a constant s; > 0 satisfying
8T asf
0, < = <0, + 22 (3.80)

ai(x1 + $1) cos oy 2a,

? a2X2 COS a2

Similarly, 6, € <0 M) N <0, 0y + %) implies the existence of a con-
stant sy > 0 satisfying

8 0
T o < a1ty

+ —. 3.81
as(xa + S2) cos ag 2 20, ( )

0y <

Let us define the function f : RT x RT — R by

8Ty ay 8T oy

62 — (a191 + 0@92)2 .

0 +

T COS vy Y COS Qg

flz,y) =
Taking x = x1 + s1 and y = x2 + S2, we obtain

fxa +s1,x2+ s2)

8mpiay
(Xl =+ 81) COs Oy (Xg + 82) COS (v

=a? < 87y — 01> 01 + a; ( Stz — 02> 0,
"\ai(xa + s1) cosay 2\ az(xa + 52) cos a

— 2&1(1201Q2.

87T/1/2a2 92 — (a1¢91 -+ a202)2
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Then, an application of the right side of (3.80)) and (3.81]), respectively give us

f(x1+ s1,x2 + s2) (3.82)
arazthby  ajazt 0,
2 2
Let us now define the function ¢ : R™ — R by

— 2(11(129192 = —a1a29192 < 0.

g(7) == f(x1+ 517, X2 + 527).

Note that

871'#1@1 87#2&2

g(O) = 01 +
X1 COS (g X2 COS (2
and from (3.82)) we get g(1) < 0. Thus for some 7* € (0, 1) it holds g(7*) = 0.

Let us call by := x1 + 517" and by := x2 + so7*. From the left side of (3.80))
8 8 8
b < i _ Tih _8mm
aj(x1+s1)cosay  ai(xy + s17*)cosay  aiby cosay

Similarly from ([3.81))

0y — (a191 + a2(92)2 > 0,

0y < Stz

a2b2 COS (Vo ’

The inequality (3.79) follows from g(7*) = 0. m

Theorem 20 Consider a non-negative solution of such that u$ In(1 +
|z?),us Inus € L2 (RT, LY(R?)) for i =1,2. If (64, 65) satisfies

loc

87 87 fa

01 < - 02 < D)
a1 X1 COS (q a9 X2 COS (g (383)

8 8
g, TR G, (@) + ab)? > 0,

and 1
X1 COS (Y1 X2 COS (g

then for any real 6 > 0, there exists a constant Cs+ := C(0) such that
/ us (w, t) Int i (z, t)de < Cg+ + 6T, for any t € [0,T], (3.84)
R2

where i =1, 2.
Proof. From ({3.75) we have that
EX(t) < EY(0) + 6t, for any t > 0.

Hence, we estimate the following

[ O )+ 2 [ 0T ()
R2 R

X1 COS (1 X2 COS (2
1
< EY(0) + 6t — yym ajui(z, t)ayui(y, t) In |z — y|dedy
R2xR2
1
O~ alui(m,t)agug(y,t) ln|‘r - y|d$dy
4 R2 xR2
1
- a2u§($,t)a1u§(y,t) ln|x - y|d£€dy
41 R2 xR2
1

T CLQU%(LE, t)a2u§<y7 t) In "7: - y’dl‘dy
47 R2xR2
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Applying the definition of I" (3.74]) and (3.76) we get

i / ui(z,t) In* ui(a:,t)derﬂ/ u3(,t) In" ui(z, t)dx
R? R

X1 COS (p X2 COS (xg

< BV(0) + 6t + 100 (ln N+ §) y Laols (hl nt §)
X1 COS (q 2 X2 COS Qo 2

_ ﬁ [ i o (y, 1) In o — yldudy

— i . ajui(z, t)agus(y, t) In |z — yldzdy

_ i e azus(z, t)ajui(y, t) In |z — y|dzdy

— ﬁ . asus(x, t)agus(y, t) In |z — y|dzdy.

In the next step, positive parameters b; and by are introduced in the following
way

e e+ 22 [ e e e
R2 R?

X1 COS Qp X2 COS (xg
a6 3 asl 3
< EF(O)—{—(St—{——M1 Lt (lnn_l—{——) +—N2 272 (lnn_l—{——)
X1 COS Q1 2 X2 COS (va 2
b C(2)52 o / pragus (z,t) pragus (y, t) In [z — ydudy
uidm  Jreyre bycosa;  bycosog
B b1bs COS vy COS (vo / praqus(x, t) poasus(y, t) In & — yldwdy
i podm R2xg2 D1COSQq by cos vy
B b1bsy CcOS vy COS (vg / poaous(x, t) pragu(y,t) In 2 — yldudy
/LULQ47T R2 xR2 b2 COS (vg b1 COS (vq
b2 2 € t € t
_ 2 C;)S Q2 / /1’2a2u2(x7 )u2a2u2(y7 ) In |I . y|d$dy (385)
usAm  Jreyme bacosas by cosag
Now, we can apply to the functions % and % in right side of

(13.85]) getting that

Hi1a1 € + ,,€ H2a2 £ + €
_— O In" ui(z, t)de + ——— us(x,t) In™ us(x, t)dx
[ e " i e+ 2 [ e ()

a6 3 a6 3
< EF(O)+5t+—M1 L Innp~ '+ = +—'u2 272 Inn '+ =) —Cyrs
X1 COS O 2 X2 COS Qo 2

+/ prarui(w,t) I (ulalui(:c,t)) dx
R2

by cos o by cos o

+/ poasus (v, t) n (M2G2U§(937t)> d.
RQ

by COS va by COS (va

where the conditions for the existence of the constant Cyps given by Loga-
rithmic HLS inequality for systems are

0 < —b87rul , U2 < —b87r,u2 ;
a1by cos asby cOs v
8mpiay s 87ru;a2 27 ? (3.86)

and 92 - (a101 + (1202)2 = 0.

1
by cos oy by cos avy
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In conclusion we have proved that the conditions (3.86)) implies

1 1
e / uS(z,t) Int o (x, t)dx
by ) S

COS (V1 X1
125105 1 1 / 4
—_— S(x,t)1 S(x,t)d
+ COS vy (X? bg) R2 UQ(xv ) n UZ(J:; ) x
0 3
< BN (0) + 0T — Cryps + 270 (1 (19 ) gy~ + 20y
by cos o by cos o 2
0 3
g Fe®rz (292 ) i Py ) (3.87)
by cOS vy by cOS vy 2

Note that each of the coefficients of the positive part of the entropy functionals
in are positive providing b; € (x1,00) and by € (x2,00). Then, we have
that [ u$In* uSdx are bounded below for i = 1,2. The Lemma gives us that
the estimate holds for the region . [ ]

Boundedness of LP norm for 1 < p < oo The purpose of this step is
to obtain estimates of the LP-norms for 1 < p < oo of the variables uf and u5
independent of the parameter ¢.

Proposition 21 Assume that uig, uy € L' (R, In(1 + |z]*)dz), uioInuig, us
Inuyy € LY(R?,dx) and (61, 02) satisfies

8 8
6)1 < i, 02 < i,
8 a1 X1 C%S aq a2X2 COS (g
TU1Q T UoQ
and $91 + ﬁeg - (a191 + a202)2 > 0.
X1 COS (Y1 X2 COS (g

If uyo,usg are bounded in LP(R?) for some p € (1,00),.then any solution
(u§,u§) of is bounded in L2 (RY, LP(R?)).

Proof. In order to control the L? norm, p € (1,00) of u$,i = 1,2, we decom-
pose it as follows:

uj = (uf — K) +min{u, K}, K> 1.

)

Note that the function min{u$, K} € LP(R?) is bounded in L? by K?~',.
Indeed,

/ (min{u;, K} dx < Kp_l/ uidr = KP~'0;.
R2 R2

Then, it is enough to estimate the L” norm of (ui — K'), . For this purpose,
we define first

Mi(K) = /R (u — K), da.

Using the fact that u$ In™ u$ is bounded in L*(R} ., L'(R?)), we can estimate
M;(K) by

1
M;(K) = / (ui — K)dzx < / u;dr < —/ u; Inuidx
us>K u$>K In K u$>K

1
< —/ uf In" uidz.
R2
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and choose it arbitrarily small on any given time interval (0,7).
Multiplying the first equation of system 1’ by (uf — K )i_l and inte-
grating over R?, we get
1d
pdt R2

= I / (u§ — K)5 Ausdr — / (us — K)77'V - (uS A, Vo©)da
R2 R2

(uf — K)2 dx

= ,Ul/ (uj — K)ﬁ_lAuidx — Y1 COS al/ (uj — K)ﬂ_lv - (u§Vo©)dr
R2

RZ

— x18in g / (uS — K)7'V - (s VR )de =: Ty + Ty + T (3.88)
R2

Now we estimate each term in the decomposition (3.88)). First, applying the
integration by parts and gradient’s properties, we have that

T~ [ V(w5 - KX ) - Vaids
R2

= [ V(- K -V - K)da

RQ

_ _M/
P2 R2

Second, the identity V - V4to® = 0, gradient’s properties and integration by
parts yield the vanishing of the third term 73, i.e.,

2
dz. (3.89)

v (w5 - K)2?)

Ty = —x;1sinag / (uf — KPP [V - VR +uV - V'] da
R2

_ w 5 V(Ui _ K)ﬁ - Vioede
=X S;n - / (5 — K)PV - V4 orde = 0. (3.90)
R2

Now we estimate the second term 715 as follows:

1

Nosar T /RM — K [Vui - Vo© + ui A’ de
1
= . V(ui — K)! - Vo'dr — /}RQ(u‘i — KPS Avtde
1 )
= [ = Koo+ [ - K (=)
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Next, we use —Av® = —AKE * (a;u§ + azu§) to obtain
1 ay
- - T, =1 C— KV (-AKExuS)d
Y108 01y 2 D R2(U1 )4 ( uy) dz
& (uf — K% (—AK® % u3) do
D Jr2

+a; / (us — K7 s (—AKE % uS)dx
R2

+ ag/ (us — KPS (= AKE * ug)da
R2

— (p—Day _pl)al /RQ(ui — K" (=AK® xuj) dx

-1
+ u/ (uf — K% (—AK® % u3) dx
p IR2

+a K [ (- K7 (—AKE *ul) do
R2
+ay K 5 (u§ — K)P~H (=AKE * uj) da.
Using the fact that (-AK® * K) = K || -AK®||;, = K, we have
L 7 - Gobu /R (uf — KV (~AK « (uf — K)) dr

X1 COS (vp p
—1
(p )(a“]. + a‘?)K (ui _ K)idl’
p R2

+a K [ (0 — K7 (-AKE * (u§ — K)) d
R2

+

+ (a1 + CLQ)K2 - (Ui - K)i71d13

—1
+ u/ (5 — KV (—AKE * (4 — K)) da
p R2
+aoK [ (v — K)7 (—AKE * (u§ — K)) da.
R2
Then,
1 (p—1ay /
— <1 K (-AK®* (v —K),)d
1COS g 2 S p RQ(ul )+ ( * (U )+) x
-1
p R2
taK [ (W — K (-AK * (uf — K),) do
R2
+ (a1 + ag) K / (uf — KPPt do
RQ
-1
+ W/ (uf — K)% (-AK® x (u5 — K) ) d
R2

+aK | (uf— K7 (—AK® * (u§ — K), ) do.

]RQ

67
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Now we recall the following Young’s convolution inequality: Let r,7" > 1 and
I/r+1/r'=1,if f € L*(R?),g € L"(R?) and h € L" (R?) then

17 CF* )l ey < AN oo oy N9 oy 1] o 2y - (3.91)

Lettingr =p+1, f = —AK®, g = (uf — K), and h = (uf — K)%, we get

J.

Combining the inequality (3.91) but with ¢ = (u§ — K)+ and the Young’s
inequality for products we have that

—~

ui — K (—AK® * (u] — K), ) dz < /R2 (u§ —K)Tldm.

/Rzmi LKV (~OK x (i — K),) du

p € p+1 1 € p+1
< — ut — K doe + —— u; — K dx.
“p+1 Rz( ! S p+1 Rz( 2 i

So, we obtain that

1 T < (ar(p+1)+asp)(p—1) / (us — K)P-H dr

X1 COS Qv 2= p(p+1) ! +
2p — 1 2 -1
p R2
+ (a1 + CLQ)KQ/ (us — K)? dx (3.92)
R2

(p - 1)a2 / 41 a2
+ - s, — K)Y! " de + =K us — K\ dz.
p(p+1) Jge (4 S p R2 (4 S+

Substituting (3.89)), (3.90) and (3.92) into (3.88]), we get

1d 4(p—1
(ui — K)ldoe < — p )Ml/Rz

v (5~ K)7?) (2 dr (3.93)

pdt Jp p?
4 (a1(p+1) +asp) (p— xicosay / (uf — K)Tldx
p(p+1) R?
N (a1(2p — 1) +2a2(p— 1)) xa cosalK/ (uE — ) d
p w2

+ (a1 + ag)x1 cos a K* . (u§ — K)2 dx

(p — 1)agx; cos oy / 1 (21 COS (rp /
E— K)d — K E— K)dx.
+ p(p+ 1) RZ(UQ i dx + D R2(U2 )idx
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Similarly,
1 d 4(p—1
Lo [ -k < -1 [0 (- k) e o
Do) = o [ (e g,
p(p+1) R2
2p—1 2 -1
+ (GZ( p )+ al(p ))X?COSOQK (ug—K)idI
p R2
+ (ag + a1)x2 cos a2K2/ (u5 — K)2 dx
R2
(p — 1)aixz cos ay / i @12 COS (tg /
+ uj — K2 de + ——— 2K uj — K)E dx.
p(p+1) RQ( 1 )+ p RQ( 1 )+
The expression p({3.93)+p(3.94) gives
d

dx

€ € 4(p—1 e /2 2
i L (10 s 1) e < =t ]9 (102

n (ar(p+1) 4+ asp) (p— 1)x1cosas + (p — 1)asxa cos az / (s
RZ

ut — K) de
(p+1) 1 )+
4(p—1
Al >u2/
p R2

\% ((u‘; — K)ﬁ/z) 2dx

n (as(p+ 1)+ a1p) (p — 1)x2cos s + (p — 1)agxi cos oy / (
RZ

us — K)o dx

(p+1)
+ ((a1(2p — 1) + 2a2(p — 1)) xa cosay + a;xacosas) K [ (uf — K)!dx
R2
+ ((a2(2p — 1) + 2a1(p — 1)) xacos g + agxy cosan) K | (u5 — K)hdx
R2

+ (a1 + ag)px; cos a K2 . (us — K7 'da

+ (ag + a1)pxa cos an K . (us — K)2 ' da.

The term involving [, (u§ — K )?~'dz can be estimated as follows:

JRCER

< / ldx —|—/ (uf — K)dx
K<uf<K+1 us>K+1

1
§ — uidr + / (u; — K)!dx
ui>K+1

K<u;<K+1

§ /u— K dz.
R2

Now we recall the following Gagliardo-Nirenberg-Sobolev inequality: Let 1 <
p < n. Then

[wllpo < Cons [Vl , Yo € WHP(R™). (3.95)
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Where Cons = C(p,n) and p* is given by

1
e

i
*
SR

Letting p = 1, n = 2, we get that

2
/ w?dr < Cgyng (/ |Vwl d:v) ,
R2 R2
p+l
2
dx)

:
[ = mtae < G ([ |9 05— 10
R2 R2 2
= )1 (1 = ) )
v ((uf —5))

or equivalently, with (uf — K)7"" = w?,

p+1
2
+

(]

< KpMi<K)/

RQ

2
dx.

2
where K, := C% g (1 + %) . So, we have that

d € 13
dt . ((Ul _K)ﬁ‘F(UQ _K)ﬁ) dr

4p—1
< A )ul/ v ((%ﬁ —K)’f)
p R2

(a1(p+1)+azp)(p—1)x1 cos ai+(p—1)aix2 cos a
+ 1p 2P)(p )Ell)—i_l) 1P 1X2 zKle(K) /R2

4p—1
- v )M2/ \% ((Ug - K)i”)

p R2

(a2(p+1)+a1p)(p—1)x2 cos az+(p—1)azx1 cos o
+ : (12J+1) : = 1K10M2(K) /R2

dx

2
dx

+ (a1(2p — 1) + 2as(p — 1)) xa cosag + arxacos o) K | (u] — K)hdx
R2

+ (a1 + az)px; cos a K* 2(u§ — K)hdz
R

+ ((a2(2p — 1) + 2a1(p — 1)) xacos ag + asx1cosay) K [ (u5 — K)!dx
R2

+ (a1 + az)pxz cos ap K* 2(ug — K)hdx
R

+ (a1 + az2)(x1 cos ay by + X2 cos aaby)pK.
By choosing K sufficiently large such that
_ dp -1+ Dpi
pK, ((ai(p+ 1)+ a;p) (p — 1)xicosa; + (p — 1)a;x; cosa;)’
for i,j = 1,2, j # i.Then, for a fixed interval [0, T] with T" arbitrarily large
G [ (=K - ) o

< Cua [ (0~ KV + (05— K)Y) do+ Cus
RQ

M;(K)
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with
Cro := max((a1(2p — 1) + 2a2(p — 1)) x1 cosan K
+aix2 cos as K + (a; + az)py; cos ay K1,
+ (a2(2p — 1) 4+ 2a1(p — 1)) x2 cos ap K
+agx1 cosay + (ay + az)pxa cos ay K2
Ciz:= (a1 + a2)(x1 cos 16 + X2 cos asby)pK.

By Gronwall’s inequality (differential form) [39, p. 624], we have that
[ (= K0+ 5= K0 @)
< 6C12T (/ ((um — K):i + (UQ(] — K)i) dr + OlgT) .
R2

So, we have that [, (uf — K)" dx,i = 1,2 is finite on [0, T] . Therefore, for any
te[0,7T]

Hu;:(t)HLOO([O,T};LP(IR{Q))
< H(uf o K)JrHLOO([O,T];LP(R2)) + [[min{u;, K}HL""([QT];LP(RZ))

1

(/R2 (w10 = K+ (ugo — K ) da + ClgT) CLE0r, (3.96)

Ci2p

<evr
for any p € (1,00). m

Extra Uniform estimates

Lemma 22 Assume that 0 < ujg,ugy € L'(R? In(1 + |z*)dz) N L®(R?),
u10 InU1g, Ugg Inugy € LY (R? dx) and (01, 0,) satisfies

8 8T
3 aixi C%S (03] a2X 2 COS (g
a a
and ﬂﬁl + Mez - (a101 + (1292)2 > 0.
X1 COS (g X2 COS (g

Consider a non-negative solution of such that ui,us are bounded in LS.
(RT, LP(R?)),1 < p < oo. Then, with bounds independent on €, we have for all
T >0:

(i) The function (t,z) — ‘V (uf)p/Z‘ (z,t) is bounded in L*([0,T]; L*(R?)),
for any 1 < p < oo.

(ii) The function (t,z) — |[Vv¥| (z,t) is bounded in L>([0,T]; L*(R?)), for
any 2 < p < oo.

(iii) The function (t,z) — |us A1 V| (z,t),i = 1,2, is bounded in L*([0,T];
L*(R?)).

(iv) The function (t,z) —s us(x,t) In(1+|z|*),i = 1,2, is bounded in L>(|0,
T], L'(R?)).

(v) The function (t,x) — us(z,t)Inu(z,t),i = 1,2, is bounded in L>(][0,
T], L'(R?)).
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(vi) The function (t,x) — Owui(x,t),i = 1,2, is bounded in L*([0,T], H'(R?
)*)-
(vii) The function (t,z) — JuZ |Vo°| (x,t) is bounded in L*([0,T]; L*(R?)).
Proof. (i) Assume p > 1. Multiplying the first equation of system (3.49) by
(u$)"~" and integrating over R?, we get
1d
pdt R2

=t / (u§)P™! Aufda — x1 cos / (WY V- (1S V¥ da
R2 R2

uif? dz = /R (u)"" Ausda — xa /R (W)™ V - (ui A Vo) da

— x1sinag / (WP V - (V) dx
R2

= T1 + T2 + T3. (397)
Now we estimate T} applying the integration by parts and gradient’s properties
as follows )

T, = _40;_;1),“ / V (u$)P?| dx. (3.98)
R2

By the fact that V - V1v® = 0, we have that T3 = 0. Indeed,

T3 = —x1sin oq/ (uS)P [Vui - Vo' +uiV - V5©] de (3.99)
R2
= X=nol ;inal V (u§)? - V+o'da
R2

= xishe / (U5’ V - VEordr = 0.
R2

p

Next we estimate 15 as follows:
Ty = —x1cos a1/ (WP~ [Vl - Vof + uf Ao d
RZ

= =xesa [V (uf)? - Vo'dr 4 x; cos al/ (u3)? (=% dx

P R2 R2

= =AL2e= /R2 (u)? (—Av®)dx + x1 cos ay /R2 (u})? (— L) dx
- (P—l)xpl cos ay / (ui)p (—Av¥)da.
R2
Next, we use —Av® = —AK* x (ajuj + asuj) to obtain

p

Ty = {-Dexicoeon / (u5)” (—AK® * u3) da
R2

p

+ (p=Dazq coson / (u])? (—AK® x u3) du.
R2

Using the inequality (3.91) with r =p+1, f = —AK®, g = u] and h = (uj)?,
we get

/RQ (ug)p(—AKe*ui)dcpg/ (Y da

R2
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Combining the inequality (3.91) but with ¢ = u§ and the Young’s inequality
for products yields that

1
e\p _AKE Ndr < p € p+1d € P—Hd )
/[[@2 (ug)? ( * Us) x_p—l—l R2(u1) 5’5+p+1 o (u5) T

So, we obtain that

T, < e=hx COSpO(é;Efll)(PHH“?p) /]R2 (uf)Pdx (3.100)

—1)a o 1
T oDy cosen é ()

Substituting (3.98)), (3.99) and (3.100) into p(3.97)), we get

d . _ evp/2|?
& [ e <=2 |19 @iy @
R2 R2
—1 cos ai(a 1)+a
+ (r—x1 (p1+(1;(p+ )+a2p) /RQ (ui)p—ﬂdl’

+ (p—l)zz;ﬁ)cosoq /R2 (ug)pﬂ d.

From (3.96)), we have that

d P 4(p—1) €\p/2
G Ll o 22 [ v )

Integrating (3.101]) from 0 to T" we have that for any 7" > 0

T 2
dx < + </ |U10‘pd$ + 014T) .
/0 /RQ 4(p—1)m R?

Similarly,
T 2
/ /R V(ug)pﬂ‘ dr < 7ot5m </]R |u20|pdx+015T) :
0 2 2

The case p = 1 follows from (3.62)), (3.63), and item (v). Therefore, we get

2
dz < Cy, (3.101)

V (u5)"?

< (g, foralll1 <p<oo,i=1,2. (3.102)

I
‘ L2([0,T];L2(R2))

(ii) For 2 < p < oo, we have by (3.20) that

Crr
Vel o) < 5 <a1 il 2o, o T 2 ||u§HL;;;,(R2)) )

and for p = 0o, we can use the inequality (3.21)) with ¢ = 3 to obtain
Cis 1/4 /
IVl oo ey < 5~ (@161 + azba) / <a1 Uil s (ge) + a2 ||U§||L3(R2)> :
From (3.96)), we have that

V%[l Lo g2y < Cho, for any 2 < p < oc.
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(iii) The bound of |usA;Vve| € L([0,T]; L*(R?)) follows by using that u is
bounded in L>([0,T]; L*(R?)). Indeed, Using the Holder inequality, we have
that

T T
€ 112 c1n2 en2
/0 w1 A1 Vo[ 1p gey dt S/O 1ALV V||| 700 2y (05 22y A

2 2
< ”|VU€|HL°°([O,T};L°°(R2)) ||u§||L°°([O,T];L2(R2)) T.
(iv) Recall that
4

— <4
(1+ [=])
Multiplying the first equation of system (3.49) by In(1 + |z|*) and integrating
over R?, we get

d 2
E/Rz ui In(1 + |z|”)dz

= ,ul/ uiAIn(1 + |z*)dx + Xl/ Vin(l + |z*) - (u5A;Vof)de
R? R?

2|z|
1+ |z

Vin(l + |o?)| = <1, and [Aln(l+Jz]*)] =

2_

< 44,6, + Xl/ uy Vol de < 4pnbr + xa [[[VO ]| oo g2y b1
RQ

By (ii), we have that

d

—/ uS In(1 + |z*)dz < Cyy.
dt e

Integrating on the interval (0,¢), we obtain that

/ uS In(1 + |z*)de < / w0 In(1 + |z|*)dx + Coo T, for any t € [0,7].
R2

RQ

Similarly,
/ ug In(1 + |z*)dz < / o In(1 + |z|*)dx + Coy T, for any t € [0,7].
R2 R?
(v) The bound of u$ [Inus| € L=([0,T]; L*(R?)),7 = 1,2, follows by using that

ué In™ uédz and uSIn(1 + |z|*) are bounded in L°([0, 7] ; L'(R?)).Indeed, by
(13.61]) we get

/ u; [Inuf| de

R2

< / ui Int uSde +m + 4/ uSIn(1 + |z|*)dx < Chy,i = 1,2.
R2 R?

(vi)For any ¢ € H'(R?) with [|¢)|| g2y < 1, we have

<atu§, rQb>(1{1(1&2)*,[{1“&2)) (3103)
= pu1 (Aug, ¢>(H1(R2)*,H1(R2))
— X1 <V : (u§A1VU6), 77Z}>(H1(]R2)*,H1(]R2)) .
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We observe

(Au‘i, w)(Hl(RQ)*,Hl(H@))
= = (Vul, V) 1 2 111 2))
=— [ Vui- - Vydr

R2
< VUil g2 gey VO 2@ey < VULl L2y -

and
(V- (uf A1 Vo©), ¢>(H1(R2)*,H1(R2))
= — (A Vo, V¢>(H1(R2)*7H1(]R2)) = - /IR? ui A\ Vo© - Vipdr
< et A VO] ey IVl 2oy < Ui ATVl o g2y -
Thus,
T \ T 2
/ ’|AU§||H1(R2)* dt = / sup <AU§, 1/)>(H1(]R2)*,H1(]R2)) dt
0 0 \ Il ge,<1
g 2
< [Ny (3104)
and

T
|19 AT .

. 2
— / sup <V . (uiA1VUE>, ¢>(H1(1R2)*,H1(R2)) dt
0 11l g1 2y <1

T
< [ AT e (3.105)
0

Hence (3.103)), (3.104) and (3.105)) yield us to
T ) 3
([ 10l )
T , i T ,
< ( [ M e dt) a ( |19 A7) e dt)

1 1
T 3 T b
1112 e 1112
< ( / |HVu1wL2(R2)dt) - (/ r||u1A1wH|Lz(Rz)dt)
0 0

< H|VU§H|L2([0,T];L2(R2)) + X1 ”\U§A1VUE||\L2([0,T};L2(R2)) :

1
2

By items (i) and (iii), we get

10645 | L2 (0.7, 111 (R2y ) < Co3-
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(vii) The bound of \/uf |Vv¢| € L*([0,T]; L*(R?)) follows follow from item (ii)
and the conservation of mass property. Indeed, we have that

r

2
IR 2 ]

S |||VU€|HL°°([0,T};L00(R2)) ezT (3106)

Strong convergence of u; In order to establish the strong convergence
of u¢ in L%([0,T]; L?*(R?)), we will use the Aubin-Lions compactness method
(See e.g. [2, Theorem 5.1], [60, Theorem 12.1] and [79, Corollary 4]).

Lemma 23 (Aubin-Lions) Let X,Y and Z be three Banach spaces with
X C Y C Z. Suppose that X is compactly embedded in Y and that Y 1is
continuously embedded in Z. For 1 <p <q < oo, let

V={ue L’(0,T];X): 0ue LY [0,T]; Z)}.
(i) If p < oo then the embedding of V into LP([0,T];Y) is compact.

(ii)) If p = oo and q > 1 then the embedding of V into C([0,T];Y) is
compact.

Taking now into account the embedding
Hl (Q) Corﬂ;aCQ(gD Conti(_n)uous Hl (9)*’

where €2 is a bounded open set of class C'. By Lemma , we have that for
any () there exists a subsequence,still denoted by u;,7 = 1, 2, such that

ui — u; in L2([0,T]; L*(Q)).

By a diagonal argument, the following uniform strong convergence holds true
that for any R > 0

us — u; in L*([0,T]; L*(Br(0))). (3.107)

Now, to extend (3.107)) to the whole space, we observe that

4 2
JR I
) dedt < ————— /‘/ (In(1+ |« )2 dadt
/ LI>R V/In 1+32 R2 1) ) ( )
1/2
en3/2 2\ ¢
\/w/ (Hu ||L3 R2) (/RZ In(1 + |x| )uzdx> ) dt — 0,

°By Rellich-Kondrachov Theorem [I7, Theorem 9.16].
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as R — oo and the weak semi-continuity of L*([0,7]; L*(R?)) implies

g 2
/o ||ui||L2(|a:\>R) dt

T
o 2
< 11£ILI§lf/O 4[| 72 (a5 ) At — 0 as R — oo.

Therefore,

T 2
|t = sl
T 2 2 2
< 2/0 (HUZE'HL2(|I|>R) + il 2 oy my + U — uiHLQ(\x|§R)> dt — 0,
as R — 0o, — 0. So, we have that
ui — u; in L*([0,T]; L*(R?)). (3.108)

Proposition 24 Let (f,) be a sequence of functions in LP([0,T]; LP(R?)),1 <
p < o0 and let f € LP([0,T]; LP(R?)) be such that || fu — fll o(ozpLe@e)) — O-
Then, there is a subsequence (fnr) such that || fux — fHLp(Rg) — 0 for a.e. on
[0,T].

Proof. The conclusion is obvious when p = oo, indeed,

1fn = Fll oo g2y < 1fn = Fll Lo rszoe @2y = 0-

Thus we assume 1 < p < oo. By [I7, Theorem 4.9], we know that there exists
a subsequence (f,1) and a function h € LP([0,T]; LP(R?)) such that

foe(z,t) = f(z,t) a.e. on [0,T] x R?,
| fur(z,1)| < h(z,t) for all k,a.e. on [0,7] x R?,

Note that

T T
1PI o (o 170 m2)) :/ 1721170 2y it =/ /RQ hPdzdt < oc.
0 0

By Fubini’s theorem, we have that h(z,¢) € LP(R?) for a.e. on [0,T]. Then,
we can apply the Lebesgue’s dominated convergence theorem to conclude that

[ fur = fll oz — 0 for a.e. on [0,77.

[ |
By Proposition [24] there is subsequence, still denoted by u, such that

us (t) — w;(t) in L*(R?) for a.e. on [0,7T]. (3.109)
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Mass conservation Multiplying the first equation of system (3.49) by any
test function p(z) € C5°(R?) and integrating over [0,t) x R?

/ oui(x,t)dx — / wuo(z)dr
t
/ / Apdxdr + x1 / V- (ujAVo©)dzdr.
R? 0 Jr2
Letting ¢(x) = pgr(z) be defined as in (3.72)), we have

ujApgdrdr| < %QlT,

R2

C* C
<5 ||VU ||Loo [0,T];Lo° (R2)) 0T < %elT

V- (ujAVo®)dzdr

RQ

Due to (3.109)),passing to the limit € — 0, R — oo, we obtain the mass con-

servation property
/ uy (z, t)de = 0.
R2

/ ug(z, t)dr = 0s.
R2

Existence of the weak solution Now multiplying the first equation of
system ((3.49)) by any test function ¢ € C§°(R?) and integrating over [0, t) x R?,
we get the weak formulation for uj

Similarly,

/ oui(x, )dx—/ pup(z)dx (3.110)
// ulAgodwdT—l—Xl/ V- (ujA Vo©) dadr.
R2

Notice that (3.108) directly yields

t t
/ / uiApdrdr — / / ui Apdzdr, € — 0. (3.111)
0 Jr o Jr?

In order to deal with the nonlinear term arising in (3.110]), we first notice that
|Vo¢| is bounded in L*([0, 7] ; L*(R?)), thus there is subsequence, still denoted
by Vo?, and a function w € L*([0,T]; L*(R?))? such that

Vo — win L*([0,T]; L*(R?))%. (3.112)
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Moreover, applying the interpolation inequality and next the Holder’s inequal-
ity, we obtain

T
e 4/3
et =l e

T
€ 2/3 € 2/3
< [ = i s = P

T 1/3 T 2/3
s(/ M?ﬂm@maﬁ> (/ M?ﬂﬂbmaﬁ)
0 0
T 1/3
< (26,T)** ( / 1w — will 2 g2 dt)
0

Next, an application of the strong convergence result (3.108]) gives

Jui — UiHL4/3([o,T};L4/3(R2)) < \/M i — “iHi2([0,T];L2(R2)) — 0,
or equivalently
ué — u; in LY3((0,T); LY3(R?)),i = 1,2. (3.113)
In consequence

ui A; Vo' — w; Ajw in ([0, T); LM (R?))?,4,j = 1,2. (3.114)

Y

and
t t
/ V- (u;A; V) dedr — / / V- (uAjw)dzdr, e — 0,i,j =1,2.
0 JR2 0 JRr2

Due to (3.109)), (3.111)) and (3.114)), passing to the limit ¢ — 0 in (3.110]), we

have

/R2 ouq(x,t)dx — / oup(x)dx (3.115)

]R2
t t
Zul//ulAtpdxdT+X1// V- (uAyw) dxdr.
0 JR2? 0 JR2

/R? ous(x,t)dx —/ pugo(x)dx (3.116)

R?
¢ t
=M2/ / U1A<,0dIdT—I—X2/ / V- (ugAqw) dxdr.
0 JR2 0 JR2

Now, we claim that w = Vv a.e. on (0,7) x R% Indeed, we define

Similarly,

n° 1= au] + agus and n = ajuq + asus.
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Let ¢ € C5°((0,T) x R?),we have that

Vi - (n°A; (VK «n%)) dedr /t/ Vi - (n°A; (VK *n®)) dzdr
2 o Jr2

Ea LIRS R —

]R

o
Vi (x,t) — Vib(y, 1)) - A;(z — ] 6
:‘“/ /( szy|2<|x(y—y)|)2+e§f y)>”<f‘f’t>n (4, t)dydudr
AV \V4 ’ A, ) ]
=i / /l ‘”Tﬁ-mz&i@-y)ﬂ?l;) Dl (o )0 0. )y
<

2025// |37—y|
n(x,t)n"(y, t)dydxdr
o = Gela— g O 1)

_ 6025/ / (y; )dydl'dT
R2 xR2 |x— Yl

eCys
S IR P

6026 ! en2 8027
Ry /0 [n HL4/3(R2) dr < - — 0,e — 0.

IN

IN

and

t

[ 90 (nd; (VK ) dadr / [V f A (VK 5 00)) duds
0 R2

< V(A (z—y) In(x, t)n(y,t) — n(x, t)n(y, t)| dydxdr
27T R2 xR2 =l

C’28/' / 1: t y>t) (:Eat)n (y7t)‘dydl'd7'
R2 xR2 |z — y|
028

< == (/ (.CL',t) ‘n(y> ) _ (y’t)’dydm
2m Jo R2 xR2 [z =y
R2 JR2

lz —yl
_ ( n(,t) )] [ O gy

R2|y_$|
/|nxt xt]/

Dy d:c> dr
— yl
Czs

<2 (nl/ [yl ll gy + 1/ %10 gy ) = oy

Cag
<22 / (Il sy 1T ey ) = sy

The weak semi-continuity of L*/?(R?) implies

||n||L4/3(]R2) < lilgljglf ||n8||L4/3(R2) < Cso.
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Then

t

Vw (nA; (VK xn)) dedr — / Vi - (n°A; (VK * n®)) dedr
0 Jr2

031
Hn = 1| pass(gey AT

t1/4C'31 3/4
< 5 (/D |n — €||i/f;3R2) T) — 0,e = 0.

Therefore, we have that

/Ot /R2 Vi - (nA; (VK® % nf)) dedr (3.117)
— /t/R Vi - (nA; (VK % n)) dedr,e — 0.
o Jre
However, by
/Ot g Vi - (n°A; (VK® % n®)) dedr (3.118)

t
— / / Vi - (nAjw) dedr, e — 0.
0 JRr2

By (3.117)) and (3.118]), we get

t
/ Vi - (nA; (Vv — w)) dedr = 0, for any ¢ € C3°((0,T) x R?).
0 JRr2

Then nA; (Vv —w) = C ae. on (0,T) x R% Since n4; (Vv —w) € L'(R?)
and n > 0, we get that Vo —w = 0 a.e. on (0,7") x R, This gives the existence
of a global weak solution.

Boundedness of the second moment of the weak solution

Lemma 25 If wy,uyp € L' (R |z[>dz), then |z|°us,|z|*u; €
L2 (RY, LY(R?)) fori=1,2.

loc

Proof. Multiplying the first equation of system (3.49) by |z|* and integrating,

we get
/ |2 |* S (x, t)da

= 46, + 2X1/ x - (ufA;Vv©) dx

RQ

< 4101 + 21|V ey [ Jol
R

< Apby + X1 [ VO oo e (91 + /2 \x|2u§(x,t)d$) :
R
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Summarizing,

d
—/ 2w (, t)dx < 032/ |z|” u (z, t)dx + Css,
dt R2 R2
By Gronwall’s inequality (differential form) [39, p. 624], we have that
|2 |? uS (x, t)de < 2t ( |z |* uyoda + C’ggt) . (3.119)
R? R?
Similarly,
|z |” u§ (z, t)de < 2t ( |2 |* ugoda + 035t) : (3.120)
R2 R2

Consider a test function |z|* pr(z) € C°(R?), where pr(z) be defined as in
(3.72)), which grows to |z|> as R — oo, letting ¢ = |z|” ¢r(x) in (3.115) we
obtain

/ ’x|280RU1(x7t)dx_/ |z|* o rusoda
R2 R2

¢ t
— Nl/ / u A (|:I;|2g03) dxdr + xl/ / \% (|x|2goR) - (u1 A1 V) dxdr.
0 R2 0 R2

Notice that

|A(12* or)| < 4or +4 2| [Vor| + |2] |Apx]

C* C
<4+ 4(2R)E + (2R)2ﬁ =4+ 120",

and

IV (J2* pr)| < 2|2l R + 2] [Vior|

C
< 2|x| + || (2R)E =2(1+C")|z|.
Therefore, we obtain

t
//ulA(\x|2ng)dxdT
0 JRr2

< (44 12C%) 6,7,

and

t
// V(|x|2goR)-(u1A1Vv)dxdT
0 Jr2

t
<2(1+4+C) |||VU|HLOO(R2)/0 /R2 || uydxdr

¢
§2(1+C’*)// |z uy |A1 V| dedr
0 JRr2

t
1+C*)||arur+az2u 2/3 a1601+a20:)"/3C t
0 JR2

t
/ * /
< (oo 02040 001 +r0n) O (elm / \x|2u1(x,t)da:dr).
0 JR2

— 2w
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where the last lines is given by the inequality (3.21)) and the semi-continuity
of
lill o ey < liren_jonf i ]] a2y < Css.

As R — oo we find that

¢
|2|* wy (2, t)dx < ng/ 2|” uy (z, t)dedr + | |z ugo(x)dz + CyT.
0 JR2

R2 R2

By Gronwall’s inequality (integral form) [39 p. 625], we have that

|2|* uy (2, t)dz < (/ |z|* wod + C40T> (14 Cyote®™") . (3.121)
R? R?
Similarly,

|2|® ug(z, t)da < < |2|* ugoda + C'42T> (14 Cute"). (3.122)
R? R?

The energy inequality of the weak solution Integrating (3.66) in time
from 0 to ¢ follows

Hiay M@
———— [ uilnujde + ——— [ wujlnuide
X1 COS &1 JRr2 X2 COS &2 JRr2
51

a2
- — wivtdr — — usvedr
2 R2 1 2 \/IR;Q 2
ai ! € € e\ |2
+ — ui |V (1 Inui — xq cos aqv®)|” dadt
X1COS1 Jo R2

t
+ L/ / uS |V (12 Inu§ — x cos av®) | dadt
X2COS 2 Jog JRr2

— E(0). (3.123)

The goal of this last part is to take the limit ¢ — 0 in to derive the
energy dissipation . For clarity, we divide this proof into three steps.
Step 1: Pass to the limit in the entropy functionals.
We claim that

/ u; nu;dr — [ w;lnwdr aeon [0,7], fori=1,2. (3.124)
R2 R?

Indeed, by (3.60) we have that

uf Inus] =S In™ uf +usIn™ S

< s+ (1+ |2?) 7 + duf In(1 + |af?) = 7,
for i = 1,2.Assuming that uyg, uz € L'(R?, |z|” dz), it can be shown that (See

Lemma [25))
/ u Jf? dw,/ u;|zf” dr < Cyz < +o0. (3.125)
R2 R2



3.2. GLOBAL EXISTENCE 84

Notice that the weak convergence of u$ to u; in L'(R?) for a.e. on [0,7] and
the assumption (3.125)) are enough to prove that

/ us In(14|z|*)dx —>/ w; In(1+|z|*)dz a.e.on [0,7], fori =1,2. (3.126)
R2 R?

In fact, for any R > 1, we have that

/ wS In(1 + |z|*)dz — / u; In(1 + |z|*)dx
R2

RQ

<

/ (u — ;) In(1 + |2|*)dx
lz|<R

+ / (WS + ;) In(1 + |2|*)d.
|z|>R
On the one hand, by (3.125)) we obtain

/ <u§+u,-)1n<1+|x|2)dxg/ (u + ) |z da
lz|>R

|z|>R

1
< = /R2 (U +w;) || da
< 203
- R

— 0, R — o0.

On the other hand, by weak convergence ui — u; in L'(R?)

—0,e = 0.

/R? (uf —u;) In(1 + |x|2)1{|x|§3}dx
Therefore

—0,e = 0.

/ In(1 + |2*)us (x, t)dx — / In(1 + |2*)uy (z, t)dx
R? R?

Using the strong convergence of u$ to u; in L*(R?) for a.e. on [0, 7] and (3.126]),
we get

hi — h; a.e. on R? x [0, T] and/ hidrx — | hidz < oo,

R2 R2

where the function h; := |u;|> + (1 + ]x\2)72 + 4u; In(1 + |z|*). Therefore, we
can apply the General Lebesgue Dominated Convergence Theorem (See [75,

Theorem 19 p. 89]) to conclude ({3.124)).
Step 2: Pass to the limit in the free energy dissipation.

The lower semi-continuity of the energy dissipation is followed from the
Lemma [22] items (i) and (vii) that

t
/ 124V /U5 — X o8 /1 V)| dadt (3.127)
0 JR2

t
< liminf/ / 20;V \/us — x; cos a/usVos)
e—0 0 R2

2
dzdt,i=1,2.
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In fact, the weak convergence of \/uf towards /u; in L*([0,7]; H'(R?)) holds
due to its uniform boundedness given by inequality and the mass con-
servation property, where the limit is identified by using the a.e. convergence
of uf from the strong convergence in L*([0,T]; L?(R?)). Moreover, notice that

‘ L2(]0,T];L2(R2))

t
:// (uf—ui)dxdt—}-Q/ m(\/m—\/u_g)dxdt
0 JR2 0 JR2
t
:2/ \/u_i<\/u_i—\/u_§>dxdt—>0,
0 JR2

since /u; € L*([0,T]; L*(R?)) and /uf — /u; in L*([0,T]; L*(R?)). Then,
we have that /uf — /u; in L*([0,7];L*(R?)). On the other hand, due
the inequality , we have the weak convergence of /u;Vv® — w in
L*([0,T7]; L*(R?))?. In order to identify the limit we use the strong convergence
ui — wu; in LY3([0,T); LY3(R?)) and the weak convergence of Vv® — Vv
in L*([0,T); L*(R ?))?, then, we obtain that usVv® — w;Vo = /u;\/u; Vv
in L'([0,T]; L'(R?*))%.. On the other hand, due to the strong convergence
VU = y/u; in L*([0,T]; L*(R ?)) and the weak convergence of \/uiVv® — @
in L*([0,77; L*(R?))?, we also have that uiVv® = \/uf\/uiVv® — /40 in
L'([0,T7; L*(R?))?. Then, by uniqueness of the weak limit \/u; (v/u; Vv — @) =
0 a.e. on (0,7) x R% Since u; > 0, we get that \/u;Vo —w = 0 a.e. on
(0,T) x R2.

Step 3: Pass to the limit in the potential energy functionals.

We need to verify that

/ n‘v°der — [ nvdz a.e.on [0,T], fori=1,2, (3.128)
R2 R?2
where n° := ajuj + aous and n = ayu; + asuy. We rewrite

- 47r/ (nv® — nov) dx
]R2
|z —y|* + &2
= In ——————n(x, t)n°(y, t)dydx
[, i
w2 [ 0t =l ) (e ) o — ldyds
l[z—y|<1
+ 2 // (nf(x,t) — n(x,t)) n(y, t) In|z — y|dydx
lz—y|<1
1 F = yl> +¢°
——nf(x,t)n°(y, t)dydx
#f [ e
vz f / (0 (9, ) = n(y, 1)) n* (&, ) In | — yldyd
[z—y|>1
+ 2 // (n°(x,t) — n(z,t))n(y,t) In |z — y|dydx
[z—y|>1

6
=: ZT]
j=1



3.2. GLOBAL EXISTENCE 86

By the Young’s convolution inequality (3.91)), we have that

T+ T+ T;
|z|? + &2

|z ]2

< 1)l e ge) I7°] p2re /RZ Lijoj<1y In dx

1
2 nf — ”HLQ(RQ) <||n€||L2(R2) + ||n||L2(]R2)) /R2 Lja<1y In mdz

1 2, 2
. R r°+e
=27 [|n°|| 2 ey (I HL?(R?)/O rln 2 dr

1
1
4 o =l gy (1 ey + Il [ inJar
0

1 2, .2
T +e
=27 [|n|| Lo 2y ||nEHL2(R2)/O rln 2 dr

1 =l oy (17 o) + Il e ) -

Notice that

L2 2
2/ rln——dr = (1+&*)In(1+¢%) —e’Ine? - 0, ase — 0.
0 r

Therefore, for any 0 <t < T
Tl—l—TQ—f-Tg—)O, as € — 0.

For T}, we have that

Ty <In(1+¢€?) // n(z,t)n°(y,t)dydx
lz—y[>1
<In (1 + 52) (a191 + CL202)2 — O, as e — 0.

Next, we compute T3 or T using the Cauchy-Schwarz inequality in the follow-
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ing way

(T3)?

2
= (2/ In®(y,t) —n(y,t)] (/ n(z,t)In |z — y\dx) dy)
R? lz—y[>1
S 4 ”n€ - n||L1(R2) / |n€(y7t) - n(y7t)’ ‘/ n6($7t) In |.T - y|d‘T
R2 lz—y|>1
< darbr + az6b) [[n° = nl[ 11 (e /2 In"(y,t) — n(y,t)]
R

/ n(z,¢) (In |z — y|)? dady
lz—y|>1

<4 a191 + asbs) ||n n”Ll (R2)

/ / (9, 1) + iy, 1)) (z, 8)] & — y[dudy
R2 J|z— y|>1

<8 a1«91 + a292) ||” - "”Ll (R2)

[ ] w0 a0y (o + o) dedy

R2 J|z—y|>1

< 8(a16: + aza) In° — 0 11 g2 (3/ ng(x,t)|:1:\2dx+/ n(a:,t)\x]%x)
R? R?

—0ase— 0.

2
dy

Finally, combining (3.126)), (3.127)) and (3.128)), letting ¢ — 0 in (3.123)), we
obtain

H1Gy H2G2
_ up Inugde + ———— U In usdx
X1COS 1 JRp2 X2 COS (2 JRp2

(451 ¢5)
- — wvdr — — uadx

R2 R2

t
+ L/ / uy |V (py Inug — xq cos alv)|2dxdt
X1€CO0Sx1 Jog JRr2

t
a
+ —2/ / ug |V (o Inug — 2 cos agv)|2 dxdt
X2COSQ2 Jo JRr2

< E(0).

3.2.2 Case aj,an € (—7T, —%} U [%,ﬂ

Theorem 26 Assume that ai,as are non-negative constants and If oy, ay €
(—7T, —%] U [%,ﬂ, i.e., both species move away of the gradient of chemical
concentration, then for any initial masses 0;, 1 = 1,2, the system (3.1)) has a
global weak solution satzsfymg the energy dissipation (@ under the addztzonal
hypothesis uio |z|” , ug |z)* € L'(R?).

In this case, it is not necessary the use of any energy functional and instead,
a direct approach is enough to bound the LP-norms in time. Indeed, if we
proceed as in the first part of the proof of Lemma item (i), we arrive at the
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d / WGP da
dt e

+ (- 1xa COSOq/ (u3)? (—Av®)dx.

RQ

following estimate

2
V (u$)P?| dx

>0

Since for all a; € (—7T, —g] U [%, ﬂ , it holds that cosa; < 0, then it follows
that [o, [uf|” dz is non-increasing and thus bounded from above due to the
assumption uyg € LP(R?). Similarly, [o, |u5|” dz is also bounded from above.
Therefore, we have that for any initial masses 60;,7 = 1,2, the solution (u§, u§)
of is bounded in L2 (RT, LP(R?)), for all 1 < p < co. Hence, under as-
sumption (3.6)), we can pass to the limit ¢ — 0 by applying the same argument
described in the previous case, which allow us to conclude the global existence
of weak solution for system ({3.1)) satisfying the energy dissipation (3.9)) under

the additional hypothesis w1 |z]*, ug |z|° € L' (R?).

3.3 Finite time blow-up for radially symmetric
solutions

The purpose in this section is to derive sharp conditions on the initial masses
for having blow-up for system . We adapt the ideas for the multi-species
case introduced in [28]. The challenge of this adaptation remains on the lack
of symmetry for the anti-gradient operator V+. In light of this, we will only
consider radial initial conditions uqg, ugg, leaving the question for the nonradial
case open. We also show that even when the total moment increases the blow-
up is possible.

The next lemma constitutes a key remark for proving the possibility of
having blow-up for radially symmetric solutions. It constitutes a generalization
of a Lemma in [45] p. 46].

Lemma 27 Let K be the fundamental solution of the Laplace operator defined
as

1
K(z) = —gln\xl, r € Rz #0.

Let py and py smooth real-valued functions on R? that are radially symmetric,
i.e., they depend only on the length |x| or in other words, they are invariant
under all rotations centered at the origin. Assume that K x py is defined as a
C*-function on R%. Then

VK % p1)-Vpy = 0.

Proof. Note that, since p; and FE are radially symmetric, p;(Rx) = p1(x) and
K(Rx) = K(z) for any rotation matrix R € My,5(R), i.e.,

R — cosqoy —Sinog
sinoy;  cosog '
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Moreover, we have that

(Kx*p1)(Rz) = [ K(Rz —y)pi(y)dy.

RQ

Taking z = R~ !y, where

R —RT — < cosay  sinag >

—sino;  cosay

Note that, since det(R) = 1, we have that dy = dz.We obtain,

(K*p1) (Rx) = g K(Rx — Rz)pi1(Rz)dz
= g K(R(z — 2))p1(Rz)dz
= g K(z — 2)p1(2)dz = (K % p1) ().

So, we have that K * p; is also radially symmetric, i.e., they depend only on
the length |z|. Note that if f is any radially symmetric function then

_df dlx| _ df =
Vi= d|z| de — dl|z||z|

Hence, both gradients V (K % p1) and Vp, are parallel to the vector x/|z| for
x # 0. In particular, V (K x p;) is parallel to Vpy for  # 0. On the other
hand, if g € C! (R?),V1g is orthogonal to Vg. So, V* (K * p1) is orthogonal
to V (K * p1). Therefore V+ (K * p1) is orthogonal to Vpy, i.e.

V(K p1) - Vs = 0.

n
Proof of theorem [} Let us first assume that 6; and 6, satisfy (3.13) and

a1 Cos aq, ag cos ap > 0. We start by decomposing the matrix A; into the form

sinayq  €os oy

A — ( cosay —sinag ) — cosay ] +sin o R, (3.129)

where I denotes the identity matrix and

0 —1
ne (0.
Next, we re-write the equation for u; in the form

Oruy

= 1 Auy — x1cos V- (u Vo) — xpsinay V - (u1 RVo)

= i Auy — x1cos V- (uy V) — xpsinag V - (1 V4o)

= 1 Auy — x1cos V- (1, Vo) — xy sinog (Vuy - V3o +u, V- V).
=0

= i Auy — x1cos V- (uy Vo) — xy sinag (Vuy - V4o).
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After Lemma [27], the last term vanishes, thus
Oyuy = pDuy — x1cos a1V - (ug Vo). (3.130)

Multiplying (3.130)) by |z|* and integrating, we get

d
pr |a:| uld:L‘—,ul/ || Auldx—xlcosozlf 2>V - (u, V)da
= 44101 + 2x1 cosal/ x - (uVo)de. (3.131)
R2

Using the representation of Vv, we obtain

d
7| |x|2u1dx (3.132)
CoS (v T —
= 4110, — M/ x- —ygul(x>t)(alul(yvt) + asus(y, t))dydz.
™ R2 xR2 |z — y
Similarly
d 2
4 d 3.133
i [ el s (3.133)
COS (v T —
= dpabth — M/ Z: —yQUZ(%t)(%Ul(yvt) + agus(y, t))dydx.
T Jree |z -y
The expression %3.132—1—%3.133 gives
d 2 2
— (&/ |2|? uyda + Tz || ugdx>
dt \ x1cosay Jpe X2 COS g 2

_ 8mpray 0,1 87 oz

1 2
X1 COS (q X2 COS (g

T \T —
—o [ S o)+ sl ) (s 9,8) + asualy D)y
R*xR2 [T — Y|

The symmetry in the variables x and y in the last integral implies

d 2 2
pr <& |2|* uyda + Tz |x|2u2dx)
X1 COS (1 X2 COs Qg JR2
8 8
_ T 1G4 0, + T 2G2 0,
X1 COS (1 X2 COS (g
- / % (arur(z,t) + agua(z,t)) (ar1ur (y, t) + agua(y,t))dyde
R2xR2
8 8
= Th1% (91 + TTH282 ‘92 — (a191 + a202)2.

X1 COS (1 X2 COS (g

Let the second moment m(t) with respect to the origin for the whole popula-
tion, defined by

2 2
m(t) = T \x! urdx + &/ || upd.
X1 COS (1 X2 COS G2 JR2
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Thus d 8 8
TU1Q T oG
—m(t) = $01 + ﬂQQ — (a101 + CL292)2.
dt X1 COS Q1 X2 COS (vg
Integrating on (0,t), we obtain that
8mua 8 sa
m(t) = m(O) + ( it 01 + H2%2 92 - (a1€1 -+ a292)2) t. (3134)
X1 COS (1 X2 COS (g

The inequality (3.11) implies now that m(t) should become negative in
finite time which is impossible since u; and wus are non-negative and
a1 CoS o, g cos aip > 0. In conclusion T, < 00.

We proceed now to show that the inequalities aijas > 0, a; cos a; > 0 for at
least one index i € {1,2} and the condition (3.12]) implies Tjax < 00. In this
case, we defined the second moment m;(t) with respect to the origin for each
variable

m;(t) = |2 |? ui(z, t)da.
R2
as well as the cumulative mass M;(r, t)

M;(r,t) ::/ wi(z, t)dr = 27T/ wi(p,t)pdp.
B(0,r) 0

By (3.131]) we have that

%mz(t) = 44;0; + 2x; cos ai/ z - (u;Vv)dz. (3.135)
R2

In polar coordinates

1
—Av = ——i (T@> = aiuq + asus.

rdr \ dr
Thus
d/U T T
T = —al/ uy(p, t)pdp — az/ us(p, t)pdp
r 0 0
aq ¢5)
=—— uy(z, t)de — — uo(z, t)dx
21 JBo.r) 21 JB (o)
aq a9
= ——M(r,t) — —My(r,t). 1
o 1(T7 ) o7 2(7’, ) (3 36)
Moreover z - Vf = r%, then
teo du
coS x - (u;Vv)dr = 27 cos oy u;p— pdp. (3.137)
R2 0 dp

Replacing (3.136)) in (3.137), we obtain

Ccos ai/ x - (w;Vv)dz
R2

+oo
P / (@M (p, us(ps ) + asMa(p, s (p, 1)) pdp
0

+oo
< —a; cosai/ (M;(p, t)ui(p,t)pdp
0

a; [t°° dM,; a; [t d a;
=—-_" M,—dp = —— — M?2dp = ——6? 3.138
27 J, dp P A7 J,  dp " P 4" ( )



3.3. FINITE TIME BLOW-UP 92

since a; cos a; > 0. Replacing (3.138)) in (3.135), we get
J
Xi@i COS Oy o
0 3.139
2 ’ ( )

40, (1 _ w9> .
87 Ll

d
—m; 4p,6; —
dtm(t)< 10

Therefore, we have T,,,, < oo when

a; X COS &y

For the sake of simplicity, we have just performed a formal proof. However,
this argument can be made rigorous by taking in the weak formulation the
test function |z|” pr(x) € CF(R?), where @p(z) is defined as in (3.72), which
grows to |z|” as R — oo. Then, we can pass to the limit using Lemma 27 and
the fact that A(|z|> ¢g(x)) remains bounded and V(|z|> ¢g(x)) is Lipschitz
continuous. W



Chapter 4

Mathematical analysis of the
origin of CTCs clusters

Abstract

Cancer cells that break away from the primary tumor and enter the
bloodstream are called as circulating tumor cells (CTCs). These CTCs
are suspected to be the starting point for distant metastases. Using a
mathematical model, we propose to investigate whether CTCs aggre-
gate into clusters upon leaving the primary tumor. In this chapter, we
develop a Keller-Segel-type model that incorporates rotational chemo-
tactic motion. One of the main challenges in studying this model is
the lack of symmetry due to tensorial chemotaxis. However, we iden-
tify optimal conditions for radial initial data, enabling us to determine
whether the solutions of the model are global or result in blow-up within
a finite time. Additionally, we explore the possibility of tumor aggrega-
tion under conditions of low CTCs density. The research discussed in
this chapter has been submitted for publication and is currently under
review at the time of this thesis submission.

Macrophages are a type of white blood cells that are involved in the detec-
tion and destruction of harmful organisms. However, it has been proven that
the interaction between macrophages and tumor cells during cell migration
may contribute to the multiplication of a primary tumor to the surroundings,
a process known as metastasis [62]. The communication between tumor cells
and macrophages is governed by chemotactic signals. A chemical called colony-
stimulating factor 1 (CSF-1) is first secreted by tumor cells. CSF-1 then binds
to receptors on macrophages, causing the macrophages to produce epidermal
growth factor (EGF). Subsequently, EGF binds to tumor cell receptors and
further activates them. In turn, activated tumor cells release more CSF-1 and
partially direct their movement to the EGF and CSF-1 concentration gradi-
ent. Detailed information on the chemotactic signaling loop between the two
cell types can be found in [01]. As a result, all tumor cells aggregate and
enter the bloodstream, a process called intravasation. Next, when tumor cells
find a niche, the reproduction starts, and then secondary tumors could appear
in distant places producing metastasis. The technical name for this mecha-
nism is known in the scientific literature as the EGF/CSF-1 paracrine invasion

93
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loop. When additionally, the tumor cells produce an extra chemical to at-
tract another tumor cells of the same type, it said that we have a EGF/CSF-1
autocrine invasion loop. It has been suggested that the understanding of all
this dynamics could be fundamental to control metastasis with therapeutic
methods [69)].

Origin of CTC clusters

Cancer cells that escape from the tumor mass and pass into the blood-
stream /lymphatic system are called circulating tumor cells or CTCs. It has
been hypothesized that distant metastases begin with CTCs. Experiments
in mice suggest that CTC clusters cannot result from intravascular aggrega-
tion (e.g., [1]). Actually, there are many conditions in the bloodstream that
are hostile to epithelial cells, including shear stress, oxidative stress, and im-
mune attacks. It has also been noted in [80] that CTCs in the bloodstream
have a very short lifespan so they do not have time to accumulate in most
cases. However, there is still controversy about the origin of CTC clusters.
For instance, it has recently reported in [61] that aggregation of tumor cells
by intravital microscopic imaging did not result from collective migration or
cohesive detachment. Based on all these studies, we proposed to test through
a mathematical model the possibility of CTCs forming clusters after they exit
the primary tumor.

As a starting point to construct our model, we recall that in the absence of
any flow, the dynamics between tumor cells and macrophages in breast cancer,
was described in [54] by the system

Ouy = p1Auy — x11V (ulvvl) — Xx12V (U1VU2)
Oug = palSug — X21V (u2Vy)

g1 = Avy — v + ajuy,

€9Vt = AUy — Vg + agUa,

(4.1)

The parameters p1, (2, X11, X125 X21, X22, @1 and as represent positive constants.
The variables u; and uy denote the density variables for the tumors cells and
the macrofages respectively. The variable v; represents the concentration of
chemoattractant CSF-1 and the variable v9 denotes de concentration of the
chemoattractant EGF. This mathematical model indicates that the motion of
both species is driven by self-diffusion and the chemotactic response. This
system can be simplified assuming that ; &~ 0 as well as €5 &~ 0, meaning that
the chemical molecular diffusion occurs at a faster rate than the diffusion of
cell density [34], [50]. This simplification, led the authors of [37] to study the
system

Ouy = MlAM —xnV (ulvvl) - x12V (U1VU2) ) (4-2)
8tu2 = /J/QAUQ — X21V (U/QVUl) — XQQV (u1Vv2) s (43)

where

1 1
v= o In|-|*(a1u; + ajpuz) and ve = —5- In|-|*(agu; + agus). (4.4)
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It was proved that in the two-dimensional case the solutions u; and usy of system
(4.2))-(4.4) can blowup in finite time. It was also found optimal conditions for
having global solutions.

In comparison with the hypothesis underlying model (4.1), we want to
describe the dynamics of paracrine and autocrine signalling loops when cells
are surrounded by fluid. In this case, we recall that motion across thin layers
should normally involve rotational components in the cross-diffusive flux (|92,
93]). Thus, we propose to introduce a rotation matrix

A:<COSOé —sma>’ (45)

sina  cos«

where o € (—m, 7] represents a constant and to consider the mathematical

model
Oug = 1 Auy — x11V (w1 AVor) — x12V (11 AV,

4.6
6tu2 = ILLQAUQ — Xglv (UgAVUl) s ( )

where ] 1
v = —2—1I1| : | * (allul) and Vg = ——1n| . | * (CLQQU,Q) . (47)

7T 2m
Our results are presented here, however, through a more general system of

PDEs. Namely, we consider rotation matrices

cos y;; — sin oy, .
A= oY Yo, fori, g =1,2, (4.8)
S (5 COS Q45

where the parameters oy, aqz, 91, oy € (—m, 7] are assumed to be constants
and next, we propose to study the mathematical model

Oy = i Auy — x11V (UlAllvvl) - Xx12V (U1A12V02) )

4.9
Oy = palDug — x21V (U2A21VU1) — Xx22V (U2A22VUQ) ) ( )

where

1 1
v = —% In | . | * (a11u1 + CL12U2) and Vo = _ﬁ In | . | * (CL21U1 + a22u2) . (410)

A number of technical challenges arise in analyzing this system, which we can
overcome by assuming appropriate conditions for the parameters (e.g. (4.13).

For interactions between tumor cells and macrophages to lead to group
migration, cells must have a tendency to cluster. In this work, we investigate
how features of the paracrine and autocrine signalling loops contribute to cell
aggregation when it occurs in a rotating fluid. Essentially, we address the
following questions:

e What are suitable conditions to induce cell aggregation due to chemo-
tactic attraction? In this way, we expect to gain some understanding of
the conditions under which CTCs can metastasize.

e Complementary to the previous question, we ask whether it is possible
to characterize the relationship between the parameters of the model
— to guarantee that there is no cell aggregation. We note that
the answer to this question may provide insight into the development of
drugs that prevent aggregation of CTCs.
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e [s it possible that CTCs aggregate even if they are present only in small
numbers?

e (Can fluid rotation delay or prevent aggregation of CTCs?

To address these questions, we will concentrate on the two-dimensional
case. We notice that the local pre-blow up behavior corresponds to biologically
reasonable cell accumulation due to the chemotactic attraction, thus given a
reasonable insight about the conditions allowing cells to produce metastasis.
This remark motivates us to find out whether the solutions of the system (4.8))-
, can blow-up or not. If this is the case, we would also like to find out
what role fluid rotation plays in this phenomenon.

From a mathematical point of view, a main feature in the analysis of sys-
tem — is that traditional approaches to constructing energy function-
als (e.g [15, 36 28], [64]) become challenging. The predominant challenge lies
once more in the absence of symmetry induced by tensorial chemoattraction,
complicating the treatment of entropy functionals such as fRQ u; log u;dx with
1 = 1,2. We will show how our approach, developed in the previous chapter,
allows us to address this challenge. Specifically, we will modify these entropy
functionals by introducing alternatives with lower bounds. This modification
enables finding of optimal conditions on the initial data necessary for achiev-
ing global solutions. Similarly, due to tensorial chemotaxis, it is difficult to
find conditions that guarantee a blow-up of the solutions. Nevertheless, we
find conditions on radial initial data that allow us to decide whether the solu-
tions of model - blow up within finite time. Finally, a discussion is
provided on possible biological interpretation of the results.

Introducing our results, let us begin by defining a weak solution for system
[3)-E10).

Definition 28 (Weak solution) Let y1, t2, X11, X12, X21, X22 be non-negative
constants, meanwhile a1, 9, a1, Qiag are constants restricted to the interval
(=7, 7] and ai1, ara, s, as arbitrary constants. Let A;; with i,7 = 1,2, be
the 2 x 2 matrices defined by @ Given T > 0, the vector-valued function
(u1,us) is a weak solution on R? x (0,T) of system (4.8)-{4-10), with initial
data satisfying

0 < up € LY(R?) N L®(R?), upnuygy € LH(R?), upln(l + |z*) € LY(R?),

(4.11)

fori=1,2,f

i) uy,up € C([0,T); L' (R?)) N LY3((0,T) x LY3(R?)), and

i) (uq,us) verify in the weak sense, that is to say

[ et tts+ [ guala)da
// uZAgodxdT+X,1/ V- (u;An Vo) dedr
R2

+ XZ'Q/ / V- (u;AppVuy) dedr,
0o Jr2
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fori=1,2, for any ¢ € C°(R?), 0 <t < T, and for vy, vy being defined
by :

The main result of this chapter is as follows:

Theorem 29 (Sharp conditions, finite time blow-up and global exis-
tence) Let uyg, ugg satisfying , then there exists a mazimal time Thaye > 0

of existence of a positive weak solution (ui,us) to the system (@- . Let
us denote by 0; with i = 1,2 the total initial masses define by

0, ::/ updzr >0 and 0, ::/ Usodz > 0. (4.12)
R2 R2

Assuming that x;j, aij, i, 1 = 1,2, satisfy

011 = @11X11 COS (11 + A1 X12 COS aryg 2> 0,
022 1= @12)(21 COS Qa1 + @22 22 COS (igg > 0,
012 1= @12)X11 COS Q11 + @212 COS a2 > 0,

4.13
021 1= @11X21 COS Qa1 + @21 Y22 COS Qrgp > 0, ( )

a11a22 — a12a91 7 0, arnaiz > 0,az1a22 > 0

and x11X128in(o2 — a11) = X21X22 sin(age — o) = 0,
we have the following conclusions:

1. If (01, 09) satisfies
(511‘91 < 87r,u1, (52292 < 87T/JJ2,
8 8 ) ) )
and TH 491 + il 82 — (EQ% + 201‘92 + 285) > 0. (4 14)
512 521 512 521

then, Thax = +00. Moreover, assumming uig, us € L'(R2, (14 |z|*)dz),
we have that the free-energy functional defined by

E(t) (4.15)

1 1
= H1Uq In Uldl' - = U1 (Xll COS ¥V + X12 COS Oélgl)g)dflf
012 \JR2 2 Jre

1 1
+ — potio Inusdr — = U (X21 COS 21V1 + Y22 COS (ag¥s)dx | .
521 R2 2 R2

satisfies the following dissipation inequality
E(t) (4.16)

+ 5 ui |V (p1 Inuf — x11 cos aqvf — x12 cos algvg))ﬁ dx
12 JR2

1

+ 5 / us |V (2 Inus — X1 €S g1 0] — Xa2 COS 0422U§>>|2 dx
21 JRr2

< E(0).
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2. Assume that the initial data uyg, usg are radially symmetric and uig, Usg €
LY(R2, (1 + |z[*)dzx). If 61 and 6y satisfy any of the inequalities

(51191 > 87TIU/1, or (52282 > 87TM2,

8 8 ) 1)

or =g 4 T2, _ (EQ% + 20,60, + ﬂeg) <0 (4.17)
512 (521 (512 521

then Thax < +00.

On the other hand, assuming that x;j, ai;, cuj,t = 1,2, satisfy

011 < 0,092 < 0,012 < 0,091 <0,a11a12 > 0, a91a2 > 0, (4.18)

we have that for any initial masses 0;, 1 = 1,2, it holds Ty, = +00.

We note that although restrictions (4.13]) and (4.18) on the parameters seem
to be very restrictive at first sight, it still include several important cases. For
instance the case where rotation angles satisfy a19 = a7 = aigs = a1, and the
coefficients a5 = as; = 0, corresponds to the model — describing the
dynamics between CTCs and macrophages.

Another interesting case is when Y12 = x21 = a11 = as = 0. Then we
obtain the following model describing the interaction of two cell populations
undergoing rotation

Oyuy = M1AU1 —xuV- (UIAHVUI);

Oug = ,MQAU2 — x22V - (UQAQQVUZ)a

1 (4.19)
v = —%IH’ . ‘ * ((11211,2),
Vg = —%ln] . ‘ * (CL21'LL1>.

On the other hand, if sin(aze — ay1) = 0,7 = 1,2, or equivalently ays = km +
a1,k € Z,i = 1,2, we have that there are two possible scenarios: Either
the cell’s population u; has a dynamic of cooperating effects of attraction (or
repulsion) in chemotaxis or competing effects of attraction vs. repulsion in
chemotaxis.

Remark 30 Assuming that xij;, aij, oy, 1 = 1,2, satisfy . Let us con-
sider the conic section

STy, 4 BTz (@93 + 20,0, + @e)g) = 0.
512 521 512 521

The discriminant D 1is given by

511522)
D=41- .
( 012021

Notice that
011022 — 012091

. 011 012
d21 029

_ [X11€08Q1  X12C€08 (2| (A11 Q12
X21 COS (xa1 Y22 COS Qiga| |A21 Q22

= (X11X22 COS (¥11 COS (rg2 — X12X21 COS (X2 COS 0421)(a11a22 - CL12G21)J-

>
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It follows that, we will have a parabola when

X11X22 COS (¥11 COS Crga2 = X12)X 21 COS (¥12 COS (a1,

we will have a ellipse when

a11Q22 — Q12021
and X11X22 COS (¥11 COS (92

or

a11G22 — A12G21

and X11X22 COS (r11 COS (Va9

and we will have a hyperbola when

a11Q22 — Q12a21
and X11X22 COS (v11 COS (22

or

a11022 — G12021
and X11X22 COS (X171 COS (22

Remark 31 Note that if o;; = 0,1,5 =

>0

> Y1221 COS (V12 COS (g,

<0

< X12X21 COS (V12 COS Qa1

>0

< X12X21 COS (¥12 COS (21,

<0

> X12)X21 COS (13 COS (o7 .

1,2 and py = py = 1, we rescue the

two-species Keller-Segel model with two chemicals proposed in [37)]

c%ul = Aul — XHV . (u1Vvl) — va . (u1Vv2), T € RQ,t > 0,
8tu2 = AUQ — Xglv . <UQV’01) — XQQV . (UQVUQ), T € RZ,t > 0,
—Avy = ajuy + ajpug, r€R%t>0,
—Avy = aguy + agous, r € Rt > 0.

Theorem (29 guarantees that if the initial masses 6, and 0y satisfy

81 8t
X11a12+Xx12a22 91 + X21a11+X22021 92
_ [ xn1a11+xi12a21 2 X21a12+X22a22 ()2
<X11a12+X12a22 ‘91 + 29192 + X21a11+Xx22a21 92) = 0’
8w 8w
91 < Xii1aii+xiza21 and 92 < X21a12+Xx22a22’

then the corresponding solution exists globally in time. Moreover, we can al-
ways construct initial data with masses 01 and 65 such that if they satisfy any

of the inequalities

8T

8t

X11012+X12022
_ [ xn1a11+xa2a21
X11a12+x12a22

or 0, > 8

X11a11+xi2a21’

0, +
02 + 26,0,
or 6 >

X21a11+X22a021 02
+ w9%> < 0’

X21a11+Xx22a21
81

X21a12+Xx22a22’

then Tiax < 00. These results coincide with the sharp result given in [37].



4.1. GLOBAL EXISTENCE 100

Remark 32 Note that if oy = 0,7,5 = 1,2, pu = pe = 1, x11 = X2 =
Lxi2 = xo1 = 0,a11 = asy = 0,a195 = a1 = 1l,we obtain as a particular
case the two-species Keller-Segel model with two chemicals, that describe the
competition of two species, discussed in [[9]

Oy = Aup — V- (uy Vo), x € R% ¢ >0,
Opuy = Nug — V - (uaVuy), x € R% ¢ >0,
—Av; = ug, r€R%t>0,
—Avy = uq, $€R2,t>0.

Theorem [29 guarantees that if the initial masses 6, and 0 satisfy
0,05 — 4w (91 + 02) < 0,

then the corresponding solution exists globally in time. Moreover, we can al-
ways construct initial data with masses 01 and 65 such that if they satisfy the
inequality

0,05 — 47 (91 + (92) > 0,

then Thax < 00. These results coincide with the sharp result given in [49].

4.1 Global existence

Our purpose in this section is to prove the following global existence results

Theorem 33 Assume that uqg, usg satisfy and xij, a;j, g, 1 = 1,2, sat-
isfy 4.]3). Let us denote by 6; with i = 1,2 the total initial masses define by
4.13). If (61,05) satisfies

(51101 < 87T/L1, 52202 < 87T/L2,

and STHg, 4 STHzg (@03 + 20,0, + @95) >0, (4.20)
012 021 d12 021

then system ({.8)-(4.10) has a global weak solution satisfying the energy dissi-
pation (4.16) under the additional hypothesis uio ||, ug |2|* € L'(R?).

Theorem 34 Assume that uyg, usg satisfy and xij, a;j, g, 1 = 1,2, sat-
isfy (4.18), then for any initial masses 6;, i = 1,2, the system ([4.8)- has

a global weak solution.

Our approach to proving Theorem [33| relies heavily on the technique intro-
duced in the Chapter |3| which is designed for analyzing the global existence
of the multi-species Keller-Segel model with rotational flux. This approach
can be outlined in three parts: firstly, we constructed a regularized version
of the system — having smooth solutions and introduced some of its
properties like mass conservation, integrability, and positivity. Secondly, we
showed how to obtain uniform estimates of the regularized system to pass to
the limit, and obtained the result of global existence of weak solutions for the

system (4.8)-(4.10]) and, finally, we showed that the weak solutions of the sys-

tem (4.8)-(4.10]) satisfy the free-energy inequality (4.16]). On the other hand, in
the proof of the theorem [34] it is not necessary the use of any energy functional

and instead, a direct approach is enough to bound the LP-norms in time.
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4.1.1 Proof of theorem [33l

Regularized Problem and some important properties We consider
the regularized problem for 0 < e < 1/ V2

oS = i Au§ — x11V - (uS A Vos) — x12V - (uS A1 V05), o € R% >0,
Opus = paAus — X1V - (u5 A0 Vi) — X2V - (u5A2V05), = € Rt >0,

= K* x (apuf + a2uj) , reRAt >0,

= K°  (agu§ + agu$) , reRt>0,
(2, 0) = 3o ), 15, 0) = uiy(x) € LL(R?) rewl
4.21

Here K¢ is defined as By applying the same argument as in Proposition
[14], we extend the result concerning the global existence of smooth solutions
and some important properties to our scenario involving two types of chemicals,
rather than just one. Therefore, we omit the proof here.

Proposition 35 Assume that uig, usg satisfy and . Then there is
a unique classic solution (u,us) € BC ([0,T); L' (R?)) N C% (R x (0,T)) N
Xr, of with 0 < € < 1/v/2 on [0,T), for any 0 < T < oo. Then (u5,u5)
satisfies the following properties:

(i) mass conservation, i.e., [o, uS(x,t)dx = 0;, for i =1,2 and t € [0,T);

(i) antegrability, i.e., for every 1 < p < oo, there holds ui € L>*((0,T); L?
(R%)) for i =1,2;
(iii) positivity, i.e., us > 0 for all (z,t) € R? x (0,T) for i =1,2;
(iv) usln(1 + |z*) € L=((0,T); L\(R?)) for i = 1,2;
(v) w¢Inus € L>((0,T); LY(R?)) for i =1,2;
(vi) \V (Vui)| € L2((0,T); L*(R?)) for i =1,2;
) uivs € L=((0,T); L'(R?)) for 4,5 =1,2;
)

(vii

(viii) for every 2 < p < oo, there holds Vvi € L>*((0,T); WhP(R?))? for i
=1,2.

Dissipative energy structure. A main tool to analyze the qualitative be-
havior of the solutions to the models, we are working with, are the free-energy
functionals. The derivation of such kinds of functionals is especially challenging
in the multispecies case due to the lack of symmetry arising from the differ-
ent angles of rotation. We are now going to show the existence of free-energy
functionals when the parameters x;;, a;;, o;j, @ = 1, 2, satisfy .

We define the free-energy functional E.(t) associated to system (4.21]) as
E.(t)

1
= s (/R2 ppuf Inuide — 5 /R2 ui(x11 cos a11v] + X12 COS amvg)das)

1 1
4+ — / pous Inusde — = / us(X21 COS Qa1 V] + a2 COS Qavs)dx | . (4.22)
(521 R2 2 R2
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Now, we show that the free energy functional E.(t) enjoys a basic energy law
such that it is monotone non-increasing with respect to time.

Theorem 36 Let (u5,us) be a classical solution of system . Then,

d
—FE_(t
1
— _5_/ ui [V (p1 Inuf — x11 cos aq1vf — x12 cos algvg))lz dx
12 JR2
1
5 us |V (p2 Inus — a1 €OS a1 vf — X292 COS amvg))|2 dx. (4.23)
21 JRe2
for allt > 0.

Proof. By hypothesis we have that ay1a00 — aisas; # 0, thus, we can re-write

the equations for v§ and v§ of in the form
ay a2 et us
AN L =-AK x| ).
21 QA922 (% Uy
a11 A12 . Q22  —ai12
(g1 Q22 a11022 — Q12021 \—G21 A1l
Let us define
£ -1 £ 1 £ €
wy\ . (a1 a2 v\ A22V1 — Q1205
ws a1 Q22 v5 a11022 — G12G91 \—A21V] + a1105

Moreover,
vi\  (ann ai wi\ _ [anw] + apws
V5 Qo1 Q29 w; an Wi + axpw; )
Then system takes the form

&ywi = /leﬂui — XHV : (UiAHV(CLHU)T + a12w§>)
—X12V : (UiAuV(aglwi + (lggwg)),

Opus = preldus — X1V - (u5 A2 V(anwi + apw3)) 2
T (0¥ (e b ) rEeR%Lt>0, (4.24)

—Aw§ = —AKE * uj, r€R%t>0,

—Aws = —AK® xS, r€RYt>0.

Note that

reR%t>0,

On the other hand, we decompose the matrices A;j,i,7 = 1,2, in the form

cos ;; —sinay; .
Ay = o Y] = cosay;l +sinwy;R, (4.25)
sinq;  COS (v

where I denotes the identity matriz and

R;:((l)—ol).
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Using the first equation in and the decomposition , we obtain

€
atul =

— <a12X11 cos 1 + a922X12 COS alz)v . (uing)

— (a1 x11 sin agq + asrx128in ag2)V - (

u§Vrw

)

azXi2V - (uiAme;)

,UqAUJi — CLHXHV . (u‘iAHVwi) — (]Jlgxllv . (UEAHVU);)
— a1 X12V - (uf A Vi) —

= 1 Auj — (a11x11 cos aq1 + asi X2 cos ag2)V - (uf Vuy)

— (CL12X11 sin a1 + a22X12 sin O./lg)v . (uiVng) (426)
In order to simplify the notation, we define the constants
d11 012 [ X11€08011  X12 COS (X2 a1 aq2
= . . , (4.27)
013 014 X118m g Y12 SH1 (2 Q21  A22
and
021 022 . [ X21COS Qa1 X22 COS (io2 ailp a2
= . ) ) (4.28)
023 024 X21 511 Qo1 Y22 SII1 (o2 Q21 22
Then the equation becomes
O] = pmAu] — 611V - (uiVwi) — 612V - (ujVuws)
— 513V . (Uivai) - 614V . (Uivag)
Simalarly
Oyus = pedus — 691V - (usVw]) — 922V - (u5Vws)
- 523V : (uéVLwi) — 524V . (U;VLMS)
Therefore the system takes the equivalent form
@ul IU1AU1 — 511V ( VUJl) (512V . (uﬁVw%) 2
e Rt >0,
—013V - (Ui V>wi) — 014V - (ug V>w3), !
5’tu§ QAU/Q — 621V ( le) 522V . (Ungg) 2
—523V ( VLU)1> — 624V ( EVlwg), T e R ’t = O’
—Aw§ = —AKE * uf, reR%t>0,
—Aws = —AK® x s, reR2t>0.
(4.29)
Note that
atUi =V (,quui: — 511U§VU)§ — 512U§Vw§
- 513uivlw§ - (514U§VLUJ§
=V (uiV(u Inuj — dpwi — d1aws3)

Multiplying by g1 Inus — §1ws — d10ws and integrating over R?
/ (Opu) (1 Inu] — d11wi — d1ows)dx

%\

ul In ui — (511wf — 512w§)V . (uiV(ul In Ui — (511wf — (512w§))d:v

2

/Ll In Ui - (51111]? — 512w§)v : ((513U§VJ—U}‘§ + 614U§VL

2

%\

ws)dx.
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Integrating by parts, we obtain
/RQ((‘?tui)(ul Inu] — dpywi — d1pw3)dx
=— | V(g Inu] = dwi — dpw3) - (uiV (1 Inuf — 013w — d1pws))dx
R2

+ / V(/Jq In Ui — (51111)% - 512@1);) . (513u§VLwi + 514u§VLw§)dx
R2
= —/ US|V (g Inus — s — d0ws)|? da
R2

- u1613/ uiVv - Vlwf — ,u1514/ uiVv - Vlwg

R2 R2
- (511(513/ uini . VLwi — 511514/ uini . vag

R2

RQ

— 612513 u‘ing . VLw‘f
R2

- 512514/ uing . VJ_’UJ;CZI
R2

Using V - V+tws = Vwg - Viws = 0,4 = 1,2 and Vs - V+iwi = —Vuws - V4iws,
we have that

/RQ((?tui)(ul Inu] — djywi — d1w3)dx
= —/ uS |V (g Inus — dyws — dows)|? da
R2

— (511514 - 612513)/ uini . vagdl’

R2
At this point, we notice that the assumption x11x12 sin(az — a11) = 0 allow as
to simplify the expression 011014 — 012013 jJust by taking determinants in
to obtain

011014 — 012013

011 O12| _ |X11COSQq1  X12COS Q2
013 014 X118inaqp X1z Sinags
= X11X12(C0S @11 8in Qv — €OS g sin a1 ) (@11G22 — A12a21)

= X11X12 SiIl(Oé12 - 0411)(a11(l22 - a12@21) =0 (4-31)

@11 A12
Q21 A22

In conclusion

/z(ﬁtuﬁ)(ul Inu] — djjwi — d12w3)dx
R

= —/ uS |V (g Inuf — 6w — dypws)|* d.
R2
Similarly

/2(8tu§)(u2 Inus — dgyw] — dppw3)dx
R

= —/ uS |V (ptp In 1§ — oy ws — dgpws)|” dx.
R2
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Using the mass conservation property, we have that

d
— | puiInuidr — 511/ (Opul)widz — 512/ (Opul ) wsdz (4.32)
dt R2 R2 R2
= /2 U |V (g In s — dws — drpws)|* da.
R
d
— [ peu§Inusdr — 521/ (Opus)wide — 522/ (Opus)wsdx (4.33)
dt R2 R2 R2

N _/ U5 |V (g I — Sy — Ggpws) | da,
RQ

The expression i(ﬂﬂﬂ)—l—i(ﬂ.é’ﬂ) gives

d (n p o ol 0 £\t
pr (5112/ ui Inug dm+52 /R2 u21nu2dx) —i/ﬂp(@tul)wldx

0

- [ (@uiyus + @agpus)da - 2 [ (G5

R2 21 JR2

1
= ——/ US|V (g In S — Sy — dypws)|? da
012 Jr2

1
5 u§ |V (ptp In 1§ — Sy ws — dgpws)|* dx. (4.34)

21 JR2

Notice that

/ (O wide = | Ow; (K xus) dx
R2 R

1 1
t In ———u;(y,t)dy | d
atu (l' )(477'/ |x—y|2+ 2 z( )y) L
1
(0, 1)) t)In dyd
/M e 00010

1
tus (y,t) In —————=dyd
87T dt /RQ /RQ :B y7 ) | y[2+52 e

=3 dt widx, (4.35)
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and

/ (0 + (Brs)us) de
RQ

- / (0 (K 5 05) + (0yu5) (K7 )

1 1
= [ 9z t)[— | m———ws(y, t)dy | d
w2 tul(‘r )(471_\/1[&2 n‘l’—y‘2+€2UQ(y )y> T
1 1
owus(z,t) | — [ h——Fm—— t)dy | d
+ - tu2(x7 )(471'/ ]x—y]2+€2 1(y7 ) y) T

1 1
- L / (00 (e, )5y, £) + D, s (9, 1)) In ——————dyda
RQ

R? [z —y[*+¢
1
ui(z, t)us(y,t)lo dydx
47rdt/Rz/RQ o ualy, D) log Ty

th g (ujw; + uswyi) de. (4.36)

Substituting and into , we get

d H1 €
7 <512/ u In ug dx—|—521/ us In usdx

5is 1 022
% ujwidr — 3 /R? (ufws + usw?) do — fm u2w2dx
1
T o / u |V Inuf — 0w — 60w [ da
12 Jr2

1
- —/ u§ |V (pin In 1§ — pyw — Ggpws)|? d.
R2

Oa1
d (p : :
E(é/ﬂvullnu d:p+521/ ug In usdx

Equivalently
- ui (dp1wi + dw3)dx
2512 R2

——/ us (921w +522w§)dx)
]R2

- _ ul [V (pr Inuf — dpwi — (512w§)|2 dx
512 R2

— —/ uS |V (2 Inu§ — oy ws — dows)|* d. (4.37)
RQ
Notice that
dpwi +d2w5\ (011 di2) [wi
dnwi + dpws ) \da1 022 ) \ w5
_ (Xn COS 11 X12COS 0412) (an CL12> (an a12) - (Uf)
X21 COS Qra1 Y22 COS (X2 A21 (22 21 G22 (3
B (XH COsS (11 Y12 COS a12> <vf)
~ \X21C0S Q1 X22COSQip ) \ 05
X11 COS (110] + X12 COS Q1205
X21 COS Qa1 V] + Y22 COS Qaa V5
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As a consequence, we obtain that the identity in terms of the original
parameters becomes

d 1 1> 1> 1 I £ £
— | — pau; Inufde — u3 (x11 €OS 1105 + X12 €OS (1205 )dx
dt (512 R2 2 R2

1 £ £ 1 £ £ £
+— pous Inusde — — us(X21 COS a1V + a2 COS (agv3 )dx
021 \JR2 2 Jr2

1
=5 uS |V (g Inus — 11 cos v — iz cos apavs))|” da
12 JR2

1

- / us |V (2 Inus — xa1 €OS o1 v] — X292 COS agzvg))|2 dz,
21 Jr2

which is equivalent to . m

Boundedness of [, uS In" udz. Our goal in this step is to show that the
positive part of the corresponding entropy functionals, i.e.,

ST (t) = / u§ In" uidr, with i =1,2;
R2

are bounded on the time interval (0, 7") unirformly in €. Following the technique
of [46], we modify the entropy functional within the free energy functional
E. (4.22)), replacing it with a new one that is lower bounded by a constant

dependent solely on #; and 6,.

Let 6 > 0 be a any small constant, we introduce the modified free energy
E! as follows:

EL(t) (4.38)

1 1
= — / pruil(ug)de — = / u] (X11 COS 110 + Y12 €OS (1205 )dx
512 2 R2
1 1
+ — pousl(u3)de — = [ u5(xa1 €OS Qa1 v] + Xa22 COS Qoo )dx | .
521 R2 2 R2

where I' is defined as

{ Inu, u>mn;
Inn+ntu—n)—L(u—n)° u<n.

7 := min {1 0 (012) (1) } .
"2 (8111 + d122) (011 + 0a1) 01 + (012 + Oa92) 62)

I'(u) = (4.39)

The T" function is chosen such that it matches with Inu when v > 7, but
In(n+ (u—mn)) is replaced by its degree two Taylor expansion centred at 7
when u < 7. The advantage of this modification is that the function I' is
bounded from below by Inn — 2.

The following theorem shows that, despite the possibility of a slow-growing
modified free energy, at most linear growth is possible.
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Theorem 37 Let (u5,us) be a solution of system .Then,

d r
EEE()—(;?

for all t > 0. Furthermore, the following quantity is bounded:

3
/ w; T'(uf)dx > (— Inp~' — —) 0;,
us <1 2

Proof. Taking the time derivative of E!(t), we have that

d r d H1 H2 / € €
ths (t) = pr (512 / 0(uf)dx + = o oo usl(us)dx

_ / (0 + (Brs)us) de
]RZ

_du / (O Y — 22 / (Ol
512 R2 521

where i =1, 2.

1
— 5 [ (@) () = g — Sraus)da
12 JRr2
1
+ 5 (Opus3) (ol (ug) — doqw] — dpows)dx
21 JR2
+ ﬂ/ uiT (ug) (Opug) do + — / usT (ug) (Opuy) dx
512 621

Using that

o =V - (i V (p; Inu — 6w — dipws)
-V- ((SzglbvaIUi + 5i4ufvlw§),

108

(4.40)

(4.41)
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for ¢ = 1,2, and Integrating by parts, we get

d
—EY(t
ZEL (1)

—55 [ V(ul(w) = duwi — d1pws) - (uiV(un Inwg — dnywi — drpws))de
R2

612/ V ,uJ‘ Ul) — (51111]1 — 5121112) (513uivlw§ + 514U§va§)dZIZ

V( T (u3)) - (uiV (g Inuf — dpwi — d0w5))da

512

+ £ V( TV (u5)) - (S13us VEws + Spus VEiws)de

512

521/ V(I (ug) — do1wi — d9ow$) - (u5V (g Inug — doywi — doows))dx
+ E/RQV(,UQF(U;) — 521w‘f — (52211);) . (523u§V U)i + 524u§Vlw§)dx
V( ST (u5)) - (u5V (pe Inug — dpywi — dopw$)) da

“2/ V (W5 (u3)) - (23u5 Vw4 02aus V>iws) da
i=1

To estimate the second term 75 and the fourth term 7}, we define the following
functions:

£(u) = /0 Cs(s)ds,  c(u) = /0 " 2T (s)ds,

Using that V- V4iws = Vws - V+iws = 0,i = 1,2, Vws - Viw] = —Vuws - V4w
and (4.31)), we have that

T, = “;513 / vg(@v%id““l‘s“ / VEWS) - Viusde
12 JR2 R2

512
_ (511(513 611514

/ us Vs - V3wsdr — / us Vs - V3iwsde
012 Jre 012 Jre
- 513/ usVws - Viwsde — 014 | uSVws - V5iwsde

R2

R2

) )
_ H1013 f(ui)v ) Vlwidﬂc _ H1014
612 R2 (512 R2

_ (—511514 _ 512513) / WV - VViwsde
012 R?
=0.

E(uS)V - V4iwsde
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and

R / WV (T (w))) - (615V wf + 614V ws) da
R2

O

=L V) - (513V s + 614V wg) da
512 R2

+ & V§(U§) . (613vai + (5147)105) dz
612 RQ

= ﬂ {(ui)v : (513VLU€ + 514VL’UJ§) dx
512 R2

* 5_1 / S(uDV - (013V7wi + 01 Viws) de

12 JR2

Similarly, we have that Tg = Ty = 0. On the other hand, simple computations
show that
u)=2n"t—n2u for u<n.

Now we estimate the terms 17 + T35 as follows:

1
T1 + T3 = —E ui |V(,u1 In U‘i - 511wi - 512w§)|2 dx
ui>n
M% -1 -2 ¢ e12
o R O
512 u§<n
+ (/;—1 ((4n~* — 3n_2u‘i)u§Vui (611 Vi + 012Vws3) dx
12 Jus<n
1
- — us |61, Vs + 81, Vws|”
512 u§<n
+ [ Vs (0 Vs + 615 Vus) de
612 u§<n

Using the Cauchy—Schwarz inequality, we have

1
T+ 13 < _5_/ ui |V (g Inug — djywi — 512w§)|2 dx
12 Jui>n

— L (gt = 3072 | Vs de

512 u§<n
St s [V Vs + 89w

ui<n
1

- u‘i |511Vw§ + 512vw;|2

512 ug<n
— / Vg - (011 Vi 4 012Vws) da.

512 ui<n

Notice that

2v/3
sup /(477! = 30~ 2u)u < 23 2,
0<u<n 3
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which implies,

1
T+ T5 < 5 ). uS |V (py Inué — dyyws — dy0ws)|? da
ui>n
. H% -1 __ 9,.—2,¢ €2
S (4n 3n~"uy) [Vui|" dz
512 ui<n
2v/3
+ Vi / V(@AY = 30720 )us |Vl | |61 Vs 4 61 Vws| da
3512 u§<n
1
— 5— ui |511Vw§ + (512VUJ§|2
12 JuS<n
12 Ju§<n

Completing a square using the 2nd, 3rd, 4th terms in the last line, we obtain
that

1
T+ T3 < —— ui |V (g Inui — dpwi — 512w§)|2 dz
12 u*i'zn
2 2
o TR YT
2
1 3
- Ml\/_\/(éln—l —3n~2us) |Vui| — /u§ [611Vw] + 012 Vws| | dx
512 u§<n 3
+ B / Vs - (611 Vi + 612Vws) de.
012 ui<n

Next, we have that

Hy Vs - (01 Vs + 815 Vws) da
512 u§<n
— 5_1 Y (min {uS, n}) - (611 VWS + 612Vws) de
12 JR?2
o {uf, n} (= (0 Aw] + d12Aw5))dx
012 Jpe
< ﬂ77/ (—AKE * (d11u] + 012u3)) dx
12 Jre
)
< 5—177 ”AKEHLl(R?) (01261 + 01265) < 92’
12

Here we have applied that min {u$,n} € W'(R?) and V (min{u,n}) =
LiyemyVu ace. since u§ € WP(R?), for 1 < p < oo (By Lemma [16]). More-
over, to justify the integration by parts, we can use a sequence of functions
¥, € C°(R?) such that 1, — min{us,n} in WH*/3(R?).We also notice that
Vw: € WHP(R?)2 i = 1,2, for p € (2,00). Therefore

Vi, - Vwider = — [ ¢, Awidz. (4.42)
R? R?



4.1. GLOBAL EXISTENCE 112

Now, we can pass to the limit in (4.42) when n — oo, since

[ (Vi = 9 (minfus, ) - Vuids
]RQ
< [V =V (min{ug, n})[| pass ey VWil a2y = 0,
and
/ (¥, — min{ui, n}) Awidx
R2
< [ — min{u, n}H pas gy AW pagz) = 0.
Thus,
/ V (min{ui,n}) - Vwidx = —/ min{uj, n}Aw;dz.
R2 R2

In summary

0 1
T+ T5< - — —/ uS |V (i In s — yyws — dy0ws)|? da
2 512 uizn
2 2
g = 3072 | Vs da
3512 u§<n
2
1 3
- — 'ul\/_\/(lln—l — 3n72u) |[Vui| — J/u5 |01 Vi + 012 Vws| | dx
512 us<n 3
1)
< —.
-2

Similarly, we obtain that T5 + T < g.Therefore, the estimate 1} follows.
Estimate (4.41]) follows from the fact that the function I' is bounded from
below by —Inn~' — 2 < 0. Indeed,

/ u; D (uf)dx > (— Inn~' — §) / u;dr > (— Inn~! — §) 0;.
us <1 2 ui <1 2

In order to apply the Logarithmic HLS inequality for systems (See Theorem
in the region of the plane 6,0y defined by (4.14]), we introduce the next
technical lemma

Lemma 38 Let us assume that (01, 603) satisfies

(51191 < 871'/,61, (52292 < 87T/JJ2,

ST g 4 BTh2g (@0% + 26,05 + @%) > 0. (4.43)

and

512 521 512 521

then there are constants by € (019,00) and by € (d21,00) depending on the
parameters 0;, [, Xij, Qij, i with 1,5 = 1,2 such that

8 8
Wm, 09205 < 021 Wﬂ2>
by ba

0116 < 012 (4.44)

and

5 5
ST o Sh2g (39% 420,60 + ﬂeg) —0. (4.45)
by by 012 021
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Proof. Assume 01, 000 > . By hypothesis 0, € (0, Sgl’il) and it is clear that
‘91 c (0,91 + %%) .

Then, we have that 6; € (O, %72—“11) <0 01 +
istence of a constant s; > 0 satisfying

ﬂ) which implies the ex-

m|,\j
S
=

(512 8y 6 012

0, 0, + =——. 4.46
511 012 + 51 ! ( )

Similarly, 6, € (O, 8—;;%) (O 6, + & ‘521) implies the existence of a constant

s9 > 0 satisfying
% 87T[L2 9 01 (521

<
022 021 + 82 2 522
Let us define the function f : Rt x RT — R by

0, <

(4.47)

flany) = 87?#10 8##292 (51102+29102+5 0)
Yy d da1

x 12
Taking x = 612 + s1 and y = o1 + S92, We obtain

f (612 + s1, 021 + S2)

8711 87 o 011 o 022 19 )
= 0+ ———0 07 + 20,05, + —0
012 + $1 do1 + S2 2 (512 e do1

_ < 8mpn @61) 01 + ( SThz__ @92) 02 — 2010,

dig+s1 12 021 + 52 021
o11 (512 871 ) 522 (521 8 iz )
= — | = -0y )0, + — — 65 ) 65 — 26,0
012 \ 011 012 + 51 ! ot 521 022 021 + S2 2 ? e

Then, an application of the right side of (4.46)) and (4.47)), respectively give us

010, 0,0
f(812 + 51,021 + 52) < 172 + 172 — 2010, = —610, < 0 (4.48)

Let us now define the function g : R™ — R by
g(7) := f(012 + 817, 691 + 527).

Note that

4(0) = 8##191 . 87?#202 B (21192 4 20,0, + g 295) -0
21

512 521 12

and from (4.48) we get g(1) < 0. Thus for some 7* € (0, 1) it holds g(7*) = 0.
Let us call
by ;=012 + 817" and b := 0y + $o7"

I'Note that if d;; = 0, we have that there is a constant s; > 0 such that

( 87‘(’}1@ 5 6‘)9 - 87T/J,Z'0i < 0192

61’2"'51_572 0s2 + 8i 2
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From the left side of (4.46))
0, < @ 87t < 52 8 _ @87%
011012+ 81 11012 +517% o by
Similarly from (4.47))

0o1 87 M2
t < —
* T 0 by
The inequality (4.45) follows from g(7*) =0. m

Theorem 39 Consider a non-negative solution of such that u$ In(1 +
|z?),us Inus € L2 (RT, LY(R?)) for i =1,2. If (64, 65) satisfies

loc

011601 < 8wy, O920s < 8Ty,

) 0.
and STHLg, | STH2g (39% + 20,0, + 293) > 0. (4.49)
(512 521 612 521
then for any real § > 0, there exists a constant Cg+ := C(J) such that
/ u (x, t) Int i (z, t)de < Cg+ + 6T, for any t € [0,T], (4.50)
R2

where 1 =1, 2.
Proof. From (4.40)) we have that
Er(t) < EY(0) + dt, for any t > 0.

Hence, we estimate the following

5 [ e (e 0)de + 52 [ e O (w3, )da
512 R2 521 R2

19
< E"(0) 4+ 6t — — ui (z, t)ui(y,t) In |z — y|dxdy
4 512 R2 xR2
1
- — ui (z, t)us(y, t) In |z — y|dxdy
47T R2 xR2
1
- uy (7, t)ui(y,t) In | — yldedy
47T R2 xR2
1 d9

- ——= us(x, t)us(y, t) In |z — yldzdy.
A7 591 oz s(, )us(y, 1) In| Yl Y

Applying the definition of " (4.39)) and (4.41) we get

&/ ui(z,t) ln*ui(a:,t)dx%—&/ uh(z, t) Int u§(x, t)de
(512 R2 R2

021
0 3 0 3
SEF(0)+5t+M1 1 Inp~t+ 2 +M2 2 Iyt + 2
512 2 521 2
Lou (o, ) (y, ) In |1 — yldd
- — ui(z, tu nlr— T
471'512 S 1 ) 1 y7 y y
1
- ui(z, t)uz(y, t) In |z — y|drdy
47T R2 xR2
1
- uy(w, t)ui(y, t) In |z — y|drdy
47T R2 xR2

- —= us(x, t)us(y, t) In |z — yldzdy.
47 01 Sz s(, )us(y, ) In | yldzdy
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In the next step, positive parameters b; and by are introduced in the following
way

&/ u (z,t) Int uf (o, t)dw + ﬂ/ uy(z,t) In" us(x, t)dr
512 R2 521 R2
0 0
< E'(0) + ot + 22 lnvflJr§ + B2 Inn*1+§
bi o S, t) paus(y, t
N 122/ N1u1<x7 ):ulul(ya ) ln|x—y|dxdy
47r,u1 (512 R2 xR2 bl b1
b1b (x,t sy, t
— 172 / Mlul(l’7 )IMQUQ(y, ) 1n|$—y|dxdy
471',&1/12 R2 xR2 bl b2
b1b s(x,t 1y, t
— 172 / [,LQUQ(Q}, )lulul(y’ ) 1n|x—y|dxdy
47'(',&1/12 R2 xR2 bg b1
b3 o 5@, t) pous(y,t
-2 = a3, ) sy, ) In|z — y|dzdy. (4.51)
47T,LL2 521 R2 xR2 bg bg

Now, we can apply to the functions “ll)—?i and “2—:5 in right side of (4.51
getting that

s

u (z,t) Int uf (z, t)dx + f2 us(z,t) Int us(x, t)d
512 R2 521 R2
0 3 7 3
< EF(O)—l—ét—l—'ul ! Innp~t+ = +”2 2 Inn '+ =) —Curs
(512 2 621 2

+/ lulul(m’ t) In (Mlul(x7t)> dx +/ MQUQ(:L‘7t) In </UJ2U/2('I’ t)) dl‘,
R2 b1 bl R2 b2 b2

where the conditions for the existence of the constant Cyrs given by Loga-
rithmic HLS inequality for systems are

81 8
01101 < 012 le) 92202 < 09y ,u27 ( )
1 2 4.52
and ST, o STHay  Oiga op g O2gey
by by 012 021

In conclusion we have proved that the conditions (4.52)) implies

1 1
T (— — —) / u§ (2, t) Int o (x, t)dx
o1z b1/ Jge

1 1
+ po <— - —) / ul(x,t) Int u§(x, t)dx
do1 b2/ Jge

g EF(O) +5T—CHLS+ (,ulel + :u292> (11177_1 4 §>

612 621 2
1161 M1 fi20s H2
1 — 1 —= 1. 4.53
" b n(bl>+ by n(b2> (4.53)

Note that each of the coefficients of the positive part of the entropy functionals
in are positive providing b; € (d12,00) and by € (091, 00). Then, we have
that [ u$In" uSdx are bounded below for i = 1,2. The Lemma gives us that
the estimate holds for the region . ]
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Boundedness of L” norm for 1 < p < oco. The purpose of this step is
to obtain estimates of the LP-norms for 1 < p < oo of the variables uf and u5
independent of the parameter ¢.

Proposition 40 Assume that uyg, us € L'(R? In(1 + ]a:|2)dx), uip In uqg, Usg
Inugy € LY(R?, dz) and (01, 0,) satisfies

51191 < 871'/14, (52292 < 87TM2,

8 8 5 5
erkﬂm@—<§M@am%+§%Q>a

and
012 021 12 21

If uyo, uso are bounded in LP(R?) for some p € (1,00),.then any solution

(u§,u§) of is bounded in L% (R*, LP(R?)).
Proof. We decompose u; as follows:
uj = (uj — K) +min{u;, K}, K> 1.

Note that the function min{u$, K} € LP(R?) is bounded in L? by K?~';.
Indeed,
/ (min{us, K} dz < Kp_l/ uidr = KP10;.
R2 R2
Then, it is enough to estimate the L” norm of (ui — K')_ . For this purpose,
we define first

M;(K) = / (uj — K)_ dx.
R2
Using the fact that uf In™ u$ is bounded in L>(R} . L'(R?)), we can estimate
M;(K) by
M;(K)

< — us InT uSde.
- an R2 ¢ '

and choose it arbitrarily small on any given time interval (0,7).
Multiplying the first equation of system 1) by (uf — K )’:1 and inte-
grating over R?, we get
1d
pdt R2

v [ (5 = KV (A0 Vs
R

M—Kﬁmzm/kﬁ_mﬁuﬁm
R2
- X12/ (u] — K)ﬁ_lv - (uf A1 Vu3)dx
R2
= m/ (v — K" AuSdz — x1; cos an/ (U — K)77'V - (i Vof ) da
R2 R2
— 11 8in 0411/ (us — K)2'V - (usV4os ) da
R2

— X12 COS alg/ (u — K)77'V - (uSVos)da
R2

5
— X128in alg/ (v — K77V - (S Vs de =: ZTZ (4.54)
R2

i=1
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Now we estimate each term in the decomposition (4.54)). First, applying the
integration by parts and gradient’s properties, we have that

1= [ V(- K- Viida
RQ
i [ V(0 ~ K - Vi - K)da
R2
Alp— D c
== [ ]9 (0 - )

Second, the identity V-V+of = 0,7 = 1,2 gradient’s properties and integration
by parts yield the vanishing of 75 + T, i.e.,

2
dz. (4.55)

T3+ 715
= —xusinay / (uf — K){fl [Vu‘i VS +usV - VLvﬂ dz
R2

— X128in 0112/ (us — K7 ! [Vui - Vs +uiV - V45ig) de
R2

i
SR 6 Lol / V(u5 — K - V+oide
p R2

_ X125inonz V(uj — K)~ - V+sde
p R?2
St it / (uf — KAV - V4 oida
p R2
4 X202 / (uf — KLV - Vivsde
p R2
— 0. (4.56)

Now we estimate the second term 75 as follows:
T2 + T4 = — / (ui — K)ﬁ_flv . (uiV (511wi + 512w§))dx
R2
= / (us — K7V - V (61w5 + d10ws) da
RZ

- / (uj — K)ﬁ_lui A (61w + d1ws) d

1
= —]—9 V(ui — K)Ij_ -V ((51111);: + (51210;) dx
]R2
- / (us — K7 s A (6w 4 810ws) da
RQ

1
= ——/ (uf — K% (— A (61w + d1pw3)) dx
RQ

+ / (Ui — K)Tlu‘i (— A ((51111)% + 51211];)) dz.
RZ
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Next, we use —A (03w + d12w5) = —AKE® * (d11u5 + d12uf) to obtain

1
Bt da= _Z_?/ (up — K) (—AKE * (d11u] + d12u3)) do
R2

+ / (u — K5 s (—AKE x (611uf + 610u5)) da
RQ
_ ; (uf — K% (—AK® * (611u] + d12u3)) do
R2
+ K | (uf — K (= AKS * (110§ + 612u5)) da.

R2

Using the fact that (—AK® x K) = K ||-AK®||;, = K, we have

T5+ Ty
—1
- pT (W€ — K (—AKE x (61 (66 — K) + 61 (45 — K))) da
R2
(P - 1) (511 + 512)

+ K [ (ui— K)idx
p R?
+K | (uf = KN (—AKE * (0 (45 — K) + 0z (uf — K))) de
R2
+ (O +612) K2 | (uf — K)Y e
R2
Then
T+ 1T,
—1
< b [ (= L (K (5 = ), -+ 05— K),))
R2
—1)(6 o
L =D 0 +0) (u — KB dx
p R2
K[ (5 = Y (0K (00 (uf = Ky + 0 (v = K), ) da
R2

+ (611 + 012) K° g (v — K" 'da.

By Young’s convolution inequality (3.91]), we get
/ (6 — KV (~OK® % (i — K), ) do
R2
< / (uf — K" da.
RQ
and

/}RQ(u‘i — K8 (—AK® * (uy — K), ) dx

1
p+1 p+1
g( / (ug—K)Tldx) ( / (ui—K)Tldx) .
R2 R2

118
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By Young’s inequality for products we have that

/R (w5~ K (~AK (05~ K). ) d

p 5 +1 1 B —+1
< m RQ(UI - K)ﬂ dzr + m o (U2 — K)i dx.
So, we obtain that
T5 + Ty
< (p—1) [011(p + 1) + d12p] / (uf — K)Tldx
p(p+1) R2

2p—1)6 2(p—1)0

+(p )0 +2(p )12K (uf — K).da
p R2
+ (01 +012) K2 [ (uf — K)5 'dx
]RQ

(p—1)d12 / +1 12
+ - u;, — K de + —K ui — K)E dx. 4.57

Lo [ = w2 [ -k, (4.57

Substituting (4.55)), (4.56) and (4.57)) into (4.54)), we get

1d . 4p—1)pu - 2
(ul—K)ﬁdavg—g/R2 V((UI_K)?Fﬁ)‘ dx

1?_ja RR? p?
(p—1) [01(p+ 1) + d12p] / 1
+ us — K dr
p(p+1) RQ( ! S
+(2p—1)511+2(p—1)512K (& — K do

p R2

+ (611 =+ 512) K2 - (Ui — K)g__ld.il?

(p - 1)512 / +1 012
+ s, — K de + —=K us — K)E dz. 4.58
p(p+ 1) RQ( 2 )+ p ]R2( 2 )+ ( )

Similarly

1d € 4(p—1),u2 € 2\ |2
5% . (U2_K)ﬁdx§_p—2/ﬂ{2 V((u2—K)ﬂ/>

(p— 1) [022(p + 1) + d21p)] / +1
us — K\ dx
pp+ 1) (TR
+(2p—1)522+2(p—1)521K (s — K. dx
p R2
+ (522 + 521) K2/ (u§ — K)Ii_ldJT

RQ

+

(p - 1)521 / +1 021
4+ — ui — KPP de + =K ut — K)fdx. 4.59
p(p+1) R2( 1 )+ D R2( 1 >+ ( )
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The expression p(4.58)+p(4.59) gives

d € €
dt ((ul_Kﬁ"”(%_K)ﬂ) dr

< —4(]9?%1)/“/ \Y ((U‘i - K)im)
(p—1)[611(p + 1) + d12p + 021] e _ P gy
+ b+ D) /R2(u1 K)7d
0=, [ o (- )
(p — 1) [622(p + 1) + do1p + 012] e _ KV
(p+1) /R2(u2 K)Jr d
+(2p— 1)1 +2(p—1) 010+ 02K | (uf — K)"da

RQ

2
dx

2
dx

_|_

+((2p =102 +2(p— 1) 0z +d12) K | (u3 — K)idx

R2

p (6 +012) K* [ (uf — K)7 'dw

RZ

p (822 + 021) K? | (u§ — K)i'da.

RQ

The term involving [p.(uf — K )2~ 'dx can be estimated as follows:

/ (u — K)7 de < / ldx +/ (u; — K)!dx
R2 K<uf<K+1 us>K+1

1
< — uidr + / (uf — K)hdx
u; >K+1

K<uf<K+1

<—+/ u; — K)B dx.
RQ

Applying Gagliardo-Nirenberg-Sobolev inequality (3.95)), we got

2
dx)

(uf = )9 ((uf - K)2?)

p+1

[ wtan < o ([ V0= 0%

vl

< KM(K) [

RQ

? +

\Y, <(u;E — K)‘i/2> ‘2 dr.

2
dx)

120
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2
where K, := C% g (1 + %) . So, we have that

% /]R (« — KV + (i — K)°) de

< <—4(p_1)u1 n Kle(K)(p—l)[511(p+1)+512p+621})/
< .

\Y ((u‘i — K)ﬁm) ’2 dx

P (p+1)

2
(e 4 KA ] / v ((u ~ K)*)| da
R2
+((2p =14 pK) 011 + (pK +2p —2) 612+ 0) K [ (u] — K)8dx
RQ
+((2p = 1+ pK) 02 + (pK +2p — 2) 0oy + 012) K | (u5 — K)idz
R2

+ pK ((011 + 612) 01 + (022 + 921) 62) .
By choosing K sufficiently large such that

4(p + 1)
pK, [011(p + 1) + 012p + 21 ’

M (K) <

and
4(p + 1)z

PK, [022(p + 1) + 0o1p + 012]
Then, for a fixed interval [0, 7] with T" arbitrarily large

d
dt o

< C1/ ((u] — K) + (u5 — K)T) dz + Cs,
RQ

My (K) <

((f —~ KV, + (5 — KL da

with
Cl — (Qp —1 —|—pK) (511 + 522 + 512 + 521) K,

and

Cy = pK ((011 + d12) 01 + (022 + d21) Oa) -
By Gronwall’s inequality (differential form) [39, p. 624], we have that

[ (5= K9+ 05 )
< oom ( /]R ((mo— KV + (g — KO i + 02T> |

So, we have that [, (uf — K)" dx,i = 1,2 is finite on [0, T] . Therefore, for any
te0,7]

65 O oo 0,77, 20 (22)
< H(uf o K)JrHLOO([O,T};LP(R?)) + [[min{ug, K}HU’"([O,T];LP(R?))

1

S er (/ ((um - K)i + (UQ() — K)ﬁ_) dx + CQT) ’ + KPTTIQE, (460)
R2

for any p € (1,00). m
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Extra Uniform estimates.

Lemma 41 Assume that 0 < uyg,ugy € L'(R?,In(1 + |z|*)dz) N L®(R?),
w0 Inuyg, Ugp Inusg € LY(R?, dx) and (64, 02) satisfies

51181 < 871'/14, (52292 < 87TM2,

STpng 4 BTy (ﬁef + 20,0, + 5293) >~ 0.
519 091 012 021

Consider a non-negative solution of such that u, u§ are bounded in L5

loc

(RT, LP(R?)),1 < p < oo. Then, with bounds independent on e, we have for all
T >0:

and

(i) The function (t,x) — ‘V (uf)p/Q‘ (z,t) is bounded in L*([0,T]; L*(R?)),
for any 1 < p < oo.

(ii) The function (t,z) — |VU5|(z,t),i = 1,2, is bounded in L>°([0,T]; L*(
R?)), for any 2 < p < oco.

(iii) The function (t,x) — }u?Aivaﬂ (z,t),4,7 = 1,2, is bounded in L*([0,

T]; L*(R?)).

(iv) The function (t,z) — uS(z,t) In(1+|z|*),i = 1,2, is bounded in L>(|0,
T], L'(R?)).

(v) The function (¢t,z) +—— ui(x,t)Inui(z,t),s = 1,2, is bounded in

L>=([0,T], L*(R?)).

(vi) The function (t,x) — Owi(x,t),i = 1,2, is bounded in L*([0,T], H'(R?
)")-

(vii) The function (t,x) +— /uf|VS|(x,t),i,j = 1,2, is bounded in
L*([0,T7] ; L*(R?)).

Proof. The proof follows the same argument of Lemma [22] with minor modi-
fications. m

Strong convergence of u;. To demonstrate the strong convergence of u;
in L%([0,T]; L*(R?)), we will once again employ the Aubin-Lions compactness
method.

Considering the embeddings

Compact Continuous
(_> %

H'(Q) L2(Q) H' ()",

where  is a bounded open set of class C*. By Lemma[23] we have that for
any (2 there exists a subsequence,still denoted by u;,7 = 1,2, such that

ui — u; in L*([0,T]; L*(Q)).

By a diagonal argument, the following uniform strong convergence holds true
that for any R > 0

us — u; in L*([0,T]; L*(Br(0))). (4.61)
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Now, to extend (4.61)) to the whole space, we observe that

r 2
/ummmwwt
) dedt < ————— / / (In(1 + uS)? dadt
//|:c|>R V/1n 1+32 R2 of ) ( )
g 3/2 2 2
<— u; In(1+ |z|")uidx dt — 0,

as R — oo and the weak semi-continuity of L*([0,7]; L?*(R?)) implies

T T
2 o 2
/0 1wl 2>y A < llgglf/o |4 122 (1> my At — 0 as R — oo.

Therefore,

r 2
Auw—wmwwt

T
< 2/0 (|’U5Hi2(|z|>}z) + HuiHiQ(\xbR) + [Juf = uiHZLQ(\x|§R)> dt — 0,
as R — 0o, — 0. So, we have that
ui — u; in L*([0,T]; L*(R?)). (4.62)
By Proposition [24] there is subsequence, still denoted by u, such that

us (t) — w;(t) in L*(R?) for a.e. on [0,7T]. (4.63)

Mass conservation. Multiplying the first equation of system (4.21]) by any
test function p(z) € C5°(R?) and integrating over [0, ) x R?

/ oui(x, t)daz—/ ouo(z)dz

// AcpdxdT+X11// V- (ujA11 Voi)dadr
R2 R2

+X12/ V- (ujA12Vs)dzdr
0 JRre

Letting ¢(x) = pgr(z) be defined as in (3.72)), we have

O*
ujApgdrdr| < 7 0T,

RQ

and

Hvu 0:T

t
/ V- (uiAijvvj)dxdT = J ||L°° ([0,T];L>° (R2))
0 JR2

03
< —=0,T,7=1,2.
_Rluj )
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Due to (4.63),passing to the limit ¢ — 0, R — oo, we obtain the mass conser-

vation property
/ uy(x, t)dr = 0.
RQ

/ ug(z, t)dx = 0s.
R2

Existence of the weak solution. Now multiplying the first equation of
system (4.21]) by any test function ¢ € C$°(R?) and integrating over [0, t) X R?,
we get the weak formulation for uf

Similarly,

/ oui(z, )dx—/ ouo(z)dz (4.64)
t
/ / Agpdde+X11/ V- (ujA11 Vi) dedr
R? 0 JRr2
+X12/ V- (ujA12V5) dedr.
0 Jr2

By following the same strategy as in Chapter 3| we can take the limit as e — 0
in equation (4.64) to establish the existence of a global weak solution for the
system (4.8)-(4.10)).

Boundedness of the second moment of the weak solution.

Lemma 42 If wuy,u € L' (R%|z|*dz), then |z]*ud,|z]*u; €
L2 (RY, LY(R?)) fori=1,2.

loc

Proof. The proof follows the same argument of Lemma [25] with minor modi-
fications. m

The energy inequality of the weak solution. Integrating (4.23) in time
from 0 to ¢ follows

&
012

X11 COS (11 X12 COS (12
- ujvide — =—— ujvsdx
2012 R2 2012 R2

X21 COS (¥a1 _ X22€OS Qg2
2521 R2 2521 ]R2

/ / ui |V (p1 Inuf — x11 cos aqqvf — XlgCOSOleUQ))] dxdt
512 R2

uilnuidqu&/ us Inusdx
021 Jg2

5 / / U5 |V (2 In U5 — a1 COS Qa0 — Yan €OS go5))|* dazdt
21 R?
= E(0) (4.65)

By following the same strategy as in Chapter |3| we can take the limit as e — 0
in equation (4.65) to derive the energy dissipation ({4.16]).



4.1. GLOBAL EXISTENCE 125

4.1.2 Proof of theorem [34

Let p > 1, multiplying the first equation of system (4.21)) by (uS)? ~! and
integrating over R?, we get

1d
pdt R2

- / (VLY - (AL V) da
RZ

R P d = g / (uS)P™" Auida
RQ

~ i [ (Y (AT ds
R

= / (u§)P™" Au§dr — x11 cos oy / (WP~ V- (U VS )da
R2 R2

(u§)P V- (5 V) de

2

— X115 (11

— T

=

(u))"' V- (u§Vs)de

2

(u§)P V- (5 V5)dr

2

— X12 COS (12

S

— X12 81N (12

5
= ZTZ
i=1

Now we estimate T applying the integration by parts and gradient’s properties
as follows

Ty=—m | V(@) Viide

R2
Q(Pp*l) 2/p
— [ V(@) T (@) s
R2
4(p—1
- He— L 7 o / @)V (@) ()Y () da

4(p—1 2
- (p 2 )Nl/ V(u@pﬂ’ dz.
p R2

By the fact that V - V1v® = 0, we have that T3 + Ty = 0. Indeed,

T3+ 15
= —xusinag / (ui)p_l [Vui AV TR VAV VLvﬂ dx
R?

— X12 Sin aqo /2 (us)P [Vui - Vo5 +uiV - Vo] de
R

sin o
— _M V (u‘i)p . Vlvi“dl’
p R2
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_ Xizsmagy sin aryp
V (u§)? - V*iusde

RQ

X11 sin vy
PV - VEoide
R2

X12 sin 0412
VPV - VEivsde
RQ

Next we estimate Ty + T} as follows:

T +Ty = _/ (W)" V- (Ui V (G115 + 1pw5))de
R2

= —/ (Ui)pil VUi -V ((511w‘i + 51221);) dz
R2

— / (u‘i)p_1 ui A (d11w] + dpw3) dx
R2
1

= —— / \V4 (ui)p -V (511’&)? + 51210;) dx
P Jr2

—/ (u])" A (011w + d1pws) d
R2

—1
- pT ()" (=0 (Gnwf + b)) dor

Therefore, we arrive at the following estimate

dt Jge

d
juy " dx

2
V(ui)p/z’ dx

Fp—1) /R (VP (= (Bryuf + Srpws)) dor

_ A1)
» M1 /R?

(=10 [ (W) (COK« ())do

~
>0

2
V ()| da

+ (p—1)d12 /]1{2 \(ui)l’ (—AK® * (ug))/dx

~~
>0
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Since 011, 012 < 0, we have that ng |u$|” dx is non-increasing and thus bounded
from above due to the assumption uyo € LP(R?). Similarly, [o, |u5|” dz is also
bounded from above. Therefore, we have that for any initial masses 6;,7 = 1, 2,

the solution (u5, u5) of (4.21) is bounded in L{°

loc

(R*, LP(R?)), forall 1 < p < oo.

Hence, under assumption (4.11]), we can pass to the limit £ — 0 by applying
the same argument described in the previous case, which allow us to conclude
the global existence of weak solution for system (4.8))-(4.10]).
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4.2 Finite time blow-up for radially symmetric
solutions

Our purpose in this section is to derive sharp conditions on the initial masses
for having blow-up for system -. We follows the ideas for the mul-
tispecies case with rotational flux terms introduced in Chapter [3] The key
remark is the lemma [27] which enables the proof of the possibility of having
blow-up for radially symmetric solutions, leaving the question for non-radial
case open.

Proposition 43 (Local existence) Given uyo,usy € L'(R?), then there ex-
ists a mazimal time Ty > 0 of existence of a positive classic solution

(uy,uz) to the system @— . Moreover, the masses [guy(-,t)dz and

Jgo u2(+, t)dx remain constants in time.

Proof. The proof follows the same argument of Proposition with minor
modifications. m

Theorem 44 Let us denote by 0; with i = 1,2 the total initial masses define
by (4.19). Consider a weak solution (u1,us) of system (4.8)-(4.10) and let
[0, Thnax) be the corresponding mazximal interval of existence. Assume that the
mitial data uig, usg satisfy , radially symmetric, uig, uz € L'(R?, (1 +
|z|*)dz) and Xijs Qij, Qij, © = 1,2, satisfy . If 61 and 0y satisfy any of the
inequalities

51161 > 871'/,61, or (522(92 > 87'('/,62, (466)
. 8 8 4] )
Mg+ 22, (39% 420,10, + 293) <0, (4.67)
612 521 512 521

then Thax < +00.
Proof. Let us first assume that 0, and 0 satisfy . We re-write the
equation for u; in the form
Oyu; = i Ay — xi1 cosan V- (u; Vo) — Xio cos aV - (u; Vug)
— Xi1 sin ail(Vui . VJ_Ul) — Xi2 sin aig(Vui . VJ_UQ).
After Lemma[27, the last terms vanishes, thus
Ou; = i Au; — X cos a V- (u; Vuy) — iz cos @V - (u; Vug). (4.68)

Multiplying by |z|* and integrating, we get
d
dt Jge

= ,LLZ/ |I|2 Auldx — Xi1 COS Oéil/ |LL’|2 V- (UZVU1>dI
R2 R2

|2 |? uidx

— Xi2 COS (2 2>V - (u;Vvg)dx:
RQ
= 4p;0; + 241 cOs o / x - (u;Voy)dz
RZ

+ 2)(12 COS (49 / X - (quvg)dx (469)

]RQ
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Using the representation of Vuv;,i = 1,2, we obtain
d
dt Jge
= 410,

COS x —
_ u/ (—g)ul(x t)(arui(y,t) + argus(y, t))dyda
™ R2 xR2 |m - ?J|

CoSs Z-(xr—
_ X12€085 a2 / —( g)ul(x, t)(ax1ui (y, t) + asgus(y,t))dydr. (4.70)
T R2xR2 |95 - y|

|z uyda

Stmilarly
4

dt Jgr

= 4120,

COS (v X —
_ u/ (—g)%(l’ t)(anru (y, t) + arpus(y, t))dyda
™ R2 xR2 \!IJ - y\

COS (v X - \Tr—
X2z 22 / ( ;U) ug(x, t)(ag1ur (y, t) + axus(y, t))dydz. (4.71)
T R2xR2 |$ - ?J|

|2|? usdx
2

The expression 6 ([4 7Q)+ (f4 7][) gives

d (2 27
Rl (el |:v| wdr + — |x]2 ugdx
621

dt (512
8”#1 87 fua
= 0 7
P
z-(x—vy) o1
-2 - 2 ul(wat)UQ(:% )+—u1(.1' t)ul(y> ) dyda:
R2xR2 |T — Y| 012
o — 5
—2 T el ) + s sty ) duds
RIxR2 [T — | 021
87t 8 puo
= 0 0
b N oy
X -\Tr —
o [ T e ) + (e, 1) dyd
R2xR2 |T — Y|
26 . _
2 | LD, (a, tny, By
O Jpewre o~y
% [ ey

9z, yuny, t)dyda
021 Jr2xpz |7 —y|
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The symmetry in the variables x and y in the last integrals implies

d (2m
— dr + — d
o (512 . 2% uy x+ / |2]? uy :1:)

8711 8T 12
— 6 0
512 ! * 521 ?
r—y) (T —
_/ @9 @29 ) (2 sy, ) + wa(a, Bun (3, 1)) dyd
R2 xR2 |z =yl
0 —J) -\
_3/ 2-y) (132 y)ul(%t)ul(y’t)dydx
012 Jr2xR2 |z =y
) — Yy
021 Jr2xR2 [z =y
87 1y 87 fia 011 po 022 6o
_ P 0, — 07 + 20,0 ‘9 .
51y * o1 (512 TR o1

Let the second moment m(t) with respect to the origin for the whole population,

defined by

2
m(t) = i |a:] uld:c—l——/ || updz.
o2
fhus d 8 8 ) 022
T T2 11 52
—m(t) = 0, + 0y — 07 + 20,0 202 .
dtm( ) 512 521 (51 * bz + 521 )
Integrating on (0,t), we obtain that
m(t) = m(0) + (87”“01 MLV (5”92 20,6, + 2262 >) t o (4.72)
012 921 012 Oy1 2

The inequality implies now that m(t) should become negative in finite
time which is impossible since uy and us are non-negative and d19,091 > 0. In
conclusion Ty < 00. We proceed now to show that each of the inequalities in
.60) imply Tyax < 00. In this case, we defined the second moment m;(t) with
respect to the origin for each variable

m;(t) = g |2 |? ui(z, t)da.

as well as the cumulative mass M;(r,t)
M;(r,t) ::/ wi(z, t)dr = 27r/ wi(p,t)pdp.
B(0,r) 0
By we have that

d

Emz(t) = 4p;0; + 241 cOS (i / x - (u;Voy)de (4.73)
R2

+ 242 COS Oéig/ x - (u; Vug)dz.

RQ

In polar coordinates

1 d dv; .
—Avj = < ar ) = a;1U1 + ajoUz, ] = 1,2
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Thus
d/U T T
T’d—] = —aj1/ uy(p, t)pdp — sz/ us(p,t)pdp
r 0 0
S uy(x, t)dr — 452 us(x, t)dz
21 JBo.r) 21 J (o)
= — BN () — D2 M t), 5 = 1,2, (4.74)
2m 2
Moreover x -V f = 7’3—{“, then
Xij COS al’j/ x - (w;Vuj)de (4.75)
R2
400 duv.
= 2mX;; COS aij/ uipdip]pdp,i,j =1,2.
0

Combining and , we get

Xi1 COS (41 / x - (u; Vuy)dz + x4z cos 017;2/ x - (u; Vug)dz
R2 R2

“+o00 “+o00

= —0n i My(r, t)ui(p, t) pdp — b2 i My(r, t)ui(p, t) pdp

< =0y Om M;(r, t)ui(p, t)pdp = —% Om Midé\ﬁidp

_ —i—ii Om d%Mfdp = —%93, (4.76)
since 11, 020 > 0. Replacing (4.76]) in (4.75), we obtain

%mi(t) < dyi6; — S—Z@? = 4y1,6; (1 - 8fw 9i> i=1,2. (4.77)

Therefore, we have Ty.e < 00 when
51191 > 87T,ui,2' =1,2.

For the sake of simplicity, we have just performed a formal proof. However,
this argument can be made rigorous by taking in the weak formulation the test
function |z or(x) € C°(R?), where pg(x) is defined as in , which grows
to |z|> as R — co. Then, we can pass to the limit using Lemmal|27 and the fact
that A(|z]? pr(x)) remains bounded and V(|z|* pr(x)) is Lipschitz continuous.
|

4.3 Discussion

We would like to summarize in this section the biological interpretation of
the results given in sections two and three in the context of paracrine and
autocrine signalling loops when cells are surrounded by a rotational flux. Thus,
we recall that its dynamics is described by the mathematical model given by
the equations —. In this case the statement of Theorem [29| simplifies
to state that
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1. if « € (—m/2,7/2) and (01, 05) satisfies

8w
61 < ¢’
a11X11 COS &
and
8w & a
Mg 4 Hz__ g, ( UXitgo 29102) >0,
22X 12 COS «x a11X21 COS X a22X12
or else,

2. if v € (—m,—7/2] U [n/2, 7] then Tp.x = 0.

We intepret this last result as conditions that guarantee that there is no
cell aggregation. When compared with the results in reference [28]), we notice
that this result show that the rotational flux not only can delay a blow-up but
avoid it.

On the other hand, Theorem [29|item 2, implies that in case any of the inequal-
ities

8
g, > (4.78)
@11X11COS ¥
or . <
LN Ul R - (“”Xllef +29192) <0, (4.79)
Q22X 12 COS Y a11X21 COS ¥ a22X12

the blow-up is possible when o € (—7/2,7/2). We interpret this result as
conditions predicting a possible CTCs clusters and risk of metastasis. In par-
ticular, the inequality (4.79) implies that even if

8
g, < T

a11X11 COS XY

still is possible to have blow-up. This results suggest also that macrophages
can induce cell aggregation though the total mass of CTCs is small.



Chapter 5

Blow-up of solutions to the
two-dimensional Keller-Segel
model with tensorial flux

Abstract

In this chapter, we aim to demonstrate the possibility of having solu-
tions blowing up in finite time when subjected to a tensorial flux of the
form Awv, where A represents an arbitrary 2 x 2 matrix with constant
components satisfying Tr(A), det(A) > 0, through the design of a new
technique. Unlike most current publications in the literature that im-
pose conditions on ||A||, we delve into the structure of the matrix A by
decomposing it into its polar form. This entails a fundamental use of of
the factorization A = PU where P is a positive semidefinite matrix and
U is an orthogonal matrix. This novel application of the polar decom-
position is combined with the analysis of the evolution of the quantity
Jg2 w(z, t) (2" Bz)dx for a well-chosen matrix B. This approach presents
a novel modification of the method known in the literature as the ”sec-
ond moment technique for proving blow-up,” where the key quantity is
Jge u(z, t)|z[*dz. Lastly, we emphasize that our blow-up result encom-
passes, as particular cases, sharp results known for A = I, or A being
a rotational matrix. Additionally, our research provides novel blow-up
results, including instances when A is a positive definite matrix and
when matrices are neither positive definite nor rotational, such as shear
matrices. The research discussed in this chapter has been submitted
for publication and is currently under review at the time of this thesis
submission.

As mentioned previously, Chemotaxis is an intriguing biological phe-
nomenon that plays a crucial role in enabling the aggregation and distribution
of various species. It is a process that involves the movement of cells or organ-
isms towards a chemical gradient, which is a concentration of molecules that
stimulates the cells or organisms to move in a particular direction. Chemotaxis
is an essential mechanism in many biological processes, including the immune
response, wound healing, and embryonic development. It is also a critical fac-
tor in the behavior of microorganisms, such as bacteria, which use chemotaxis

132
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to locate nutrients and avoid toxins. Thus, the study of chemotaxis is essen-
tial to understanding the behavior and interactions of living organisms at the
molecular level. This process involves the movement of organisms in response
to a concentration gradient of chemicals. The model developed by Keller and
Segel is widely recognized as a seminal contribution to the field of chemotaxis.
It provides a mathematical framework for understanding the mechanisms un-
derlying this complex biological process(e.g [52]). This model can be simplified
by

ur = Au— xV - (uVv),

evy = Av — v+ u, (5-1)

where u(z,t) denotes the density and v(z,t) the chemical concentration at
a given point x and time ¢. It is known for the case ¢ = 0 that in a two-
dimensional domain setting the condition on the initial data fR2 updx < 8/x
implies the existence of global solutions meanwhile when fRQ uy > 8m/x the
blow-up of solutions in finite time is possible (e.g. [19]).

An interesting variation of model arise when taking into account that
chemotactic migration in certain situations, are not necessarily parallel to the
gradient of the signal. A key example is given by the dynamics of a type of
bacteria known as peritrichously flagellated when swimming close to surfaces
(e.g. [31, 192, 93]). In this case the evolution of the density of bacteria is
describe by

ur = Au—V - (vA(z,u,v)Vv),

where the symbol A(x, u,v) represents a 2 x 2 matrix. Several results of global
existence and asymptotic behavior have been proved for this kind of models
with tensorial chemotaxis during the last decade, see for instance [38, 87,
94] and the references therein. However, the possibility of having solutions
blowing-up in finite time remains unclear when the chemoattractant is being
produced by the cells itself. A first achievement in this direction, was reported
for the parabolic-elliptic model

uy = Au— xV - (uA Vo), 2 € R? t >0
—Av =u

A, = ( cosa —sina )
sina cosa
denotes a rotation matrix with constant components. It was shown that blow-
up of the solution in finite time is possible if and only if a € (—n/2,7/2)
and the initial data satisfies [ uodz > 87 /(x cosa). We refer the interested

reader to [38] for details when working on the whole space and [94] for the
corresponding analysis over on a bounded domain.

~—~
ot

where

In this chapter, we aim to prove the possibility of having solutions blowing-
up in a finite time for system

du = Au — xV - (uAVv), re€R%t >0,
—Av=u, v(z,t) = —5= [log|z —ylu(y,t)dy = € R ¢>0, (5.4)
ulz,0) = () > 0, v e R,
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where A := (a;;)i =12 € M2(R) represents a 2 x 2 matrix with constant com-
ponents satisfying Tr(A),det(A) > 0. Two interesting examples of matrices
satisfying these hypothesis are the set of positive-definite matrices and the
set of rotation matrices with angle o € (—n/2,7/2). We also provide in the
next section some examples of the possibility of having blow-up of solutions
when the matrix A is neither orthogonal nor positive-definite. Our technique
to prove blow-up is based on the polar decomposition of the matrix A and in
a generalization of the well-known second moments technique, where instead
of considering the evolution in time of the integral [u |2|? dx, we analyze the
evolution of the quantity [, u(z” Bx)dx for some well chosen matrix B with
constant components. Unlike the classical system with A = I, our criterion
for deciding if a solution is blowing-up, will depend not only on the L'—norm
of the initial datum and the integrability of the function x — (z7 Br)u(z,t)
but also on

1. the determinant of A, denoted by det A,
2. the trace of A, denoted by T'r(A), and

3. the trace Tr(v AAT), where AT represents the transpose of the matrix
A.

Here the symbol vV AAT stands for the positive-definite square root of the
matrix AAT, whose existence and uniqueness is well-known in mathematics
(cf. [74, Corollary 7.3.3]).

We summarize the main results of this chapter as follows.

Theorem 45 Assume that the initial data ug satisfies 0 < ug € BUC(R?*) N
LY(R?), x > 0 is a constant and A := (a;;)i j=12 s an arbitrary matriz 2 x 2
with constant components. Then, there exists a maximal time Tha.e > 0 of
existence of a unique non-negative classical solution

u € C° ([0, Thax) s BUC(R?)) N C? ([0, Tinax) : LH(R?)) N C™ (R? x (0, Tinax)) ,

to the system . Moreover, the quantity |[u(-,t)|| 1 (ge) remains constant in
time.
Let us define 0 = fRQ updx. Then, we have

1. (Global existence) for small enough mass 0, the system has global-
in-time solution, i.e., Tax = +00,

2. (Blow-up) if Tr(A),det(A) > 0, ug |z|> € L'(R?), and

4 (Tr ((AAT)'/2))"

0> T (A) det(A)

then T < +00.
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Corollary 46 (Positive-definite matriz case) Consider a non-negative
classical solution u of with initial data ug > 0 satisfying ug ]x\2 € L'(R?),
and A € My(R) is a 2 x 2 positive-definite matriz (symmetric). Let [0, Tiax)
be the maximal interval of existence and \; > 0,1 = 1,2, the eigenvalues of A.
If 0 satisfies the condition

47 /1 1Y\  dr Tr(A)
0> (5 %) = Ya 55

then, Thax < +00.

5.1 Local existence, regularity, uniqueness,
mass conservation and non-negativity for
arbitrary matrices

Proposition 47 Let A € My(R), and suppose that the initial data vy €
BUC(R ?) NL'(R?) is non-negative. Then, there exist Tyax € (0,+00] and
a non-negative

u € C° ([0, Tonax) ; BUC(R?)) 1 C ([0, Truax) 3 L' (R?)) N1 C (R? X (0, Trna)) -
such that writing v(-,t) = K(z)*u(-,t),t € (0, Tinax) , with K(z) :== —5- In|z|,z
€ R?\{0}. we obtain v € C* (R? X (0, Trax)) ,

Vv € L5, ([0, Thax) ; L (R% R?))

loc

and that (u,v) forms a classical solution of in R? x (0, Tax) - We also
have the next extensibility criterion,
if Tinax < +00, then both limsup, 7, [[u(:,€)]| o ge) = 00,
and limsup, 7, |[|Vo(, 1)) oo me) = +00.

This solution is uniquely determined in the sense that if T' € (0, Tax) , and if
(w,0) is a classical solution of in RZX (0, Thax) fulfillingu € C°([0,T); BU
C(R*) NC ([0, T]; L*(R?*)) N C*!' (R? x (0,T)) and v € C*Y (R? x (0,T)) as
well as Vv € L™ (R? x (0,T);R?), then u = u in R? x (0,T). Moreover,

/ u(z, t)de = / updx for all t € (0, Tiax) - (5.6)
]R2 ]R2

Proof. See [87, Proposition 1.1.]. =

5.2 Blow-up for the case Tr(A), det(A) >0

Theorem 48 (Blow-up) Consider a non-negative classical solution u of sys-
tem with non-negative initial data ug € BUC(R?) N L' (R?) and uq |z|* €
LY (R?). Suppose also that A is a 2 x 2 matriz with constant components satisfy-
ing Tr(A),det(A) > 0. Let [0, Thax) be the mazimal interval of local existence
of the solution guaranteed by Proposition[{7. If 0 satisfies the condition

g i (rr((an) =) ) (5.7)

X Tr(A)det(A) ’

then, Thax < +00.
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Proof. We start by decomposing the matrix A into the polar form
A= PU, (5.8)

where P = (p;j)ij=12 = (AAT)l/ % is positive-semidefinite and U is orthogonal
(cf. [T4, Corollary 7.3.3.]). The hypothesis det(A) > 0 readily implies that
P is positive-definite and det(U) = 1. More precisely, we deduce that the
orthogonal matrix U is a rotation matrix, thus it can be written in the form

[ cosa —sina
sina cosa

) , where a € (—m, 7.

On the other hand, the symmetry of the matrix P gives p;2 = po; and hence-
forth the trace of the matrix A satisfies

Tr(A)=Tr(PU)

_ T P11 COSQ + prosSina  —pyq Sin o + pig COS @
P21 COS & + Pog SIN v —Pa7 SIN (v + Pag COS ¢

= cos a(pi1 + p22)
= cosaI'r(P).

It follows that
Tr(A)

> U,
Tr(P)

and therefore, we can assume without loss of generality that o € (—7/2,7/2).

cos o =

We now proceed to generalize the second moment blow-up technique (cf.
[15]). With this end in mind, we multiply first the equation for the cell density
u by the quadratic form (z - Br)¢gr(z) € C°(R?), where B is a positive-
definite matrix to be chosen later and ¢g(x) is defined as in (3.72)), which
grows to x - Bx as R — oo. Next, we integrate the product to obtain

@ | u(z,t) (x - Bx) pr(z)dx

= /R2 (x - Bx) pr(x)Audr — X/ (x - Bx) or(z)V - (uPUVv) dz.

RQ
Integration by parts gives then

a
dt o

= /}R2 A ((z - Bz) pr(x)) udz + X/ V ((z - Bz) ¢r(x)) (uPUVY) dz.

RQ

u(z,t) (x - Br) pr(z)de
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We write explicitly the convolution V(K * u) to get
d
— | u(x,t) (z- Bx)pg(z)d
dt R2
= / A((z - Bx)pg(x))udx+x [ V((x-Bzx)pgr(x)) - (PUV(K xu)) udz
R? R?
= / A ((z - Bx) pr(x)) udx
R2
-1 Tz —

v<u-waR@»-PU(——

21 Jr2 |z —y

su(y, t)dy) u(x, t)dz

R2

:/Amnmmﬂ»wx

/ / ( (x - Bx) pgr(x)) - PUL%u(x,t)u(y, t)dy) dzdy. (5.9)
R? JR? |z =yl
We interchange x and y in the last integral to obtain
r—Y
//( x&wm»w——wmwmmﬁm
R2 JR? |z — 9
Tr—1Y
((y - By) ¢r(y)) - PU——5u(z, t)uly, t)dy | d,
R? JR2 |z =y

which in turn implies

/RQ /R( (x - Bx) pg()) - PUﬁu(m,t}u(y,t)dy) dzdy

- [V (2 Be)pr(2)) =V ((y-By)er(y))]-PU(z—y)
T2 /RzXRz ( jo—yl? “(%t)u(y,t)dy) dx

Thus, the identity (5.9)) reduces to
/ (x - Bz) pr(z)dx
Q/ (v Bx) gn(x)) ulz, t)dz

[V((z-Bxz)pr(@)—V((y-By)er(v))]-PU(z—y)
dn R2sz< oo ule,t)uly, t)dy) dz. (5.10)

Because A ((z - Bx) pgr(x)) remains bounded and V ((x - Bx) pg(x)) is Lips-
chitz continuous, we have that the two terms in the right-side of are bounded.
Then, as R — oo, we can pass to the limit using the Lebesgue monotone
convergence theorem with u € L'(R?) in the integral version of and

thus
/ u(m-Bm)dx—/ uo (z - Br)dz
R? R2

/ A (z - Bx) udzdr

R2
/ / [Ve-Ba) =V Uw-Bu)PUGE=8) o, (1 )y, t)dydadr.
R2 xR2 ‘x ul* ’ |
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We notice that the symmetry of the matrix B gives the formula V (z - Bx) =
2Bx, and therefore

/RQu(x-Bx)dx—/ uo (z - Bx) dx

R2
t
:// A (z - Bx) udzxdr
0 Jr2

¢ B(x—vu): P .
- l/ / o U2(x y)u(a:,t)u(y’ t)dydzxdr.
2m Jo Jrouwe |z —y]

Using the symmetry of the matrix B, we notice that

B(z—y) PU(x—y)

u(z, t)u(y, t)dydx

2
o) |z —y|
x—vy) BPU (x —vy
= / ( )|a: — |2( )u(x,t)u(y,t)dyda:.
R2 xR?2 Y

In consequence, we choose B = P! to simplify the subsequent calculations.
Then we get

/ U (:L‘ . P’lzr;) dr — / Ug (:c . P’lx) dx
R2 R2

t
= / / A (m . P_lx) udxdT

0 JRr2

t o B
_l// (z —y) U(f; y)u(%t)U(y,t)dydxdT,
2m Jo Jroxwe |z —y|

A simple computations also provide A (z - P~lz) = 27r(P~!) = 2208) s

det(P) ’
we get

/R2u(:c-P_1:U) d:zc—/ uo (- P~') do

RQ

- EZ(S]DD)) /0 t /R udrdr

t . ) B
— l/ / (x —y) U(;U y)u<x,t)u(y,t)dydxd7,
2m Jo Jroswe |z =yl

which can further be simplified using the mass conservation property (5.6]) to
obtain

/RQU (z- P 'z) dx—/ uo (z- P~'z) da

RQ

2Tr(P) (*
= dxd
det(P) /0 /Rz Hodrar
t _— . —
X / (r=v) U(f y)u(x,t)u(y,t)dydxdT
R2xR2

_%0

lz =y
_ 2Tr(P) x/t/ (—-y)- Uz —y)
N det(P) ot 21 0 JRZxR2 ‘Qf _ y‘Q U(:L‘, t)u<y7 t)dydllde
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We now proceed to show that the orthogonality of matrix U allows for a
significant reduction of the integral

/0 /Rz R2 - ?Ti _Uy(lf - y)u(x ,Huly, t)dydzdr.

To proceed with, we notice that for any x € R?,

[ cosa —sina 9
x ) x = |z|" cos a,
sina cos

and subsequently

/Rzu(IJDIx) d _/ wo (2 P') du

R2
2Tr(P) Xcosa/t/
= ot — t t)dydzdr.
det(P) 21 Jo Jrexwe u(z, huly, t)dydzdr

Using once again the mass conservation property, we arrive at the identity

/RQU(I-P_Ix) dx—/ uo (2 P') de

R2
_ 2Tr(P) xcosa o (2Tr(P) xcosa
B det(P)e 21 ot="0 det(P) 2 o)t

Thus
/R2 u(z,t) (z- P~'z) dz (5.11)

_ /R u(z,0) (z- P~'z) du + 0 <2d€f(<]f)> - XCQC;SO‘Q) t.

It follows from the hypothesis on the initial mass that the right hand
side of will become negative a finite amount of time. On the other
hand, the integral on the left hand side of remains always positive due
the nonnegativity of the variable u and the positive definiteness of the matrix
P!, This contradiction implies T < 00. W

Example 49 (Rotation matrix) Let us consider the case
A::(cgsa —sina)
sina cosa

with o € (—w/2,m/2). Then Theorem [4§ guarantees that the solutions of sys-
tem with initial data uy satisfying

(T ((aamy?))
/R? to(w)de > 4;< TE(A) det(A)>> - Xfosoz7

will blow-up in a finite time. Notice that result coincides with the criterion of
blow-up given in reference [38].
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Example 50 (Horizontal shear matrix) Let us consider the matrix

1 m
=0 7)

which is known in fluid dynamics as the horizontal shear matrixz with shear
factor m. We notice that for m # 0, this matriz is neither positive definite nor
orthogonal. However, in this case Tr(A) = 2,det(A) = 1 > 0, which implies
that Theorem [{§ applies. In this case

s (1 m\ (1 0\ [(m’+1 m
AA_(O 1><m 1)_(m 1)’

which has as eigenvalues Ay = %m\/m2 +4 + %mQ + 1 and My = %mz —
smv/m? + 4 + 1. It readily follows that
Tr(vVAAT)
= VA1 + VA
\/2m2 +442/m2(m?+4) + \/2m2 +4—2y/m?(m?+4)
- 2

Theorem [{8 guarantees that the condition

2
9>%(\/2m2+4+2 m2(m2+4)+\/2m2+4—2 m2(m2+4)>,

(5.12)
implies the corresponding solution u of system blow-up in finite time. We
notice in particular that for the case m = 0, we recover the well-known result
of blow-up of solutions for the parabolic-elliptic Keller-Segel model (cf. [15])
getting that blow-up is feasible when 6 > 8w /.

5.3 Global existence for small initial mass

Lemma 51 Let A := (a;j)ij=12 € M(R) and p € (1,00), one can find §(p) >
0 with the property that if 0 < §(p), and if uy € BUC(R?) N L'(R?) is non-
negative, then there exists C' = C(p,ug) > 0 such that for the solution (u,v)
of , as obtained in Pmposition we have

lu(z, )P de < C for all t € (0, Tipax) -

]RQ

Proof. In a manner analogous to the approach in [87, p. 6], we select a
smooth function ¢(® € C*°(R) with the following properties: 0 < ¢(® < 1 on
R, ¢© =1 on (—00,0), and supp (¥ C (—o0,1). For R > 1, we define

Cr(x) = C9(z| = R), zeR"
ensuring that (g € C§°(R™) with the conditions

0<(r<1lonR" (g=1in Bg, andsupp(r C Bpryi,
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where Br = Bgr(0) C R" denotes the ball of radius R > 1 centered at the
origin. Additionally, defining K¢ := [|[¢| zo®) + n[|¢| 1 ®), We observe
that

\V(r| + |ACr| < K¢ on R for all R > 1. (5.13)

To facilitate forthcoming estimations, we initiate by computing:

x | GuP'V - (uAVv)dx
R2

X/ V(GuP™h) - (uAVY)dx
R2

X/ (QCRVCRup_l + (p— 1)(12%up_2Vu) - (uAVv)dz
R2

X/ (QCRVCRUP +(p— l)gf%up*qu) - (AVv)dx
R2

-1
X / (2chgRup + %g;vw) - (AVv)dx
R2
-1
= X/ 2CrRV(gu? - (AVv)dx + pTx/ CRVuP - (AVv)dx
R2 R2
-1
= X/ 2CrV(gu® - (AVv)dx — p—x CGuPV - (AVv)dx
R2 R2

p
p—1
— QTX CrRV(ru? - (AVv)dx
]RQ

=2x(1 — I%l)/ 2(rV(gu? - (AVv)dzx — ]%X (RuPV - (AVv)dx
2}? CRV P - (AVV)da — —x / PV - (AV)da. (5.14)

Next, we multiply the equation for the cell density u in system (5.4) by p(ZuP~!,
integrate by parts, and apply identity ([5.14)) to obtain

g CRupd:U—l—p —1) / CGuP~2|Vul*dx

=—2p CruP™'Vu - V(pdx
RQ
2x » p—1 2
+ > CruPV (g - (AVv)dx — TX (puPV - (AVv)dz. (5.15)
R2 R2

for all ¢ € (0, Thax) - To estimate the first term on the right-hand side (5.15)),
we utilize Young s inequality and (5.13) in the form

— 2p/ CruP~'Vu - V(pdx (5.16)

2 K2
< p—/ ChuP™ 2]Vu]2d$+ b C/ uPdr  for all t € (0, Thnax) -
Bry1\Br

To estimate the second term on the right-hand side in (5.15)), we first notice
that

o(T) = sup [[Vo(, )| ooz
te(0,T)
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is finite for each T" € (0, Tyyax) due to Proposition . Hence

X vy - (AVo)de < 2AALAT)

/ uPdz  for all t € (0,7).
P Jr2 p Br1\Br

(5.17)
The last term in ((5.15]) is estimate as follows:

]R2
(p—1)x 2. p+l (p—1)x 2 +1
S d D V- (AVV)|PT d
| RQCRU x+p(p—|—1) R2<R| ( U)’ r
—1 —1) AP
< (p )X/ wdr + (p ) |A] X/ |D21)‘p+1 de.
p+1l Jre p(p+1) R2

Now, we apply the Calderén—Zygmund inequality (See for instance [45], Section
6.4.2.]) to obtain a constant ¢; such that

p+1
‘Dzv| dr < ¢ [ vz,
R2 R2

thus
-1
p—x CGRuPV - (AVv)dx
p R2
- (p—l)X/ g P DA x01/ ey
T opt+1l Jge plp+1) R?
—1 AP+1
= (= Dx (p—i—] | Cl)/ Pt da. (5.18)
pp+1) R?

To estimate fR2 uPT!, we utilize the classical Gagliardo-Nirenberg-Sobolev in-
equality: For 1 < ¢ < n, it holds

Jwllee < e2 |Vl for all w e WH(R).

1
q

2
/ w?dr < ¢ < Vuwl dx) .
R? R2

Taking uP™! = w? yields
2
dx)

/ uPtdr < 3 </
R2

R2
2 2
=c (p_—i— 1) ( |u1/2V (up/Z) ‘ dm)
RQ

where ¢y is a constant and ¢* is given by qi* == — % In particular for ¢ = 1,

n = 2, we obtain

ptl
Vu 2

D

2
<c (1 + %) 0 ‘V (up/Q) ‘2 dzx. (5.19)
R2
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In conclude from (5.18]) and ([5.19)

p—1

TX . CRuPV - (AVv)dw (5.20)
-1 AP+1
L P=Dx(+]A C)g 1+ /|V ()|} d.
p(p+1)

In summary, the differential inequality,- 5.16]) together with the estimates
(5.17) and (5.20)), imply that for 7" € (0, Trax)

(Rupdx+p —1) / CruP 2| Vul*dx

dt
2pK?
gp—/ CruP 2| Vul? dx—l— P g/ uPdx
1 Br+1\Br
2yK: |Al c
AT [,
p Bry1\Br
y =Xt A ) (1+—> o[ |V @?) da.
p(p+1) p R2
Equivalently, using the identity [, (ZuP?|Vu|*dx = %fRQ &) |Vup/2|2 dr,
d
7 : CruPdx

_ P,
+<p—1—(p UX}E?;F';X)' )CéNS <1+ ) )/ (h ‘Vupﬂ‘ dx

KZ  o2xK.|A|e(T
g(p<+X<| | < ))/ P
p—1 p Bri1\Br

(p—Dx (p+|A|pHCl) 2 1\ 2 p/2\ |2
’ p(p+1) “ <1+5) Q/RQ(l Cr) |V (w?)]" da.

Taking 6 small enough to satisfy

-1 AP+1 1 2
o x(erlA Cl)c§<1+—) 0> 0,
p(p+1) p

we derive
d K2  ovK/|A|e(T

C}Qz uPdx <(p ¢+ XK |Ale uPdz
dt p—1 Br+1\Br

)
p
. 0 0x (s AP %) 2 (1+ %)29/@1 )|V () da.

p(p+1)

so that

C 2uPdx

KZ  2xK(|A
/ CpuP(z,0) + (p + X C’ | >// uPdxdr
R? 1 Bri1\Br

X AP e )3(1+) // (1- )|V ()] dadr.

p(p+1)
(5.21)
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since wP(z.t) < \u|Loo g2y u(,t) for all (z,1) € R? x (0,T), we conclude by
dominated convergence

t
/ / uPdxdr — 0 as R — oo for all t € (0, 7). (5.22)
Br11\Br

On the other hand, Beppo Levi’s theorem implies

/ ¢k ‘V(u”m)‘ da:dT/‘/ |V (u”’?) } dxdr, (5.23)

0

and
CuP(z,t)dz 2 | uP(z,t)dz, (5.24)
R2 R?
for all t € (0,7).From the estimate (5.21]), together with the limits ([5.22])-
(15.24]), we conclude

/ uP(z,t)dx < / uP(z,0)dz, for all t € (0,7).
R2

RQ

Since T' € (0, Tax) Was arbitrary, this establishes the claim. =

Theorem 52 (Global existence) Let A = (aij)ij=12 € M2(R). Then,
there exists 0 > 0 with the property that if 6 < 0, for any non-negative
uy € BUC(R?) N LY(R?), the solution (u,v) of is global and bounded;
that is, in Proposition [{7 we have Ty.x = 400, and there exists C > 0 such
that

[, )| oo ey < C for all t > 0.

Proof. The proof follows straightforward from Lemma and [87, Lemma
4.2], starting at the inequality (4.10) of that paper. m



Chapter 6

Blow-up of solutions to the
Keller-Segel model with
tensorial flux in high dimensions

Abstract

In recent years, there has been a notable upsurge in the examination
of Keller-Segel models incorporating tensorial flux. Despite this interest,
the question of whether finite-time blowup solutions exist remains a topic
of ongoing research. In this chapter, we provide evidence that solutions
of this nature are indeed possible in dimensions n > 3, when utilizing
a tensorial flux expressed in the form of Av, where A denotes a matrix
with constant components. The research discussed in this chapter has
been accepted for publication in the journal Applied Mathematics Letters
(Volume 154, August 2024, 109090) under the title: Blow-up of solutions
to the Keller—Segel model with tensorial flux in high dimensions.

As introduced in the previous chapter, there has been a significant level
of interest in the analysis of Keller-Segel models incorporating tensorial flux
over the past decade. Despite this interest, the question of whether finite-time
blowup solutions exist remains a topic of ongoing research. In chapter 5] we
aimed to demonstrate the possibility of finite-time blowup solutions in the
two-dimensional Keller-Segel model when having a tensorial flux of the form
AVwv, where A represents an arbitrary 2 X 2 matrix with constant components
satisfying Tr(A) and det(A) both being greater than zero. Building on this,
our objective in this chapter is to provide compelling evidence that such solu-
tions are indeed possible in higher dimensions, when utilizing a tensorial flux
expressed as AVwv, where A represents a matrix with constant components and
satisfies quite general conditions.

Specifically, we aim to prove the possibility of having solutions blowing-up
in a finite time for system

Ou = Au — xV - (uAVv), reR"t>0,
2—n n
u(z,0) = ug(x) >0, x e R",

145
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where A := (aij)ij=1..n € M,(R) represents a nonsingular n x n matrix

.....

-1
with constant components satisfying =7 ((AAT)l/ 2) Az > 0 for all non-

zero x € R"™. Here the symbol vV AAT stands for the positive-definite square
root of the matrix AAT, whose existence and uniqueness is well-established
in mathematics (c.f. [74, Corollary 7.3.3]). Examples of matrices satisfying
this hypothesis include the set of positive-definite matrices and, in the three-
dimensional case, orthogonal matrices of the form

cosae —sina 0
A= | sina cosa 0 |,
0 0 1

where a € (—7/2,7/2). Our approach to proving blow-up involves decompos-
ing matrix A into its polar components and employing a modified version of
the second moments technique. In contrast to the nontensorial Keller-Segel
model, where the evolution of [, u(z,t) |z|? d is fundamental, we reveal that
the tensorial attraction makes [p, u(z,t)(z" Bx)dz crucial, where the matrix
B, with constant component, is meticulously chosen to yield the desired out-
come of blow-up.

6.1 Local existence, regularity, uniqueness,
mass conservation and non-negativity for
arbitrary matrices

Proposition 53 Letn > 3 and A € M, (R), and suppose that the initial data
ug € BUC(R™) N LY(R™) is non-negative. Then, there exist Trax € (0, +00]
and a non-negative

u € C° ([0, Tinax) ; BUC(R™)) N C? ([0, Topax) ; L' (R™)) N C™ (R x (0, Thnax)) »

such that writing v(-,t) = K(z) * u(-,t),t € (0,Tnax), with K(x) =

m |z]>™" x € R™\{0}. we obtain v € C® (R X (0, Tnax)), Vv €

L2 ([0, Thax) ; L (R™;R™)), and that (u,v) forms a classical solution of

loc
in R™ X (0, Thnax) - We also have the next extensibility criterion,

if Tinax < +00, then both limsup, 7, [[u(- )| oo @n) = +00
and limsup,_,7. [[Vou(-,1))

| ooy = F00.

This solution is uniquely determined in the sense that if T € (0,Tyax),
and if (u,v) is a classical solution of in R™ x (0, Tmax) fulfilling
u e C°0,T]; BUC (R"))nC°([0,T]; L*(R™)) N C%* (R™ x (0,T)) and v €
C*"(R" x (0,7)) as well as Vo € L>*(R" x (0,T);R"), then u = u in
R™ x (0,T). Moreover,

/ u(z, t)dr = / updx =: M for allt € (0, Tax) - (6.2)

Proof. See [87, Proposition 1.1.]. =
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6.2 Blow-up

Our methodology to establish blow-up in high dimensions hinges upon the tech-
nique proposed in Chapter |5| for the analysis of blow-up for two-dimensional
Keller-Segel type systems with tensorial flux. This methodology can be out-
lined in two key steps: firstly, leveraging the polar decomposition of the tensor
A and secondly, examining the evolution of the quantity [ u(2” Bx)dx using a
strategically chosen matrix B with constant components.

Theorem 54 (Blow-up) Given n > 3, consider a non-negative classical so-
lution u of system with non-negative initial data ug € BUC(R™)NL'(R")
and ug |z|> € L*(R™). Suppose also that A € M,(R) is a nonsingular matriz
with constant components satisfying

x’ ((AAT)1/2> - Ax > 0 for all non-zero x € R™. (6.3)

Let [0, Thax) be the mazimal interval of local existence of the solution guaranteed
by Proposition . If the integral mg := fRn Ug |:1c|2 dx is small enough compared
to the mass M, more precisely, if for a constant Cg, := C(A, x,n) >0

/ o | dar < Cog M2, (6.4)

then Thax < +00.

Proof. To facilitate the presentation, we conduct a formal calculation of the
evolution of moments, assuming the solution u is suitably regular and decay
sufficiently fast at infinity. We start by decomposing the nonsingular matrix
A into the polar form A = PU, where P = (p;;)i j=1n := (AAT)1/2 is positive-
definite and U := P~'A is orthogonal (cf. [74, Corollary 7.3.3.]). Next, we
proceed to modify the second-moment blow-up technique by multiplying the
equation for the cell density u by the quadratic form z - Bx, where B is a
positive definite matrix to be determined. Integrating the product, we obtain

d
dt Jon

u(:r;-Bx)da::/ (x-Bx)Audx—X/ (- Bx)V - (uPUVv)dz.

n n

Integration by parts leads to

d
dt Jon

u(x-Bx)da::/ A(x-Bx)udx—i—X/ V (z - Bz) (uPUVv) dx.

n n

Considering the symmetry of the matrix B, the formula V (z - Bx) = 2Bx
holds, and therefore

d
dt Jan

u(x'B:L‘)dx:/ A(m-Bw)udw—Fx/ 2Bz - (uPUVv) dx.

n n

Utilizing again the symmetry of the matrix B, the last integral can be rewritten
as

/ 2Bz - (uPUVv)dr = 2/ z - (BPUVv)udx.

n
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Consequently, we choose B = P! to simplify the subsequent calculations.
This leads to

% u(z- P 'z)de = / A (z- P 'z) ude + 2x/ z - (UVv)udz.
R’VL n

Direct computations yield A (x - P~lz) = 2Tr(P~!). Thus

d

i (- P7'z)de =2Tr(P") / udx + 2x/ - (UV(K *xu))udz.
R n n

This expression can be further simplified using the mass conservation property

(6.2) to obtain

d
— | u(z-P'z)de=2Tr(P) /
dt Jgn

n n

updx + 2x/ - (UV(K *xu))udz
=2Tr(P~YM + 2x/ - (UV(K *xu))udz.

We now proceed to show that the orthogonality of matrix U allows for a
significant reduction of the integral [, z-(uUV (K % u)) dx. First, we explicitly
write the convolution V (K x u) to get

4
dt Jg

= 2Tr(PYM + 2></ z - (UV(K *u)) udx

U (a: . P_la:) dx

n

=2Tr(P~ )M—|—2x/ x - U( |B?11 0] Lo |;__yy| (y,t)dy) u(z, t)dz
=2Tr(P~ )M — |Bl I /n /n < — | u(z, t)u (y,t)dy) dxdy.
(6.5)

We interchange x and y in the last integral to obtain

/n /n (az‘ . Uﬁu(m,t}u(g,t)dy) dzdy

T —y
=— y-U nux,tuy,tdy)da:,
L[ (v o=t ut
which implies

// (x U\x_ ol u(z, t)u (?J>t)dy)dxdy

- /R o ((m _y). Uﬁu(w,t}u(g, t)dy) da.

Thus, the identity (6.5)) reduces to
d
dt Jp

= r(P! X __ Tr—1y)- uuw U xX.
=21 = e [ (=0 Vet )

U (x . P’lx) dz
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Next, we observe that since U is an orthogonal matrix, there is an orthogonal
matrix () and a block diagonal matrix D such that

Ry

Ry,

QUQT =D = (6.6)

Ap

where all the R; represent a 2 x 2 rotation matrix (cf. [74, Corollary 2.5.14.
(c)]), that is a matrix of the form

R; = ( cosay T sInay ) , where a; € (—m, 7],
sino;  cosa,

and each \; can take solely the values 1 or —1. Moreover, the hypothesis that

0<a” ((aa7)"?

implies that \; = 1,7 = 1,...,p, and cosa; > 0,5 = 1,..., k. Therefore, for

any r € R",

1
Ax = 2T P~' Az = 27Uz for all non-zero x € R", readily

#Us = QD = (@0)"D(Qe) = (@) (3 (D+ D7) ) (@)

CoS (1
COS (1 0

COS (v,

(Qz)

Cos v,

0

1

777777777

-----

and subsequently

d
— U (:L‘ . P’lx) dx
N xmin;—y _g{cosa;, 1} 1
< 2Tr(P~YM — I ————u(x, t)u(y, t)dyds.
n|Bi(0)| RoxRe [T — Y| 2

To simplify the last inequality, we invoke a result from [I2, Lemma 3.2.], which

states that for any nonnegative function f € L'(R™, (1 + |z|*)dz), the mo-

ment m = [, f(z)|v|*dr, the mass M = [, f(v)dz and the integral J :=

Jan g F@) F(y) |2 — y|*" dydz, satisty the inequality M3+ < J(2m)3~L.
Therefore

1 . .
/ —————u(z, t)u(y, t)dyde > M2+! (2/ u|z|? dw) . (6.7)
R” xR"” |x - y‘ n

|3
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and the functions w(t) := [u(z,t) (x - P~'2)dz and m(t) := [u(z,t)|z|*dz
satisfy

d g, 202X ming—q 1-2
Zw(t) < 2Tr(PTHM ~ wTB(0)] (m(t)) 2. (6.8)

Let us denote the minimum and maximum eigenvalues of P~ by Apin and Apax,
respectively. A standard result (cf. [74, Theorem 4.2.2.]) asserts Amm |z|* <
2T P12 < Apax |x|2 for all x € R, yielding Apinm(t) < w(t) < Apaxm(t) for
all t > 0, and

d D € L1 1LY 5-1 1-3
Jw(t) < 2Tr(PTHM~ B0 (Amin) 2 (w(t)) 2 .

This reads as the differential inequality

2 d n n
Zow?<orr(P Y Mzt - A= )2t
par < 2P Muw: 7 |B1(0)] (Amin)

=: f(w). (6.10)

We now introduce the condition on the initial data f(w(0)) < 0. Since f
is an increasing function of w, the condition f(w(0)) < 0 implies that the
right-hand side of is always negative and bounded away from zero. We
conclude that the right hand side is always negative and bounded away from
zero. This leads to the conclusion that the function w decreases and assumes
negative values in a finite time, contradicting the existence of a global in time
nonnegative solution. Finally, observing the inequality w(t) < Apaxm(t), we
obtain

1] n 2175y minj_; _p{cosa;, 1} M3+ n_y
< 2T (P ) MAdaxm 3~ — . = Amin) 2
flw) < 2Tr(P)MAEm e (i)

=: h(m).

Hence the condition on the initial moment h(m(0))) < 0 or equivalently

_2

9 2'=2ymin;_;_p{cosa;, 1} o\ n
[ atw.0)fof e < e
n 2Tr(P~Y)Adaxn | B1(0)]

implies that T, < co. m

Remark 55 For all M > 0 (even arbitrarily small), there exists an initial
data ug with mass M such that the condition 1s satisfied. Indeed, it
is sufficient to consider non-negative, smooth, compactly supported data ug
with mass M and second moment my. By rescaling it with € ™uyg (f) for a

sufficiently small € > 0 (specifically, £* < %}, the desired condition is

achieved. In other words, blow-up is still possible for arbitrarily small initial
mass, which contrasts with the two-dimensional case (see Chapter[5).
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6.3 Global existence

Theorem 56 (Global existence) Let A := (a;j)ij=1,.n € M,(R) be a ma-
triz with constant components. Then, there exists § > 0 with the property that
if lluoll,z < 6, for any non-negative ug € BUC(R™) N L'(R™), the solution
u of the system (-) 1s global and for some constant C' > 0, we have that
[, )| oo (rny < € for all t > 0.

Proof. By multiplying the equation for v by u?~! and integrating over R",
we derive

1d

p dt Rn

_ A1) 2 P - XD [ AV da
i /Rn\v( )| d 5 / (V- AVv)dz.

ju(z, )| dx

Applying Holder’s inequality, we find
[ (V- AVO)|| 1 gy

< HuHLp+1 R™) “V AvaLwrl R") < HUHLMI(Rn) Z ‘aij’ Hain*uHLpH(Rn)

i,j=1,n

< Nl foss oy 1Al Y 105Kl g,

i,j=1,n

Now, we recall the following Calder6n—Zygmund inequality (See for instance

[45, Section 6.4.2.]): For all g € LI(R"™), there exist a constant ng? =
C(gq,n),1 < g < oo, such that

105K * gll paggny < CEZ NGl oy 625 = 1,2, (6.11)
Taking g = u and ¢ = p + 1, we deduce
(p+1,n) 1
[u? (V- AVO) | 11 gy < 411 Ao CEF™ Nl oy

This leads to

1 d
— )P d
oy L o de
4
S _5/ ‘V(UP/Q)‘ d$+4X||A||max CI?;Il n)/ Up+1dl’. (612)
R

Applying the Gagliardo-Nirenberg-Sobolev inequality, we obtain that for any
pSpHlss

p 2
U2 2n

/n e < lul g el = lull g 2],

< Céws llull 3 /Rn v (Up/2)|2d$- (6.13)
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Combining (6.12)) and (6.13)), we get for any p > max{1,5 — 1}

1 d
(p—1)dt Jg

(4X ||A||max CZI

|u(z, t)[" dx

n——)/;hadem (6.14)

Notice  that for p = 5 in  (6.14), the inequality

4x | A]l C"Z/?H’")CéNSHuOHL% — & < 0 implies that [lul|,3 decreases

max n

for t € (0, Thax) - As a consequence the condition

fuoll 5 < ——— i —— 1 3(p.m)
Ugll, 2 < min - ) n =:0{p,n),
L% = X Al e s nCly2 i potertn)

for p > max{1,% — 1} implies that the function [, |u(x,)|” dz decreases for
t € (0, Thax) -

We fix any ¢ > n, and let 0 := 6(¢,n). Then, assuming that |lul|,z <, we
obtain from that there exists ¢; > 0 such that

(-, )| gageny < €1 for all ¢ € (0, Trnax). (6.15)

We recall now the following L? — L? estimates of heat semigroup e'®. For any
1 < g <p < oo, there holds

1€ £l gy < (4TG0 (1] g (6.16)
|V e F|), g < CF 35 (5-9) 1) o) (6.17)

where C' = C(p,q,n) is a constant depending only on p,q and n. These in-
equalities are a consequences of Young’s inequality for the convolution (For
example, see [45] Subsection 4.1.2. p. 145]).

Let us define

N(T) := sup ||u(-,t)||Loo(Rn), for T' € (0, Thnax)-
te(0,7)

Using the Duhamel integral equation, we get

u(t) = et =%y (t) — x /t V- =98 (u(s) AVu(s)) ds,

to

{t—L ift > 1,
t():

with

0, ifo<t<l.
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By (6.16)) and (6.17]), we have that
[z, ) oo gy

< He(t_tO)Au(tO)”Lw(Rn) Ty

/tt V - =92 (u(s)AVu(s)) ds

Lo (R™)

< (4m(t —t0)) ™ [[ulto)ll pageeny

t 1 n
+o / (t — )75 3 |||u(s) AV0(S) | o gy s

to

< (4w (t — to))%‘? Hu(t0>HLq(Rn)

t
_1_n
+Cz||A||mX/(t—s) 2720 ()| gy [[VO(S) | Lo ey s,

to

for all ¢ € (0, 7). Notice that for any v > 0, we have that

|Vo(z,s)|
= |VK(x) x u(z, s)|
-1 rT—y

= Fuly, s dy‘
B Jan e =g )

1 / u(y, s) / u(y, s) )
< —=— — o gdy + ——dy
n|B1(0)] ( le—y|<vy |z — 9| ! [z —y|>v lz —y| '

< ||U(I,S)||L00(Rn) / |Z|1fn dz + 71_71 ”U(ZL’, S)HLl(R")
— nBO)] S n|By(0)]
1-n
v M
= 7 lu(@, $)| ooy + n B0 (6.18)

Therefore, from ((6.15]) and (6.18))

[[w(@, )| Lo

< ¢ (4m) 2

’yl_nM t 1 n
+ 109 ||A N(T)4+ ——— /t—s_f?qu, 6.19
Al (30 + T ) [ (6.19)

for all t € (0, 7). Note that

t t—to
_1l1_n _1l_n
/(t—s) 2 'Mds:/ T 2 Zdr
to 0
—_z_n

(6.20)

Taking
2qcics || All

qg—n 2’

1

max’y — _
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we conclude from ([6.19) and (6.20)) that there exists a constant

1-n
-_n M
C3 = 01(471') 24 + C1Co ||A||max m > 0,

such that

N(T) < =N(T) + ¢3 for all T < Trpax,

N | —

and hence
||u(,t>||Loo(Rn) < 203 for all t € (O, Tmax) ’

as T € (0, Thax) was arbitrary. Taking into account the extensibility criterion
in Preposition 53], the last inequality implies the global existence. m

Remark 57 Applying the inequality that compares the Lz -norm, the mass M,
and the second moment mg of a non-negative function uy (See [11, Remark

2.6]):

n—2

M 2
luoll, 3 > Cul (%) , (6.21)

0

where C, = C'(n) is a constant depending only on n, we find that the condition

in Theorem |54| implies:
luoll5 > Cu(Clm) ="

Conversely, the smallness assumption on |lug||,z in Theorem |56 implies:

2
C’I’L n—2 n
mgy > (T) Mn-z,

which shows the compatibility of both results.



Chapter 7

Remarks on Keller-Segel models
describing Cell Aggregation
with Obstacle Interference

Abstract

In this chapter, we investigate the effects of topographical obstacles
during chemotaxis. Our approach involves modifying the Keller-Segel
model by incorporating a spatially dependent coefficient of chemotaxis.
Through our analysis, we demonstrate that this coefficient plays a cru-
cial role in preventing blow-up phenomena in cell concentration. The
research discussed in this chapter has been submitted for publication
and is currently under review at the time of this thesis submission.

Directed, single-cell migration is driven by external guidance cues, such
as chemical, electrical, temperature, stiffness, and topographical gradients (cf.
[277, 221, 30, [7T], [72), 56]). Natural cell environments often exhibit several such
cues simultaneously. In the human body, processes occurring in multicue envi-
ronments include immune response, cancer metastasis, and tissue regeneration.
As of yet, it is unclear how external guidance cues relate to each other for var-
ious cell types and environments. Cells may ignore certain stimuli in favor
of other cues or different cues might add up in affecting cell movement. In
particular, contemporary research has illuminated the intricate relationship
between chemotaxis and topography, shedding light on the influence of topo-
graphical cues on cellular chemotactic responses. Investigations have unveiled
that the impact of topographical cues persists throughout cellular chemotaxis,
with studies indicating that the topographical cue conserves its significance,
contributing to the overall chemotactic effect (cf. [90]).

In this chapter, we focus on conditions that predict or prevent cell aggre-
gation when obstacles interfere during the process. To this end, we propose to
study the Keller-Segel-type model in a bounded domain €2 C R™ given by:

9u(z,t) = div [Vu(z,t) — x(z)u(z,t)Vo(z,t)], t >0,z € Q,
—Av(z,t) = u(x,t),v(z,t) = (K, xu)(z,t), t>0,x€Q, (7.1)
(

x), x € (.
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Here K, is the fundamental solution of the n-dimensional Laplacian,
namely, K,(z) = |z[°™" /(on(n — 2)),2 € R,z # 0, n > 3, where o, is
the area of the unit sphere S"* and Ky(z) = —5-log|z|,x € R?, z # 0.

This model is complemented by the nonlinear no-flux condition:

WL (w20 g, (72)

where n denotes the outward unit normal vector to the C1*¢ (¢ > 0) bound-
ary 0€2. Here, u represents the cell density, v denotes the chemoattractant,
and y(z) represents the chemical response influenced by a topographical cue.

The initial-boundary value problem is supplemented with the initial con-
dition:

u(z,0) = ug(x) > 0. (7.3)

The moment and mass be defined by m(t) := [wu(x,t)|z|*dz and M :=
Juodz = [ u(x,t)dx

For any arbitrary bounded smooth domains in R? or in R?, the local-in-time
existence of solutions in L?(€2) can be deduced from the proof provided in The-
orem 1 of the reference [7]. Although this Theorem specifically addresses the
scenario where () is constant, its existence argument seemslessly extends to
our situation by assuming x(z) € L>(2). This argument relies on a standard
application of the Schauder fixed-point theorem within an appropriate space
of vector-valued functions in L*((2).

Definition 58 (Weak solution) In the context of the problem (7.1)-(7.5)
defined on Q x (0,T), weak H* () solutions are understood as functions u €
L>((0,T); L3(R2)) N L2 ((0,T); HY(Q)) which satisfy, for every test function
ne HY(Q x (0,T)) and for a.e. t € (0,T), the integral identity

/Q (e, (e, t)dz— /0 t /Q i+ /0 t /Q (Vuty (2)uVv)- Vi — /Q wo(z)(x, 0)dz.

Moreover, we require that for a.e. t € (0,T),v(-,t) is a weak solution of
with
ve  HY(Q) with v=K,*u.

Theorem 59 (Local Existence) Let Q) be a bounded domain in R™ with a
boundary of class C'*¢, where e > 0.

(i) For dimension n = 2 or n = 3, and initial data 0 < ug € L*(QY), there
exists T = T (|ug|,) such that the problem (7.1)-(7.3) admits a unique
weak solution v € L= ((0,T); L*()) N L2 ((0,T); HY(Q)). Additionally,
u, € L2((0,7); H (), u(z,t) > 0 for almost every x € Q and t > 0,
and [, u(z, t)de = [, uo(x)dx.

(i1) For dimensionn > 2 and 0 < uy € LP(2) with p > n/2, there exists T =
T (p, \uo\p> > 0 and a weak solution u such that uw € L> ((0,7"); LP(Q2))
and uP/? € L2 ((0,T); HY()).
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These solutions are unique when p > n, and reqular when p > n/2 in the
sense that u € LS. ((0,T); L>(£2)).

Proof. The proof follows the same argument of [7, Theorem 1, Proposition 1]
with minor modifications. m

loc

7.1 The role of topography during cell aggre-
gation

The results in this section are motivated by the restriction to the case when
x(z) is a radially increasing function, which are functions x : R? — R satisfying

x(x) = x(y) i |z| > y|. (7.4)
This type of function can be constructed by selecting an increasing function f :

R — RT and defining y(z) := f(|x|2) Specific examples are x(x) = IL‘LF

and x(z) = arctan |z|* 4 1.

Graphically, a 2D radially increasing function y(z) := f(|z|*) would appear
as a bowl-shaped surface that is rotationally symmetric around the z-axis.
Thus, the contour lines on the surface are concentric circles.

We call Q2 a star-shaped domain if there exists xg € R™ such that

(x —x9) - v >0 for all x € 09,
where v is the unit outward normal to 02 at z, cf. [73].

Theorem 60 (Blow-up in dimension two) Let Q C R? be a star-shaped
domain respect to 0 € Q and x : R? — R* be a positive smooth function that
increases radially; that is, satisfying the monotonicity condz’tion . If the

initial data satisfies fQ updr =: M > 0), then the system (|7. does not
have global solutions.

Proof. To simplify, we provide a formal argument demonstrating that the
second moment [, u|z|* dx becomes negative in a finite amount of time. The
computations below can be justified by writing the integral version of the
corresponding differential inequalities.

First, we observe that the cell-density u satisfies:

d
dt

:—2/9Vu-xdx+2/$'(UX(x)VU(?*u))dx

Q

1 or—
:—2/ u(a:-y)d:v+4/udas+2/as-ux(x)/ x—2udydx
0 Q Q 21 |z — y|

Since (2 is a star-shaped domain respecto 0, we have x - v > 0 on 0f2, thus
d 9 -1 z—y
pr u|:v| d:c<4/guda:‘+2/gx~ux(m)/ o ]x—yPUdydx

=4 uda:+2/a:‘u :1:/ udy dx
/sz 0 0 X() 27T|5L’—y|2 Yy

:4]\/[—1[.
s

u\x!Q dx
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Next, we interchange x and y in the integral I to get
1 T —1y
=5 [ (vt outy)
2 Jaxa |z —y]

d 1
U\Xl2 dz = 4M — —/ [x(z)z — x(y)y] -

and hence,

P u(z, t)u(y, t)dydz.

A main difficulty arising at this point lies in estimating the last integral. To
address this, we observe that
r—y
|z —y|? |z —y|?

2[x(z)r — x(y)y] -

which can be strainghforward verified by expanding and comparing the ex-
pressions arising on each side of the equivalent identity

2x(w)z—xWyl- (x —y) = (x(@) + x®) |& =y + (|2 = [y*) [x(2) = x@)]-
Next, we apply the monoticity property ([7.4)) to obtain

r— 1 1

pa— 2 5x(@) + 5x(y) 2 x(0),

x(z)z — x(y)y] -

leading to the key estimate

d u|m|2 dx < 4M — x(0) / u(z, t)u(y, t)dydx
dt 2T QOxO
_ - X0 e
2T

Considering the assumption x(0) > 0, we conclude that the second moment
becomes negative in a finite amount of time if

S
x(0)’

which is absurd since u remains nonnegative. m

M >

Theorem 61 (Blow-up in dimension n > 3) Let Q C R"™ be a star-shaped
domain with respect to 0 € ) and p a constant satisfying 2 < p < n. For
p = n, assume that the initial data satisfies fQ updr =: M > 2";", and for
2 < p < n assume that

2 X N )
n—p+ n—p
/Quo |z|” dx < (2(P+”)/2an) M .

Then the system

8tu—Au—XV (\:U]p_ qu) x €N t>0,
—Av =u, v(x,t) = fQ )z -yl "dy, ©eQt>0,
(xO)—uo()ZO x €€,

does not have global solutions.
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Proof. We apply the moments’ technique follows.
wlz)? de = —Q/Qx - Vudz + 2x/§293 (|2 uVo) da

< / udzx + 2)(/ (|x|p_2 uV (K, *u)) dx

=t [t = 2 [l (/r = ”y)dx

:4M—2—X/ (w? z yy w(, )uly, )dy)dw

On Jaxa |_|

dt

We interchange x and y in the integral I to get

1 _ T—y
I———/ <y y[P 2 —1U x,tuy,tdy) dx.
2 Jaxa v [z =yl (@ Huly )

Thus

d _
|x| de < 4M—U—/ (|x!p_2x‘ — |y’p_2 y)%u

x, t)u(y, t)dydz.
dt OxQ |z =y (@ Duly. )

Using the inequality (cf. [68])
(]x\p_Q x — [yl"~ y) - (x—y) > 2P|z —y|",

for all z,y € R, and p > 2, we get

d 227Py pen
pr wl|z|? de < 4M — |z — y[" " u(x, t)u(y, t)dydz. (7.5)
On  Jax

We consider separately now two cases: p = n and 2 < p < n. Firstly, when
p = n, we obtain from ([7.5])

22—n
d wlz)® de < 4AM — X/ u(z, t)u(y, t)dydz

dt On QxQ
22—n
—4M - =X (7.6)
o

Then, we conclude that we have blow-up if 4 < 22~y M /o, or equivalently

2"0,
o

M >

For 2 < p < n, using Lemma [62| (See [I2, Lemma 3.2.]), we estimate the last
integral as

/ o =y "~ t)uly, t)dyde = M2 (2m(r)) P2
QxQ
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Thus, we get

2— n)/2
92—(p+n)/ XM2+(n—p)/2 (m(t))(pfn)/z

and we let f(m(0)) < 0, or equivalently

2/(n—p)
X (n—p+2)/(n—p) _. (n—p+2)/(n—p)
m(0) < <2<p+”>/20n) M = CM . (7.7)

Taking into account that the condition ([7.7) implies that m(t) is decreasing
for t small enough and the fact that f is an increasing function of m, we
conclude that the right hand side is always negative and bounded away from
f(m(0)) < 0. It follows from that m(t) will become negative a finite
amount of time. On the other hand, m(t) remains always positive due the
nonnegativity of the variable u. This contradiction implies Ti,,x < c0. ®

Lemma 62 Let for a density 0 < u € L'(R", (1 + |z|*)dz) the moment and
mass be defined by m = [u(z) |z|*dz and M = [wu(z)dz, respectively. Then
for the integral

= [ ule)uty) o -y dyd
R xR™
with p < n, the inequality
N2+ (n=p)/2 <J (2m>("*P)/2 : (7.8)
holds

Proof. Using the Holder inequality, we have that

M?* = / u(z)u(y)dzdy

R xR"”
-
<| [ wtwuts)le -y sy
e
e
[ uwutw) o -y dody
e
—
= [ wruto) (o + 1o~ 20 y) dndy et
S
N 1tz .
< (ZMm—Q/ zu(x)dx ) yi==h

which implies (7.8)). =
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7.2 Global existence for the case yx(z) x \g;\”_Q

Throughout this section, we assume that
Q={zeR" |z|<L},n=2,3,4,5...,0< L < oc.

We discuss in this section the global existence of radially symmetric densi-
ties u(x,t) = u(|z|,t) in the ball B(0, R) C R™. satisfying the system

du = Au—\V - (|z|" > uVv), ze€Q,t>0,
—Av = u, x € Q,t>0,
Gu — Jv =, z €00, t>0,

u(z,0) = ug(x) > 0, x € Q.

The following proposition and lemmas are shown for solutions to the case
when y(z) remains constants for every x in [63]. However, by using a similar
argument as the one in [63], we can show the following lemma for solutions to

(7.9). Hence, here we omit the proofs.

(7.9)

Proposition 63 . The system has the unique classical solution u in
Q x (0, Thax). Moreover, u is positive in Q X (0, Tiax)-

Then, the maximal existence time T},., of the classical solution is positive
or infinite.

Lemma 64 Let u be a solution to . If Thax < 00, then u satisfies that

lim [u, ) = oo.

max

Lemma 65 Let u be a solution to and uy € LY () N L>(2). Suppose
that

sup ||Vou(+,t)|le < o00.
0<t<Tmax

Then it holds that

sup  |u(-, t)|leo < 0.
0<t<Tmax

We assume that ug is radial and that €2 is a bounded open ball.

Theorem 66 Let Q = {z €R"| |z|<L},0 < L < oco,n > 2 and uy €
LY(Q) N L>(QY). Assume that [, updr < 2”% then, the solution u to

exists globally in time and satisfies supisol|u(-, )|/ < 00.

Proof. We define the cumulative mass M (r, t)

M(r,t) ::/ u(zx, t)dr = an/ u(p,t)p™ tdp.
B(0,r) 0

It is follows that M (r,t) satisfies

My = M,, — (n—1)r*M, + xo, 'r*MM,, 0<r<L,0<t<Tha,
M(0,£) = 0, M(L,#) = 6, 0<t< T,
M(r,0) = o, [, uo(p)p"'dp, 0<r<L.
(7.10)
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Next, consider the following ODE
0=M, —(n—1)r M, + xo,'r*MM,,
Then
0= /Tpﬂppdp —(n—1) /Tﬁpdﬁ xo, /TWpdp
0 0 0
=M, — M — (n—1)M + x (20,) " i
=M, —nM + x (20,,)"" M.
or equivalently

dM — —
re—=nl —x (20,) " M* =M (n—x(20,)"' M) .

Separation of variables leads to

M( ) 2no,, kr" - 2no,
)=
x 1+krm X

where k is the constant of integration. We note that k can be choosen suffi-
ciently large such that

0 < M(L) and M(r,0) < Cr" < M(r) for 0 <r < L,
where C' = n"'o,, ||ug||;~ . By the comparison theorem
M(r,t) < M(r) for 0 <r < L,0 <t < Thax
Consequently,
\Vou(z,t)| = [0,0(r,t)| = o, ' ™" M(r,t)

< O_;lrlan(,r) < 2no,  kr < 2nankL.
x 1+ krm? X

From this, Lemmas [64] and [65] we get this theorem. m
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