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Abstract

The Bayesian classification framework has been widely used in many fields, but the co-

variance matrix is usually difficult to estimate reliably. To alleviate the problem, many

naive Bayes (NB) approaches with good performance have been developed. However,

the assumption of conditional independence between attributes in NB rarely holds in

reality. Various attribute-weighting schemes have been developed to address this prob-

lem. Among them, class-specific attribute weighted naive Bayes (CAWNB) has recently

achieved good performance by using classification feedback to optimize the attribute

weights of each class. However, the derived model may be over-fitted to the training

dataset, especially when the dataset is insufficient to train a model with good general-

ization performance. Moreover, the Bayesian classification framework often relies on the

discretization method to handle the various data types. Existing discretization methods

often target maximizing the discriminant power of discretized data, while overlooking

the fact that the primary target of data discretization in classification is to improve the

generalization performance. As a result, the data tend to be over-split into many small

bins since the data without discretization retain the maximal discriminant information.

In this thesis, we exploit the data intrinsic by using data reduction and transformation

methods. In Chapter 3, we propose a regularization technique to improve the generaliza-

tion capability of naive Bayes classifier, which could well balance the trade-off between

discrimination power and generalization capability. We boost the discriminant power of

naive Bayes by developing a semi-supervised discretization framework with an adaptive

discriminative selection criterion in Chapter 4. Besides, a well-designed discretization

scheme using a Max-Relevancy-Min-Divergence (MRmD) criterion is introduced to bet-

ter balance the generalization ability and discrimination power of subsequent classifiers
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discussed in Chapter 5. To reduce the data noise and alleviate the weakness in cap-

turing the feature correlation, a feature augmentation framework employing the stacked

autoencoder is proposed in Chapter 6. These contributions are discussed in detail as

follows.

Firstly, we propose a regularization technique to improve the generalization capability

of naive Bayes classifier, which could well balance the trade-off between discrimination

power and generalization capability. More specifically, by introducing the regularization

term, the proposed method, namely regularized naive Bayes (RNB), could well capture

the data characteristics when the dataset is large, and exhibit good generalization per-

formance when the dataset is small. RNB is compared with the state-of-the-art naive

Bayes methods. Experiments on 33 machine-learning benchmark datasets demonstrate

that RNB outperforms other NB methods significantly.

Secondly, we design a semi-supervised adaptive discriminative discretization (SADD)

scheme to address the significant information loss in previous discretization methods

and improve the performance of naive Bayes classifiers. To make full use of labeled and

unlabeled data, the pseudo-labeling technique is utilized to compute the pseudo labels

for unlabeled data. Then, an adaptive discriminative selection criterion is proposed to

further reduce the information loss and the resulting discretization scheme could achieve

a better trade-off between generalization ability and discrimination power. Experimental

results on 31 machine-learning datasets validate the effectiveness of the proposed SADD.

Thirdly, we propose a Max-Dependency-Min-Divergence (MDmD) criterion that max-

imizes both the discriminant information and generalization ability of the discretized

data, and hence the performance of NB classifier can be improved. More specifically,

the Max-Dependency criterion maximizes the statistical dependency between the dis-

cretized data and the classification variable while the Min-Divergence criterion explic-

itly minimizes the JS-divergence between the training data and the validation data for a

given discretization scheme. The proposed MRmD is compared with the state-of-the-art

discretization algorithms under the naive Bayes classification framework on 45 machine-

learning benchmark datasets. It significantly outperforms all the compared methods on

most of the datasets.
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Fourthly, we enhance the discriminant power of NB classifiers by a stack auto-encoder

that consists of two auto-encoders for different purposes. The first encoder shrinks the

initial features to derive a compact feature representation in order to remove the noise

and redundant information. The second encoder boosts the discriminant power of the

features by expanding them into a higher-dimensional space so that different classes of

samples could be better separated in the higher-dimensional space. By integrating with

the state-of-the-art NB method, regularized naive Bayes (FAR-NB), the discrimination

power of the model is greatly enhanced. The proposed FAR-NB is compared with the

state-of-the-art NB classifiers and achieves a superior classification performance.

The contributions of this thesis are summarized as follows:

• We propose a regularized naive Bayes classifier to automatically balance the gen-

eralization ability and discrimination power by optimizing the attribute weights.

• We propose a semi-supervised adaptive discriminative discretization scheme to

reduce the significant information loss in state-of-the-art naive Bayes classifiers.

• We propose to boost the performance of NB classifier from a discretization per-

spective, using a Max-Relevancy-Min-Divergence discretization scheme.

• We propose a feature augmentation method to enhance the discrimination power

of NB classifier employing stack autoencoder to explore the data intrinsic residing

in the original space.
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discretization (MRmD-NB) and Feature Augmented naïve Bayes (FA-NB).132
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Chapter 1

Introduction

This thesis focuses on improving the naive Bayes classification framework through fea-

ture weighting, data discretization and data augmentation methods. The motivations

of our research are explained in Section 1.1. The major contributions of this thesis

are summarized in Section 1.2. Finally, the organization of this work is described in

Section 1.3.

1.1 Motivation

The Bayesian rule is widely used in classification, clustering and regression for building

probabilistic models. The Bayesian approach provides a flexible and theoretical way

to measure the uncertainty in various applications including natural language process-

ing [1], computer vision [2] and bioinformatics [3]. In classification tasks, Bayesian clas-

sification provides a probabilistic framework that explicitly represents uncertainty and

facilitates the integration of prior knowledge [4]. This characteristic enhances the capac-

ity for making well-informed and robust classification decisions, particularly in contexts

where training data is scarce. Furthermore, Bayesian classifiers exhibit capability in ad-

dressing scenarios characterized by imbalanced class distributions or missing data due to

their probabilistic formulation. Despite its advantages, the Bayesian learning approach

can be computationally expensive while dealing with high-dimensional data. Besides,

it’s difficult to reliably estimate the joint probability due to the curse of dimensionality.

1
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Hence, naive Bayes has been developed to alleviate this problem by assuming that the

features are independent of each other. Naive Bayes is a simple and efficient machine-

learning algorithm widely applied in text classification [5], malware detection [6], and

recommendation systems [7]. Besides, naive Bayes could handle both continuous and

categorical features. For continuous features, naive Bayes often assumes that the values

of each feature given class variable follow the Gaussian distribution. Hence, the mean

and variance are utilized to estimate the likelihood probability of the data. For cate-

gorical features, the likelihood probability of each category given the class variable is

estimated by calculating the frequency of the data.

Compared with other traditional learning algorithms and deep learning-based methods,

naive Bayes could achieve competitively higher performance with real-time efficiency [8].

Besides, naive Bayes has high explainability, few parameters and robustness to noisy or

missing data [9]. Due to high scalability, it can well handle datasets with various sizes

including large datasets with millions of samples and thousands of features and small

datasets with few samples and features [10]. However, the independence assumption is

often violated in real-world applications in cases where there exist correlations between

features. To address this problem, various improvements on naive Bayes have been

developed, which can be broadly divided into five categories: structure extension [11,

12], instance selection [13], instance weighting [14, 15], Feature selection [16–18] and

feature weighting [9, 19, 20]. Among them, feature weighting methods achieve superior

performance by assigning different weights to different features so that the discriminative

feature will have a larger weight. However, they either define class-independent weights

to emphasize the generalization ability [21] or class-dependent weights to emphasize

the discrimination power [22]. In classification tasks, both generalization ability and

discrimination power are often jointly considered to derive the optimal learning model.

In Chapter 3, we proposed a regularized attribute weighting framework by constraining

the class-dependent weights with the class-independent ones to automatically balance

the generalization ability and discrimination power.

Another problem of naive Bayes is that the probability distribution of continuous fea-

tures is assumed to follow the Gaussian distribution. However, the data doesn’t always

fit Gaussian distribution which may be uniform distribution, Poisson distribution or any
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others. To address this problem, the continuous data is often dicretized into discrete

one and hence naive Bayes can handle it similarly to the categorical data. For example,

MDLP discretizer selects the cut points by maximizing the entropy of the data and

designs a stop criterion to prevent over splitting. MDLP has been widely used in ad-

vanced naive Bayes classifiers and yields satisfactory performance [9, 20–22]. However,

MDLP often discretizes data into a small number of intervals that result in significant

information loss. Existing discretization methods often target maximizing the discrim-

inant power of discretized data, while overlooking the fact that the primary target of

data discretization in classification is to improve the generalization performance. As

a result, the data tend to be over-split into many small bins since the data without

discretization retain the maximal discriminant information [23–25]. Thus we proposed

a semi-supervised discretization framework to better preserve the discriminant informa-

tion, and proposed a maximial-relevancy-minimal-divergence discretization criterion to

simultaneously maximize the discriminant information and the generalization ability of

discretized data. The two proposed methods are discussed in Chapter 4 and Chapter 5

in detail, respectively.

As naive Bayes handles each feature dimension separately, it lacks a mechanism to model

the correlations between features. Besides, the local data structure formed by jointly

considering all the feature dimensions of neighboring samples is often disrupted when

each feature dimension is handled separately in naive Bayes. Due to these challenges, the

discriminant power of naive Bayes is often undermined. Although many state-of-the-art

naive Bayes alleviate the impact of feature correlation via structure extension, feature

weighting and feature selection. It is a lack of a mechanism to explicitly capture the cor-

relation information between features. To capture the correlation information between

features, there are many dimensionality reduction methods including Principal Compo-

nent Analysis (PCA) [26], t-distributed Stochastic Neighbor Embedding (T-SNE) [27],

Multi-Dimensional Scaling (MDS) [28] and autoencoder (AE) [29]. However, reducing

the feature dimensions will lead to information loss and hence degrade the discrimination

power of subsequent classification models. Thus, a feature augmentation framework is

proposed to enhance the discrimination power of naive Bayes classifiers. This work is

discussed in Chapter 6 in detail.
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Figure 1.1: The block diagram of the thesis.

1.2 Contributions

The major contributions of this thesis are summarized in Fig. 1.1. They can be grouped

into three aspects: 1). Improvement of attribute weighting framework on naive Bayes;

2). Improvement of naive Bayes methods on discretization 3). improvement of naive

Bayes on augmentation. These contributions are listed as follows.

• To improve the generalization capability of CAWNB, we propose to add a sim-

pler model, WANBIA, to constrain CAWNB. Besides, CAWNB is an improved

version of WANBIA, and both share a similar optimization procedure. It will not

significantly increase the computational complexity by integrating WANBIA into

CAWNB. Thus, a regularized attribute-weighting framework is proposed to auto-

matically balance the generalization ability and discrimination power of the naive

Bayes classification model (RNB).

• A Max-Dependency-Min-Divergence criterion (MDmD) is proposed to simultane-

ously maximize the discriminant power and minimize the distribution discrepancy

so that the derived discretization scheme could generalize well to the data popu-

lation. To tackle the challenges of reliable estimation of the joint probabilities in

MDmD, a more practical solution, the Max-Relevance-Min-Divergence (MRmD)
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discretization scheme, is proposed to derive the optimal discretization scheme for

one attribute at a time. Sequentially, the naive Bayes can be improved through

a better trade-off between generalization ability and discrimination power in dis-

cretization.

• A semi-supervised adaptive discriminative discretization (SADD) is proposed to

address a significant information loss of previous state-of-the-art naive Bayes meth-

ods. The proposed SADD could better estimate the data distribution by utilizing

both labeled data and unlabeled data through pseudo-labeling techniques and

significantly reduces the information loss during discretization with adaptive dis-

criminative discretization scheme, and hence greatly improves the discrimination

power of NB classifiers.

• To reduce the data noise and capture the feature correlation, we proposed a feature

augmentation framework for regularized naive Bayes (FAR-NB) method. FAR-NB

utilizes the stacked autoencoder to capture the correlation into the learned feature

representations, in which the original feature is firstly shrunk into a compact rep-

resentation and then the compact code is expanded into the higher-dimensional

space to boost the discriminant power. Finally, the input feature, the learned fea-

ture and the reconstructed feature are concatenated into a feature set to build the

regularized naive Bayes classification model.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows.

• In Chapter 2, the representative naive Bayes classifiers, data discretization meth-

ods and feature augmentation methods are reviewed.

• In Chapter 3, a regularized attribute weighting framework for naive Bayes is pro-

posed for automatically balancing the generalization ability and discrimination

power.
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• In Chapter 4, a semi-supervised adaptive discriminative discretization is proposed

to reduce the significant information of previous state-of-the-art naive Bayes clas-

sifiers.

• In Chapter 5, a Max-Relevancy-Min-Divergence (MRmD) criterion that maximizes

both the discriminant information and generalization ability of the discretized data

is proposed and applied to the naive Bayes classification framework.

• In Chapter 6, a feature augmentation method is proposed to enrich the discrimi-

nant information of the data, and has improved the performance of the naive Bayes

classifier.

• In Chapter 7, we conclude this thesis by highlighting our contributions and dis-

cussing possible future work.



Chapter 2

Literature Review

2.1 Bayesian Classification Framework

Bayesian classification framework is a probabilistic machine learning model based on

Bayes’ Theorem [30]. Bayesian classification addresses the classification problem by

learning the distribution of instances given different class variables which estimate the

joint probability distribution of the class variable and the attributes [31]. It states that

the posterior probability of a class given the data is proportional to the likelihood of the

data given the class and the prior probability of the class. The posterior probability is

defined as:

P (c|x) = P (x|c)P (c)

P (x)
, (2.1)

where x is the feature vector and c is the classification variable, P (x|c) is the likelihood

probability, P (c) is prior probability, P (x) is the marginal probability. Because it is

difficult to reliably estimate the likelihood P (x|c) due to the curse of dimensionality, in

naive Bayes methods, the likelihood is estimated by assuming that the attributes are

independent given the classification variable c, which results in the following formulation:

P (x|c) =
m∏
j=1

P (xj |c), (2.2)

7
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where xj is the j-th dimension of the feature vector x, and m is the feature dimension-

ality. Then, the posterior probability can be estimated by:

P (c|x) =
P (c)

m∏
j=1

P (xj |c)

∑
c′ P (c′)

m∏
j=1

P (xj |c′)
. (2.3)

Once the probabilistic model is derived, the prior probability and the likelihood prob-

abilities are used to estimate the posterior probability of the novel data t. Finally, the

maximum a posterior (MAP) Estimation is often used to make the classification:

ĉ(t) = argmax
c∈C

P̂ (c|t), (2.4)

where C is the set of labels for all classes. The class variable c that gives the highest

classification.

By ignoring the inter-feature dependencies, it may lead to the loss of discriminant infor-

mation and poor estimation of likelihood and hence result in low discrimination power.

Many advanced naive Bayes have been developed to alleviate this problem including

structure extension [11, 12], selection [13, 15, 17, 18] and weighting [5, 19, 21, 22, 32–43].

Among them, we mainly investigate the feature weighting methods and identify the

weakness of emphasizing on discrimination power while overlooking the generalization

ability [5, 19, 21, 22, 32–42]. Hence, we have explored to balance the discrimination

power and generalization of naive Bayes classification framework through data reduc-

tion and transformation such as feature weighting [21, 22], discretization [44, 45] and

augmentation [46–48]. In the following sections, we will mainly review the existing

state-of-the-art naive Bayes methods, data discretization methods and augmentation

methods.
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2.2 Naive Bayes

Naive Bayes (NB) classifiers have been extensively utilized in a wide range of applica-

tions [49–51]. However, the strong assumption of feature independence in NB is fre-

quently violated in real-world datasets. To address this problem, numerous enhance-

ments have been proposed, which can be broadly classified into five categories. The first

category, structure extension [11, 12], modifies the structure of the naive Bayes model

to represent dependencies among features, thereby improving its capacity to capture

relationships between features. The second category, instance selection [13, 15], employs

the principle of local learning to construct a set of local naive Bayes classifiers using

subsets of the dataset. This approach enhances the model’s adaptability to local data

variations. The third category, instance weighting [43], assigns different weights to in-

stances to maximize the discriminant power of the classifier. Feature selection [17, 18],

the fourth category, focuses on eliminating strongly correlated or irrelevant features that

could undermine the reliability of the classification. By selecting the most discriminative

subset of features, this approach enhances the performance and robustness of classifica-

tion model. The fifth category, attribute weighted naive Bayes [5, 19–22, 32–42], tackles

the independence assumption by assigning different weights to attributes. This method

increases the weight of discriminative features, thereby enhancing the overall discrimina-

tive power of the model. Table 2.1 presents an overview of state-of-the-art naive Bayes

methods, detailing the advantages and limitations of each category.

Table 2.1: Overview of state-of-the-art naive Bayes methods.

Category Method Advantage Limitation

Structure
Extension

Tree-Augmented Naïve Bayes (TAN) [52] - Models feature
dependencies to
enhance discrimination
power

- Increased
computational
complexity
- Low scalability on
large dataset

Averaged One-Dependence Estimators (AODE) [53]
Averaged Tree Augmented Naïve Bayes [54]

Hidden Naïve Bayes (HNB) [55]
Self-adaptive One-dependence Estimator [11]

Instance
Selection

Naïve Bayes Tree [56]
- Reduces noise in
training data

- Loss of discriminative
information
- Increased risk of
overfitting

Multi-variate Bernoulli Naïve Bayes (BNB) [13]
Multinominal Naïve Bayes (MNB) [13]

Locally Weighted Naive Bayes [57]
Instance
Weighting

Discriminatively Weighted Naïve Bayes (DWNB) [43] - Enhance the
discriminative ability

- High computational
complexityAttribute Value Frequency-based Instance Weighted Naive

Bayes (AVFWNB) [14]

Feature
Selection

Randomly Selected Naïve Bayes [58] - Balance model
simplicity and accuracy

- Potential loss of
feature interactionsSelective Bayesian classifier (SBC) [59]

Selective Naive Bayes [60]

Feature
Weighting

Decision Tree-based Feature Weighting (DTFW) [33] - Enhance
discrimination power
- Reduce the effect of
irrelevant features

- Loss of generalization
ability
- Computational
expensive

Deep Feature Weighting (DFW) [32]
Attribute and Instance Weighted Naïve Bayes (AIWNB) [20]

Weighting to Alleviate Naïve Bayes Independence Assumption
(WANBIA) [21]

Class-specific Attribute Weighted Naïve Bayes (CAWNB) [22]
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Figure 2.1: Example structure of TAN.

2.2.1 Structure-extension Naive Bayes

Among the improved naive Bayes methods, structure extension is the most direct way to

improve Naive Bayes, since attribute dependencies can be explicitly represented by arcs.

Tree Augmented Naive Bayes (TAN) is an extended tree-like Naive Bayes [52]. Unlike

the standard naive Bayes, in TAN, the class node directly points to all attribute nodes

and each attribute node has at most one parent from another attribute node. TAN is a

specific case of general Bayesian network classifiers [61], in which the class node directly

points to all attribute nodes and each attribute node can point to the other ones. In

practice, TAN is a good trade-off between model complexity and learnability. To build

the TNB structure, the conditional mutual information I(Ai;Aj |C), i 6= j between each

pair of attributes is computed. Then, a complete undirected graph is built in which nodes

are attributes A1, . . . , Am and the weight of an edge connecting Ai to Aj is estimated

by I(Ai;Aj |C). The derived undirected tree is then transformed into a directed one by

choosing a root attribute and setting the direction of all edges to be outward from it.

Finally, the full TAN structure is derived by adding the node of the class variable C and

adding the arcs pointing to all attribute nodes. Fig. 2.1 shows an example of TAN.

In [62], a greedy heuristic search algorithm is developed to improve the classification

accuracy of TAN by finding the optimal arcs between attributes. Zhang and Ling [63]

observed that attributes tend to be dependent and cluster into groups. Based on this

finding, an efficient searching algorithm has been developed to speed up the graph-

building process while maintaining similar classification accuracy. In [53], an averaged

one-dependence estimator (AODE) is developed by constructing the TAN for each at-

tribute, in which the attribute is directly set to be the parent of all the other attributes.
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Then, AODE produces the prediction by directly averaging the predictions of all qual-

ified TAN classifiers. Thus, AODE can be viewed as an ensemble learning algorithm.

Similar in [54], an averaged tree augmented naive Bayes (ATAN) is developed to build

multiple TAN classifiers by regarding each attribute as the root node and hence im-

prove the generalization ability of a single TAN classifier. For the ATAN classifier, the

posterior probability is defined as:

PA(c|x) =
1

m

m∑
i=0

P (c|x)i, (2.5)

where m is the number of attributes. To improve the discrimination power of the

classifier, a weighted ATNB is developed:

PA(c|x) =
1∑
wi

1

m

m∑
i=0

wiP (c|x)i, (2.6)

where w is a weight vector estimated by using the mutual information between Ai and

class C:

I(Ai|C) =
∑
a∈Ai

∑
c∈C

P (a, c)
P (a, c)

P (a)P (c)
. (2.7)

Besides the ensemble methods, the hidden naive Bayes (HNB) relieves the structure

of TAN by adding the hidden parent for each attribute [55]. The posterior of HNB is

defined as:

P (Ai|Ahpi , C) =
n∑

j=1,j 6=i

Wij ∗ P (Ai|Aj , C), (2.8)

where Ahpi is the hidden parent node for Ai, which is a mixture of the weighted influences

from all other attributes by using a weight matrix W . Wij is defined as:

Wij =
I(Ai;Aj |C)∑n

j=1,j 6=i I(Ai;Aj |C)
. (2.9)

Recently, a self-adaptive one-dependence estimator (SODE) is developed based on the

one-dependence estimator (ODE) method to dynamically optimize the weights for mul-

tiple ODEs [11]. In a word, extending the structure of NB can mitigate the conditional

independence assumption to some extent [11], but it is a rather difficult problem to
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obtain a suitable structure of extended NB. Also, the structure extension method is

computationally intensive.

2.2.2 Instance-selection Naive Bayes

The main idea of the instance selection method is to build a Naive Bayes model on a

subset of the training instances instead of using the entire dataset. While the assumption

of conditional independence may not hold true for the entire training dataset, creating a

local NB model on a smaller dataset that is in the proximity of the test instance may yield

better results. Instance selection can also be further divided into eager learning [13, 56]

and lazy learning [20]. Eager learning learns a model from the training data before

making predictions on new data. Otherwise, lazy learning delays the processing of

training data until the time of prediction.

Instance selection with eager learning includes NB tree [56] and multinomial naive Bayes

tree [13]. In [56], a hybrid model of naive Bayes classifier and decision tree called NBTree

is developed in which the NBTree is first constructed to split attributes similar to C4.5

by using 5-fold cross-validation [56]. At each leaf, a local naive Bayes is built to make

a prediction for a new instance. In [13], an adaptive naive Bayes tree is presented

by assigning different weights to different attributes to improve the text classification

performance. In text classification, the multi-variate Bernoulli naive Bayes (BNB) model

is often used. Given a documentation d represented by a binary word vector wi, . . . , wm,

the conditional probability P (d|c) is estimated by:

P (d|c) =
m∏
i=1

(wiP (wi|c) + (1− wi)(1− P (wi|c))) , (2.10)

where m is number of words, wi is a boolean value which represents whether the ith

word appears in d or not, and the conditional probability P (wi|c) is estimated by,

P (wi|c) =
∑n

j=1wjiδ(cj , c) + 1∑n
j=1 δ(cj , c) + 2

. (2.11)
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where n is the number of training documents, cj is the class label of the j-th training

document, wji is the i-th word of the jth training document, and δ(•) is a binary func-

tion, which is one if its two parameters are identical and zero otherwise. To improve

the discrimination power of BNB, the multinominal naive Bayes (MNB) model [13] cap-

tures the frequencies that all of the words occur in a document in which the conditional

probability is estimated by,

P (d|c) =

(
m∑
i=1

fi

)
!

m∏
i=1

P (wi|c)fi
fi!

, (2.12)

where fi is the frequency count of wi in the document d, P (wi|c) is the conditional

probability that the word wi occurs in the class c, which can be estimated by,

P (wi|c) =
∑n

j=1 fjiwjiδ(cj , c) + 1∑m
i=1

∑n
j=1 fjiδ(cj , c) +m

. (2.13)

where fji is the frequency count of the word wi in the j-th training document. Instead

of using classification accuracy to build the tree, MNB utilizes the information gain to

select the optimal attribute as the split attribute. Given the documentation set D, the

information gain using the word wi to partition D can be defined as,

Gain(D,wi) = Entropy(D)−
∑
v∈0,0̄

|Dv|
|D|

Entropy(Dv), (2.14)

where |Dv| is the number of the instances whose value of the attribute wi is v (v ∈ 0, 0̄),

Entropy(D) is the entropy of D, which can be calculated by,

Entropy(D) = −
∑
c∈C

P (c)logP (c). (2.15)

Except for eager learning, lazy learning is another way to select the instances to build

a local naive Bayes classifier. The k-nearest neighbor (k-NN) algorithm is one of the

simple and efficient methods for local learning. In [57], a locally weighted naive Bayes

(LWNB) is introduced, which constructs a local NB according to the k-nearest neighbors

of the test instance. LWNB enhances NB in classification accuracy, and it is not highly

sensitive to the value of k unless k is excessively small.
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2.2.3 Instance-weighting Naive Bayes

Instance weighting is an improved version of instance selection by assigning different

weights to different instances. To estimate the posterior probability, the prior probability

and the likelihood probability are defined as:

P (c) =

∑n
j=1w

ins
i δ(cj , c) +

1
q∑n

j=1w
ins
i + 1

, (2.16)

P (aj |c) =
∑n

i=1w
ins
i δ(aij , aj)δ(ci, c) +

1
nj∑n

i=1w
ins
i δ(ci, c) + 1

, (2.17)

where wins
i is the weight of the ith training instance, q is the number of classes and

nj is number of attribute values for jth attribute Aj . Similarly, the instance weighting

method also can be divided into eager learning methods and lazy learning methods [20].

In [43], Jiang et al. presented a discriminatively weighted naive Bayes (DWNB) in an

eager learning way by estimating the instance weight for ith instance as:

wins
i = 1− P̂ (c|xi). (2.18)

where P̂ (c|xi) is the conditional probability of instance xi given the class variable c

based on whole training set. Then, the instance weights are updated for a few iterations

until converge. To improve the efficiency of the learning process, Xu et al. developed

an attribute value frequency-based instance weighted naive Bayes (AVFWNB) based on

the frequency of the attribute value rather than the attribute value itself [14]. At first,

the frequency of each attribute value is estimated by:

fij =

∑n
k=1 δ(akj , aij)

n
, (2.19)

where fij is the frequency of aij which is the jth attribute value of the ith training

instance, n is the number of training instances, akj is the jth attribute value of the kth

training instance. Then, let nj be the number of attribute values in jth attribute, the

weight of ith training instance is estimated by:

wi =

m∑
j=1

fij ∗ nj (2.20)
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In [64], a lazy naive Bayes model is introduced by weighting each training instance

according to the similarity between the test instance t and each training instance x:

s(x, t) =
n∑

i=1

δ(xi, ti). (2.21)

where s(x, t) simply counts the number of identical attribute values between x and t.

Then, the training instance is duplicated a number of times according to its similarity

to the test instance. Finally, a NB classifier is built using the expanded training set.

2.2.4 Feature-selection Naive Bayes

Feature selection in naive Bayes is a process of selecting a subset of features from the

original set of features. By identifying and removing the irrelevant and redundant fea-

tures, the efficiency and accuracy of the naive Bayes classifier can be improved. Different

from standard naive Bayes, the feature selection-based naive Bayes methods make a pre-

diction on the subsets of features and hence the Eqn. 3.10 is adapted to:

ĉ(t) = argmax
c∈C

s∏
j=1

P̂ (c|tj). (2.22)

where s is the number of features in the selected subset. To find the optimal feature sub-

set, many attribute selection-based method is developed, which can be further divided

into filter-based methods [59] and wrapper-based methods [58]. Filter-based methods

utilize a set of evaluation criteria to determine the feature subset, while wrapper-based

methods utilize classification feedback to optimize the selection process. Wrapper meth-

ods often provide better classification performance than filter ones, but at a higher

computational cost. Both filter-based and wrapper-based methods follow similar selec-

tion processes as shown in Fig. 2.2. In this process, the evaluation criterion and search

strategy are the two most important parts on which many feature selection methods

focus [58].
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Figure 2.2: The block diagram of feature selection.

2.2.4.1 Filter-based Methods

In filter-based methods, many feature evaluation functions have been developed includ-

ing consistency and correlation, information gain, mutual information and distance met-

rics [65–68]. Pearson’s correlation is one of the commonly used statistical evaluation

criteria. [68]. To measure the linear relationship between two random variables X and

Y , the Pearson correlation is defined as:

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2 ·

√
n∑

i=1
(yi − ȳ)2

, (2.23)

where n is the number of samples in X and x̄ and ȳ are the means of the respective

variables. Generally, the PC value lies in between [1, 1] if the value is –1 then the variables

are negatively correlated otherwise the variables are positively correlated. In case the

value is 0, then there is no correlation between the variables. In [65], a correlation-

based filter algorithm is developed to heuristically search an attribute subset through a

correlation-based evaluation metric:

MeritS =
krcf√

k + k(k − 1)rff
, (2.24)
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where S is the feature subset, rcf is the average attribute-class correlation, and rff is

the attribute-attribute inter-correlation. Subsequently, Lei and Liu utilized an entropy-

based method to measure the correlation between each pair of attributes [69]. To esti-

mate the relevance and redundancy, symmetrical uncertainty (SU) is used:

SU(X,Y ) = 2

[
IG(X|Y )

H(X) +H(Y )

]
, (2.25)

where IG(X|Y ) is the information gain of variable X conditioned on variable Y :

IG(X|Y ) = H(X)−H(X|Y ), (2.26)

where H(X) is the entropy of X:

H(X) = −
∑
i

P (xi) logP (xi), (2.27)

and H(X|Y ) is the joint entropy between X and Y :

H(X|Y ) = −
∑
j

P (yj)
∑
i

P (xi|yi) logP (xi|yi), (2.28)

where P (xi) is the prior probabilities for all values of X, and P (xi|yi) is the posterior

probabilities of X given the values of Y . Thus, the correlation between any feature Fi

and class variable C is called C-correlation denoting SUi,c, and the correlation between

each pair of feature Fi and Fj (i 6= j) is called F -correlation denoting SUi,j . Finally,

the optimal feature subset contains all strong relevant attributes and weak relevant but

non-redundant attributes. In [70], a C4.5 decision tree is used to select the features.

Specifically, the features that appeared in the top three levels of a pruned decision tree

on the dataset are selected as the candidate. Then, the final feature subset is formed by

a union of all the attributes from the 5 rounds of the above process.

Mutual information is another widely used evaluation measurement in feature selec-

tion [66, 67, 71, 72]. Given two random variables X and Y , their mutual information is
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defined in terms of their probabilistic density functions P (x), P (y), and P (x, y):

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
. (2.29)

In [67], a minimal-redundancy-maximal-relevance (mRMR) criterion is introduced to

find the optimal feature subset. In Max-Relevance, the selected feature xi has the

largest mutual information I(xi; c) with the target class variable c, reflecting the largest

dependency on the target class. In terms of sequential search, the m best individual

features, i.e., the top m features in the descent ordering of I(xi; c), are often selected

to derive the optimal feature subset. Specifically, Max-Relevance is to search features

satisfying the following equation:

maxD(S, c), D =
1

|S|
∑
xi∈S

I(xi; c), (2.30)

where S is the feature subset, c is the class variable, which is measured by the mean

value of all mutual information values between individual feature xi and class c. By

selecting the feature only using Max-Relevance, it is likely that the selected features could

have rich redundancy, i.e., the dependency among these features could be large. If two

features highly depend on each other, it would not help to improve the respective class-

discriminative power. Therefore, the following minimal redundancy (Min-Redundancy)

condition can be added to select exclusive features:

minR(S), R =
1

|S|2
∑

xi,xj∈S
I(xi, xj). (2.31)

The criterion combining the above two criteria is called “minimal-redundancy-maximal-

relevance” (mRMR). The combined evaluation criterion Φ(D,R) is defined as:

maxΦ(D,R),Φ = D −R. (2.32)

However, mRMR only minimizes mutual information between features and ignores the

class-dependent information, which might be influenced by the selected features [72].

To estimate the redundancy more accurately, some conditional mutual information-

based methods have been developed by estimating the redundancy between features
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conditioned on class varibales [66, 71]. Therefore, the redundancy is estimated by:

minR(S), R =
1

|S|2
∑
xi∈S

∑
xj∈S

I(xi, xj)− I(xi, xj |C). (2.33)

2.2.4.2 Wrapper-based Methods

Wrapper methods take the classification error or accuracy rate as the feature evalua-

tion standard. Compared with filter methods, the wrapper ones could achieve higher

classification accuracy and tend to have a smaller subset size, however, it has poor gen-

eralization capability and high time complexity [72, 73]. The most important part is to

design an objective function and deploy an optimization algorithm to solve it. In [59],

a Selective Bayesian classifier (SBC) is developed to iteratively select an attribute from

the whole space of attributes by maximizing the classification accuracy of naive Bayes.

More specifically, the attribute subset is initialized as an empty set. Then, a forward

greedy search algorithm is utilized to add the best attribute into the subset at a time, in

which the performance gain of NB is maximized. Finally, the optimal attribute subset

is derived iteratively until no more improvement on classification accuracy. However,

the greedy search in SBC often results in the local optimum [58]. Hence, Jiang et al.

introduced a random selection strategy to derive the optimal attribute subset through

a gradient descent optimization algorithm, by either maximizing the conditional log-

likelihood or minimizing the mean squared error [58]. At first, the candidate feature

subset is determined by using the performance of naive Bayes measured by classifica-

tion accuracy (ACC), the area under curve (AUC) and conditional log likelihood (CLL).

Then, the optimal number of features in the subset is derived by:

o = log2 p+ 1, (2.34)

where p is the number of features in the candidate feature subsets. Subsequently, the o

best features are randomly selected from the whole space of features in which the perfor-

mance is improved at most. To speed up the selection process, Bermejo et al. combined

the naive Bayes classifier with the incremental wrapper feature selection algorithm [74].
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Recently in [60], feature selection models are constructed based on a trivial extension

of each other. The features are ranked by using mutual information with class variables

in descending order. Then, a set of naive Bayes models are constructed by adding each

feature into the subset from the sorted feature set. Consequently, the objective function

is defined as:

s∗ = argmin
s∈{1,2,...,m}

√
1

n

∑
x∈Dtrain

(1− p(y|x)s)2, (2.35)

where s is the number of features selected from the sorted feature set F = [f1,f2, . . . ,fa],

n is the number of training samples and p(y|x)s is the posterior probability using the

first s features in F . The optimal s∗ is determined by maximizing the posterior in which

the first s8 features are derived as the optimal feature subset.

2.2.5 Feature-weighting Naive Bayes

Instead of directly removing the redundant feature in feature selection, feature weighting

methods alleviate the independence assumption of naive Bayes by assigning different

weights to the features to enhance the discrimination power [19, 21, 22, 32–36]. Feature

selection can be viewed as a special case of feature weighting by assigning a weight of 0

or 1 to the feature. In feature-weighted naive Bayes, the MAP is defined as:

ĉ(t) = argmax
c∈C

P̂ (c|t)w, (2.36)

where w is the weight vector the instance t. To define the weight of each feature, many

feature-weighting methods can be divided into filter-based methods and wrapper-based

methods. The former often utilizes statistical measurements or heuristics to decide the

weight, otherwise, the latter utilizes the classification feedback to optimize the weight.

In general, the feature weight is normalized in [0, 1].

2.2.5.1 Filter-based Methods

Filter-based methods [19, 32–36] utilize the characteristics of the data to determine

attribute weights, e.g., gain ratio, the minimum depth in the decision tree, Kullback-

Leibler (KL) divergence and mutual information. In [37], a gain ratio-based feature
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weighting method is designed to determine the feature importance in which a feature

with a higher gain ratio deserves a larger weight. Therefore, the weight of each feature

is derived by using the average gain ratio across all features:

wi =
GR(Ai)

1
m

∑m
i=1GR(Ai)

, (2.37)

where m is the number of features, GR(Ai) is the gain ratio of using feature Ai to

partition the given training instances, which is estimated by simply using the following

equation:

GR(Ai) =
I(Ai;C)

H(Ai)
, (2.38)

where I(Ai;C) is the mutual information between feature Ai and class variable C defined

in Eqn. 2.29 and H(Ai) is the entropy defined in Eqn. 4.2.

Hall proposed a decision tree-based feature weighting (DTFW) method which defined

the weights by utilizing the minimum depth in a decision tree [33]. Specifically, the

feature weight is inversely proportional to the minimum depth at which it is tested

in the built unpruned decision tree, and then the estimated weights are stabilized by

averaging across 10 decision trees learned on 50% of the training data. Consequently,

the weight is derived by:

wi =
1

T

T∑
t=1

1√
dti

, (2.39)

where dti is the minimum depth at which feature Ai is tested in the built unpruned

decision tree t, and T is the total number of the built decision trees. If a feature does

not appear in the tree, the corresponding weight is set to 0, and the depth of the root

node is set to 1 initially.

Lee et al. determined the weights by using the Kullback-Leibler (KL) divergence between

attributes and class labels [34]. For each feature value ai in ith feature Ai, it could

provide the discriminative information with respect to the class variable C. Hence,

the Kullback-Leibler (KL) divergence is used to estimate the amount of information:

KL(C|ai) =
∑
c∈C

log P (c|ai)
P (c) . Then, the weight for the feature Ai is estimated by averaging
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the KL measures of all feature values in Ai:

wi =
1

Z

∑
ai

P (ai)KL(C|ai)

=
1

Z

∑
ai

P (ai)
∑
c

P (c|ai) log
P (c|ai)
P (c)

=
1

Z

∑
ai

∑
c

P (ai)P (c|ai) log
P (c|ai)
P (c)

=
1

Z

∑
ai

∑
c

P (ai, c) log
P (ai, c)

P (ai)P (c)
, (2.40)

where Z = 1
m

∑m
i=1wi is a normalization constant to constrain the weight in [0, 1].

In [32], a deep feature weighting method (DFW) is developed by using a correlation-

based feature selection filter [65]. At first, the best feature subset is determined by using

symmetrical uncertainty defined in Eqn. 2.25. Then, a simple and effective feature-

weighting method is designed:

wi =

 2 if Ai is selected,

1 otherwise,
(2.41)

where the feature in the selected subset is weighted by 2, otherwise it is weighted by

1. Different from other feature-weighting methods, the learned feature weights are not

only used to estimate the posterior probability but also the likelihood probability. The

developed DFW is successfully applied in the state-of-the-art naive Bayes classifiers for

text classification, e.g., multinomial naive Bayes (MNB) [75].

Recently, Jiang et al. developed a correlation-based attribute-weighting NB, which

defines the weight of each attribute as a sigmoid transformation of the difference between

mutual relevance and average mutual redundancy [19]. They argue that the highly

predictive features should be highly correlated with the class and uncorrelated with other

features similar to the max-relevancy-min-redundancy (mRMR) in [67]. Based on this

premise, the weight is defined as proportional to the difference between the feature-class
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correlation and the average feature-feature intercorrelation by using mutual information:

di = NI(Ai;C)︸ ︷︷ ︸
relevance

− 1

m− 1

m∑
j=1∧j 6=i

NI(Ai;Aj)︸ ︷︷ ︸
average redundancy

, (2.42)

where NI(Ai;C) is the normalized mutual inforamtion between Ai and C representing

the relevance:

NI(Ai;C) =
I(Ai;C)

1
m

∑m
i=1 I(Ai;C)

. (2.43)

and NI(Ai;Aj) is normalized mutual information between Ai and Aj representing the

redundancy:

NI(Ai;Aj) =
I(Ai;Aj)

1
m(m−1)

∑m
i=1

∑m
j=1∧j 6=i I(Ai;Aj)

. (2.44)

where m is the number of feature dimensions. The resulting value of difference Di may

be negative which is not suitable for measuring the feature importance. Thus, the weight

for ith feature is transformed into the range (0, 1) by using the logistic sigmoid function:

wi =
1

1 + e−di
. (2.45)

Recently, Zhang et al. recently developed a weighted naive Bayes method combining

instance weights with attribute weights (AIWNB) [20]. In the feature weighting stage,

the weight for each feature is estimated by using the measurement of the difference

between the mutual relevance and the average mutual redundancy used in [19]. Then,

two instance weighting methods are designed for eager learning and lazy learning ways.

For eager learning, each instance weight is estimated by using the frequency of the

attribute value across the whole training set. The detailed description can refer to the

weighting method in [14]. Since eager learning has a high computational cost in the

training phase, the lazy learning method directly computes the weight in the testing

phase. The weight for ith training instance xi with respect to the testing instance t is

defined as:

wins
i = 1 + s(xi, t), (2.46)

where s(xi, t) is the similarity derived using Eqn. 2.21. By combining the feature weights

with instance weights in two different ways, the resulting AIWNBE and AIWNBL are
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introduced. AIWNB has achieved better trade-offs between generalization ability and

discrimination power and hence results in superior classification performance compared

with other state-of-the-art naive Bayes classifiers. The feature weighting filters rely on

heuristic measurements for feature importance. They often have high efficiency but no

guarantee for the optimal solution.

2.2.5.2 Wrapper-based Methods

In addition to the filter-based methods, wrapper-based methods often achieve higher

classification performance by iteratively optimizing attribute weights. Due to the it-

erative process, wrapper-based methods usually have higher time complexity. In [37],

Zhang and Sheng updated attribute weights based on a hill-climbing strategy to maxi-

mize AUC. Each feature weight wi is first initialized as 1. Then, wi is updated by:

wi(k)← wi(k − 1) +4w(k), (2.47)

where k is the number of iterations and 4w(k) is the incremental weight in nth iteration

and defined as:

4w(k) = ηO(auc)(1−O(auc))2, (2.48)

where η is the learning rate, auc is the current value of AUC, and O(auc) is defined as:

O(auc) =
1

1 + e−auc
. (2.49)

Once the improvement on AUC is less than a small value, the optimization process is

terminated.

Wu and Cai developed a differential evolution-based feature weighting wrapper for the

naive Bayes classifier, which utilizes a differential evolution search to optimize feature

weights by maximizing the classification accuracy of the learned model [41]. Firstly, a

population of attribute weight vectors is randomly generated in which the weights are

constrained to be between 0 and 1. Then, the differential evolution processes mutation,

crossover and selection to evolve the population. To effectively find the optimal weight

vector, a fitness function is defined to determine if a mutation can replace the current



Chapter 2. Literature Review 25

weight vector with a new one. Then, a greedy search strategy is employed to select a

weight vector from mutated ones as offspring only if the fitness function is better than

that of the target one, otherwise, the target is maintained in the next iteration. The

fitness function is defined as follows:

F (w) =

∑n
i=1(P

w
i − Pi + 1)

n
, (2.50)

where n is the number of training instances, Pw
i is the posterior probability for ith

instance and Pi is the ground-truth posterior probability. Once the optimal weight

vector is derived, it is used to make the predictions on the testing data.

In [21], Zaidi et al. developed a class-independent attribute weighting method called

WANBIA proposed to iteratively optimize attribute weights by minimizing the mean

squared error between predicted and ground-truth labels or maximizing the conditional

log-likelihood posterior probability. The posterior function is hence re-defined as:

P̂ (c|x)w =
πc
∏

j θ
wj

c,j∑
c′ πc′

∏
j θ

wj

c′,j

, (2.51)

where πc is the prior probability that sample x belongs to class c and θc,j is the likelihood

of the jth attribute of x given the class c estimated from training samples using Eqn. 3.4,

w = [w1, w2, . . . , wm] is the weight vector and wj is the weight of the jth attribute. Then,

the Conditional Log-Likelihood (CLL) function is defined as,

CLL(w) =
n∑

i=1

log P̂ (c|xi)
w. (2.52)

By maximizing the CLL objective function, the optimal weight vector can be derived

through a gradient descent optimization algorithm. Instead of maximizing the super-

vised posterior, one can also minimize Mean Square Error (MSE) between the estimated

posterior and the posterior derived from the ground-truth label:

MSE(w) =
1

2

n∑
i=1

∑
c∈C

(
P (c|x)− P̂ (c|x)w

)2
, (2.53)
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where P (c|x) is defined as:

P (c|xi) =


1 if c = ci,

0 otherwise.

(2.54)

By minimizing the MSE objective function, the derived optimal weight vector can achieve

a similar performance as maximizing CLL objective function. All the feature weights

are initialized as 0 and optimized via the above two objective functions.

Very recently, Jiang et al. developed CAWNB [22], which determines the optimal weight

for each attribute of different classes to capture more characteristics of the dataset, in-

stead of ignoring the class dependency as in [21]. Hence it achieves excellent classification

performance on many benchmark datasets. The weight matrix on a pre-class basis is

defined as:

W =



w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
... . . . ...

wl,1 wl,2 · · · wl,m


where l is the number of classes and wc,j is the weight of the jth attribute for class c.

Then, the posterior function is defined as:

P̂ (c|x)W =
πc
∏

j θ
wc,j

c,j∑
c′ πc′

∏
j θ

wc′,j
c′,j

, (2.55)

Similarly, CAWNB utilized the same objective function to derive the optimal weight

matrix. Unlike WANBIA [21], which assigns the same attribute weight for all classes,

CAWNB [22] assigns different weights to different classes, so that the CAWNB model is

more complicated and more prone to over-fitting, especially when the dataset is small

and WANBIA performs better on generalization performance.

In recent years, some embedded weighted naive Bayes methods have been also developed.

In [42], Yu et al. developed a hybrid attribute-weighting method by initializing the

weights through a correlation-based filter and then adjusting the weights through a

wrapper. The initial weights are computed by using the correlation measure in [19].
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Then, the weight vector is optimized by maximizing the following objective function:

f(w) = δ(ĉ(xi), c(xi)), (2.56)

where ĉ(xi) is the predicted class label for xi derived using Eqn. 3.10 and c(xi) is the

ground-truth label.

2.3 Data Discretization

Discretization methods, as one of the basic reduction techniques, have been efficiently

and effectively deployed in classification algorithms especially for NB classifiers [9, 21,

22]. Assuming a dataset S consisting of n examples, m attributes, and c class labels,

a discretization scheme DA for continuous attribute A can be generated, which divides

this attribute into k discrete intervals:

{[d0, d1], (d1, d2], ..., (dk−1, dk]}, (2.57)

where d0 and dk is the minimum and maximal value of attribute A. And the set of cut

points of A can be represented by:

PA = {d1, d2, ..., dk−1}. (2.58)

There are four main steps in the discretization process shown in Fig. 3.1. Firstly, the

continuous attribute is sorted to be discretized. Then, the evaluation process is designed

to select the cut point for splitting or merging according to correlation, gain or classifi-

cation performance. Thirdly, the interval can be either split or merge depending on the

search strategies. Finally, the stopping criterion is specified to stop the discretization

process with the trade-off between a lower number of intervals, good comprehension,

and consistency. Discretization methods have been deployed to extract knowledge from

data in many machine learning algorithms such as decision tree [77, 78], rule-based learn-

ing [79] and naive Bayes [9, 20, 22]. Discretization methods can be categorized according

to many properties [76]. 1). Local vs. Global. Local methods [44, 80] generate intervals
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Figure 2.3: The main steps of discretization process [76].

based on partial data, whereas global ones [23–25, 45] consider all available data. 2).

Dynamic vs. Static. Dynamic discretizers [81] interact with learning models whereas

static ones [24, 82] execute before the learning stage. 3). Splitting vs. Merging. This

relates to the top-down split [23, 25, 80] or bottom-up merge [82] strategy in produc-

ing new intervals. 4). Univariate vs. Multivariate. Univariate algorithms [24, 78, 80]

discretize each attribute separately whereas multivariate discretizers [45, 83] consider a

combination of attributes when discretizing data. 5). Direct vs. Incremental. Direct

methods [45, 84] divide the range into several intervals simultaneously, while incremental

ones [23–25, 44, 80] begin with a simple discretization and improve it gradually by using

more criteria. The popular discretization methods are shown in Table 3.2.

Depending on whether the class label is used, discretization methods can be divided

into supervised, semi-supervised and unsupervised methods [76]. Unsupervised methods

include equal-width and equal-frequency discretization [78]. Semi-supervised methods

are comparatively less studied. One of the representative methods is MODL, which

derives the discretization scheme by applying the Bayesian rule on both labeled and

unlabeled data [127]. Supervised methods can be further divided into wrapper-based

methods [76, 83, 128] and filter-based methods [23–25, 80, 82]. The former optimizes the

discretization scheme by utilizing the classification feedback [76, 83, 128], while the latter
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optimizes some indirect target for data discretization, e.g., information entropy [44, 80],

mutual information [81] and interdependency [23–25].

Wrapper-based methods [45, 83, 128, 129] often iteratively derive the optimal discretiza-

tion scheme by using the classification results as the feedback signal. Among them,

evolutionary algorithms are often utilized to select a set of cut points to discretize data

by maximizing the classification accuracy and minimizing the number of intervals [45].

Recently, Tahan and Asadi developed an evolutionary multi-objective discretization to

handle the imbalanced datasets [83]. To reduce the search space during discretization,

Tran et al. firstly initializes the discretization scheme by using the MDLP criterion and

utilizes barebones particle swarm optimization to fine-tune the derived scheme [129]. In

[128], the particle swarm optimization strategy is used to explore the interaction between

features to better discretize the data. To handle high-resolution satellite remote sensing,

Chen et al. developed a genetic algorithm based on the fuzzy rough set to effectively

explore the data association [130].

Filter-based methods [23, 25, 80, 82, 131] have a strong theoretical background and

have gained popularity in recent years. MDLP discretizer has been widely used in many

classifiers [9, 20, 22]. It is one of the most popular top-down discretization methods,

Table 2.2: The list of discretization methods.

Acronym Ref. Acronym Ref. Acronym Ref.

EqualWidth [85] EqualFrequency [85] Chou91 [86]
D2 [87] ChiMerge [88] 1R [89]
ID3 [90] MDLP [44] CADD [91]
MDL-Disc [92] Bayesian [93] Friedman96 [94]
ClusterAnalysis [95] Zeta [96] Distance [97]
Chi2 [98] CM-NFD [99] FUSINTER [100]
MVD [101] Modified Chi2 [102] USD [103]
Khiops [104] CAIM [23] Extended Chit [105]
Heter-Disc [106] UCPD [107] MODL [108]
ITPF [109] HellingerBD [110] DIBD [111]
IDD [112] CACC [25] Ameva [113]
Unification [114] PKID [115] FFD [115]
CACM [116] DRDS [117] EDISC [118]
U-LBG [119] MAD [120] IDF [121]
IDW [121] NCAIC [122] Sang14 [123]
IPD [124] SMDNS [125] TD4C [126]
EMD [45] EMDID [83]
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which hierarchically partitions the data to maximize the information entropy [44]. To

avoid excessive splitting, it defines a stop criterion derived from the theory of channel

coding. Xun et al. developed a multi-scale discretization method to obtain the set

of cut points with different granularity and utilized the MDLP criterion to determine

the best cut point [80]. Apart from entropy, other statistical measures have also been

widely deployed in data discretization [24, 78, 82]. Kurgan and Cios developed a CAIM

criterion based on a quanta matrix to select boundary points iteratively within a pre-

defined number of intervals [23]. Recently, Cano et al. extended CAIM to discretize the

multi-label data [24]. Tsai et al. introduced a discretization method based on CACC

by taking the overall data distribution into account [25]. In [132], low-frequency values

are discretized and the correlation between discrete attribute and continuous attribute

is used to guide the discretization process. Chi-square statistics such as Modified Chi2

and extended Chi2 have been recently used to discretize data [82], which measure the

relationship between the discretized attribute and the classification variable.

Most discretization methods [23–25, 44, 80] emphasize maximizing the discriminant

power, but they pay little attention to the generalization capability, e.g., they often re-

strict the number of discrete intervals to be small, in the hope of achieving a satisfactory

generalization ability. If a discretization method considers maximizing the discriminant

power and the generalization ability simultaneously, the subsequent classifier will achieve

a better classification performance on novel testing data.

2.3.1 Representative Discretization Methods

2.3.1.1 Unsupervised Methods

Among them, there are some representative discretization methods. In an unsupervised

manner, the popular dicretization methods include equal frequency (EF) [85], equal

width (EW) [85], proportional k-interval discretization (PKID) [84] and fixed frequency

discretization (FFD) [84]. For both equal-frequency and equal-width discretization, the

minimum and maximum values of the continuous attribute are first identified. Then,

the equal-frequency algorithm sorts all values in ascending order and divides the range

into a user-defined number of intervals so that every interval contains the same number



Chapter 2. Literature Review 31

of samples, The equal-width discretization then divides the range into the user-defined

number of intervals in which all the intervals have the same width. Instead of speci-

fying the number of intervals generated, Fixed frequency discretization divide a range

of an attribute into a set of intervals so that each interval shares the user-defined fre-

quency [115]. To find an appropriate trade-off between the bias and variance of the

probability estimation, PKID is introduced to adjust the number and size of intervals

to the number of training instances [84], where the number of intervals k is defined as,

k =
√
n, (2.59)

where n is the number of training instances. For each interval, the number of instances

in each interval is also set to k. PKID often achieves superior classification performance

without user input compared with other unsupervised discretization methods.

2.3.1.2 Supervised Methods

Entropy-based Methods

For supervised discretization methods, information theory is widely used because of

its strong theoretical background [23, 44, 67, 81, 133, 134]. In discretization, Minimum

Description Length Principle (MDLP) discretizer is one of the most important top-down

methods by developing an entropy-based selection criterion. To evaluate all boundary

points, the class entropy of the partitions is derived as an evaluation measure. The

objective is to minimize the class entropy to select the best cut point for each binary

partition. Finally, MDLP is used to define the stopping criterion, a cut point T will be

accepted iff:

Gain(A, T ;S) >
log2(N − 1)

N
+

∆(A, T ;S)

N
, (2.60)

where Gain(A, T ;S) describes the information gain of a cut point T , which divided the

current example set S into two subsets S1 and S2 given the attribute A. Gain(A, T ;S)

is calculated by:

Gain(A, T ;S) = Ent(S)− |S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S1), (2.61)
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and

∆(A, T ;S) = log2(3
k − 2)− [kEnt(S)− k1Ent(S1)− k2Ent(S2)], (2.62)

where Ent(S) is class entropy defined in [44]. Other entropy-based discretization meth-

ods includes ID3 [90], FUSINTER [100] and Gini index [114].

Figure 2.4: Quanta Matrix.

Statistical-based Methods

Statistical-based discretization is another representative algorithm, which evaluates the

cut point by measurement of dependency or correlation among features [23, 25, 88, 91,

96, 98, 108]. In statistical discretization methods, a two-dimensional frequency matrix

(called quanta matrix) is often used to measure the relationship between discretization

scheme and class variables as described in Fig. 3.3. In Fig. 3.3, S is the number of classes

and n is a number of candidate cut points. qir is the total number of continuous values

distributed in the interval (dr−1, dr] given the i-th class. Mi+ is the total number of

samples with the i-th class and M+r is total number of continuous values of attribute

A distributed the interval (dr−1, dr]. The probability of the occurrence that attribute A

values are within the interval Dr = (dr−1, dr] given the class Ci, can be estimated by:

pir = p(Ci, Dr|A) =
qir
M

. (2.63)

Then, the prior probability that attribute A values given class Ci can be estimated by:

Pi+ = p(Ci) =
Mi+

M
. (2.64)
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The probability of each interval that attribute A values are distributed interval Dr =

(dr−1, dr] is defined as follow:

P+r = p(Dr|A) =
M+r

M
. (2.65)

The mutual information between discretization variable D for attribute A and class C

is defined as:

I(C,D|A) =
S∑

i=1

n∑
r=1

pir log2
pir

pi+p+r
. (2.66)

Similarly, the class-attribute information and Shannon’s entropy are defined, respec-

tively, as follows:

INFO(C,D|A) =

S∑
i=1

n∑
r=1

pir log2
p+r

pir
, (2.67)

H(C,D|A) =
S∑

i=1

n∑
r=1

pir log2
1

pir
. (2.68)

Then, the class-attribute dependent discretizer (CADD) [91] defined a CAIR criterion

to select the cut points:

CAIR(C,D|A) =
I(C,D|A)

H(C,D|A)
. (2.69)

The CAIR criterion is used to measure the interdependence between classes and the

discretized attribute that the larger CAIR values mean the better correlation between

class labels and the discrete intervals. However, it has some drawbacks: 1). it initializes

the discretization by the user-defined number of intervals; 2). The maximum entropy is

used for initialization which may mislead the cut point selection by using the CAIR cri-

terion. Therefore, the CAIM algorithm was developed to discretize an attribute into the

smallest number of intervals and maximize the class-attribute interdependency and then

improve the classification performance. To measure the class-attribute interdependency,

the CAIM criterion is defined as:

CAIM(C,D|A) =

∑n
r=1

max2
r

M+r

n
. (2.70)

Although CAIM outperforms the other discretization algorithms because of its efficiency

and performance gain given to classification algorithms, it has two limitations: 1). CAIM
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always generates a simple discretization scheme with few intervals by assigning a high

factor to the number of generated intervals when it discretizes an attribute; 2). CAIM

only considers the class with the most samples and ignores all the other target classes

which would decrease the quality of the generated discretization scheme. To address the

problem, class-attribute contingency coefficient (CACC) discretization was developed.

Inspired by the contingency coefficient, CACC can generate a better discretization

scheme and lead to the improvement of classification performance. Generally, the con-

tingency coefficient is used to measure the strength of dependence between variables.

Given the quanta matrix, the selection criterion can be defined as:

C =

√
y

y +M
, (2.71)

where y = M [(
∑S

i=1

∑n
r=1

q2ir
Mi+M+r

) − 1]. It’s obvious that the contingency coefficient

takes the distribution of all samples into account by using all the values in the quanta

matrix. To reduce the time complexity and prevent the over-fitting problem, y in the

contingency coefficient is divided by log(n). Thus, the CACC criterion is defined as:

CACC =

√
y

y +M
, (2.72)

where y = M [(
∑S

i=1

∑n
r=1

q2ir
Mi+M+r

)− 1]/log(n).

Chi2-based Methods

The Chi2-based methods are also famous supervised discretization methods in a bottom-

up manner based on statistical independence including ChiMerge [88], Chi2 [135], Mod-

ified Chi2 [102] and Extended Chi2 [105]. The chi-square (χ2) statistic is used to deter-

mine whether the current interval pair is to be merged or not. The χ2 test is a statistical

technique used to test the association between a variable and its category. The χ2 statis-

tic measures the degree of similarity between neighboring intervals at a certain level of

significance. Intuitively, two intervals tend to be merged into one interval if they are

statistically similar measured by χ2.
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The ChiMerge algorithm is the earliest Chi2-based discretization method [88]. In the

algorithm, each distinct value of a continuous variable is assumed as an independent

interval, and then χ2 statistic is tested for whether the adjacent intervals are to be

merged or not. If the χ2 statistic for adjacent intervals is smaller than the predefined χ2

threshold, adjacent intervals are merged because they are assumed statistically similar.

The χ2 value is defined as:

χ2 =

m∑
i=1

k∑
j=1

(Iij − Eij)
2

Eij
, (2.73)

where m = 2 is the number interval to be compared, k is the number of classes, Eij is

the expected frequency of Iij which is defined as,

Iij =
Ri ∗ Cj

N
, (2.74)

where Ri is the number of samples in ithe interval, Cj is the number of samples belonging

to class c and N is the total number of samples. The discretization process of ChiMerge

starts with sorting the numerical features for each pair of adjacent and then its intervals

are continuously merged until a termination condition is met. The pair of adjacent values

which has the lowest χ2 value are merged into one interval. Merging continues until all

pairs of intervals have χ2 values exceeding the parameter χ2 threshold and is used as

a stopping criterion. The χ2 threshold is determined by selecting a desired significance

level (α).

Chi2 discretization is an extension of ChiMerge which automatically discretization with-

out user input by introducing an inconsistency rate as the stopping condition [135]. Chi2

selects the appropriate level of statistical significance and combines neighboring intervals

until the inconsistency rate is met,

InConCheck(data) > δ, (2.75)

where δ is a pre-defined value indicating the level of inconsistency. The inconsistency

rate is the sum of all the inconsistency counts divided by the total number of instances.

For all the matching instances (without considering their class labels), the inconsistency
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count is the number of the instances minus the largest number of the instances of the

class labels; for example, there are n matching instances, and among them, c1 instances

belong to label 1, c2 to label 2, and c3 to label 3 where c1 + c2 + c3 = n. If c3 is the

largest among the three, the inconsistency count is (n− c3).

Modified Chi2 is an improved modification of Chi2, which fixed the over-merging problem

of Chi2 [102]. To precisely measure the inconsistency, modified Chi2 determines the level

of inconsistency by using rough set theory,

Lc =

∑
|BXi|
|U |

, (2.76)

where U is the set of all objects of the data, X can be any subset of U (X ⊂ U), BXi is the

lower approximation of X in B (B ⊆ A), A is the set of attributes, X is a classification

of U (i ∈ {1, 2, . . . , n}). Hence, in the modified Chi2 algorithm, inconsistency checking

(InConCheck() < δ) of the original Chi2 algorithm was replaced by maintaining the

level of consistency Lc after each step of discretization (Lc−discretized ≤ Lc−original).

By using this inconsistency rate as the stopping criterion, it guaranteed that the fidelity

of the training data could be maintained to be the same after discretization. In addition,

it made the discretization process completely automatic.

Extended Chi2 is yet another improvement of Chi2 which has the ability to deal with

uncertain data [105]. Instead of using the inconsistency rate to determine the merging

process, extended Chi2 utilized the least upper bound of data misclassification error

ξ(C,D) to guide the discretization process,

ξ(C,D) = max(m1,m2), (2.77)

where C is the equivalence relation set, D is the decision set, and C∗ = {E1, E2, . . . , En}

is the equivalence class, m1 and m2 are defined as:

m1 = 1−min{c(E,D)|E ∈ C∗and 0.5 < c(E,D)},

m2 = max{c(E,D)|E ∈ C∗and c(E,D) < 0.5},

c(E,D) = 1− card(E
⋂

D)

card(E)
,



Chapter 2. Literature Review 37

where card denotes set cardinality. Chi2-based methods are often effective in handling

non-linear relationships between the attribute and the class variable.

Wrapper-based Methods

Recently, the wrapper-based discretization methods have achieved significant perfor-

mance improvement on classification tasks. For example, the evolutionary cut point

selection has successfully deployed in multivariate discretization [45]. Ramirez et al.

presented an evolutionary multivariate discretizer (EMD), which selects a set of bound-

ary cut points to generate the discrete intervals by minimizing the classification error.

To select the most appropriate discretization scheme from the data population, a fit-

ness function with two objectives, minimizing classification error and the number of cut

points, is defined as:

Fitness(Q) = α
|Q|
|BP |

+ (1− α)∆, (2.78)

where Q is a subset of cut points selected from the initial set with all potential boundary

points BP , ∆ represents the classification error based on discretized data and α is an

input parameter to balance classification error and the number of intervals.

To address the low generalization of discretization on imbalanced data, Tahan and Asadi

developed a multi-objective discretization wrapper that derives the optimal scheme by

maximizing AUC, minimizing the number of cut points and maximizing low-frequency

cut points [83]. The first objective is described as follows,

f1(Sj) = 1− AUCF−CT +AUCF−KNN

2
, (2.79)

where AUCF−CT and AUCF−KNN represent the area under the ROC curve estimated

by the CART and KNN classifiers, respectively, Sj is the discretization scheme for

jth individual of the population. Compared with classification accuracy, AUC remains

indifferent to the imbalanced distribution and hence yields solutions with adequate clas-

sification ability. The second objective is to minimize the number of cut points in the

current chromosome,

f2(Sj) = |Sj |. (2.80)
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Besides the above two objectives, the frequency of the chosen cut points also plays an

important role to minimize information loss,

f3(Sj) =

Ci∑
i=1

freqi, (2.81)

where Ci is the ithe cut point. Wrapper-based discretization methods often select a set

of cut points that result in better classification performance but at a high computational

cost.

2.3.2 Evaluation Criteria

When comparing different discretization methods, there are serval criteria to evaluate

the relative strength and weaknesses of each algorithm including the number of intervals,

inconsistency, predictive classification rate and time complexity. Firstly, a continuous

attribute should be discretized into discrete ones with as few values as possible to make

sure learning effectiveness and efficiency. Secondly, inconsistency is associated with the

number of different classes in the same discrete values. The desired inconsistency level of

a discretization approach should be 0. Thirdly, a well-designed discretization method is

able to reduce classification errors. Finally, the time complexity of discretization is very

important for real-time applications and the discretization process should be performed

efficiently.

In conclusion, most discretization methods aim to find a reasonable discretization that

can achieve a better trade-off between the number of intervals and information gain.

Subsequently, classification algorithms can have balanced generalization capability and

discrimination power. Due to insufficient information gain, MDLP often leads to an

early stop so that too few discrete intervals are generated, and hence leads to a huge

loss in discriminative information. Similarly in CAIM, the discretization scheme is too

simple to provide enough discrimination power to classifiers. CACC tried to address the

problem by considering the distribution of all samples. Since many recent discretiza-

tion methods optimize the discretization scheme based on evolutionary algorithms by

minimizing the classification error [45, 83, 136], information-based methods are highly
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overlooked. Besides, existing researchers rarely consider discretization based on labeled

data while neglecting the amount of unlabeled data in real-world applications.

2.4 Data Augmentation

Data augmentation techniques have been widely used in image classification [137–139],

text classification [140], and signal processing [141] They can be broadly categorized

into instance augmentation methods [137–139, 141–144] and feature augmentation meth-

ods [46–48, 145–147]. The former augments more training samples from existing ones to

effectively reduce the gap between the training set and the testing set, which improves

the generalization ability of the model. Comparatively, feature augmentation methods

are less studied, which enrich the discriminant information of the original feature space

by augmenting new features so that the discrimination power of the classification model

is enhanced [47, 145].

2.4.1 Instance-space Augmentation

Instance augmentation methods are often utilized to enlarge the dataset, which can be

further categorized as model-free methods [137] and model-based methods [139, 142–

144]. Model-free augmentation methods directly transform an existing instance to a

new one by a set of transformation techniques, e.g., image random erasing [137], image

rotation, scaling, cropping and flipping [138], and text editing in text classification [148].

In [137], random erasing is developed to make the model robust to occlusion by masking

off a randomly selected region in an image. In text classification, a set of text editing

techniques such as random insertion, deletion, replacement, and swap are employed to

expand the training set [148]. Model-based augmentation methods employ deep learning

models to generate new instances, e.g., generative adversarial networks (GNNs) [142] and

convolutional neural networks (CNNs) [139, 143, 144]. Moreno-Barea et al. utilized a set

of GAN-based methods to generate the synthetic samples for improving the classification

accuracy on small datasets [142]. In [139], the deep feature vectors extracted by CNNs

are augmented by randomly adding the difference vectors extracted from a small set of
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clean and occluded image pairs to enhance the classification performance on occluded

images. With the expanded size and increasing variety of the training dataset, instance

augmentation could often effectively improve the generalization ability of classification

models [138].

The aforementioned instance augmentation methods focus on augmenting the unstruc-

tured data, e.g., text and image. For structured data, traditional methods are commonly

used to address classification problems where the data is imbalanced in which the dataset

has one or multiple minority classes. For an imbalanced dataset, the learned model easily

overfits the data with the majority class and hence generalizes poorly on the data with

the minority class. To alleviate this problem, oversampling algorithms are widely used to

synthesize data points for minority class [149]. More specifically, these algorithms create

synthetic instances to balance the class distributions of the original dataset by utilizing

contextual information [150]. To create these new instances, oversampling methods use

linear or geometric interpolations between a randomly selected observation and one of

its neighboring instances [150–152].

Synthetic minority over-sampling technique (SMOTE) is one of the most commonly used

algorithms for oversampling [150–152]. SMOTE creates synthetic data points along a

line connecting a randomly chosen under-represented class instance and one of its closest

neighbors [150]. Specifically, a sample from the minority class is randomly selected and

then its k-nearest neighbors are computed. For each nearest neighbor, new synthetic

samples are generated along the line segment between the two samples. This process is

repeated until the desired balance between the minority and majority classes is achieved.

However, SMOTE algorithm can lead to overfitting if the synthetic samples are too

similar to the original minority class samples. In addition, it may not work well if the

minority class samples are not well separated from the majority class samples. Hence,

there have been modifications to address these problems, e.g., Borderline-SMOTE [151]

and Geometric-SMOTE [152].

Borderline-SMOTE is an adaptation of SMOTE that generates synthetic samples only

for the minority class examples that are close to the decision boundary between the

minority and majority classes [151]. Intuitively, it’s not necessary to augment data for
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the minority class samples that are already well separated from the majority class, while

the ones that are close to the boundary may benefit from them. Geometric-SMOTE

is another variation of the SMOTE algorithm designed to generate synthetic samples

for the minority class by considering the geometric structure of the feature space [152].

The target of Geometric-SMOTE is to generate synthetic samples by interpolating not

only between pairs of minority class samples, but also between triplets of minority class

samples that form a triangle in the feature space, which allows Geometric-SMOTE to

capture more complex structures and relationships within the minority class. Geometric-

SMOTE often achieves superior performance especially those with complex geometric

structures in the feature space.

2.4.2 Feature-space Augmentation

Traditionally, feature dimensionalities are often transformed into low-dimensional space

with most discriminant information by using feature extraction methods, e.g., princi-

pal component analysis (PCA) [153, 154] and linear discriminant analysis (LDA) [26].

However, both PCA and LDA do not consider the dependence between features which

may lead to the loss of discriminant power. Recently, many feature-space augmenta-

tion methods have been developed to enrich the discriminant information of data [47,

139, 145, 155, 156]. Wang et al. developed an adaptive feature augmentation scheme

for intrusion detection framework via logarithm marginal density ratios transformation

based support vector machine [145]. Chenet al. introduce a camera correlation aware

feature augmentation method for a person re-identification system to capture the cor-

relation information across different camera views [156]. In [47], a kNN-based feature

augmentation method is designed to enrich the original feature space and hence improve

the discriminant power of the multi-dimensional classification model. In literature, both

feature-space augmentation and instance-space augmentation methods are less explored

in the naive Bayes classifier. Since the instance-space augmentation method may intro-

duce biases in the data [157], Feature-space augmentation is more robust to boost the

discriminant power of naive Bayes.
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In recent years, feature augmentation methods have been proven to be another effective

way to boost the performance of classification tasks by incorporating new features to

the original ones, which can also be divided into model-free methods [47, 145, 146] and

model-based methods [46, 48, 147]. The former ones utilize a set of transformation tech-

niques to generate new features and then add them with the original ones [47, 145, 146].

Wang et al. utilize the logarithm marginal density ratios transformation to capture the

feature correlations into the augmented features and hence improve the performance of

intrusion detection [145]. In [47], feature relationships among neighboring instances are

exploited to produce the new feature vectors and enhance the multi-dimensional clas-

sification performance. These methods often have limited performance improvements

without the learning mechanism [48]. The latter ones learn features automatically by

a set of learning architectures, e.g., CNN with self-attention mechanism [147] and ar-

tificial neural network [46, 48]. In [147], the convolutional feature maps extracted by

CNNs are augmented with self-attentional feature maps to capture both local and global

information for improving the performance of vision tasks. Recently, Li et al. first uti-

lized relative transformation to model the relationships among classes of data samples

and then employed an artificial neural network to generate the augmented features for

enhancing the discriminant power of classifiers [48]. By exploiting the intrinsic data

residing in the original feature space, feature augmentation methods could effectively

derive new well-pose features to enhance the discrimination power of subsequent classi-

fication tasks.

2.4.3 Summary

In the Bayesian classification framework, naive Bayes has achieved excellent performance

due to its simplicity and efficiency [1–3, 5–7]. However, the independence assumption in

naive Bayes often does not hold so that numerous improved naive Bayes methods have

been developed to alleviate this problem [11–13, 17, 19–22]. Among them, the wrapper-

based methods often achieve the state-of-the-art classification performance [21, 22]. For

example in WANBIA, the attributes are weighted on a class-independent basis in which

each weight is assigned to each attribute ignoring the class variable [21]. In CAWNB, at-

tributes of different classes are weighted differently to enhance the discrimination power
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of the model. CAWNB better captures the characteristics of the dataset and achieves

significant performance improvements compared with other attribute-weighting meth-

ods. However, with more weights to be optimized, the model complexity increases and

hence over-fitting may occur, especially if the dataset is small. To alleviate the problem,

we propose a regularized naive Bayes to automatically balance the generalization ability

and discrimination power. The work is discussed in Chapter 3.

To handle the mixed data types in the dataset, naive Bayes often relies on the discretiza-

tion method to first transform the numerical attributes into discrete ones and hence the

probability distribution can be better estimated [9, 20, 22]. Most discretization meth-

ods [23–25, 44, 80] emphasize maximizing the discriminant power, but they pay little

attention to the generalization capability, e.g., they often restrict the number of dis-

crete intervals to be small, in the hope of achieving a satisfactory generalization ability.

Thus, we first propose a semi-supervised discretization framework with an adaptive dis-

criminative discretization criterion to enhance the discrimination power of naive Bayes

classifiers as described in Chapter 4. In Chapter 5, we further explore the well-designed

selection criterion to derive an optimal discretization scheme and hence lead to the better

trade-off between generalization ability and discrimination power of classifiers.

Due to the independence assumption, the discrimination power of naive Bayes is limited

in two ways: 1) lacking a mechanism to model the correlations between features; 2)

ignoring the local data structure formed by jointly considering all the feature dimensions

of neighboring samples. To address these two problems, many augmentation techniques

are developed to augment original data in instance-space [150, 152] or feautre-space [46–

48]. Since naive Bayes is not sensitive to instance size, feature augmentation is a more

effective way to enhance the discrimination power of naive Bayes classifiers. In Chapter 6,

we propose a feature augmentation framework for naive Bayes classifiers to boost their

discriminant power.



Chapter 3

A Regularized Attribute

Weighting Framework for Naive

Bayes

The Bayesian classification framework has been widely used in many fields, but the co-

variance matrix is usually difficult to estimate reliably1. To alleviate the problem, many

naive Bayes (NB) approaches with good performance have been developed. However,

the assumption of conditional independence between attributes in NB rarely holds in

reality. Various attribute-weighting schemes have been developed to address this prob-

lem. Among them, class-specific attribute weighted naive Bayes (CAWNB) has recently

achieved good performance by using classification feedback to optimize the attribute

weights of each class. However, the derived model may be over-fitted to the training

dataset, especially when the dataset is insufficient to train a model with good gener-

alization performance. This paper proposes a regularization technique to improve the

generalization capability of CAWNB, which could well balance the trade-off between dis-

crimination power and generalization capability. More specifically, by introducing the

regularization term, the proposed method, namely regularized naive Bayes (RNB), could
1This work has been published in IEEE Access.

44
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well capture the data characteristics when the dataset is large, and exhibit good gener-

alization performance when the dataset is small. RNB is compared with the state-of-

the-art naive Bayes methods. Experiments on 33 machine-learning benchmark datasets

demonstrate that RNB outperforms the compared methods significantly.

3.1 Introduction

The Bayesian classification framework is fundamental to statistical pattern recognition

and widely deployed in many machine-learning tasks [158–163]. Bayesian decision rule

with 0/1 loss function leads to the optimal classification in statistical pattern recogni-

tion [164]. However, the estimated covariance matrix in Bayesian classification often

deviates from the data population due to the curse of dimensionality, which may re-

duce classification performance [164]. To tackle the problem, many naive Bayes (NB)

approaches [49–51, 165] have been developed, which regularize the covariance matrix to

a diagonal matrix. In these methods, it is assumed that each feature dimension is con-

ditionally independent, and then the posterior probability can be estimated separately

for each feature dimension. NB classifiers are competitive with many latest classifiers as

shown in [166, 167].

However, NB may be oversimplified as the assumption of strong independence is often

invalid, resulting in a decrease in classification performance [168]. Many improved naive

Bayes classifiers have been developed to alleviate the conditional independence assump-

tion, which can be broadly divided into five categories: 1) Structure extension [11, 12];

2) Instance selection [13, 15]; 3) Instance weighting [43]; 4) Feature selection [17, 18];

5) Feature weighting [5, 19, 21, 22, 32–42]. Among these methods, attribute-weighting

methods [5, 19, 21, 22, 32–42] relieve the independence assumption by assigning differ-

ent weights to different attributes so that the discriminative features will have a larger

weight.

Attribute-weighting methods can be further divided into filter-based methods [19, 32–36]

and wrapper-based methods [5, 21, 22, 37–42]. The former determines the attribute

weights in advance by using the general characteristics of the data, while the latter
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determines the attribute weights by using classification feedback to minimize the classi-

fication error. In most cases, the filter-based methods calculate weights faster than the

wrapper-based ones, but the classification accuracy of the latter is higher than that of

the former.

Attribute-weighting methods often assign the same weight to each attribute in differ-

ent classes, e.g. Zaidi et al. weighed the attributes to alleviate naive Bayes’ inde-

pendence assumption (WANBIA) [21]. In class-specific attribute weighted naive Bayes

(CAWNB) [22], attributes of different classes are weighted differently to enhance the dis-

crimination power of the model. CAWNB better captures the characteristics of dataset

and achieves significant performance improvements compared with other attribute-weighting

methods. However, with more weights to be optimized, the model complexity increases

and hence over-fitting may occur, especially if the dataset is small. To alleviate the

problem, we propose to add a regularization term to the formulation of CAWNB to pe-

nalize the model complexity, which will tend to use simpler models to avoid over-fitting,

similarly as in [154, 164, 169].

Naive Bayes can be regarded as a regularized form of the Bayesian classification frame-

work by restricting the covariance matrix to be diagonal [164]. L1- or L2-regularization

has been widely used in machine-learning tasks [170, 171]. L2-regularization [171] could

be applied on the model parameters to encourage the attribute weights with poor effect

to decay towards zero and assign higher weights to attributes with higher effect. Alter-

natively, L1-regularization could be applied to the model parameters of CAWNB, which

is more robust to noise and outliers than L2-regularization. L1-regularization in general

produces better results, but at a higher computational cost [170]. Sparse representation

is an example of L1-regularization [170].

Both L1-regularization and L2-regularization will introduce a significant computational

overhead. In this paper, a simple yet effective way is proposed to regularize CAWNB,

i.e. add a simpler model to constrain CAWNB. Simpler models usually achieve better

generalization performance [172]. WANBIA is simpler than CAWNB, as the number of

weights estimated in WANBIA are fewer than that in CAWNB. Hence, it will improve
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the generalization capability of CAWNB by integrating with the simpler model WAN-

BIA. Furthermore, it will not significantly increase the computational complexity by

integrating these two models, as both share similar procedures to solve the optimization

problem [21, 22]. The proposed approach is named as regularized naive Bayes (RNB).

In the proposed RNB, the target is to find the optimal model parameters M ={W ,w, α}

to minimize the difference between the posterior derived from the ground-truth label and

the posterior P (M) estimated from the data, where

P (M) = αPD(W ) + (1− α)PI(w). (3.1)

PD(W ) is the posterior probability with attributes weighted on a per-class basis, and

W is the matrix to weigh the attributes differently for different classes. PI(w) is the

posterior probability with attributes weighted the same for all classes, and w is the

weight vector for the attributes. PD(W ) is a more complex model than PI(w), as more

weights need to be optimized in W than that in w. Thus, PI(w) is a simpler model

that can provide better generalization capabilities.

Now the challenge is how to jointly find the optimal model parameters including W , w,

and α. To achieve this, a gradient-based optimization procedure is proposed, similar to

L-BFGS-M [173] used in CAWNB and WANBIA. More specifically, the partial deriva-

tives of P (M) w.r.t. W , w and α are derived, and a gradient-descent-based method is

utilized to iteratively update W , w and α respectively, towards the objective of minimiz-

ing the classification error. Compared with other regularization methods, the proposed

method requires minimal modifications to the optimization problem of CAWNB, and it

does not significantly increase the computational complexity.

In the proposed formulation, α is used to automatically adjust the trade-off between

discrimination power and generalization capability. More specifically, when the dataset

is small and hence a simpler model is preferred, α will be smaller and hence a larger

weight will be assigned to PI(w), which will ensure better generalization capabilities.

This is verified by the experiments shown in Section 3.4.
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To validate the effectiveness of the proposed RNB, a series of empirical comparisons

have been conducted with state-of-the-art naive Bayes on the collection of 33 benchmark

classification datasets from the University of California at Irvine (UCI) repository [174].

Experimental results show that the performance of RNB is significantly better than all

compared methods [18, 19, 21, 22, 32, 41, 42, 165].

The contributions of this paper are summarized as follows: 1) The poor generalization

capability of CAWNB is identified and RNB is proposed to address the problem. 2) An

optimization procedure is designed to derive the optimal model of the proposed RNB. 3)

The proposed RNB improves the generalization performance of previous methods and

automatically balances the discrimination power and the generalization capability, so

that better performance can be obtained regardless of the size of datasets.

The rest of the paper is organized as follows. Section 3.2 reviews related work. Then,

the proposed regularized naive Bayes is introduced in section 3.3. In section 3.4, experi-

mental comparisons with state-of-the-art naive Bayes are conducted to demonstrate the

effectiveness of the proposed method. Finally, this work is concluded in section 3.5.

3.2 Related Work

Naive Bayes classifiers have been widely used in many applications [49–51]. As the

strong assumption of feature independence in NB is often invalid, many improvements

have been developed, which can be broadly divided into 5 categories. The first category,

structure extension [11, 12], extends the structure of naive Bayes to represent the feature

dependencies. The second category, instance selection [13, 15], employs the principle of

local learning to build a set of local naive Bayes classifiers using a subset of the dataset.

The third category, instance weighting [43], weights the instances differently in order

to maximize the discriminant power. The fourth category, feature selection [17, 18],

removes the strongly correlated or irrelevant features, as those features are harmful

to reliable classification, and/or selects the most discriminative feature subset. The

fifth category, weighted naive Bayes, tackles the problem by assigning different weights

to attributes so that the discriminative features have a larger weight and hence the
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discriminative power will increase [5, 19, 21, 22, 32–42]. The attribute-weighting meth-

ods can be further categorized into filter-based methods [19, 32–36] and wrapper-based

methods [5, 21, 22, 37–42].

Filter-based methods [19, 32–36] utilize the characteristics of the data to determine

attribute weights. Lee et al. determined the weights by using the Kullback-Leibler (KL)

divergence between attributes and class labels [34]. In [33], Hall defined the weights by

utilizing the minimum depth in a decision tree. In [32], the conditional probabilities of

naive Bayes are estimated by deeply computing feature weighted frequencies. Recently,

Jiang et al. developed a correlation-based attribute-weighting NB, which defines the

weight of each attribute as a sigmoid transformation of the difference between mutual

relevance and average mutual redundancy [19]. Filter-based approaches determine the

weights in advance by measuring the relationship between features and classification

variables, such as mutual information, KL divergence and correlation.

Wrapper-based methods iteratively utilize the classification feedback to optimize at-

tribute weights. Due to the iterative process, wrapper-based methods usually have

higher time complexity and better classification performance than filter-based ones.

In [37], Zhang and Sheng updated attribute weights based on a hill-climbing strat-

egy to maximize the classification accuracy. Wu and Cai utilized a differential evolution

algorithm to determine the weights [41]. In [42], Yu et al. developed a hybrid attribute-

weighting method by initializing the weights through a correlation-based filter and then

adjusting the weights through a wrapper. Zaidi et al. optimized attribute weights by

minimizing the mean squared error between predicted and ground-truth labels [21]. Very

recently, Jiang et al. developed CAWNB [22], which determines the optimal weight for

each attribute of different classes to capture more characteristics of the dataset, instead

of ignoring the class dependency as in [21]. Hence it achieves excellent classification

performance on many benchmark datasets.

Unlike WANBIA [21], which assigns the same attribute weight for all classes, CAWNB [22]

assigns different weights to different classes, so that the CAWNB model is more compli-

cated and more prone to over-fitting, especially when the dataset is small. Some form

of regularization to CAWNB is required to improve its generalization performance.
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3.3 Regularized attribute-weighted Naive Bayes

3.3.1 Problem Analysis of Previous Naive Bayes Methods

In the Bayesian classification framework, the posterior probability is defined as:

P (c|x) = P (x|c)P (c)

P (x)
, (3.2)

where x is the feature vector and c is the classification variable. Because it is difficult to

reliably estimate the likelihood P (x|c) due to the curse of dimensionality, in naive Bayes

methods, the likelihood is estimated by assuming that the attributes are independent

given the classification variable c, which results in the following formulation:

P (x|c) =
m∏
j=1

P (xj |c), (3.3)

where xj is the j-th dimension of the feature vector x, and m is the feature dimension-

ality. Then, the posterior probability can be estimated by:

P (c|x) =
P (c)

m∏
j=1

P (xj |c)

∑
c′ P (c′)

m∏
j=1

P (xj |c′)
. (3.4)

Naive Bayes regularizes the Bayesian framework by assuming that each attribute is inde-

pendent conditioned on the classification variable, but this assumption is often invalid.

To alleviate the problem, weights are assigned to attributes in WANBIA [21], and the

weights are optimized via minimizing the mean squared error between the estimated

posteriors and the posteriors derived using ground-truth labels.

Jiang et al. showed that attribute weighting should be class-specific to enhance the

discrimination power of naive Bayes [22]. Thus, different weights are assigned to the

attributes for different classes in CAWNB [22]. CAWNB is more complicated than

WANBIA considering the number of model parameters. Class-specific attribute weights

provide CAWNB with greater discrimination. However, the model complexity is con-

siderably increased, so the generalization capability may decrease. The problem will be
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severe when the dataset is small, so the training samples are not enough to derive a

reliable naive Bayes model.

To improve the generalization capability of CAWNB, we propose to add a simpler model,

WANBIA, to constrain CAWNB. Besides, CAWNB is an improved version of WANBIA,

and both share a similar optimization procedure. It will not significantly increase the

computational complexity by integrating WANBIA into CAWNB.

3.3.2 Overview of Proposed Regularized Naive Bayes

In the proposed method, the target is to use the classification feedback to optimize the

attribute weights. More precisely, the target is to find the optimal attribute weights

to minimize the difference between the estimated posteriors and the posteriors derived

from the ground-truth labels. The mean squared error is often used to capture such

differences:

f =
1

2

∑
xi∈D

∑
c

(P (c|xi)− P̂ (c|xi))
2, (3.5)

where D represents the whole dataset, P̂ (c|xi) is the estimated posterior of class c given

xi, and the posteriors derived from the ground-truth labels are defined as:

P (c|xi) =


1 if c = ci,

0 otherwise.

(3.6)

The posterior P̂ (c|xi) consists of two parts. The first part that emphasizes the discrim-

inative power of the model, whose attributes are weighted on a class-dependent basis, is

defined as:

P̂D(c|x) =
πc
∏

j θ
wc,j

c,j∑
c′ πc′

∏
j θ

wc′,j
c′,j

, (3.7)
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where π = [π1, π2, ..., πl] are the prior probabilities, and πc is the prior probability that

sample x belongs to class c. The matrix Θ of likelihood probabilities is defined as:

Θ =



θ1,1 θ1,2 · · · θ1,m

θ2,1 θ2,2 · · · θ2,m
...

... . . . ...

θl,1 θl,2 · · · θl,m,


where θc,j is the likelihood of the j-th attribute of x given the class c. π and Θ

are estimated from training samples using (3.13) and (3.14) respectively, as shown

in section 3.3.3 later on.

W =



w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
... . . . ...

wl,1 wl,2 · · · wl,m


is the attribute-weighting matrix on a per-class basis and wc,j is the weight of the j-th

attribute for class c.

The other posterior probability P̂I(c|x) that emphasizes the generalization capability of

the model, whose attributes are weighted on a class-independent basis, is defined as:

P̂I(c|x) =
πc
∏

j θ
wj

c,j∑
c′ πc′

∏
j θ

wj

c′,j

, (3.8)

where w = [w1, w2, . . . , wm] is the weight vector and wj is the weight of the j-th at-

tribute.

In the proposed RNB, the regularized posterior probability is defined as:

P̂ (c|x) = αP̂D(c|x) + (1− α)P̂I(c|x), (3.9)

where M={W , w, α} consists of class-dependent attribute weights W , class-independent

attribute weights w and a hyper-parameter α. α is used to balance the trade-off between

the discrimination power and the generalization capability.
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Figure 3.1: Proposed regularized attribute weighting framework for naive Bayes.

The block diagram of the proposed regularized naive Bayes is shown in Fig. 3.1. In the

training process, the elements in W and w are all initialized to 1 and α is initialized

to 0.5, so that the initial model is the original naive Bayes. Then, P̂D(c|x) and P̂I(c|x)

are estimated using training samples and these two posteriors are integrated as the

regularized posterior P̂ (c|x) with the weighting factor α, as shown in (3.9). Then,

f is calculated as the sum of the squared differences between P (c|x) and P̂ (c|x), as

shown in (3.5). The model parameters are optimized iteratively by using a gradient-

descent-based method to minimize f until convergence. The detailed procedures to

derive the optimal model parameters are given in Section 3.3.4. The class-independent

weights significantly improve the generalization capability of the model, as evidenced in

Section 3.4.

In the testing process, the estimated prior probabilities π, the likelihood probabilities

Θ and the optimal model parameters M∗= {W ∗,w∗, α∗} are used to compute the

posterior probability P̂ (c|t) for a given test instance t by using (3.9). Finally, the class
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label of t is estimated by using MAP estimation as follows:

ĉ(t) = argmax
c∈C

P̂ (c|t), (3.10)

where C is the set of labels for all classes.

3.3.3 Estimation of Prior Probabilities and Likelihood Probabilities

Firstly, prior probabilities π and likelihood probabilities Θ are estimated based on train-

ing samples. Traditionally, the prior probability πc for class c is estimated as follows:

πc =

∑n
i=1 δ(ci, c)

n
, (3.11)

where n is the number of training samples, ci is the class label of the i-th training

instance, and δ(•) is a binary function, which is 1 if its two parameters are identical and

0 otherwise. The likelihood function θc,j for the j-th attribute of class c is estimated as

follows:

θc,j =

∑n
i=1 δ(xij , xj)δ(ci, c)∑n

i=1 δ(ci, c)
, (3.12)

where xij is the j-th attribute value of the i-th training instance and xj is the j-th

attribute.

To make the estimation numerically stable, e.g. to avoid estimating πc to 0 due to

insufficient training samples, in the proposed method, the prior probability πc and the

likelihood θc,j are estimated by adding a regularization term as follow:

πc =

∑n
i=1 δ(ci, c) +

1
l

n+ 1
, (3.13)

θc,j =

∑n
i=1 δ(xij , xj)δ(ci, c) +

1
nj∑n

i=1 δ(ci, c) + 1
, (3.14)

where nj is the number of discretized values for the j-th attribute.

The aforementioned procedures work for discrete features. Continuous features are

transformed into discrete features by using the Fayyad & Irani’s MDL method [44].
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Then, (3.13) and (3.14) are used to compute prior probabilities and likelihood probabil-

ities of continuous features respectively in the same way as discrete ones.

3.3.4 Solving the Optimization Problem

Now the challenge is how to jointly find the optimal model parameters M including W ,

w, and α. To achieve this, a gradient-descent-based optimization procedure is proposed,

similar to L-BFGS-M [173] used in CAWNB and WANBIA. More specifically, the target

is to find the gradient direction of the objective function w.r.t. the model parameters

W , w, and α, respectively. Then, the model parameters are updated iteratively along

the gradient direction to minimize the error function defined in (3.5).

The partial derivative of f w.r.t. each element of W , wc,j , is given as follows:

∂f

∂wc,j
= −α

∑
x∈D

(
P (c|x)− P̂ (c|x)

)
[
P̂D(c|x)(1− P̂D(c|x)) log(θc,j)

]
.

(3.15)

Similarly, the partial derivative of f w.r.t. each element of w, wj is calculated as:

∂f

∂wj
= (α− 1)

∑
x∈D

∑
c

(
P (c|x)− P̂ (c|x)

)
P̂I(c|x)(

log(θaj |c)−
∑
c′

P̂I(c
′|x)log(θc′,j)

)
.

(3.16)

The detailed derivations are omitted here and a brief derivation is described in Appendix.

Finally, the partial derivative of f w.r.t. α can be calculated as:

∂f

∂α
=
∑
x∈X

(
P (c|x)− P̂ (c|x)

)(
P̂D(c|x)− P̂I(c|x)

)
. (3.17)

After deriving the partial derivatives of the objective function f w.r.t. the model pa-

rameters, the model parameters W , w, and α are iteratively updated to minimize

the classification error. After the i-th iteration of optimization, the model parameters
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Wi,wi, αi are updated using the following equations:

Wi+1 = Wi + ε∇Wi, (3.18)

wi+1 = wi + ε∇wi, (3.19)

αi+1 = αi + ε∇αi, (3.20)

where ∇Wi is the gradient matrix whose elements are defined in (3.15), ∇wi is the

gradient vector whose elements are defined in (3.16), ∇αi is the partial derivative defined

in (3.17) and ε is the learning rate. The iteration will stop when:

fi − fi+1

max (|fi|, |fi+1|, 1)
< η, (3.21)

where η is a predefined small constant. The optimal model is denoted as M∗ =

{W ∗,w∗,α∗}.

The learning algorithms for training and testing are summarized in Algorithm 1 and

Algorithm 2, respectively.

Algorithm 1 Training algorithm
Input: x: training samples, f : the objective function.
Output: the prior probabilities π, the likelihood probabilities Θ, and the optimal model

parameters M∗= {W ∗,w∗, α∗}.
1: Estimate the prior probability πc using (3.13).
2: Estimate the likelihood probability θc,j using (3.14).
3: Derive the posterior probability P (c|x) from the ground-truth labels using (3.6).
4: Initialize attribute weights of W and w to 1 and α to 0.5.
5: while stop condition (3.21) is NOT met do
6: Derive the class-dependent posterior P̂D(c|x) by (3.7).
7: Derive the class-independent posterior P̂I(c|x) by (3.8).
8: Derive the regularized posterior P̂ (c|x) by (3.9).
9: Derive the objective function f using (3.5).

10: Derive the partial derivatives of f w.r.t. W , w, α using (3.15), (3.16) and (3.17),
respectively.

11: Update W , w and α using (3.18), (3.19) and (3.20), respectively.
12: end while
13: Return the prior probabilities π, the likelihood probabilities Θ and the optimal

model parameters M∗ = {W ∗,w∗, α∗}.

α is initialized to 0.5 so that the initial model will not bias the discrimination power

or the generalization capability. α is optimized to achieve the best trade-off between
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Algorithm 2 Testing algorithm
Input: t: a test instance, M∗= {W ∗, w∗, α∗}: the set of the optimal model parame-

ters, π: the prior probabilities, Θ: the likelihood probabilities.
Output: the class label of the test instance t.

1: Derive the class-dependent posterior P̂D(c|t) using (3.7).
2: Derive the class-independent posterior P̂I(c|t) using (3.8).
3: Derive the regularized posterior P̂ (c|t) using (3.9).
4: Determine the class label ĉ(t) of the test instance t using (3.10).
5: Return the predicted class label ĉ(t).

discrimination power and generalization capability. A small value of α means that a

small weight is assigned to P̂D(c|x), and a large weight is assigned to P̂I(c|x). As a

result, a better generalization capability is expected. Note that in the extreme case, the

model is reduced to P̂D(c|x) for α = 1, or P̂I(c|x) for α = 0. All the weights of W

and w are initialized to 1, which means that the model is initialized to naive Bayes at

the beginning. In the proposed regularized naive Bayes, not only the prior probabilities

and the likelihood probabilities are regularized to avoid numerical instability as shown

in (3.13) and (3.14), but also the posterior is regularized to improve the generalization

capability as shown in (3.9).

3.4 Experimental Results

The proposed approach is compared with original naive Bayes [175], Gaussian naive

Bayes [165] and several state-of-the-art NB algorithms. TCSFS-NB improves the per-

formance of naive Bayes through feature selection[18]. DAWNB [32] and CFW [19]

are two recent filter-based attribute-weighting methods. The comparisons with them

can illustrate the performance gain of the proposed RNB over filter-based approaches.

DEAWNB [41], WANBIA [21], CAWNB [22] and CWANB [42] are four wrapper-based

attribute-weighting methods in recent years. They can provide a comprehensive compar-

ison to wrapper-based attribute-weighting methods. These competitors are summarized

in Table 6.1.
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Table 3.1: Description of competitors: original NB, Gaussian NB, one feature-
selection-based method, two filter-based attribute-weighting methods and four wrapper-

based attribute-weighting methods.

Algorithm Description
NB [175] Original naive Bayes method.

GNB [165] Gassian naive Bayes method.
TCSFS-NB [18] Test-cost-sensitive feature selection.

DAWNB [32] Filter-based attribute weighting, with deep attribute
weighting.

CFW [19] Filter-based attribute weighting, with correlation-
based attribute weighting.

DEAWNB [41] Wrapper-based attribute weighting, with differential
evolution-based attribute weighting.

WANBIA [21] Wrapper-based attribute weighting, with attributes
weighted in a class-independent manner.

CAWNB [22] Wrapper-based attribute weighting, with attributes
weighted in a class-specific manner.

CWANB [42]
Wrapper-based attribute weighting, with filter-based
initialization and wrapper-based optimization for at-
tribute weighting of each attribute.

3.4.1 Experimental Settings

Comprehensive experiments are conducted on a collection of 33 benchmark datasets

from the UCI repository 2, which represent a wide range of domains and data character-

istics [174]. Most datasets are from real-world problems such as diabetes, hepatitis and

primary tumor, vehicle classification and letter recognition. Besides, the characteristics

of the datasets including the number of instances, attributes and classes are signifi-

cantly different. The sizes of datasets are between 57 and 20000, enough to evaluate

how the algorithms perform on datasets of different sizes. For example, smaller datasets

such as breast-cancer, heart-c and iris will prefer methods with better generalization

capabilities. Attribute weighting methods with good discrimination power will perform

better on larger datasets such as sick, hypothyroid, waveform-5000 and mushroom. In

addition, 17 out of 33 datasets have missing values, which simulates the difficulties in

real life when collecting datasets, and imposes additional challenges for classifiers. Be-

sides numeric values, the attributes of some datasets are nominal values, which imposes
2These 33 datasets could be downloaded from “https://archive.ics.uci.edu/ml/index.php”



Chapter 3. A Regularized Attribute Weighting Framework for Naive Bayes 59

another challenge for classifier design. These 33 benchmark datasets provide a compre-

hensive evaluation of the effectiveness of the proposed RNB. The dataset descriptions

are summarized in Table 3.2.

Table 3.2: 33 benchmark datasets are collected from real-world problems. The number
of instances is widely distributed in 57 and 20000 which can provide a comprehensive

evaluation on datasets of different sizes.

Dataset Instance Attributes Classes Missing
values

Numeric
values

anneal 898 39 6 Y Y
audiology 226 70 24 Y N
balance-scale 625 5 3 N Y
breast-cancer 286 10 2 Y N
breast-w 699 10 2 Y N
colic 368 23 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
diabetes 768 9 2 N Y
glass 214 10 7 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-statlog 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypothyroid 3772 30 4 Y Y
ionosphere 351 35 2 N Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymphography 148 19 4 N Y
mushroom 8124 23 2 Y N
primary-tumor 339 18 21 Y N
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
sonar 208 61 2 N Y
soybean 683 36 19 Y N
splice 3190 62 3 N N
vehicle 846 19 4 N Y
vote 435 17 2 Y N
vowel 990 14 11 N Y
waveform-5000 5000 41 3 N Y
zoo 101 18 7 N Y

The missing values in the datasets are replaced with the average value of the numeric

attributes or the mode of the nominal attributes in the available data. In CAWNB, they

use Fayyad & Irani’s MDL method [44] to discretize numeric attributes which may lead
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to information loss. Thus, in the experiments, the Fayyad & Irani’s MDL method is

fine-tuned to reduce the information loss. Besides, two irrelevant attributes are deleted,

such as “instance name” in “splice” and “animal” in “zoo”.

The results of NB, DAWNB, DEAWNB, WANBIA and CAWNB are obtained from [22].

The results of TCSFS-NB, DAWNB and CWANB are obtained from [18], [32] and [42],

respectively. GNB is implemented using Weka and the proposed RNB is implemented

in MATLAB. The classification accuracy of the proposed algorithm on each dataset is

derived via 10-fold cross-validation. During optimization, η is set to 10−7 in the stop

criterion defined in (3.21). The learning rate ε is determined using the linear search

programs [176].

3.4.2 Comparison to State-of-the-art

The comparisons to the state-of-the-art algorithms on the 33 datasets are shown in

Table 3.3. The symbol • represents the statistically significant improvements achieved

by the proposed regularized naive Bayes for a paired one-side t-test with the p=0.05

significance level. The average classification accuracy and the Win/T ie/Loss on the 33

datasets for all the algorithms are summarized at the bottom of Table 3.3. The average

classification accuracy over all the datasets can provide a straightforward comparison of

their performance. Each entry of W/T/L in the table indicates that the competitor wins

on W datasets, ties on T datasets and loses on L datasets compared to the proposed

RNB.

From Table 3.3, it is evident that the proposed Regularized Naive Bayes (RNB) achieves

the highest average classification accuracy. Specifically, RNB outperforms the original

Naive Bayes and Gaussian Naive Bayes by 2.34% and 6.15% on average, respectively.

Furthermore, when compared to the filter-based approaches, such as DAWNB [32] and

CFW [19], RNB demonstrates average improvements of 2.26% and 1.82%, respectively.

Notably, RNB also surpasses the feature-selection-based TCSFS-NB [18] by 2.32% on

average.
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Table 3.3: Experimental results for RNB versus NB [175], DAWNB [32], DEAWNB
[41], WANBIA [21], CAWNB [22], CWANB [42], GNB[165], TCSFS-NB[18] and

CFW[19]. RNB achieves the best classification accuracy among all approaches.

Dataset RNB GNB [165] TCSFS-NB [18] CFW [19] CWANB [42] CAWNB [22] NB [175] DAWNB [32] DEAWNB [41] WANBIA [21]
anneal 99.22 86.30 • 98.26 • 98.50 • 98.55 99.47 96.36 • 97.45 • 98.41 • 98.69
audiology 80.08 71.24 • 74.20 74.22 77.52 80.96 75.74 77.11 76.08 78.08
balance-scale 78.55 90.40 70.72 • 73.76 • 70.01 • 71.08 • 71.08 • 71.99 • 69.26 • 71.08 •
breast-cancer 70.25 72.03 71.10 72.46 71.28 69.78 72.32 71.50 70.46 71.35
breast-w 96.99 96.00 96.58 97.14 97.07 96.50 97.25 97.30 96.91 96.51
colic 83.42 77.45 • 84.13 83.34 82.83 83.07 81.20 • 82.93 82.55 83.72
credit-a 86.09 77.68 • 85.93 86.99 86.26 86.14 86.17 86.49 86.81 86.23
credit-g 78.60 75.40 • 74.11 • 75.70 • 75.47 • 76.04 • 75.40 • 74.27 • 75.08 • 75.59 •
diabetes 78.64 76.30 • 78.15 78.01 78.37 78.67 77.88 78.70 77.85 78.48
glass 80.01 48.60 • 74.40 • 73.37 • 74.72 • 73.69 • 74.20 • 72.00 • 75.32 • 73.82 •
heart-c 83.54 82.84 82.48 82.94 83.71 83.03 83.73 83.11 82.38 83.73
heart-h 82.32 82.99 80.73 83.82 82.66 83.41 84.43 84.05 81.61 84.39
heart-statlog 82.96 83.70 83.70 83.44 85.04 84.33 83.74 83.33 83.59 84.74
hepatitis 89.83 83.87 • 86.99 85.95 86.02 86.66 85.05 84.80 86.66 86.61
hypothyroid 99.52 95.23 • 99.07 • 98.56 • 99.47 99.60 98.74 • 98.15 • 99.31 99.37
ionosphere 91.80 82.62 • 91.57 91.82 92.77 92.74 91.37 91.79 91.71 92.73
iris 97.33 96.00 95.33 • 94.40 • 94.60 • 94.67 • 94.33 • 94.53 • 94.13 • 94.33 •
kr-vs-kp 93.08 87.89 • 94.09 93.58 94.38 95.20 87.81 • 91.86 • 94.11 93.92
labor 91.90 91.23 87.13 • 92.10 94.60 92.63 93.83 93.57 94.63 95.60
letter 76.62 64.12 • 74.61 • 75.22 • 75.25 • 75.42 • 74.67 • 75.33 • 75.21 • 75.55 •
lymphography 84.30 83.11 82.20 84.81 81.47 83.76 85.70 83.39 84.24 84.48
mushroom 99.96 95.83 • 99.70 • 99.19 • 99.84 • 99.96 98.03 • 99.02 • 99.89 • 99.90 •
primary-tumor 47.30 46.90 46.25 47.20 45.69 47.15 47.11 43.84 47.34 48.53
segment 95.84 80.22 • 93.97 • 93.47 • 95.27 94.68 • 92.91 • 93.84 • 95.09 95.24
sick 97.56 92.92 • 97.21 97.36 97.44 97.54 97.07 96.86 • 97.59 97.47
sonar 91.90 67.79 • 80.55 • 82.56 • 82.71 • 84.58 • 84.96 • 83.72 • 84.10 • 83.85 •
soybean 94.00 92.09 • 91.64 • 93.66 93.79 94.31 93.53 93.35 93.71 93.75
splice 96.39 95.30 • 95.09 • 96.19 96.19 95.81 95.58 • 96.05 95.84 96.28
vehicle 69.61 44.80 • 66.60 • 62.91 • 68.32 70.33 62.64 • 62.82 • 66.30 • 68.57
vote 95.87 90.11 • 96.30 92.11 • 95.15 95.77 90.30 • 92.62 • 95.35 95.52
vowel 75.56 63.74 • 68.11 • 68.84 • 70.45 • 69.07 • 66.00 • 67.45 • 68.19 • 68.19 •
waveform-5000 85.84 80.00 • 81.67 • 83.11 • 84.22 • 85.56 80.76 • 80.99 • 83.80 • 84.65 •
zoo 98.09 95.05 • 93.69 • 95.96 96.15 95.95 95.75 • 94.05 • 95.45 • 95.75 •
AVERAGE 86.45 80.30 84.13 84.63 85.07 85.38 84.11 84.19 84.82 85.35
W/T/L - 1/9/23 0/17/16 0/14/19 0/24/9 0/25/8 0/15/18 0/16/17 0/21/12 0/23/10

1 • indicates that statistically significant improvement is achieved by the proposed RNB with significance level p = 0.05.
2 The bold value of classification accuracy means the proposed RNB performs best on the dataset.

In comparison to the previous best algorithm, CAWNB, the proposed RNB shows more

than a 1% improvement in average classification accuracy across 33 datasets. The en-

hancements are particularly notable in certain datasets. For instance, RNB achieves

classification accuracies that are over 5% higher than those obtained by CAWNB on

datasets such as balance-scale, glass, sonar, and vowel. On smaller datasets like glass,

iris, and sonar, RNB significantly outperforms CAWNB and other methods, demon-

strating its superior generalization capability. Even on larger datasets such as segment

and letter, RNB shows statistically significant improvements. These results collectively

demonstrate that the proposed RNB is highly adaptable to datasets of varying sizes and

effectively balances discrimination power with generalization capability. Such perfor-

mance highlights the robustness and versatility of RNB in diverse classification tasks.
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3.4.3 Experimental Analysis

In the statistical significance tests shown in Table 3.3, the proposed approach sig-

nificantly outperforms CAWNB [22], CWANB [42], WANBIA [21], DEAWNB [41],

CFW [19], DAWNB [32], TCSFS-NB [18] and GNB[165] on 8, 9, 10, 12, 14, 17, 17

and 23 datasets, respectively. Compared with the original NB, on more than half of the

datasets, the proposed RNB achieves statistically significant improvements. Compared

with the previous best algorithm, CAWNB [22], the proposed RNB achieves statisti-

cally significant improvements on 8 datasets, which demonstrates the effectiveness of

the proposed approach.

Table 3.4 summarizes the results for statistical significance tests. For each entry u(v),

u is the number of datasets on which the proposed RNB outperforms the corresponding

competitor, and v is the number of datasets on which the performance gain is statis-

tically significant with significance level p = 0.05. Table 3.4 shows that on average

the classification accuracies on more than two-thirds of 33 datasets improve and half

of them are statistically significant. It hence can be concluded that the proposed RNB

outperforms all compared approaches.

Table 3.4: Summary of the results for statistical significance tests. For example, RNB
outperforms CAWNB on 21 datasets, among which 8 are statistically significant.

Algorithm GNB [165] TCSFS-NB [18] CFW [19] CWANB [42] CAWNB [22] NB [175] DAWNB [32] DEAWNB [41] WANBIA [21]

RNB 29(23) 28(17) 24(14) 24(9) 21(8) 25(18) 26(17) 26(12) 22(10)

From the experimental results, it can be seen that the proposed regularized naive Bayes

achieves a remarkable performance improvement. The hyper-parameter α is optimized

along with class-dependent attribute weights and class-independent attribute weights.

The optimal value of α on each dataset is shown in Table 3.5, together with the number

of instances and the number of instances per class. The values of α∗ vary on different

datasets. In general, the larger the dataset, the higher the α∗ value.

To better see the trend, the average value of α∗ across datasets and the performance gain

of the proposed RNB against the second best algorithm, CAWNB [22], are summarized

in Table 3.6. The 33 datasets are divided into small and large datasets according to

the number of instances per class, e.g. if it is larger than 500, the dataset is considered
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Table 3.5: The number of instances, instances per class and the optimal value of α
on 33 datasets.

Datasets Instance Instance/class α∗

anneal 898 150 1.0000
audiology 226 9 0.9875

balance-scale 625 208 0.7293
breast-cancer 286 143 0.4591

breast-w 699 350 0.4312
colic 368 184 0.4991

credit-a 690 345 0.4486
credit-g 1000 500 0.5258
diabetes 768 384 0.2839

glass 214 31 0.9741
heart-c 303 61 0.3981
hear-h 294 59 0.7923

heat-statlog 270 135 0.5767
hepetitis 155 78 0.5815

hypothroid 3772 943 1.0000
ionophere 351 176 0.4925

iris 150 50 0.1935
kr-vs-kp 3196 1598 1.0000

labor 57 29 1.0000
letter 20000 769 0.5536

lymphoraphy 148 37 0.8762
mushroom 8124 4062 1.0000

primary-tumor 339 16 1.0000
segment 2310 330 0.0223

sick 3772 1886 0.9155
sonar 208 104 0.0000

soybean 683 36 0.0000
splice 3190 1063 0.1932
vehicle 846 212 0.4588
vote 435 218 0.0000
vowel 990 90 0.4530

wave-5000 5000 1667 0.8445
zoo 101 14 0.9916

large, and small otherwise. Table 3.6 shows that for small datasets, the average α∗

value is significantly smaller than that for large datasets. This indicates that α∗ could

be automatically adjusted during optimization so that for small datasets, α∗ will be

small to favor the generalization capability, whereas for large datasets, α∗ will be large

to favor the discrimination power. It can also be seen that the proposed RNB indeed

demonstrates good generalization capabilities for small datasets by achieving a larger

performance gain than that on large datasets.



Chapter 3. A Regularized Attribute Weighting Framework for Naive Bayes 64

Table 3.6: The average value of α∗ and the performance gain of the proposed RNB
against CAWNB [22] for small/large datasets.

Small datasets Large datasets
Average α∗ 0.5460 0.7541

Performance gain(%) 1.3267 0.2978

3.5 Summary

In this paper, after a thorough literature review of the state-of-the-art attribute-weighting

naive Bayes methods, we find that class-dependent attribute-weighting naive Bayes has

poor generalization capabilities on relatively small datasets. Therefore, we propose to

add a regularization term to alleviate the problem. The regularization term is extracted

from a simpler naive Bayes which has better generalization capabilities. The proposed

regularized naive Bayes is hence derived by integrating the regularization term into

the CAWNB. A gradient-descent-based optimization procedure has been designed to

derive the optimal model parameters including class-dependent weight matrix W , class-

independent weight vector w and the hyper-parameter α. Experimental results on the

33 datasets validate the effectiveness of the proposed RNB. The proposed method out-

performs the previous best algorithm CAWNB on 21 datasets, of which 8 are statistically

significant, and the average performance gain on the 33 datasets is more than 1%.



Chapter 4

A Semi-Supervised Adaptive

Discriminative Discretization

Method Improving

Discrimination Power of

Regularized Naive Bayes

Recently, many improved naive Bayes methods have been developed with enhanced

discrimination capabilities1. Among them, regularized naive Bayes (RNB) produces

excellent performance by balancing the discrimination power and generalization capa-

bility. Data discretization is important in naive Bayes. By grouping similar values into

one interval, the data distribution could be better estimated. However, existing meth-

ods including RNB often discretize the data into too few intervals, which may result in

a significant information loss. To address this problem, we propose a semi-supervised

adaptive discriminative discretization framework for naive Bayes, which could better es-

timate the data distribution by utilizing both labeled data and unlabeled data through

pseudo-labeling techniques. The proposed method also significantly reduces the infor-

mation loss during discretization by utilizing an adaptive discriminative discretization
1This work has been published in Expert System with Applications [177]
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scheme, and hence greatly improves the discrimination power of classifiers. The proposed

RNB+, i.e., regularized naive Bayes utilizing the proposed discretization framework, is

systematically evaluated on a wide range of machine-learning datasets. It significantly

and consistently outperforms state-of-the-art NB classifiers.

4.1 Introduction

Naive Bayes (NB) has been widely used in many machine-learning tasks because of its

simplicity and efficiency [20, 178–184]. It could well handle different data types such

as numerical and categorical ones. Naive Bayes assumes that features are indepen-

dent conditioned on the classification variable, while such an assumption often does not

hold [9, 160], which may degrade the classification performance. Numerous improved

NB classifiers have been developed to alleviate this problem, which can be broadly di-

vided into five categories: structure extension [11, 12, 182], instance selection [13, 90],

instance weighting [20, 43], attribute selection [17, 18, 60, 185] and attribute weight-

ing [5, 9, 19, 21, 22, 186].

Among these, attribute weighting NB classifiers comparably perform better [5, 9, 19,

21, 22, 32]. In WANBIA, attributes are weighted differently according to the feature

importance using the classification feedback [21]. In class-specific attribute weighted

naive Bayes (CAWNB), different weights are assigned to the attributes of different classes

to enhance the discrimination power [22]. Most recently, regularized naive Bayes has

been developed to improve the classification performance by balancing the generalization

capability and discrimination power of the classifier automatically through a gradient

descent optimization using the classification feedback [9]. These methods enhance the

discrimination power of NB classifiers by feature weighting, but overlook the issues on

data discretization.

The goal of data discretization is to find a set of cut points to optimally discretize

numerical attributes, reducing the inconsistency rate while preserving the discriminant

information [81]. However, improving generalization ability by reducing the inconsis-

tency rate and maintaining the discrimination power are two opposite goals. On the one
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hand, by grouping similar values into one interval, more samples can be used to better

estimate the distribution of the interval, leading to better generalization abilities, but at

the cost of losing discriminant information. On the other hand, without data discretiza-

tion, the discriminative ability is retained to the greatest extent, but the generalization

ability is poor. A well-designed data discretization method should balance the trade-off

between preserving discriminative ability and improving generalization ability.

In literature, many discretizers follow this design principle [23, 25, 44]. In CAIM, a

greedy algorithm is utilized to approximately find the global optimum by simultane-

ously minimizing the number of intervals and maximizing the class-attribute interde-

pendence, but CAIM does not guarantee to find the global optimum [23]. In MDLP, an

entropy-based discretization criterion is utilized to select the cut points by maximizing

the entropy of the data, which splits the attribute into intervals in a top-down man-

ner [44]. To avoid excessive splitting, a stopping criterion is defined. But this stopping

criterion often leads to an early stop in the splitting process, very few discretization inter-

vals and hence a significant information loss. Despite all these problems, it is surprising

that MDLP is often used in advanced naive Bayes classifiers and yields satisfactory

performance [9, 20–22].

The aforementioned discretization methods are often known as supervised discretization

methods [23, 25, 44], where the class information is utilized to guide the discretization

process. In literature, unsupervised methods such as equal-width discretization [23]

and equal-frequency discretization [23] are also used, which do not require the class

information. The collected data are often unlabeled and labeling data is often expensive

because it needs the expert knowledge [187]. Hence, there is often a huge amount of

unlabeled data, whereas only a small portion is labeled. In this case, a semi-supervised

discretization scheme is preferred to utilize both labeled and unlabeled data.

In this paper, we propose a semi-supervised adaptive discriminative discretization (SADD)

to address the problem of previous methods, targeting at balancing the discrimination

power and generalization ability of NB classifiers. In recent years, semi-supervised meth-

ods have been successfully applied in machine learning tasks to improve the generaliza-

tion ability of models on unseen data and avoid the overfitting problem [187–191]. In
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the proposed semi-supervised discretization method, unlabeled data is first assigned a

pseudo label by using a simple classification model such as k-Nearest Neighbors (K-NN)

classifier [187, 189]. Then, the pseudo-labeled data is integrated with the labeled data

to provide more discriminant information for the discretization method. With the help

of pseudo-labeled data, the intrinsic data structure could be better discovered in which

the discriminative ability and generalization ability of subsequently trained classifiers

can be greatly enhanced.

After pseudo-labeling, an adaptive discriminative discretization scheme is proposed in

this paper. The proposed semi-supervised framework could better discover the intrinsic

data properties, so that the data distribution could be better estimated. Data is of-

ten discretized to improve the generalization ability by grouping similar values into one

interval, but too few intervals will result in a significant information loss and too few

samples in the interval will result in poor generalization performance. The proposed

SADD explicitly addresses the problem of early stop in MDLP [44] by using an adaptive

discriminative discretization scheme, and hence resolves the issue of significant discrim-

inant information loss in MDLP. As a result, each interval has a sufficient number of

samples to reliably estimate the likelihood probabilities in naive Bayes so that the naive

Bayes can generalize well on unseen data, and a sufficient number of intervals are re-

tained to maintain the discriminant information. In other words, the proposed SADD

well balances the discrimination power and generalization ability of the data discretizer.

The proposed SADD is integrated with the recent development of NB classifier, regular-

ized naive Bayes (RNB) [9], and the integrated method is named RNB+. Compared to

RNB, the proposed RNB+ well addresses the early stopping problem in data discretiza-

tion of RNB and preserves the discriminant information of the data, and hence better

balances the discrimination power and generalization ability. The proposed methods are

evaluated on a wide range of machine-learning datasets for various applications. Exper-

imental results show that the proposed SADD significantly outperforms the widely used

discretization methods [23, 25, 44] and the proposed RNB+ significantly outperforms

the state-of-the-art NB classifiers [9, 20–22].
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4.2 Related Work

In naive Bayes classifiers and many other classifiers [5, 9, 19–22, 32], numerical attributes

are often discretized to group similar values into one bin, to address the problem that

numerical attributes often have lots of noisy samples resulting in poor generalization

capabilities. Existing discretization methods can be broadly divided into unsupervised,

semi-supervised and supervised methods, depending on whether the class information

is used [76]. Unsupervised discretization methods include equal-frequency, equal-width

discretization [23], proportional k-interval discretization (PKID) [84] and fixed frequency

discretization (FFD) [115]. Equal-frequency discretization divides the attribute set into

intervals with the same number of instances, while equal-width discretization divides

the attribute set into intervals with the same length [23]. PKID adjusts the number and

size of intervals proportional to the number of training instances [84]. FFD divides the

data into intervals with a pre-defined frequency [115] Supervised discretization methods

include MDLP [44], other information-based algorithms [23, 192], and statistical al-

gorithms like ChiMerge [88], class-attribute interdependence maximization (CAIM) [23]

and class-attribute contingency coefficients (CACC) [25]. Semi-supervised discretization

methods are comparatively less studied. [127] developed a semi-supervised framework

based on MODL to exploit a mixture of labeled and unlabeled data. In this paper, we

mainly review CAIM [23] and MDLP [44] in detail as they follow closely to the design

concept of balancing the discrimination power and generalization ability. In CAIM, the

boundary point is selected with the maximal interdependence in a top-down manner

by using a quanta matrix [23], but the number of generated intervals is too close to

the number of classes. To address this problem, [25] developed a discretization method

based on class-attribute contingency coefficients to prevent information loss.

Many state-of-the-art NB classifiers such as WANBIA [21], CAWNB [22], AIWNB [20]

and RNB [9] utilize the MDLP criterion [44] to discretize numerical attributes in a

top-down manner. In MDLP, for each interval, a cut point with the maximum entropy

amongst all candidates is selected to split the interval into two, towards the goal of

retaining the maximum amount of discriminant information [44]. To avoid the poor

generalization ability caused by excessive splitting, a stop criterion is designed based
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on the concept of information encoding in a communication channel [44]. MDLP often

leads to a good classification performance as it balances the discrimination power and

generalization ability. However, as shown later in the next section, the early stopping

problem during splitting in MDLP often leads to a huge information loss and hence

degrades the performance of subsequent classifiers.

4.3 Proposed Method

4.3.1 Problem Analysis of MDLP

Data discretization is crucial to classification performance. As an entropy-based dis-

cretization method with strong theoretical background [67, 81, 133, 134, 193, 194],

MDLP [44] has been widely used in many state-of-the-art attribute weighting NB classi-

fiers [9, 20–22]. It splits the dynamic range in a top-down manner, i.e., for each attribute,

a cut point retaining the maximum amount of discriminant information is selected to

divide the current set into two. The discriminant information is measured by the infor-

mation gain of a cut point d for a given attribute, dividing the current example set S

into two subsets S1 and S2. The information gain G(S, d) is defined as,

G(S, d) = E(S)− |S1|
|S|

E(S1)−
|S2|
|S|

E(S2), (4.1)

where E(S) is the class entropy as defined below,

E(S) = −
k∑

i=1

P (Ci,S)log(P (Ci,S)). (4.2)

P (Ci,S) is the prior probability of class Ci in S, and k is the number of classes. The

binary split in MDLP is applied recursively if Eqn. (4.3) holds, and stops otherwise.

Intuitively, the stop criterion will prevent excessively splitting the attribute into too

many small intervals with too few samples so that the likelihood probabilities can not

be reliably estimated.

G(S, d) > θ, (4.3)
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where θ is the adaptive threshold for discretization,

θ =
log2(N − 1)

N
+

∆(S)
N

, (4.4)

where N is the number of samples in S. ∆(S) is defined as,

∆(S) = log2(3
k − 2)− [kE(S)− k1E(S1)− k2E(S2)], (4.5)

where k1 and k2 are the number of classes in S1 and S2, respectively. Empirical study

shows that the threshold θ is often too large compared to the information gain G(S, d)

so that the top-down splitting often stops at an early stage. As a result, a huge amount

of discriminant information is lost.

To explore the root cause of this early stop, we take a close examination of the adaptive

threshold θ defined in Eqn. (4.4). Empirical study shows that the first term log2(N−1)
N

dominates the adaptive threshold θ, while the second term ∆(S)
N is a relatively small

positive value. We further analyze log2(N−1)
N by plotting it against N as shown in Fig. 4.2.

Apparently when N is large, log2(N−1)
N is relatively small and the data could be easily split

into intervals in a top-down manner. As the split continues, the number of samples N in

the interval becomes smaller, leading to a large log2(N−1)
N , and hence it is more difficult to

split. This decision criterion follows the design principle of balancing the discriminative

ability and generalization ability, and works well when N is large. However, for small N ,
log2(N−1)

N is relatively large and hence many attributes with a small number of samples

may not split at all at the very beginning. In this case, the attribute is discretized into

one bin only, and the discriminant information residing in the attribute is totally lost.

4.3.2 Overview of Proposed SADD Framework for Regularized Naive

Bayes

As shown in the previous subsection, the early stopping problem in MDLP may result in

a significant loss of discriminant information during discretization. In a broader sense,

data discretization helps to improve the generalization ability of naive Bayes classifiers

by grouping similar values into one bin, whereas excessive grouping (such as an early
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stop in MDLP) will result in a significant information loss. It is hence crucial for a data

discretizer to balance the generalization ability and discrimination power. Furthermore,

supervised discretization methods such as MDLP [44] and CAIM [23] are not capable

of handling unlabeled data without any adaptation, and hence the information residing

in unlabeled data can’t be fully exploited by those supervised discretization methods.

Thus, a semi-supervised discretization method exploiting both labeled and unlabeled

data is needed.

Training 
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Figure 4.1: The proposed SADD for regularized naive Bayes including pseudo label-
ing, adaptive discriminative discretization and attribute weighting processes.

To address these problems, we propose a Semi-supervised Adaptive Discriminative Dis-

cretization (SADD) method for regularized naive Bayes (The integrated method is also

known as RNB+), as shown in Fig. 6.1. 1) First of all, a semi-supervised technique

is designed to generate the pseudo labels for the unlabeled data, so that the intrinsic

data properties in both labeled and unlabeled data could be exploited to better esti-

mate the data statistics. In this paper, the k-NN classifier is applied to generate the

pseudo labels. 2) Secondly, an adaptive discriminative discretization scheme is designed

to discretize the attribute set, where a new adaptive thresholding strategy is designed

to balance the number of intervals required to retain the sufficient discrimination power

and the number of samples in an interval to retain the sufficient generalization ability.

3) We consider the trade-off between the generalization ability and discrimination power
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not only in data discretization, but also in classifier design such as feature weighting.

Following this design principle, the proposed SADD is integrated with regularized naive

Bayes, in which the attributes are weighted automatically balancing the discrimination

power and generalization ability of the classifier.

4.3.3 Proposed Semi-supervised Adaptive Discriminative Discretiza-

tion

4.3.3.1 Pseudo-labeling

Semi-supervised techniques have proven to be a powerful paradigm for utilizing unlabeled

data to improve the generalization ability of learning models relying solely on labeled

data [188–191]. Among various semi-supervised methods, pseudo-labeling techniques are

effective to tackle the problem, which can be easily integrated with traditional supervised

classification algorithms [187]. More specifically, let Xl be the labeled data with class

variables cl and Xu be the unlabeled data, the pseudo labels cp for Xu can be derived

by,

cp =M(Xl, cl,Xu), (4.6)

where M represents a pseudo-labeling algorithm. There are two main approaches to

generate the pseudo labels: single-classifier and multi-classifier methods. In a single-

classifier model, the pseudo label for each unlabeled instance is derived by using only

one classification model. In contrast, the multi-classifier model utilizes the majority

voting rule to decide the pseudo label by using several classifiers. To keep the simplicity

and effectiveness of the proposed framework, the k-nearest neighbors (k-NN) classifier

is applied to generate the pseudo labels for unlabeled data. Then, the pseudo-labeled

data and labeled data are combined to better discover the intrinsic data properties and

better estimate the data statistics.

4.3.3.2 Adaptive Discriminative Discretization

To address the early stopping problem in previous discretization methods [44], we pro-

pose an adaptive discriminative discretization. More specifically, we aim to lower the
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adaptive threshold used in Eqn. (4.3), especially for small datasets with relatively small

N , in order to prevent the early stop and the significant loss of discriminant information

during discretization. On the other hand, the new threshold θ̃ can not be too small. If

θ̃ is approaching zero, each distinct value will become a separate interval, which results

in no information loss, but may lead to a poor estimation of data distribution due to

insufficient samples in each small interval. Bearing all these in mind, we propose the

new threshold θ̃ as defined below:

θ̃ = s

(
N

N0

)
θ, (4.7)

where s(x) = 1/(1 + e−x) is the sigmoid function and N0 is a constant. As N
N0

is non-

negative, it is easy to show that s( N
N0

) ∈ (0.5, 1). N0 is used to judge whether there are

sufficient samples in the interval. If N � N0, i.e., there are sufficient samples, s( N
N0

) ≈ 1.

In this case, although s( N
N0

) is relatively large, θ is relatively small, and θ̃ is small enough

so that the top-down split could continue, and the resulting intervals will have sufficient

samples to reliably estimate the likelihood probabilities. If N ≈ N0, s( N
N0

) ≈ 0.73, i.e.,

a significantly lower threshold θ̃ will be used in the top-down discretization compared to

the threshold θ defined in Eqn. (4.4). Consequently, it will encourage further splitting

of the interval and hence retain more discriminant information. To prevent excessive

splitting, the proposed method has a safeguard mechanism. More specifically, when

N � N0, s( N
N0

) ≈ 0.5, i.e., the maximum reduction of the threshold θ̃ from θ is 50%.

To further illustrate the effect of the adaptive threshold in the proposed method, we plot

the value of the adaptive version of log2(N−1)
N after multiplying it with s( N

N0
) for different

N0, as shown in Fig. 4.2. With the small number of samples in an interval, the threshold

is greatly decreased from about 0.4 to 0.2 to encourage further splitting, especially for

small datasets. When N is large, the new adaptive threshold is smaller than the original

one, but very close to it, to encourage the split. In addition, the proposed method is

insensitive to the choice of N0. As shown in Fig. 4.2, the new thresholds for N0 = 100

and N0 = 2000 are quite close when N is small. For large N , the difference does not

matter so much as the set will be split into smaller ones anyway. In summary, the

proposed SADD could effectively prevent the early stop during data discretization, as
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Figure 4.2: Plot of log2(N−1)
N and its adaptive version s( N

N0
) log2(N−1)

N with different
values of N0.

well as the excessive split. The proposed SADD algorithm is summarized in Algorithm 4.

Algorithm 3 The proposed SADD algorithm
Input: Training data Xl with class cl and testing data Xu

Output: Discretization scheme D ← {D1,D2, ...,Dm} for m-dimensional features
1: cp ←M(Xl, cl,Xu) . Derive pseudo labels using Eqn. (4.6)
2: X ←Xl ∪Xu . X is the set of samples
3: C ← cl ∪ cp . C is the set of labels
4: D ← ∅ . Initialize D as an empty set
5: for each Xj ∈ X do
6: Dj ← ∅ . Dj is the discretization scheme for Xj

7: S ← Xj . S is the set of samples to be discretized
8: procedure Partition(S,C) . Procedure to partition S using C
9: if |S| ==1 then . If there is only one sample in S, return

10: return
11: end if
12: Calculate G(S, di), ∀di ∈ S, as defined in Eqn. (4.1).
13: Choose the cut point dî, î = argmaxi G(S, di), ∀di ∈ S.
14: Calculate the threshold θî using Eqn. (4.4) for the cut point dî.
15: Calculate the new adaptive threshold θ̃î = s

(
N
N0

)
θî.

16: if G(S, dî) > θ̃î then . The SADD stop criterion
17: Dj ← Dj ∪ dî . Insert dî into discretization scheme Dj

18: SL ← S < dî . Divide S into the set smaller than dî
19: SR ← S ≥ dî . Divide S into the set not smaller than dî
20: Partition(SL,C) . Recursively partition SL using C
21: Partition(SR,C) . Recursively partition SR using C
22: end if
23: end procedure
24: D ← D ∪ Dj . Add the discretization scheme Dj into D
25: end for
26: return D

In the first step of Algorithm 4, pseudo labeling, the k-NN classification model M is



Chapter 4. A Semi-Supervised Adaptive Discriminative Discretization Method
Improving Discrimination Power of Regularized Naive Bayes 76

generated by using the labeled training data and used to derive the pseudo labels cp for

unlabeled testing data using Eqn. (4.6). Then, the attribute set X and label set C are

derived by combining the labeled training data with pseudo-labeled testing data. Then

the attributes Xj ∈ X are discretized one at a time. The procedure PARTITION is used

to find the optimal cut point dî to divide the current sample set S into two sets SL and

SR, where î = argmaxiG(S, di), ∀di ∈ S and G(S, di) is the information gain defined

in Eqn. (4.1). Then, the PARTITION procedure is recursively applied on SL and SR

to find the optimal cut point to further discretize the attribute. The recursive partition

continues as long as the following condition holds:

G(S, dî) > θ̃î, (4.8)

where θ̃î = s
(

N
N0

)
θî is the newly defined adaptive threshold, θî is the threshold defined

in Eqn. (4.4) for the cut point dî and s(·) is the sigmoid function. The discretization

scheme Dj for attribute Xj is updated as,

Dj ← Dj ∪ dî. (4.9)

For each attribute, the proposed SADD utilizes a greedy hierarchical splitting algorithm

to generate a tree-like discretization scheme, as summarized in Algo. 4. It can be shown

that the time complexity is O(n log n) for each attribute, where n is the number of

samples. The total time complexity for m attributes is hence O(mn log n).

4.3.4 Discussion and Analysis

As discussed early, the proposed SADD could effectively prevent the information loss of

MDLP. To further analyze this, a case study is presented in Table 4.1, which shows the

number of intervals (Num.) and the mutual information (MI) on the “Vowel” dataset

after discretization by MDLP [44] and the proposed SADD, respectively. The dataset

contains 10 numerical attributes and 11 classes. Most numerical attributes are dis-

cretized into 3-4 intervals by MDLP, which can not effectively differentiate 11 classes.

After applying the proposed SADD, more intervals could be obtained and hence less
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Table 4.1: The comparisons of the number of intervals (Num.) and the mutual
information (MI), after data discretization by the proposed SADD and MDLP [44] on

“Vowel” dataset.

Proposed SADD MDLP
MI Num. MI Num.

A1 1.0921 18 0.9596 8
A2 1.2180 19 1.0875 9
A3 0.2998 8 0.1198 3
A4 0.4488 7 0.3545 4
A5 0.5909 14 0.4104 4
A6 0.4347 11 0.2759 4
A7 0.3287 7 0.2146 3
A8 0.2447 7 0.1685 3
A9 0.3009 7 0.1796 3
A10 0.0527 2 0 1

AVG 0.5011 10 0.3770 4.2

discriminant information is lost, as shown in Table 4.1. The proposed SADD can ef-

fectively prevent information loss and generate a discretization scheme with a better

trade-off between the number of intervals and the number of samples in the intervals.

On the one hand, more intervals will retain more discriminant information, but lead

to a poor generalization ability as there are too few samples in an interval to reliably

estimate the data distribution. On the other hand, too few intervals may result in a

huge discriminant information loss, as shown in the early stopping case of MDLP.

4.3.5 Proposed RNB+

MDLP has been widely used in many state-of-the-art naive Bayes classifiers, e.g., AI-

WNB [20], WANBIA [21], CAWNB [22] and RNB [9]. As shown previously, MDLP

may result in a huge information loss and hence the SADD is proposed to address this

problem. In this section, we describe how to integrate the proposed SADD with RNB to

boost the classification performance of NB classifiers. The integrated method is named

as RNB+. We first discretize the data using the proposed SADD so that the data

distribution could be better estimated, and then use RNB as the classifier.

We have shown that the proposed SADD could well balance the generalization ability

and discrimination power during data discretization. Now we show how the proposed
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RNB+ achieves a better trade-off during attribute weighting. To alleviate the condi-

tional independence assumption of NB classifiers, attribute weighting techniques have

been widely used in NB classifiers and achieved remarkable performance [9, 20–22]. In

WANBIA, the same weight is assigned to the attributes in different classes [21], while

in CAWNB, a class-specific weight is assigned to each attribute to capture more data

characteristics [22]. But the model complexity increases with more attribute weights,

and CAWNB hence may overfit to the data, especially for small datasets. To alleviate

this problem, regularized naive Bayes has been recently developed, which regularizes

CAWNB by adding a simpler model, i.e., WANBIA, to penalize the model complex-

ity [9].

More specifically, in RNB, the target is to find the optimal model parameters M

={W ,w, α} to minimize the difference between the posterior derived from the ground-

truth label and the estimated posterior for a given instance x,

P (c|x,M) = αPD(c|x,W ) + (1− α)PI(c|x,w), (4.10)

where PD(c|x,W ) is the posterior where attributes are weighted on a class-specific basis

and W is the weight matrix. PI(c|x,w) is the posterior where attributes are weighted

the same for all classes and w is the weight vector. PD(c|x,W ) is a more complex model

that could provide more discrimination power, whereas PI(c|x,w) is a simpler model

that can provide better generalization ability. In RNB, the optimal model parameters

M∗ are derived through a gradient-descent algorithm, and the discrimination power

and generalization ability are automatically balanced by optimizing α [9]. Finally, the

predicted label for each test instance t is obtained by using the MAP estimation as

follows:

ĉ(t) = argmax
c∈C

P (c|t,M∗), (4.11)

where C is the set of labels for all classes.

The categorical attributes and numerical attributes are often mixed and NB classifiers

can generate a probabilistic model on both data types. However, the numerical at-

tributes often have a large number of distinct values so that the likelihood probability

estimated from the frequency of instances with a particular value xi in the j-th attribute
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given the class c, P (Aj = xi|c), can be extremely small. The estimation of P (Aj = xi|c)

may not be reliable due to very few training instances. To address this problem, dis-

cretization methods have been developed by grouping similar values into one interval

and then sufficient training instances can be used to reliably estimate the likelihood

probability. However, many discretization methods, e.g., MDLP [44] in the state-of-the-

art NB classifiers [9, 20–22], can’t generate a proper discretization scheme and may lead

to the huge information loss. Thus, RNB+ is proposed to alleviate this problem and

retain the discriminative ability from the discretization perspective. As shown later in

the experiments, the proposed RNB+ significantly outperforms the state-of-the-art NB

classifiers such as RNB [9], WANBIA [21], CAWNB [22] and AIWNB [20].

4.4 Experimental Results

4.4.1 Experimental Settings

The experiments are divided into two parts under NB classification framework [175].

The proposed SADD is firstly compared with other discretization methods including

four supervised discretization, MDLP [44], CAIM [23], CACC [25] and ChiMerge [23],

and four unsupervised discretization, Equal-Frequency [23], Equal-Width [23] PKID [84]

and FFD [115]. Then, the proposed RNB+ is compared with RNB [9], WANBIA [21],

CAWNB [22] and AIWNB [20], which are four recent attribute-weighting NB classifiers.

All the competitors are summarized in Table 4.2. The experimental results of PKID [84]

and FFD [115] are obtained by using the popular data mining tool, KEEL [195]. The

other competitors are implemented by using MATLAB. In the proposed SADD, the

k-NN classifier with Euclidean distance is used in pseudo-labeling, where the optimal k

is tuned by using the validation set. Specifically, one out of nine folds of the training

data is randomly selected as the validation set. The optimal k is derived by using a grid

search that produces the highest classification accuracy on the validation set.

The comparison experiments are conducted on a set of machine-learning datasets in vari-

ous domains such as healthcare, biology, disease diagnosis and business. All the datasets
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Table 4.2: Description of competitors: six popular discretization methods and four
state-of-the-art NB classifiers.

Discretization methods
MDLP Supervised entropy-based top-down discretization
CAIM Supervised statistical top-down discretization
CACC Supervised statistical top-down discretization

ChiMerge Supervised statistical bottom-up discretization
Equal-W Unsupervised top-down discretization
Equal-F Unsupervised top-down discretization
PKID Unsupervised top-down discretization
FFD Unsupervised top-down discretization

Naive Bayes methods
WANBIA Wrapper-based class-independent attribute weighting
CAWNB Wrapper-based class-specific attribute weighting
AIWNB Filter-based attribute and instance weighting

RNB Wrapper-based regularized attribute weighting

are extracted from the UCI machine learning repository 2. Among them, 12 datasets

were used in CACC [25] and the rest of them are selected to enrich the comparison exper-

iments. The number of instances is distributed between 150 and 21048 and the number

of attributes is between 4 and 520. The numerical attributes and categorical attributes

are mixed in the datasets. Some datasets have missing values, which are replaced by the

mean of corresponding numerical attributes or mode of categorical attributes. These

31 benchmark datasets provide a comprehensive evaluation of the proposed SADD and

RNB+. The datasets are summarized in Table 6.2.

4.4.2 Comparisons to State-of-the-art Discretization Methods

The proposed SADD is compared with MDLP [44], CAIM [23], CACC [25], ChiMerge [88],

Equal-W [23], Equal-F [23], PKID [84] and FFD [115] based on the NB classifier [175].

Table 6.4 summarizes the comparisons to these discretization methods. The classi-

fication accuracy of each algorithm on each dataset is derived via stratified 10-fold

cross-validation, following the same evaluation protocol used in [9, 20–22]. The aver-

age classification accuracies of all algorithms over all the datasets are summarized at the

bottom, which can provide a straightforward comparison of different methods. Table 4.5

summarizes that the proposed method significantly outperforms its competitors with a
2https://archive.ics.uci.edu/ml/index.php
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one-tailed t-test at the significance level of p = 0.05. The hyper-parameter N0 in the

proposed SADD is set to 2000 empirically.

As shown in Table 6.4, compared to other discretization methods, the proposed SADD

achieves the highest average classification accuracy on most of the datasets. Compared

with MDLP [44], CAIM [23], CACC [25] and ChiMerge [88], the proposed SADD obtains

the performance gain of 3.11%, 2.80%, 3.00% and 5.49% on average, respectively. Com-

pared with the four unsupervised discretization methods, Equal-W [23], Equal-F [23],

PKID [84] and FFD [115], the proposed SADD obtains the average performance gain of

Table 4.3: 31 benchmark datasets are collected from real-world problems in various
domains. The number of instances is distributed between 150 and 21048. For the entry
u(v) in “Attribute”, u denotes the total number of attributes and v denotes the number

of categorical attributes.

Dataset Instance Attribute Class Missing values

Iris 150 4 3 N
Parkinson 195 23 2 N

Seeds 210 7 3 N
Glass 214 10 6 N
Heart 270 13(7) 2 N
Ecoli 336 8 8 N
Bupa 345 6 2 N

Ionophere 351 34(2) 2 N
Movement 360 90 15 N

ILPD 583 10 2 N
Breast 699 9 2 Y
Pima 768 8 2 N
Vowel 990 13 11 N

Biodegradation 1055 41 2 N
Mice Protein 1080 82 8 Y

Yeast 1484 10 8 N
Mfeat-fac 2000 216 10 N

Cardio 2126 23 10 N
Madelon 2600 500 2 N

Spambase 4601 57 2 N
Wave 5000 40 3 N

Wall-Following 5456 24 4 Y
Page-Block 5473 10 5 N

Opdigit 5620 64 10 N
Satellite 6435 36 6 N

Wine 6497 11 7 N
Musk 6598 166 2 N

Anuran 7195 22 4 N
Pendigit 10992 16 10 N
Magic 19020 10 2 N

IndoorLoc 21048 520 3 N
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Table 4.4: Comparisons between the proposed SADD and other discretization meth-
ods. The proposed SADD achieves an average performance gain of 3.11% and 2.80%

compared with MDLP and CAIM respectively.

Dataset SADD MDLP CAIM CACC ChiMerge EW EF PKID FFD
Iris 96.00±4.42 92.67±6.29 94.00±5.54 93.33±6.67 78.67±9.80 94.67±6.53 92.67±8.14 91.33±9.45 93.33±6.67

Parkinson 84.02±5.65 79.46±4.69 81.44±7.29 82.46±6.79 81.02±9.18 79.94±6.41 80.35±7.25 77.26±9.90 77.26±7.84
Seeds 90.95±6.19 87.14±4.29 86.67±5.13 87.62±5.30 80.95±4.26 91.43±5.13 88.57±5.71 90.00±8.64 87.62±8.83
Glass 74.29±4.82 72.03±8.65 72.92±9.36 65.25±11.14 66.40±10.08 60.75±7.68 68.24±9.01 65.35±8.78 65.71±10.17
Heart 83.70±8.64 83.70±8.64 83.33±8.16 80.74±6.58 83.70±9.40 84.44±7.73 82.96±8.31 82.96±4.74 83.70±3.78
Ecoli 86.62±4.38 83.10±4.22 81.46±5.58 82.47±5.97 83.38±6.43 85.10±4.26 84.28±5.64 81.58±7.04 82.45±3.05
Bupa 65.76±10.42 53.27±9.52 65.24±6.98 63.24±6.30 64.03±8.58 62.61±8.22 58.55±7.53 61.73±7.41 62.87±8.43

Ionophere 90.62±5.19 89.52±5.12 88.64±4.11 88.92±4.40 75.83±6.21 90.32±4.41 89.77±5.47 89.16±6.11 89.17±5.09
Movement 77.77±6.72 62.10±7.37 71.97±7.94 71.14±7.41 71.41±6.83 70.32±7.17 72.18±6.59 64.87±8.37 67.37±10.45

ILPD 67.05±4.18 64.82±4.45 65.51±4.28 66.03±4.19 65.00±2.68 67.75±2.18 67.40±4.27 67.56±4.89 68.09±2.91
Breast 97.42±1.41 97.14±1.43 97.28±1.50 97.28±1.50 95.85±2.67 97.42±1.55 97.42±1.67 97.43±1.90 97.43±1.90
Pima 76.82±4.34 73.69±4.70 74.21±5.80 74.21±3.92 72.26±5.17 77.21±2.80 74.61±3.61 74.82±4.37 75.35±4.80
Vowel 75.76±4.93 59.09±4.45 64.34±5.27 60.71±6.69 61.11±3.23 67.58±4.87 64.24±5.15 89.63±1.37 60.00±6.69

Biodegradation 81.89±2.80 80.85±2.76 81.70±2.48 81.70±2.75 78.67±4.12 80.19±2.08 81.04±3.19 80.38±3.22 80.00±3.10
Mice Protein 98.06±0.77 93.98±2.60 93.34±2.63 91.67±2.60 92.40±3.55 94.63±2.56 93.05±2.61 93.14±2.05 93.79±2.34

Yeast 59.79±3.89 57.15±3.56 57.49±3.54 56.01±2.88 58.23±4.60 58.64±4.80 55.68±4.93 54.31±2.71 53.57±2.81
Mfeat-fac 94.80±1.95 93.15±2.15 93.70±2.02 93.70±2.23 93.15±2.08 93.3±2.35 92.70±2.50 92.15±2.08 82.79±2.42
Cardio 81.19±1.41 79.68±1.66 80.34±1.78 79.35±1.38 78.12±1.83 79.25±1.61 77.80±2.10 80.15±1.76 81.28±2.76

Madelon 64.65±3.79 61.92±3.34 58.69±2.85 50.00±0.00 58.96±3.98 50.00±0.00 50.00±0.00 55.35±2.47 52.92±3.62
Spambase 90.18±1.72 89.63±1.45 89.85±1.53 90.00±1.63 89.42±1.01 85.53±1.97 89.87±1.41 95.60±0.85 89.33±1.39

Wave 80.70±1.00 80.18±1.00 80.60±1.30 80.32 ± 1.28 78.80±1.04 80.16±0.83 80.24±0.86 79.10±1.60 78.60±1.18
Wall-Following 90.96±0.96 89.24±1.29 88.11±1.06 87.81±1.11 71.15±1.60 80.96±1.41 84.26±1.33 60.91±3.62 86.33±1.42

Page-Block 93.93±1.41 93.62±1.62 93.17±1.25 93.79±1.22 91.25±1.18 92.54±0.80 88.86±1.57 91.78±1.07 92.98±0.81
Opdigit 92.65±0.51 92.38±0.40 92.22±0.64 92.31±0.82 91.76±0.95 92.46±0.74 91.80±0.93 92.19±1.16 92.15±1.15
Satellite 82.45±1.46 82.14±1.40 82.02±1.43 82.08±1.40 79.52±1.55 81.18±1.16 81.15±1.31 82.10±1.43 82.14±1.49
Wine 50.42±1.00 49.19±1.42 49.92±0.86 50.99±1.62 48.47±1.49 49.42±1.46 47.87±1.07 51.82±1.43 53.21±1.78
Musk 92.98±0.79 91.76±0.93 85.50±1.54 89.83±0.75 81.60±2.05 84.18±1.85 83.62±1.54 91.13±0.78 61.68±1.61

Anuran 90.62±1.09 89.92±1.24 89.42±1.29 89.26±1.41 81.86±1.38 89.33±1.30 89.01±1.00 89.41±1.25 88.27±1.57
Pendigit 88.43±0.61 88.10±0.84 87.92±0.72 88.07±0.75 86.96±0.65 87.33±0.83 87.25±0.82 87.24±0.91 86.61±0.79
Magic 78.13±0.49 77.67±0.56 75.57±0.57 76.15±0.68 73.26±0.78 74.67±0.51 76.55±0.81 77.78±0.89 77.32±0.82

IndoorLoc 65.55±0.76 59.29±1.22 64.18±0.84 64.80±0.80 59.24±0.81 59.94±1.25 41.65±0.86 61.68±0.78 63.19±0.52
AVG 82.07 78.96 79.27 79.07 76.58 78.81 77.86 78.58 78.10

3.26%, 4.21%, 3.49% and 3.97%, respectively. These results demonstrate the superior

performance of the proposed SADD.

Table 4.5 summarizes the results for statistical significance tests. The proposed SADD

achieves the best performance on most of the datasets, and the performance gains on

many of them are statistically significant. Specifically, the proposed SADD outper-

forms MDLP [44], CAIM [23], CACC [25], ChiMerge [88], Equal-W [23], Equal-F [23],

PKID [84] and FFD [115] on 31, 31, 30, 31, 27, 30, 27 and 26 datasets respectively,

among which 19, 13, 15, 25, 18, 21, 19 and 18 are statistically significant.

Table 4.5: Summary of statistical significance tests on different discretization meth-
ods. For each entry u(v), u is the number of datasets on which the proposed SADD
outperforms other discretization methods, and v is the number of datasets on which
the performance gain is statistically significant with the significance level of p = 0.05.

MDLP CAIM CACC ChiMerge EW EF PKID FFD

SADD 31(19) 31(13) 30(15) 31(25) 27(19) 30(21) 27(18) 26(18)
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4.4.3 Analysis and Discussion of Proposed SADD against MDLP

Table 4.6: The performance gain (PG) of the proposed SADD over MDLP [44] on 31
datasets, and the number of features discretized into the various number of intervals

(Num) by the two methods.

PG(%) Proposed SADD MDLP

Dataset
Num 1 2 3 4 5 >5 1 2 3 4 5 >5

Iris 3.33 - - 1 2 1 - - 2 2 - - -
Parkinson 4.55 1 9 6 4 3 - 2 18 3 - - -

Seeds 3.81 - - 1 2 4 - - 3 - 3 1 -
Glass 2.25 1 - 1 1 1 6 3 3 2 2 - -
Heart 0.00 1 5 - - - - 3 3 - - - -
Ecoli 3.52 2 1 1 1 1 2 2 3 3 - - -
Bupa 12.49 1 3 2 - - - 5 1 - - - -

Ionophere 1.10 - - 2 3 7 20 1 1 12 2 12 4
Movement 15.67 - 1 5 10 7 67 21 25 29 15 - -

ILPD 2.23 2 4 2 2 - - 5 5 - - - -
Breast 0.29 - 1 2 3 1 2 - 1 5 2 - 1
Pima 3.13 - 3 1 4 - - 2 4 1 1 - -
Vowel 16.67 - 1 - - - 9 1 - 4 3 - 2

Biodegradation 1.04 4 10 14 7 2 4 8 15 15 2 1 -
Mice Protein 4.08 2 7 - 5 13 55 4 25 16 15 9 13

Yeast 2.63 2 3 - 3 2 - 4 2 3 1 - -
Mfeat-fac 1.65 0 2 5 13 32 164 1 8 59 60 58 30

Cardio 1.51 1 2 2 2 1 15 2 2 5 4 2 8
Madelon 2.73 484 7 5 2 2 - 487 9 1 3 - -

Spambase 0.54 2 17 17 11 3 7 2 29 15 5 4 2
Wave 0.52 2 - 1 - 1 17 2 - 2 3 2 12

Wall-Following 1.72 - - - - - 24 - - - - - 24
Page-block 0.31 - - - - 1 9 - - - - 2 8

Opdigit 0.27 7 7 3 3 8 36 7 9 3 11 18 16
Satellite 0.31 - - - - - 36 - - - - - 36

Wine 1.23 1 - 2 1 3 4 1 1 3 4 2 -
Musk 1.23 1 1 3 5 - 156 3 3 8 7 10 135

Anuran 0.69 - 1 - - - 21 - 1 - - - 21
Pendigit 0.33 - - - - - 16 - - - - - 16
Magic 0.46 - - - 1 2 7 - - - 1 2 7

IndoorLoc 6.25 115 84 53 33 26 39 191 91 37 16 5 2

The proposed SADD is based on the MDLP [44] method but performs significantly

better. In Section 4.3.3, we show that in theory the proposed SADD could effectively

prevent the information loss and indeed the proposed SADD does significantly outper-

form MDLP [44] on most datasets as shown in the previous subsection. To analyze the

underlying reasons why the proposed SADD performs better than MDLP [44], Table 4.6

summarizes the number of features discretized into the various number of intervals by

MDLP [44] and the proposed SADD, respectively, and the performance gain of SADD

on each dataset compared with MDLP [44]. For example, for six features of the “Bupa”

dataset, five features are discretized into one interval and one is discretized into two

intervals by MDLP [44], which leads to a huge information loss. When an attribute
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is discretized into one interval, the attribute values for all classes are the same. As

a result, this attribute can not be used to differentiate different classes and hence the

discriminant information residing in the attribute is totally lost. By utilizing the pro-

posed discretization, most features are discretized into more intervals, and hence the

discriminant information is better preserved.

As shown in Table 4.6, the proposed SADD performs best on almost all datasets. On

datasets with little discriminant information loss during discretization such as “Anu-

ran”, “Magic”, “Page-Block”, “Pendigit” and “Satellite”, the performance gains on these

datasets are relatively small. On datasets with significant information loss such as

“Bupa”, “Mice Protein”, “Movement”, “Parkinson” and “Vowel”, the performance gains

are high, e.g., the performance gains on “Bupa”, “Movement” and “Vowel” are more

than 10%. Table 4.6 clearly demonstrates that the proposed SADD could well address

the problem of discriminant information loss in MDLP. It generates a proper number

of intervals to preserve the discrimination power of classification algorithms, and at the

same time retain the generalization capability.

To analyze the performance gains of the proposed SADD over MDLP [44] on different

datasets, we group the datasets according to the instance size and the feature size,

respectively. 1) In terms of instance size, the proposed SADD greatly enhances the

discrimination power of NB classifier on both relatively small datasets (# of Inst. ≤

1000) and relatively large datasets (# of Inst. > 1000), with an average performance gain

of 5.31% and 1.53%, respectively. The performance gains on relatively small datasets

are more significant because MDLP is more likely to stop the top-down split in the

early stages for small datasets. As shown in Fig. 4.2, the large threshold for a small N

may cause the early stop of MDLP, and hence lead to a significant performance drop of

MDLP, while the proposed SADD well tackles this problem by utilizing a significantly

smaller threshold. 2) In terms of feature size, the proposed SADD greatly enhances the

discrimination power of NB classifier on both datasets with relatively few features (#

of Feat. ≤ 50) and datasets with relatively many features (# of Feat. > 50), with an

average performance gain of 2.79% and 4.05%, respectively. The performance gains on

datasets with more features are more significant because naive Bayes could aggregate

the discriminant information gains of more features, resulting in better performance.
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4.4.4 Comparisons to State-of-the-art Discretization Methods for Semi-

supervised Learning

To evaluate the proposed SADD in a more challenging scenario for semi-supervised

learning, we follow the experimental setting in [190, 191], where 40% of training samples

are randomly selected as labeled data and the rest are treated as unlabeled data. The

proposed SADD utilizes pseudo-labeling techniques to label the unlabeled training data

for discretization. The comparisons to four supervised discretization methods under

this setting are summarized in Table 4.7. The results of unsupervised discretization

methods such as Equal-W [23], Equal-F [23], PKID [84] and FFD [115] may refer back

to Table 6.4. As shown in Table 4.7, the proposed SADD achieves an improvement of

3.55% on average compared with MDLP [44]. Compared with CAIM [23], CACC [25]

and ChiMerge [88], the proposed SADD obtains the improvements of 1.53%, 2.24% and

4.90%, respectively.

Table 4.8 summarizes the results for statistical significance tests. Among 31 datasets,

the proposed SADD outperforms MDLP [44], CAIM [23], CACC [25] and ChiMerge [88]

on 31, 29, 30 and 31 datasets respectively, among which 15, 9, 11 and 25 are statistically

significant.

4.4.5 Comparisons to State-of-the-art Naive Bayes Classifiers

The proposed SADD can be integrated with not only regularized naïve Bayes, but also

other naïve Bayes classifiers. To demonstrate the performance gain brought by the

proposed SADD, we integrate it with CAWNB [22], WANBIA [21], AIWNBE [20] and

AIWNBL [20] and RNB [9] resulting in CAWNB+, WANBIA+, AIWNBE+, AIWNBL+

and RNB+ respectively. Note that the MDLP discretization scheme was previously uti-

lized in these NB classifiers. The comparison results are summarized in Table 4.9.

As shown in Table 4.9, the proposed SADD has greatly enhanced the performance of

these state-of-the-art NB classifiers, and the performance gains on CAWNB, WANBIA,

AIWNBE , AIWNBL and RNB are 1.99%, 1.82%, 2.71%, 2.16% and 2.16%, respec-

tively. These results demonstrate that the proposed SADD discretization scheme can be
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Table 4.7: Comparisons between the proposed SADD and other supervised discretiza-
tion methods where 40% of training samples are labeled data and the rest are unlabeled
data. The proposed SADD obtains an average performance gain of 3.55% compared

with MDLP [44].

Dataset SADD MDLP CAIM CACC ChiMerge

Iris 96.00±4.66 95.33±5.49 92.00±6.89 92.67±5.84 76.67±11.86
Parkinson 83.07±7.18 79.88±5.66 81.41±9.12 79.96±7.18 78.60±6.51

Seeds 89.05±5.04 88.57±6.02 87.62±6.02 87.62±7.17 81.90±7.03
Glass 69.62±12.95 59.92±8.72 68.71±11.80 66.85±10.21 64.37±10.43
Heart 84.81±8.63 84.44±9.04 84.44±8.69 82.96±9.43 82.96±9.27
Ecoli 86.13±6.34 83.13±6.30 82.80±4.37 83.68±6.18 81.88±6.54
Bupa 64.03±3.99 55.63±7.19 62.56±5.86 63.99±6.69 62.01±8.79

Ionophere 90.35±3.92 90.09±6.38 89.49±5.75 88.62±4.95 78.06±5.69
Movement 72.04±7.72 38.74±7.92 66.90±12.33 70.86±8.55 70.50±6.20

ILPD 68.44±4.22 65.34±5.12 67.57±5.80 66.89±5.73 64.31±3.00
Breast 97.57±2.03 97.28±1.43 97.14±1.79 97.14±1.79 94.28±2.94
Pima 77.08±3.95 74.73±4.20 74.86±5.16 74.87±2.89 71.34±5.82
Vowel 65.05±4.37 47.17±8.36 63.94±6.95 52.73±6.96 60.61±4.39

Biodegradation 81.23±3.43 77.82±3.85 80.38±3.16 81.23±2.98 77.82±3.58
Mice Protein 94.62±3.75 94.53±2.62 93.23±3.02 91.66±3.18 92.12±3.56

Yeast 59.85±4.28 58.03±4.29 57.96±3.19 55.81±3.64 57.02±4.97
Mfeat-fac 93.95±2.28 92.85±1.90 93.85±2.25 93.60±2.54 93.15±2.17

Cardio 80.10±1.76 78.03±2.35 80.20±2.66 79.78±1.62 77.38±1.70
Madelon 63.31±4.03 60.42±3.89 58.15±3.88 50.00±0.00 59.31±4.09

Spambase 90.24±1.58 90.09±1.58 89.70±1.58 90.02±1.50 89.26±1.10
Wave 80.24±1.23 79.76±1.28 79.92±1.08 74.80±0.97 78.72±1.24

Wall-Following 90.16±1.24 88.36±1.36 86.82±2.13 88.64±1.80 71.28±1.71
Page-Block 93.92±1.34 93.64±1.31 93.09±1.15 93.44±1.57 91.54±1.05

Opdigit 92.46±0.65 91.57±0.78 92.40±0.70 92.28±0.67 92.01±0.78
Satellite 82.44±1.41 81.79±1.43 81.97±1.43 82.07±1.28 79.60±1.54

Wine 49.38±1.95 48.75±1.02 50.01±1.86 49.47±2.03 48.52±1.52
Musk 91.94±0.77 90.27±1.00 86.22±2.00 89.80±0.78 78.18±1.94

Anuran 90.40±1.28 89.58±1.43 89.28±1.46 89.21±1.57 81.88±1.40
Pendigit 88.27±0.75 87.35±0.69 87.67±0.55 88.12±0.69 87.02±0.82
Magic 76.95±0.47 76.77±0.77 75.74±0.48 76.04±0.58 73.36±0.92

IndoorLoc 62.91±1.20 55.68±0.89 62.24±0.93 61.50±1.12 58.28±1.06

AVG 80.83 77.28 79.30 78.59 75.93

Table 4.8: Summary of statistical significance tests of the proposed SADD over su-
pervised discretization methods when 40% of training samples are labeled data while

the rest are unlabeled.

MDLP CAIM CACC ChiMerge

SADD 31(15) 29(9) 30(11) 31(25)

seamlessly integrated with various naïve Bayes classifiers and significantly improve their

performance.

Table 4.10 summarizes the statistical significance tests of the proposed SADD over

MDLP on various NB classifiers. By utilizing the proposed SADD discretization scheme,

CAWNB+, WANBIA+, AIWNBE+, AIWNBL+ and RNB+ achieve the higher classifi-

cation performance on most of the datasets than their counterparts, CAWNB, WANBIA,
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Table 4.9: Summary of performance gain brought by the proposed SADD on
state-of-the-art naive Bayes classifiers, where CAWNB+, WANBIA+, AIWNBE+,
AIWNBL+ and RNB+ utilize the proposed SADD discretization scheme and others

utilize MDLP [44].

Dataset CAWNB CAWNB+ WANBIA WANBIA+ AIWNBE AIWNBE+ AIWNBL AIWNBL+ RNB RNB+
Iris 93.33±5.96 96.00±3.44 93.33±5.96 96.67±3.51 92.67±6.29 96.00±4.66 92.67±6.29 96.67±3.51 93.33±5.96 96.67±3.51

Parkinson 84.68±5.88 89.79±6.48 85.76±6.59 90.34±6.06 79.46±5.24 84.52±6.68 81.55±6.19 86.63±5.54 85.23±6.04 90.34±6.06
Seeds 90.00±6.88 91.90±4.52 90.00±5.81 92.38±4.60 87.62±4.36 90.48±6.35 87.62±4.36 91.90±5.04 89.52±7.00 92.38±4.02
Glass 73.85±3.51 73.72±7.72 71.13±8.30 72.42±5.51 74.28±6.86 74.29±5.92 75.28±7.75 74.81±4.74 71.06±4.22 73.77±7.55
Heart 77.41±9.86 83.70±9.43 84.07±10.08 83.33±10.80 83.70±8.64 83.33±9.76 83.70±9.10 83.33±9.11 84.07±9.81 83.33±10.66
Ecoli 83.38±3.39 85.41±3.81 82.51±3.79 84.89±6.12 82.23±4.92 84.84±4.43 82.23±4.92 84.55±5.93 83.39±3.34 85.41±3.81
Bupa 53.27±9.52 62.51±11.86 53.27±9.52 62.51±11.86 42.02±0.84 62.24±9.24 42.02±0.84 61.67±9.71 53.27±9.52 62.51±11.86

Ionophere 89.23±5.10 90.63±4.56 92.94±6.17 91.76±5.38 89.52±4.96 90.65±5.08 90.37±4.83 92.08±5.25 91.81±6.03 90.35±5.95
Movement 68.42±5.27 74.87±4.31 67.16±3.44 74.94±8.04 64.63±4.83 75.39±7.60 67.12±4.33 75.28±6.23 65.63±6.88 76.83±5.32

ILPD 67.57±4.52 69.97±4.66 67.57±4.52 69.98±4.72 66.54±4.43 67.74±4.29 66.89±3.90 67.92±3.40 67.92±4.35 69.63±4.48
Breast 95.85±1.49 96.28±2.04 96.28±1.59 96.42±2.64 97.28±1.20 97.57±1.66 96.99±1.50 97.42±1.89 96.42±1.60 96.42±1.55
Pima 75.12±5.58 76.17±4.49 74.21±4.76 76.17±4.08 73.69±4.34 74.60±5.53 73.82±4.64 75.12±5.32 74.86±5.41 76.17±4.31
Vowel 61.11±4.99 76.26±5.54 61.62±4.78 76.77±5.59 59.70±4.18 76.97±4.06 66.97±5.11 72.63±4.80 60.91±4.47 76.97±4.97

Biodegradation 84.64±2.32 85.21±3.01 85.12±2.44 85.69±3.18 81.13±2.75 82.84±2.05 81.61±2.38 83.69±1.76 85.21±2.33 85.78±3.26
Mice Protein 98.89±1.29 99.82±0.39 99.63±0.62 99.72±0.44 97.32±1.32 99.45±0.77 98.33±1.15 99.54±0.65 99.63±0.62 99.91±0.29

Yeast 57.56±3.94 59.37±3.44 56.75±4.07 59.38±4.64 57.15±3.46 59.17±4.41 57.15±3.80 59.32±4.36 57.29±3.99 59.38±3.97
Mfeat-fac 93.85±2.14 94.80±1.90 95.55±1.40 95.90±1.07 94.20±1.77 95.10±1.54 95.15±1.49 95.95±1.40 95.40±1.76 95.65±0.91
Cardio 88.66±1.49 88.94±1.88 88.66±1.56 88.42±1.89 80.53±1.42 81.33±2.16 82.64±1.32 82.79±1.62 88.70±1.87 89.13±1.50

Madelon 63.81±3.47 64.96±3.63 63.35±3.68 64.88±3.92 61.92±3.34 64.65±3.99 61.92±3.34 64.62±3.96 62.96±3.52 65.15±3.11
Spambase 94.11±0.74 94.26±1.08 93.78±0.92 93.89±1.28 89.94±1.25 90.35±1.78 90.16±1.27 90.53±1.85 93.94±1.19 93.96±1.06

Wave 84.36±1.22 84.86±1.44 83.88±1.52 84.16±1.54 80.08±1.05 80.48±1.09 80.74±1.28 81.22±0.94 84.30±1.56 85.08±1.19
Wall-Following 96.52±1.57 96.56±1.75 97.42±0.57 97.49±0.63 90.95±1.31 91.90±0.83 93.49±0.84 93.53±0.59 97.53±0.65 97.43±0.77

Page-Block 96.38±0.65 96.60±0.69 96.04±0.83 96.31±0.74 93.02±1.30 93.11±1.32 93.79±1.07 94.37±1.30 96.33±0.87 96.55±0.78
Opdigit 94.73±0.94 94.95±1.18 93.45±1.04 93.83±1.03 92.30±0.43 92.60±0.64 93.11±0.37 93.31±0.70 95.23±0.81 95.77±0.72
Satellite 84.40±1.01 84.48±1.40 84.52±0.76 85.00±0.93 81.69±1.26 81.88±1.62 85.33±1.00 85.72±1.33 85.81±0.92 86.37±0.91
Wine 51.70±1.21 52.20±1.36 53.19±1.37 53.63±1.94 48.99±1.38 50.33±1.03 50.64±1.35 51.50±1.26 53.36±1.66 53.70±1.10
Musk 97.24±0.73 97.33±0.44 96.23±0.87 96.15±0.40 92.91±0.86 92.89±0.81 93.79±0.93 93.66±0.64 95.89±0.68 97.04±0.71

Anuran 95.41±0.68 95.55±0.84 94.66±0.57 95.11±0.60 88.87±1.07 89.46±1.18 92.93±1.08 93.58±1.08 95.44±0.68 95.97±0.75
Pendigit 93.06±0.42 93.76±0.62 89.71±0.76 90.04±0.76 88.72±1.11 89.24±1.22 93.41±0.68 93.72±0.71 93.15±0.35 93.81±0.71
Magic 83.43±0.75 83.61±0.65 82.40±0.63 82.47±0.77 79.32±0.49 79.81±0.54 80.18±0.62 80.71±0.38 83.40±0.72 83.41±0.83

IndoorLoc 87.09±1.53 86.30±3.92 86.30±0.66 86.52±0.76 65.27±1.26 68.56±1.13 68.08±0.96 68.66±1.23 83.59±2.99 86.64±0.96
AVG 82.55 84.54 82.60 84.42 79.28 81.99 80.63 82.79 82.73 84.89

AIWNBE , AIWNBL and RNB, respectively, among which the results on 9, 6, 14, 9, and

14 datasets are statistically significant.

Table 4.10: Summary of statistical significance tests of the proposed SADD over
MDLP [44] on various NB classifiers. For each entry u(v), u is the number of datasets
on which CAWNB+, WANBIA+, AIWNBE+, AIWNBL+ and RNB+ outperform their
counterparts, and v is the number of datasets on which the performance gain is statis-

tically significant with the significance level of p = 0.05.

CAWNB+ vs. WANBIA+ vs. AIWNBE+ vs. AIWNBL+ vs. RNB+ vs.
CAWNB WANBIA AIWNBE AIWNBL RNB

28(9) 27(6) 29(14) 19(9) 28(14)

4.5 Summary

In this paper, we aim to design a discretization and classification framework to balance

the generalization capability and discrimination power, during both data discretization

and classification. We find that a popular discretization scheme, MDLP, often results
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in an early stop during the top-down discretization, which leads to a huge information

loss. To address this problem, we propose a semi-supervised adaptive discriminative

discretization (SADD) method, which utilizes the pseudo-labeling technique to make

full use of the discriminant information residing in both labeled and unlabeled data.

Furthermore, an adaptive discriminative discretization scheme is designed to resolve the

problem of huge information loss in MDLP. In such a way, the proposed SADD retains

the discriminant information for the classifier while preserving its generalization ability.

Besides, the proposed RNB+ well balances the generalization ability and discrimination

power during both data discretization and feature weighting. Experimental results on

31 machine-learning datasets demonstrate that the proposed SADD significantly out-

performs all compared discretization methods and the proposed RNB+ significantly

outperforms other state-of-the-art NB classifiers.



Chapter 5

A Max-relevance-min-divergence

Criterion for Data Discretization

with Applications on Naive Bayes

In many classification models, data is discretized to better estimate its distribution.

Existing discretization methods often target at maximizing the discriminant power of

discretized data, while overlooking the fact that the primary target of data discretiza-

tion in classification is to improve the generalization performance1. As a result, the

data tend to be over-split into many small bins since the data without discretization

retain the maximal discriminant information. In this Chapter, we propose a Max-

Dependency-Min-Divergence (MDmD) criterion that maximizes both the discriminant

information and generalization ability of the discretized data. More specifically, the

Max-Dependency criterion maximizes the statistical dependency between the discretized

data and the classification variable while the Min-Divergence criterion explicitly mini-

mizes the JS-divergence between the training data and the validation data for a given

discretization scheme. The proposed MDmD criterion is technically appealing, but

it is difficult to reliably estimate the high-order joint distributions of attributes and
1The work has been published in Pattern Recognition[196].
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the classification variable. We hence further propose a more practical solution, Max-

Relevance-Min-Divergence (MRmD) discretization scheme, where each attribute is dis-

cretized separately, by simultaneously maximizing the discriminant information and the

generalization ability of the discretized data. The proposed MRmD is compared with

the state-of-the-art discretization algorithms under the naive Bayes classification frame-

work on 45 machine-learning benchmark datasets. It significantly outperforms all the

compared methods on most of the datasets.

5.1 Introduction

Deep-learning models have been successful in many applications [8], but they require

a large amount of training samples. For applications such as drug discovery [197] and

medical diagnosis [181], it is labor-expensive to collect many samples, where traditional

machine-learning methods with much fewer model parameters may generalize better,

e.g., decision tree [198], fuzzy rule-based classifiers [79], naive Bayes [9, 20, 22], k-

nearest-neighbor classifier [129], and support vector machine [45, 132]. To improve the

generalization capability, and to handle mixed-type data, continuous attributes are often

discretized to facilitate a better estimation of the data distribution for subsequent clas-

sifiers [78, 81, 83, 132]. The discrete features are easier to understand than continuous

ones because they are closer to knowledge-level representation [45]. Most importantly,

by discretizing similar values into one bin, the distribution discrepancy between train-

ing data and test data could be reduced, and hence the generalization capability of a

classifier could be enhanced [9, 20, 22].

Data discretization aims to find a minimal set of cut points that optimally discretize

continuous attributes to maximize the classification accuracy [45, 83]. Existing meth-

ods often over-emphasize maximizing the discriminant information, while neglecting the

primary target of data discretization, i.e., to improve the generalization performance

by reducing the noisy information that is harmful to reliable classification. In data dis-

cretization, two opposing goals often compete with each other, i.e., the generalization

performance is maximized when all samples are discretized into one bin so that there is

no distribution discrepancy between training data and test data, but the discriminant
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information is totally lost in this case. On the other hand, the discriminant information

is maximized when no discretization is performed on the data, but the generalization

performance would not be improved.

In literature, many discretization algorithms have been developed to maximize the de-

pendence between discrete attributes and classification variables in terms of mutual

information [81], information entropy [44, 80], contingency coefficient [25, 113], statis-

tical interdependency [23, 24], and many others [45, 83, 102, 128]. However, none of

them explicitly maximizes the generalization capability. Instead, they often restrict the

number of intervals after discretization to be small, in the hope of retaining the gener-

alization ability, e.g., Class-Attribute Interdependence Maximization (CAIM) [23] and

Class-Attribute Contingency Coefficient (CACC) [25] both restrict the number of inter-

vals to the number of classes. Such a design does not optimize the discretization scheme

in terms of the generalization.

To tackle this problem, a Max-Dependency-Min-Divergence (MDmD) criterion is pro-

posed to simultaneously maximize the discriminant power and the generalization ability.

The Max-Dependency criterion maximizes the mutual information between the discrete

data and the classification variable [67, 81]. It has been widely used in feature selec-

tion [67, 134, 199], feature weighting [20] and feature extraction [172]. Regarding the

generalization ability, existing discretizers often choose to maintain a small number of

intervals [24, 45, 83]. However, if the number of intervals is too small, a significant

amount of discriminant information will be lost. On the other hand, if it is too large,

the resulting discretization scheme may not generalize well to the test data. It is hence

difficult to decide the optimal number of intervals. In this paper, a Min-Divergence

criterion is proposed to explicitly maximize the generalization ability by minimizing the

divergence between the distribution of training data and that of validation data. This

criterion is integrated with the Max-Dependency criterion to form the proposed MDmD

criterion, which could achieve a better trade-off between the discriminant power and

generalization ability so that the subsequent classifier could work well.

The proposed MDmD criterion is technically appealing but difficult to be applied in

practice, as it is difficult to reliably estimate the high-order joint distributions between
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attributes and classification variable. To tackle this problem, instead of maximizing the

mutual information between all attributes and the classification variable, we propose

to maximize the summation of the mutual information between each attribute and the

classification variable, also known as Max-Relevance [67, 81]. At the same time, we

propose to minimize the summation of divergences between distributions when one at-

tribute is evaluated at a time. These two criteria are combined to form the proposed

Max-Relevance-Min-Divergence (MRmD) criterion, which maximizes the discriminant

power by maximizing the mutual information between discrete attributes and the classi-

fication variable, and simultaneously maximizes the generalization ability by minimizing

the divergence between the distributions of training data and validation data. It is time-

consuming to exhaustively search for the global optimal solution. Following the design

of many discretization methods, e.g., MDLP [44], CAIM [23] and Ameva [113], a greedy

top-down hierarchical splitting algorithm is used together with the proposed MRmD

criterion to derive a near-optimal discretization scheme.

The proposed MRmD criterion is integrated with one of the most recent developments of

naive Bayes classifier, Regularized Naive Bayes (RNB) [9], and compared with the state-

of-the-art discretization methods and classifiers on 45 benchmark datasets. The pro-

posed method significantly outperforms the compared methods on most of the datasets.

Our contributions can be summarized as follows. 1) We identify the key limitations of

existing discretization methods that they often overemphasize maximizing the discrim-

inant power, which limits the improvement of the generalization ability. 2) To tackle

this problem, a Max-Dependency-Min-Divergence criterion is proposed to simultane-

ously maximize the discriminant power and minimize the distribution discrepancy so

that the derived discretization scheme could generalize well to the data population. 3)

To tackle the challenges of reliable estimation of the joint probabilities in MDmD, a more

practical solution, Max-Relevance-Min-Divergence discretization scheme, is proposed to

derive the optimal discretization scheme for one attribute at a time. 4) The proposed

method is systematically evaluated on 45 benchmark datasets and demonstrates superior

performance compared with the state-of-the-art discretization methods and classifiers.
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5.2 Related work

Discretization methods have been deployed to extract knowledge from data in many

machine learning algorithms such as decision tree [198], rule-based learning [79] and

naive Bayes [9, 20, 22]. Discretization methods can be categorized according to many

properties [45]:

Local vs. Global: Local methods [44, 80] generate intervals based on partial data,

whereas global ones [23–25, 45] consider all available data.

Dynamic vs. Static: Dynamic discretizers [81] interact with learning models whereas

static ones [24, 82] execute before the learning stage.

Splitting vs. Merging: This relates to the top-down split [23, 25, 80] or bottom-up

merge [82] strategy in producing new intervals.

Univariate vs. Multivariate: Univariate algorithms [24, 78, 80] discretize each at-

tribute separately whereas multivariate discretizers [45, 83] consider a combination of

attributes when discretizing data.

Direct vs. Incremental: Direct methods [45, 84] divide the range into several intervals

simultaneously, while incremental ones [23–25, 44, 80] begin with a simple discretization

and improve it gradually using more criteria.

Depending on whether the class label is used, discretization methods can be divided into

supervised, semi-supervised and unsupervised methods [45]. Equal-width and equal-

frequency discretization are representative unsupervised methods [78]. Minimal Op-

timized Description Length is a representative semi-supervised method, which applies

the Bayesian rule on both labeled and unlabeled data for discretization [127]. Super-

vised methods can be further divided into wrapper-based methods [45, 83, 128–130] and

filter-based methods [23–25, 80, 82]. The former optimizes the discretization scheme by

utilizing the classification feedback [45, 83, 128–130], while the latter optimizes some

indirect target for data discretization, e.g., information entropy [44, 80], mutual infor-

mation [81] and interdependency [23–25].
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Wrapper-based methods [45, 83, 128–130] iteratively refine the discretization scheme by

using the classification feedback. Evolutionary algorithms are often utilized to discretize

data by maximizing the classification accuracy and minimizing the number of intervals

[45]. Tahan and Asadi developed an evolutionary multi-objective discretization to handle

the imbalanced datasets [83]. Tran et al. initialized the discretization scheme by using

the MDLP criterion [44] and utilized barebones particle swarm optimization to fine-

tune the derived scheme [129]. In [128], the particle swarm optimization strategy is

used to explore the interaction between features for better discretization. Chen et al.

developed a genetic algorithm based on the fuzzy rough set to effectively explore the

data association [130].

Filter-based methods [23, 25, 80, 82] have been popular in recent years for their strong

theoretical background. MDLP is one of the most popular discretization methods in

many classifiers [9, 20, 22], which hierarchically partitions data by maximizing the in-

formation entropy [44]. To avoid excessive splitting, it defines a stop criterion derived

from channel coding theory. Xun et al. developed a multi-scale discretization method to

obtain the set of cut points with different granularity and utilized the MDLP criterion

to determine the best cut point [80]. Other statistical measures have also been widely

used in data discretization [24, 78, 82]. Kurgan and Cios developed a CAIM criterion

based on a quanta matrix to select boundary points iteratively within a pre-defined

number of intervals [23]. Cano et al. extended it for multi-label data [24]. Tsai et al.

introduced a discretization method based on CACC by taking the overall data distribu-

tion into account [25]. In [132], low-frequency values are discretized and the correlation

between discrete attribute and continuous attribute is utilized for discretization. Chi-

square statistics between the discrete data and the classification variable, e.g., modified

Chi2 and extended Chi2, have been recently developed for data discretization [82].

Most discretization methods [23–25, 44, 80] emphasize maximizing the discriminant

power, but they pay little attention to the generalization capability, e.g., they often

restrict the number of discrete intervals to be small, in the hope of achieving a satisfac-

tory generalization ability. If a discretization method considers maximizing these two

simultaneously, the subsequent classifier will achieve a better classification performance

on novel test data.
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5.3 Proposed discretization method

5.3.1 Analysis of existing discretization methods

Data discretization is crucial to improve the learning efficiency and generalization of

classifiers [45]. Many methods have been designed to maximize the statistical depen-

dency between discretized features and classification variables in many different forms,

e.g., information gain in MDLP [44, 80], class-attribute dependency in CADD [91], and

class-attribute interdependency in CAIM [23, 24]. But they often neglect the fact that

the primary target of data discretization in classification is to improve generalization

ability, i.e., by discretizing similar values into one interval, the data distribution can be

better estimated so that it fits well to novel test samples.

MDLP is one of the most widely used discretization methods [9, 20, 22], e.g., it is the

default discretization method in Weka toolbox [200]. It hierarchically splits the dynamic

range into smaller ones. For each attribute, a cut point d is selected to divide the current

set S into two subsets S1 and S2, which maximizes the information gain G(S, d) =

E(S) − |S1|
|S| E(S1) − |S2|

|S| E(S2), where E(S) = −
∑
c∈C

P (c,S) logP (c,S) is the entropy,

P (c,S) is the probability of class c in S and C is the set of classes. It can be shown that

the accumulative information gain is equivalent to the mutual information between the

discrete attribute and the classification variable. Greedily maximizing the information

gain may split the attribute into too many small intervals with too few samples so

that the likelihood probabilities can not be reliably estimated. To prevent this, MDLP

requires G(S, d) to be greater than a threshold that is derived from the overhead of

information encoding, which may not be in line with the classification point of view.

It often leads to an early stop during splitting, and hence a significant discriminant

information loss.

Class-Attribute Dependent Discretizer (CADD) [91] maximizes the discriminant infor-

mation via maximizing CADD(X,C) = I(X;C)
E(X,C) , where I(X;C) is the mutual informa-

tion and E(X,C) is the joint entropy. Maximizing CADD tends to produce too many

small discretization intervals. To prevent this, a user-specified threshold is utilized to

constrain the number of intervals, but with no guarantee of optimality.
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The CAIM discretization utilizes a heuristic measure CAIM(X,C) = 1
n

∑n
i=1

maxc∈C q2i,c
Mi

to model the interdependence between classes and attributes [23, 24], where qi,c is the

number of samples in class c in the i-th interval, and Mi is the number of samples in the

i-th interval. The number of intervals generated by CAIM is often close to the number

of classes, which may limit the performance of CAIM, especially when the number of

classes is small.

Existing approaches mainly focus on maximizing the discriminant power, which often

split attributes into too many small intervals. This defeats the purpose of data discretiza-

tion in classification, i.e., to improve the generalization. To retain the generalization

ability, they often restrict the number of intervals to a predefined number or the number

of classes [23–25], or require the information gain to be larger than a threshold [44, 80].

These methods lack a measure to explicitly maximize the generalization ability.

5.3.2 Maximal-dependency-minimal-divergence for data discretization

In this paper, the target is to derive an optimal discretization scheme D to transform

continuous attributes X into discrete ones A, which simultaneously maximizes the dis-

criminant power of the discretized data and maximizes the generalization ability to the

data not used in training,

A = fD(X,D), (5.1)

where fD denotes the discretization function, and D = {D1,D2, ...,Dm} contains the

discretization schemes for m features.

5.3.2.1 Maximal-dependency criterion

To maximize the discriminant information, we propose to maximize the mutual infor-

mation I(A;C) between the discretized attributes A and the classification variable C

given the discretization scheme D,

D∗ = argmaxD I(A;C), (5.2)
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I(A;C) =
∑
c∈C

∑
a∈A

P (a, c) log
P (a, c)

P (a)P (c)
, (5.3)

where P (a, c) is the joint probability distribution and P (a) and P (c) are the respective

marginal probabilities. This criterion is often known as Max-Dependency [67, 81]. Ap-

parently, it is difficult to reliably estimate both the joint probability distribution P (a, c)

and the marginal probability distribution P (a) due to the high dimensionality. Further-

more, the Max-Dependency criterion tends to greedily maximize the discriminant power

and hence over-discretize the continuous data into too many small intervals, i.e., each

unique value in the numerical attribute may be treated as a separate interval, in which

the generalization capability would not be improved.

5.3.2.2 Minimal-divergence criterion

To maximize the generalization ability, we propose to minimize the Jensen-Shannon (JS)

divergence [201] between the training data distribution and the test data distribution. As

the latter is in general unknown, we hence aim to minimize the distribution discrepancy

between training data and validation data instead. The intuition behind is that by

minimizing the JS divergence DJS(P
t(a)||P v(a)) describing the similarity between the

distribution P t(a) of the training data At and the distribution P v(a) of the validation

data Av, the derived discretization scheme D could generalize well from the training

data to the novel test data. Formally, DJS(P
t(a)||P v(a)) is defined as:

DJS(P
t(a)||P v(a)) =

1

2
(DKL(P

t(a)||P ∗(a)) +DKL(P
v(a)||P ∗(a))), (5.4)

where P ∗(a) = 1
2(P

t(a)+P v(a)) and DKL(P
t(a)||P ∗(a)) is the Kullback-Leibler diver-

gence between P t(a) and P ∗(a),

DKL(P
t(a)||P ∗(a)) =

∑
a∈A

P t(a) log
P t(a)

P ∗(a)
. (5.5)

Similarly, DKL(P
v(a)||P ∗(a)) is defined as:

DKL(P
v(a)||P ∗(a)) =

∑
a∈A

P v(a) log
P v(a)

P ∗(a)
. (5.6)
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P t(a), P v(a) and P ∗(a) are the probability distributions of a given the attribute set At,

Av and A∗ respectively. The JS divergence has been utilized as a distance metric be-

tween two distributions. It is symmetric, i.e., DJS(P
t(a)||P v(a)) = DJS(P

v(a)||P t(a)).

DJS(P
t(a)||P v(a)) ∈ [0, 1]. The smaller JS divergence represents the higher similarity

between these two distributions, and hence the derived discretization scheme could gen-

eralize well to the novel test data. The Minimal-Divergence criterion is hence defined

as:

D∗ = argminD DJS(P
t(a)||P v(a)). (5.7)

5.3.2.3 Maximal-dependency-minimal-divergence criterion

To simultaneously maximize the discriminant power and the generalization ability of the

discretized attributes, we propose to maximize the dependency I(A;C) between discrete

attributes A and classification variable C, and minimize the divergence DJS(P
t(a)||P v(a))

between the distribution of training data and that of validation data given the discretiza-

tion scheme D,

D∗ = argmaxD λI(A;C)−DJS(P
t(a)||P v(a)), (5.8)

where λ is the hyper-parameter to balance the two terms. Note that the two terms

compete with each other. On the one hand, when all the data are discretized into

one bin, I(A;C) = 0, indicating that the discriminant information is totally lost, but

DJS(P
t(a)||P v(a)) = 0, i.e., the two distributions are identical, and hence the general-

ization is maximized. On the other hand, when each unique sample is discretized into

a separate bin, the discriminant information is maximized, while it does not improve

the generalization ability. The proposed MDmD criterion provides a solution to find the

optimal trade-off between the discriminant power and the generalization ability.

5.3.3 Maximal-relevance-minimal-divergence criterion for data discretiza-

tion

The proposed MDmD criterion is technically appealing but difficult to implement in

practice, as it is hard to reliably estimate the high-order joint distribution P (a, c),
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P t(a) and P v(a). Inspired by [67], we propose the Max-Relevance criterion for data

discretization. More specifically, following the chain rule of mutual information [201],

I(A;C) =
∑m

j=1 I(Aj ;C|Aj−1, · · · , A1), where I(Aj ;C|Aj−1, · · · , A1) is the conditional

mutual information between Aj and C conditioned on Aj−1, · · · , A1. If we ignore the

high-order interaction between features, i.e., I(Aj ;C|Aj−1, · · · , A1) ≈ I(Aj ;C), we have

I(A;C) ≈
∑m

j=1 I(Aj ;C), where I(Aj ;C) is the mutual information between Aj and C.

The detailed derivation of this approximation can be found in [201]. The Max-Relevance

criterion is then given as follows,

D∗ = argmaxD

m∑
j=1

I(Aj ;C), (5.9)

which has been widely used to approximate the Max-Dependency criterion [67, 81, 199].

For the second term in Eqn. (5.8), instead of estimating the divergence between P t(a)

and P v(a) jointly considering all the attributes, DJS(P
t(a)||P v(a)) can be estimated

by considering them one by one. Following the chain rule of divergence [201],

DKL(P
t(a)||P ∗(a)) =

m∑
j=1

DKL(P
t(aj |aj−1, · · · , a1)||P ∗(aj |aj−1, · · · , a1)), (5.10)

where DKL(P
t(aj |aj−1, · · · , a1)||P ∗(aj |aj−1, · · · , a1)) is the conditional divergence. If we

ignore the high-order interaction between features, i.e., P t(aj |aj−1, · · · , a1) ≈ P t(aj) and

P ∗(aj |aj−1, · · · , a1) ≈ P ∗(aj), we have DKL(P
t(a)||P ∗(a)) ≈

∑m
j=1DKL(P

t(aj)||P ∗(aj)).

It is then easy to show that DJS(P
t(a)||P v(a)) ≈

∑m
j=1DJS(P

t(aj)||P v(aj)), where

DJS(P
t(aj)||P v(aj)) is the JS divergence between training data distribution and vali-

dation data distribution for the j-th attribute given the discretization scheme Dj . The

Min-Divergence criterion can hence be simplified as,

D∗ = argminD

m∑
j=1

DJS(P
t(aj)||P v(aj)), (5.11)
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We combine Eqn. (5.9) and Eqn. (5.11) to form the proposed Maximal-Relevance-

Minimal-Divergence (MRmD) criterion,

D∗ = argmaxD

m∑
j=1

[
λI(Aj ;C)−DJS(P

t(aj)||P v(aj))
]
. (5.12)

Given the discretization scheme D, each original feature xj can be discretized into

Aj as in Eqn. (5.1), and then the mutual information I(Aj ;C) and JS divergence

DJS(P
t(aj)||P v(aj)) can be estimated. The proposed MRmD aims to find the opti-

mal scheme D∗ that maximizes the relevance of discretized attributes with respect to

the classification variable via the first term, and maximizes the generalization ability by

minimizing the distribution discrepancy between training data and validation data via

the second term.

To derive D∗, it is not difficult to show that each attribute Aj can be processed separately

to derive its optimal discretization scheme D∗
j ,

D∗
j = argmaxDj

Ψ(Aj ;C), (5.13)

Ψ(Aj ;C) = λI(Aj ;C)−DJS(P
t(aj)||P v(aj)). (5.14)

After deriving the optimal solution for each attribute, the optimal discretization scheme

is obtained as D∗ = {D∗
1,D∗

2, ...,D∗
m}.

5.3.4 Proposed MRmD discretization

An MRmD discretization method is proposed to discretize the attributes one at a time,

with the block diagram shown in Fig. 6.1. For each continuous attribute, the proposed

method iteratively determines the cut points for discretization by maximizing the MRmD

criterion, where the Max-Relevance criterion is achieved by maximizing the mutual

information between the discretized attribute and the classification variable, and the

Min-Divergence criterion is achieved by minimizing the distribution discrepancy between

training data and validation data. The two criteria are combined as the MRmD criterion,

to derive an optimal set of cut points to discretize the attributes.
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Figure 5.1: The proposed MRmD discretization framework. The optimal set of cut
points for each attribute is selected by maximizing the proposed MRmD criterion. More

details are given in Algo. 4.

Following the design in MDLP [44, 80] and many others [23–25], a greedy top-down

hierarchical splitting paradigm is designed to derive the optimal solution. More specif-

ically, for each attribute xj , we initialize its discretization scheme D∗
j as an empty set,

and treat the whole dynamic range initially as one interval. Hence I(Aj ;C) = 0 and

DJS(P
t(aj)||P v(aj)) = 0. The optimal cut points D∗

j are selected from a candidate

set Sj , which is initialized as U(xj), the unique values of xj . It can be shown that

the number of possible discretization schemes for xj is 2|Sj |. It is expensive to exhaus-

tively evaluate every feasible discretization scheme. ∀dk ∈ Sj , Dk
j = D∗

j ∪ dk, and we

use Dk
j to discretize xj , and evaluate the MRmD criterion Ψk defined in Eqn. (5.14)

for every dk. Then, we select the cut point dkmax that maximizes Ψk, and update the

optimal discretization scheme as D∗
j = D∗

j ∪ dkmax . The candidate set is updated as

Sj = Sj − dkmax . The proposed method incrementally selects the cut point to divide the

dynamic range into intervals until the criterion defined in Eqn. (5.14) does not increase

anymore. The proposed MRmD discretization is summarized in Algo. 4. the proposed

MRmD discretizes the continuous attribute xj ∈ X one by one. These discretization

schemes D∗
j for all attributes form the complete discretization scheme D∗. The proposed

MRmD generates a discretization scheme that simultaneously maximizes the discrim-

inant information and the generalization ability, and hence improves the classification

performance.
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Algorithm 4 The proposed MRmD discretization scheme.
Input: Input data X = {Xt,Xv} with class label c for X
Output: Discretization scheme D∗ = {D∗

1,D∗
2, ...,D∗

m}
1: D∗ ← ∅ . Initialize D∗ as an empty set
2: for xj ∈X do . Loop through all attributes
3: D∗

j ← ∅ . Initialize D∗
j as an empty set

4: Sj ← U(xj) . Initialize Sj as the set of unique values
5: Ψmax ← −∞ . Initialize optimal MRmD value
6: while (Sj 6= ∅) do . Incrementally select the cut point
7: for dk ∈ Sj do . For each possible cut point
8: Dk

j = D∗
j ∪ dk . Include dk as the cut point

9: Aj = fD(xj , D
k
j ) . Discretize xj using Dk

j

10: Ψk = λI(Aj ;C)−DJS(P
t(aj)||P v(aj)) . Calculate Ψk

11: end for
12: kmax = argmaxk Ψk . Derive dkmax with maximal Ψkmax

13: if Ψkmax ≤ Ψmax then
14: break;
15: end if
16: Ψmax ← Ψkmax . Update Ψmax

17: D∗
j ← D∗

j ∪ dkmax . Update D∗
j

18: Sj ← Sj − dkmax . Update Sj
19: end while
20: D∗ ← D∗ ∪ D∗

j . Add D∗
j into D∗

21: end for
22: return D∗

5.3.5 Analysis of hyper-parameter λ

The hyper-parameter λ plays an important role in the proposed MRmD. As discussed

early, the MRmD value Ψ(Aj ;C) is initialized as zero at the beginning of the top-down

discretization. Both terms in Eqn. (5.14) increases with the number of discretization

intervals. It is hence difficult to derive the optimal MRmD value. To tackle this problem,

λ is defined as,

λ = e
−

|D∗
j |

ND , (5.15)

where |D∗
j | is the number of cut points in the current discretization scheme, and ND is

empirically set to 50. The designed weighting function satisfies the following properties:

1). The value of λ is between 0 and 1. 2) λ monotonically decreases with the number

of cut points. In the earlier stage, when there are only a small number of cut points in

the discretization scheme, λ is large and hence more emphasis is put on the first term

in Eqn. (5.14), to highlight the importance of maximizing the discriminant information.
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As more cut points are added into the discretization scheme, λ becomes smaller and then

more emphasis is put on the second term of Eqn. (5.14) so that more emphasis is put

on improving the generalization performance. Such a design could help the proposed

MRmD discretization generate a discretization scheme that achieves an optimal trade-

off between the generalization capability and the discrimination information for the

discretized data.

5.4 Experimental results

5.4.1 Experimental settings

The proposed MRmD discretization is compared with five popular filter-based discretiza-

tion methods, Ameva [113], CAIM [23], MDLP [44], Modified Chi2 [102] and PKID [84],

and a recent wrapper-based approach, EMD [45]. Ameva [113] and CAIM [23] are two

popular methods for discretization in credit scoring models for operational research [202].

MDLP [44] and PKID [84] are widely used in NB classifiers [9, 20, 22] and feature se-

lection [129]. Modified Chi2 [102] has been recently used to improve the ensemble

classification methods [82]. EMD [45] has been used in many applications recently, e.g.,

high-resolution remote sensing [130] and feature selection [128]. Two classifiers are used

for evaluation, naive Bayes classifier and decision tree (C4.5) [90].

The proposed MRmD is then integrated with one of the recent naive Bayes classi-

fiers, RNB (regularized naive Bayes) [9], denoted as MRmD-RNB. It is compared with

state-of-the-art NB classifiers including RNB [9], WANBIA [21], CAWNB [22] and AI-

WNB [20]. It is also compared with three deep-learning models, ResNet [203], FTT

[8] and PWedRVFL [204]. ResNet and WPedRVFL are implemented using the codes

provided by the authors of [204], and FTT is implemented following [8].

The experiments are conducted on 45 benchmark datasets in various fields including

healthcare, biology, disease diagnosis and business. The datasets are extracted from the

UCI machine learning repository2, which have been widely used to evaluate discretization

algorithms [45, 78, 81] and naive Bayes classifiers [9, 20, 22]. Most datasets are collected
2https://archive.ics.uci.edu/ml/index.php
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Table 5.1: Description of compared methods: six discretization methods, four state-
of-the-art naive Bayes classifiers and three deep-learning models.

Discretization methods
Ameva

[113, 202]
Filter-based statistical top-down discretization, maximizing the contingency co-
efficient based on Chi-square statistics.

CAIM [23, 24] Filter-based statistical top-down discretization, heuristically maximizing the
class-attribute interdependency by using quanta matrix.

MDLP [9, 44,
80]

Filter-based entropy-based top-down discretization, maximizing the information
gain using the minimum description length principle.

Modified
Chi2 [82, 102]

Filter-based statistical bottom-up discretization, merging intervals dynamically
by using the rough set theory.

PKID [84] Filter-based unsupervised discretization, adjusting the number and size of inter-
vals proportional to the number of training instances.

EMD [45, 83] Wrapper-based multivariate discretization, minimizing the classification error and
the number of intervals using genetic algorithm.

Naive Bayes classifiers
RNB [9] Wrapper-based attribute-weighting naive Bayes, simultaneously optimizing class-

dependent and class-independent weights by using the L-BFGS algorithm.
WANBIA [21] Wrapper-based attribute-weighting naive Bayes, optimizing class-independent at-

tribute weights by using the L-BFGS algorithm.
CAWNB [22] Wrapper-based attribute-weighting naive Bayes, optimizing class-specific at-

tribute weights by using the L-BFGS algorithm.
AIWNB [20] Filter-based attribute and instance-weighting naive Bayes, combining correlation-

based attribute weights with frequency-based instance weights using eager learn-
ing AIWNBE and similarity-based instance weights using lazy learning AIWNBL.

Deep-learning models
ResNet [203] Adapted residual networks using 2 or 3 residual blocks.

FTT [8] Adapted transformer with feature tokenizer.
PWe-

dRVFL [204]
Combination of pruning-based and weighting-based ensemble deep random vector
functional link neural network with re-normalization.

from real-world problems. The number of instances is distributed between 106 and 10992

and the number of attributes is distributed between 2 and 90. Some datasets contain

missing values which are replaced by the mean or mode of the corresponding attribute.

Besides, there are both nominal attributes and numerical attributes in some datasets.

These 45 datasets provide a comprehensive evaluation of the proposed methods. The

statistics of these datasets are summarized in Table 6.2. Similarly as in [9, 20, 22, 45],

the classification accuracy of each method on each dataset is derived via stratified 10-

fold cross-validation. For the proposed method, only 8 out of 9 folds of training data

are used in training while the remaining one fold serves as validation data.

5.4.2 Comparisons to state-of-the-art discretization methods

The proposed discretization is compared with state-of-the-art discretization methods,

Ameva [113], CAIM [23], MDLP [44], Modified Chi2 [102], PKID [84] and EMD [45]

on the 45 datasets. The results are summarized in Table 5.3, where the results of the

compared methods are obtained by using the KEEL tool [195]. The highest classification

accuracy on each dataset among all compared methods is highlighted in bold. The
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Table 5.2: Statistics of the benchmark datasets, where Inst., Attr., Class, Num., Nom.
and Missing denote the number of instances, attributes, classes, numerical attributes,

nominal attributes and whether the dataset contains missing values, respectively.

Inst. Attr. Class Num. Nom. Missing Inst. Attr. Class Num. Nom. Missing

abalone 4174 8 28 7 1 N movement 360 90 15 90 0 N
appendicitis 106 7 2 7 0 N newthyroid 215 5 3 5 0 N
australian 690 14 2 8 6 N pageblocks 5472 10 5 10 0 N

auto 205 25 6 15 10 Y penbased 10992 16 10 16 0 N
balance 625 4 3 4 0 N phoneme 5404 5 2 5 0 N
banana 5300 2 2 2 0 N pima 768 8 2 8 0 N
bands 539 19 2 19 0 Y saheart 462 9 2 8 1 N

banknote 1372 5 2 5 0 N satimage 6435 36 7 36 0 N
bupa 345 6 2 6 0 N segment 2310 19 7 19 0 N

clevland 303 13 5 13 0 Y seismic 2584 19 2 15 4 N
climate 540 18 2 18 0 N sonar 208 60 2 60 0 N

contraceptive 1473 9 3 9 0 N spambase 4597 57 2 57 0 N
crx 690 15 2 6 9 Y specfheart 267 44 2 44 0 N

dermatology 366 34 6 34 0 Y tae 151 5 3 5 0 N
ecoli 336 7 8 7 0 N thoracic 470 17 2 3 14 N

flare-solar 1066 9 2 9 0 N titanic 2201 3 2 3 0 N
glass 214 9 7 9 0 N transfusion 748 5 2 5 0 N

haberman 306 3 2 3 0 N vehicle 846 18 4 18 0 N
hayes 160 4 3 4 0 N vowel 990 13 11 13 0 N
heart 270 13 2 13 0 N wine 178 13 3 13 0 N

hepatitis 155 19 2 19 0 Y wisconsin 699 9 2 9 0 N
iris 150 4 3 4 0 N yeast 1484 8 10 8 0 N

mammographic 961 5 2 5 0 N

average classification accuracy over all datasets is summarized at the bottom of Table 5.3.

As shown in Table 5.3, the naive Bayes classifier using the proposed MRmD discretiza-

tion scheme obtains the highest classification accuracy on 24 datasets. Compared with

the previous filter-based approaches, Ameva [113], CAIM [23], MDLP [44], Modified

Chi2 [102] and PKID [84], the proposed MRmD discretization obtains an average im-

provement of 4.23%, 2.82%, 4.22%, 2.32% and 2.38%, respectively. As a filter-based

method, the proposed MRmD outperforms the previously best discretization method,

the wrapper-based algorithm, EMD [45], with an average improvement of 1.69% over

the 45 datasets. The performance improvements on some datasets are significant. For

example, the classification results of the proposed MRmD on “auto”, “bands” and “move-

ment” are more than 8% higher than EMD [45]. Both “auto” and “movement” have a

relatively small number of samples but a relatively large number of attributes. The NB

classifier easily overfits to these two datasets. By maximizing the discriminant informa-

tion and the generalization performance at the same time, the proposed MRmD achieves

a much better generalization performance than EMD [45] that greedily maximizes the

discriminant power for a small number of training samples.
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Table 5.3: Comparisons of different discretization methods under the naive Bayes
classification framework. The proposed MRmD achieves the best average classification
accuracy, and outperforms the second best method, EMD [45], by 1.69% on average.

Ameva [113] CAIM [23] MDLP [44] Modified Chi2 [102] PKID [84] EMD [45] MRmD

abalone 21.27±3.12 25.85±1.52 24.96±1.72 24.29±1.88 26.11±2.25 25.78±2.39 25.54±1.70
appendicitis 88.00±9.58 87.09±10.61 87.09±9.70 85.18±10.71 86.09±9.89 87.09±10.06 87.91±12.10
australian 85.07±3.99 86.38±4.64 84.49±4.32 84.49±4.16 85.51±3.68 85.65±3.46 86.37±3.86

autos 67.29±11.46 64.97±8.73 67.32±11.80 64.88±11.86 72.69±11.12 66.06±6.71 76.93±10.75
balance 79.68±4.07 80.31±4.23 72.66±6.53 90.88±1.50 91.20±1.33 85.44±3.81 91.04±1.70
banana 70.49±2.34 60.49±2.72 72.47±2.22 63.00±1.99 71.47±2.06 73.57±1.99 72.96±2.44
bands 72.55±4.31 66.43±3.94 50.45±9.07 72.35±6.18 68.65±7.04 65.50±5.52 73.64±6.42

banknote 89.43±2.24 89.07±2.31 92.05±1.55 91.40±2.33 92.20±2.27 94.24±1.43 91.55±1.64
bupa 65.99±12.29 61.69±8.91 57.15±7.40 63.76±4.60 62.77±9.86 65.48±8.94 68.42±7.29

cleveland 57.78±4.53 56.12±7.58 55.45±4.07 54.82±7.24 55.44±7.72 57.09±7.17 58.07±8.89
climate 91.11±1.61 91.67±1.71 93.52±2.52 91.30±2.87 90.19±2.49 93.52±2.38 93.51±3.38

contraceptive 50.64±4.73 49.63±2.89 50.51±4.84 50.24±3.15 50.92±2.83 52.00±3.44 52.21±3.02
crx 85.51±4.78 86.09±4.28 85.65±4.80 84.20±3.09 85.22±3.60 85.36±5.89 86.23±6.25

dermatology 98.10±2.23 97.55±2.99 97.82±2.14 98.65±1.91 97.82±2.51 94.82±3.30 98.63±1.95
ecoli 81.27±7.06 80.94±4.68 82.16±6.16 79.48±6.42 80.38±6.02 78.89±5.63 84.28±5.05
flare 65.57±4.94 65.57±4.94 67.54±3.80 65.29±4.94 65.48±4.93 67.26±4.09 68.29±5.43
glass 46.47±6.61 70.34±14.11 72.06±8.38 71.99±8.24 72.46±9.83 71.24±12.34 75.67±9.03

haberman 74.78±6.74 73.52±4.56 72.85±3.70 72.20±4.51 72.82±5.45 74.49±5.85 74.80±4.29
hayes 74.37±9.73 74.37±9.73 52.02±8.12 79.37±14.29 79.32±12.68 81.57±11.15 80.09±11.34
heart 83.70±8.59 84.07±7.21 84.07±8.91 82.96±9.43 84.44±7.16 82.96±8.31 84.07±8.91

hepatitis 81.96±9.64 83.88±10.37 83.83±11.62 82.63±12.40 80.71±11.69 82.54±10.21 86.54±11.19
iris 93.33±4.44 94.00±4.92 92.67±3.78 93.33±4.44 92.00±4.22 95.33±4.27 94.00±7.34

mammographic 81.48±4.38 82.62±4.04 82.21±4.46 82.63±5.19 83.25±5.48 83.57±5.34 83.36±4.16
movement 65.00±6.57 65.28±5.75 60.56±5.68 62.50±7.99 66.67±4.90 55.83±8.91 68.90±8.84
newthyroid 95.35±3.18 95.82±4.16 94.89±4.13 95.82±4.68 96.75±3.17 94.94±4.33 97.66±3.96
pageblocks 94.01±0.77 93.42±0.65 93.11±0.94 93.75±0.83 91.58±0.96 94.06±0.87 94.10±0.85
penbased 86.08±0.91 87.12±0.77 87.66±0.97 87.71±0.87 87.22±0.84 87.08±0.88 88.67±0.86
phoneme 78.89±1.95 78.94±1.82 76.89±2.14 77.05±1.33 77.42±2.18 79.35±2.32 79.13±2.30

pima 72.80±4.34 73.20±6.04 75.26±3.77 73.97±4.70 74.10±5.04 77.22±3.40 74.61±3.58
saheart 65.82±5.54 70.35±4.80 66.24±5.78 67.77±7.94 67.56±5.78 70.79±3.25 70.79±3.58

satimage 25.28±0.65 81.69±1.60 82.10±1.31 82.22±1.48 82.11±1.42 81.99±1.56 82.28±1.37
segment 91.26±1.08 90.39±1.19 91.04±1.59 89.87±2.20 89.09±2.74 93.55±1.26 92.29±1.69
seismic 82.24±2.76 81.96±2.87 82.00±2.24 85.80±1.62 82.47±1.68 93.34±0.24 93.42±0.01
sonar 77.88±9.10 77.45±8.30 76.88±12.68 78.36±8.25 74.52±14.03 73.93±10.33 78.40±10.08

spambase 89.95±1.60 89.38±1.18 89.89±1.40 90.21±1.43 89.45±1.59 92.28±1.52 90.53±1.75
specfheart 76.44±8.65 76.82±9.62 73.05±8.95 74.96±9.17 77.52±8.40 81.28±3.72 79.71±6.80

tae 51.13±15.38 49.04±17.35 34.42±2.36 55.71±10.84 49.04±17.63 54.38±10.92 56.57±15.45
thoracic 81.91±3.95 82.13±2.72 82.13±3.04 82.98±3.81 80.43±5.28 82.13±3.04 82.98±3.47
titanic 78.10±3.02 77.83±2.97 77.60±3.22 77.88±3.02 77.88±3.02 78.33±3.07 78.19±2.34

transfusion 76.87±6.65 76.33±2.20 75.00±4.79 75.00±2.98 74.99±5.28 74.06±4.34 77.94±3.55
vehicle 61.22±4.64 60.64±3.67 59.10±3.50 62.41±3.61 62.05±2.76 64.19±4.62 63.37±5.10
vowel 63.64±3.43 62.22±4.86 60.30±5.13 65.15±4.32 57.88±3.40 63.43±4.51 64.04±4.62
wine 98.30±2.74 97.75±3.92 98.86±2.41 95.98±7.79 96.63±4.70 92.12±7.24 98.30±2.74

wisconsin 96.71±1.91 96.71±1.91 97.28±2.18 97.14±2.13 97.28±2.18 95.13±2.16 97.36±2.37
yeast 56.95±3.05 57.96±4.19 56.95±3.25 56.20±3.97 55.19±3.87 57.35±3.96 58.83±3.50

AVG 74.93 76.34 74.94 76.84 76.78 77.47 79.16

Table 5.4: Ranks of the Wilcoxon test when comparing various discretization methods
under naive Bayes classification framework. Large rank values in the first row and
small rank values in the first column indicate that the proposed MRmD significantly

outperforms all the compared discretization methods.

Algorithm MRmD Ameva CAIM MDLP Modified Chi2 PKID EMD

MRmD - 1030.5 1024.5 1007.5 1014.0 1009.0 789.0
Ameva 4.5 - 546.5 606.5 499.0 545.0 348.0
CAIM 10.5 488.5 - 654.0 485.0 522.0 337.5
MDLP 27.5 428.5 381.0 - 456.0 470.5 303.5

Modified Chi2 21.0 536.0 550.0 579.0 - 522.5 358.5
PKID 26.0 490.0 513.0 564.5 512.5 - 341.0
EMD 246.0 687.0 697.5 731.5 676.5 694.0 -
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To evaluate the significance of the performance gains, we apply the Wilcoxon signed-rank

test [205] to thoroughly compare each pair of algorithms. The Wilcoxon signed-rank test

is a non-parametric statistical test, which ranks the performance of any two algorithms

for each dataset, and compares the ranks for their differences. Table 5.4 presents the

detailed ranks computed by the Wilcoxon test using naive Bayes classifier. Each entry

Ri,j in Table 5.4 is the sum of ranks for all datasets on which the algorithm in the i-th row

is compared with the algorithm in the j-th column. For the confidence level of α = 0.05

and N = 45, Ri,j > 692 indicates that the algorithm in the i-th row is significantly better

than the algorithm in the j-th column. As shown in Table 5.4, the proposed MRmD

discretization significantly better than Ameva (R1,2 = 1030.5), CAIM (R1,3 = 1024.5),

MDLP (R1,4 = 1007.5), Modified Chi2 (R1,5 = 1014), PKID (R1,6 = 1009) and EMD

(R1,7 = 789). These results clearly demonstrate that the proposed MRmD significantly

outperforms all the compared discretization methods.

The proposed MRmD discretization method can be used to boost the performance of

not only naive Bayes, but also many other classifiers such as decision tree. We hence

include decision tree (C4.5) [90] in the comparison, and summarize the results in Ta-

ble 5.5. The proposed MRmD discretizer obtains the highest classification accuracy on 27

datasets. Compared with the previous filter-based methods, Ameva [113], CAIM [23],

MDLP [44], Modified Chi2 [102] and PKID [84], the proposed MRmD discretization

achieves an average improvement of 4.82%, 3.73%, 3.97%, 4.41% and 7.47%, respec-

tively. Compared with the previous best discretization method, EMD [45], the proposed

MRmD achieves an average improvement of 1.45% over the 45 datasets. Similarly,

we conduct the Wilcoxon signed-rank test [205] on each pair of algorithms to evalu-

ate the significance of the performance gains. As shown in Table 5.6, the proposed

MRmD discretization using C4.5 significantly better than Ameva (R1,2 = 955.5), CAIM

(R1,3 = 970), MDLP (R1,4 = 998), Modified Chi2 (R1,5 = 1014), PKID (R1,6 = 1024.5)

and EMD (R1,7 = 858).
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Table 5.5: Comparisons of different discretization methods under the C4.5 classifica-
tion framework. The proposed MRmD achieves the best average classification accuracy,

and outperforms the second-best method, EMD [45], by 1.45% on average.

Ameva [113] CAIM [23] MDLP [44] Modified Chi2 [102] PKID [84] EMD [45] MRmD

abalone 21.49±2.13 24.32±1.79 25.37±2.25 17.49±2.55 23.07±2.16 23.43±2.15 25.63±1.66
appendicitis 83.36±12.55 83.36±12.55 83.36±10.99 78.55±12.64 80.18±2.77 87.00±7.15 94.36±6.43
australian 86.67±3.47 87.25±4.09 86.38±3.36 85.80±4.20 84.93±3.36 85.36±4.27 88.55±4.32

autos 75.49±5.66 72.63±8.64 76.91±10.29 78.97±9.92 76.70±10.52 76.44±7.39 78.52±6.29
balance 74.56±4.55 74.72±4.58 69.92±5.52 66.40±5.75 64.82±5.35 80.47±3.95 77.13±3.58
banana 72.49±2.06 63.87±1.58 74.85±2.20 63.92±1.80 70.43±1.84 87.30±1.55 87.66±1.25
bands 67.00±5.62 64.58±4.89 53.78±9.16 66.42±4.23 61.97±7.01 64.94±6.61 74.58±4.79

banknote 90.96±2.09 88.92±2.04 94.46±1.88 95.26±1.81 84.84±2.33 96.57±1.46 98.32±1.18
bupa 68.07±5.37 60.65±9.17 57.15±7.40 57.04±6.45 57.89±3.33 68.14±7.84 73.03±3.69

cleveland 55.74±7.41 54.84±7.07 53.77±5.33 54.71±9.70 53.45±5.35 54.80±6.52 57.12±4.16
climate 92.78±2.68 92.78±2.55 93.33±2.64 91.67±1.49 91.48±0.91 93.33±2.06 95.74±2.49

contraceptive 49.09±3.62 51.05±3.16 50.45±2.69 50.45±4.73 48.75±2.99 52.61±3.70 53.98±3.10
crx 85.51±5.20 87.39±3.87 86.81±3.89 87.68±4.70 85.22±4.92 86.38±3.44 86.81±3.58

dermatology 95.35±3.86 93.18±5.58 95.89±2.97 95.89±2.97 94.54±5.76 94.82±3.30 96.45±3.00
ecoli 70.82±5.58 74.69±4.94 77.71±5.86 73.81±4.14 66.03±6.90 74.72±7.72 79.17±6.71
flare 67.82±4.28 67.82±4.28 67.54±3.80 67.54±3.80 67.54±3.80 67.26±4.09 67.92±4.61
glass 53.05±5.13 67.61±11.90 75.79±10.53 62.80±13.03 57.88±11.59 73.70±9.88 74.24±7.77

haberman 74.13±6.07 75.12±6.01 72.53±3.38 73.53±1.00 73.53±1.00 74.15±3.65 74.81±4.54
hayes 80.20±7.16 80.20±7.16 52.02±8.12 72.01±13.25 71.07±12.98 74.26±9.54 71.88±7.53
heart 78.89±9.57 78.52±11.29 79.63±9.44 78.89±9.57 79.26±7.45 82.22±7.18 80.37±4.98

hepatitis 78.21±11.80 82.71±8.27 83.25±7.63 80.08±8.97 82.58±6.82 80.71±6.95 83.92±6.40
iris 93.33±3.14 93.33±3.14 93.33±3.14 93.33±4.44 92.67±6.63 95.33±4.27 94.67±7.77

mammographic 81.59±4.78 82.84±5.10 83.15±5.29 82.00±4.41 81.17±5.25 83.15±5.36 82.83±2.76
movement 43.33±8.30 47.50±7.69 60.56±10.29 63.06±8.18 32.22±10.33 63.61±5.19 64.17±9.42
newthyroid 92.53±5.08 93.51±5.02 94.44±4.21 93.98±4.43 93.98±3.09 94.94±4.33 94.87±4.90
pageblocks 96.56±0.52 96.18±0.50 96.84±0.60 94.74±1.07 94.96±0.66 96.93±0.65 97.17±0.50
penbased 92.93±0.58 88.77±1.35 88.66±1.29 89.04±1.19 67.00±0.61 94.91±0.64 94.76±0.73
phoneme 78.77±1.96 79.13±1.81 81.24±2.25 75.33±1.40 76.81±1.84 84.47±1.74 83.85±1.59

pima 74.48±3.27 73.45±5.28 73.44±4.25 72.03±4.68 73.07±5.89 74.35±1.75 74.36±3.24
saheart 69.91±4.99 70.55±3.94 68.17±5.55 69.71±4.62 65.80±1.36 68.39±5.13 71.66±4.27

satimage 25.07±0.55 85.41±1.30 84.54±1.55 83.87±1.39 80.20±0.91 84.83±1.25 86.01±1.32
segment 95.37±1.12 94.68±1.31 93.85±1.45 88.31±2.23 84.76±1.79 96.06±0.76 96.06±1.22
seismic 93.42±0.01 93.42±0.01 93.42±0.01 93.42±0.01 93.42±0.01 93.34±0.24 93.42±0.01
sonar 79.69±11.88 74.00±6.63 76.38±11.94 73.98±11.05 69.62±10.68 77.31±9.65 77.86±3.96

spambase 93.54±1.20 93.56±1.28 92.73±1.30 87.64±1.62 88.69±1.38 92.52±1.13 92.89±1.07
specfheart 80.50±6.80 77.85±6.91 72.68±9.79 77.52±6.67 79.42±1.75 82.04±2.11 82.05±4.55

tae 44.54±19.82 45.83±16.39 34.42±2.36 52.96±12.40 47.08±12.93 53.17±12.30 58.17±12.88
thoracic 84.68±0.85 84.68±0.85 84.68±0.85 85.11±0.00 85.11±0.00 84.68±0.85 85.11±0.00
titanic 77.33±3.04 77.74±3.15 77.15±2.90 77.60±2.96 78.92±2.31 79.06±2.21 77.60±2.42

transfusion 79.27±4.67 77.27±2.48 76.21±0.41 76.21±0.41 76.21±0.41 77.28±4.54 79.96±4.00
vehicle 67.73±4.17 67.39±4.15 68.32±5.09 68.31±5.59 64.54±4.47 68.31±3.67 70.10±2.33
vowel 72.83±5.68 69.60±3.35 73.23±6.43 71.21±5.52 48.48±4.29 70.71±5.03 72.72±4.78
wine 93.82±4.86 91.01±5.53 89.84±7.98 92.68±6.48 79.74±11.09 92.12±7.24 93.79±5.98

wisconsin 93.71±2.04 93.85±1.92 94.42±2.81 94.71±3.09 93.84±2.72 94.99±1.48 95.60±3.09
yeast 54.99±3.30 53.04±4.20 57.22±3.16 44.34±3.06 38.62±3.41 52.43±3.49 58.89±4.08
AVG 75.15 76.24 76.00 75.56 72.50 78.52 79.97

Table 5.6: Ranks of the Wilcoxon test when comparing discretization methods using
C4.5.

Algorithm MRmD Ameva CAIM MDLP Modified Chi2 PKID EMD

MRmD - 955.5 970.0 998.0 1014.0 1024.5 858.0
Ameva 79.5 - 555.0 508.5 640.5 825.5 290.5
CAIM 65.0 480.0 - 500.5 665.5 890.0 226.5
MDLP 37.0 526.5 534.5 - 635.5 831.0 266.5

Modified Chi2 21.0 394.5 369.5 399.5 - 771.5 157.5
PKID 10.5 209.5 145.0 204.0 263.5 - 33.0
EMD 177.0 744.5 808.5 768.5 877.5 1002.0 -



Chapter 5. A Max-relevance-min-divergence Criterion for Data Discretization with
Applications on Naive Bayes 109

Table 5.7: Comparisons with the state-of-the-art classifiers. The proposed MRmD-
RNB significantly outperforms the previous best naive Bayes method, RNB [9], by
2.84% on average. Compared with the best deep-learning method, FTT [8], the pro-

posed MRmD-RNB obtains an improvement of 0.93% on average.

WANBIA [21] CAWNB [22] AIWNBL [20] AIWNBE [20] RNB [9] ResNet [203] PWedRVFL [204] FTT [8] MRmD-RNB
abalone 26.71±1.51 25.15±1.85 26.09±1.44 24.01±1.30 26.78±1.63 25.01±6.25 26.35±1.40 26.98±2.09 27.00±1.90

appendicitis 87.55±9.07 87.55±9.07 84.91±9.07 84.91±9.07 87.55±9.07 86.91±8.85 82.91±10.47 85.82±6.27 88.64±8.49
australian 86.81±3.19 86.81±4.64 85.35±4.61 84.77±4.65 86.80±4.34 67.32±5.95 79.99±4.82 86.66±2.94 86.94±5.14

auto 75.62±5.41 76.15±11.05 71.26±8.47 71.31±9.16 81.13±9.13 65.38±9.95 30.57±10.00 75.78±7.15 84.35±9.31
balance 71.86±3.89 71.86±3.89 70.08±2.91 71.53±3.14 71.86±3.89 88.79±3.93 87.68±1.24 89.93±4.48 91.04±1.70
banana 72.83±2.31 73.38±2.04 73.32±2.00 71.98±2.49 73.38±2.04 73.72±4.06 87.25±2.13 87.42±1.79 73.36±1.88
bands 70.49±5.86 70.69±6.84 70.12±6.23 70.12±6.23 70.69±6.84 66.60±7.04 64.57±4.35 69.01±6.72 75.31±3.89

banknote 92.13±1.40 92.78±1.83 92.57±1.48 92.06±1.38 92.78±1.83 91.70±17.28 99.93±0.22 93.81±2.26 92.86±1.87
bupa 53.27±10.03 53.27±10.03 42.02±0.89 42.02±0.89 53.27±10.03 70.09±9.85 68.13±8.41 70.73±6.81 70.49±8.43

clevland 57.73±5.62 58.45±4.74 58.15±4.65 57.17±5.59 58.57±7.37 58.40±4.31 58.76±5.91 56.55±6.37 59.06±6.35
climate 94.26±2.66 94.26±2.66 94.26±2.66 94.26±2.66 94.26±2.66 91.48±0.96 91.13±2.23 93.87±2.65 94.45±4.16

contraceptive 51.38±4.72 51.79±4.33 51.12±4.16 50.72±3.98 52.34±4.58 52.01±4.82 52.21±4.61 53.57±1.78 53.43±2.73
crx 87.11±5.59 86.67±5.29 85.94±5.17 85.21±5.26 86.38±4.97 78.41±11.13 80.73±4.47 86.67±4.74 86.82±5.20

dermatology 98.64±1.92 98.37±2.28 97.56±2.00 97.56±2.00 98.64±1.92 97.27±3.62 96.17±3.88 97.82±2.67 98.65±2.30
ecoli 82.51±4.00 83.38±3.58 82.23±5.18 82.23±5.18 83.39±3.53 83.96±6.34 84.03±5.22 83.03±5.54 84.59±5.59

flare-solar 68.01±4.74 68.01±4.74 68.20±4.99 68.20±4.99 68.20±4.99 65.87±3.73 67.64±4.37 67.82±5.64 68.29±5.43
glass 71.13±8.74 72.47±5.30 75.28±8.17 74.28±7.23 71.97±4.72 56.10±9.21 64.61±7.21 70.08±8.97 75.71±8.38

haberman 73.18±3.90 73.18±3.90 26.47±0.72 26.47±0.72 73.18±3.90 73.21±5.01 72.81±8.46 68.94±6.89 74.80±4.29
hayes 60.03±1.42 60.03±1.42 60.03±1.42 60.03±1.42 60.03±1.42 77.50±15.65 66.28±15.60 78.17±9.62 80.09±11.34
heart 85.19±8.90 85.56±8.27 83.70±9.91 83.70±9.91 85.19±8.90 81.85±8.09 78.89±11.60 81.85±10.66 85.93±9.04

hepatitis 82.17±11.98 83.42±9.34 82.13±13.16 82.79±12.83 84.04±9.83 85.75±8.51 83.42±8.40 84.63±10.94 87.25±8.85
iris 93.33±6.29 93.33±6.29 92.67±6.63 92.67±6.63 93.33±6.29 95.33±6.33 96.00±3.27 96.00±4.42 94.00±4.92

mammographic 82.52±4.20 82.52±4.35 82.32±4.00 82.42±3.83 82.63±4.38 81.27±4.04 81.29±3.98 82.31±3.74 83.36±4.94
movement 67.16±3.63 68.45±6.00 67.12±4.56 64.63±5.09 68.75±8.39 71.95±9.75 75.15±7.47 71.14±6.84 71.81±8.97
newthyroid 95.80±3.50 95.35±3.18 95.32±4.98 95.76±4.73 95.80±3.50 94.91±4.56 89.35±3.51 95.78±5.40 98.57±3.21
pageblocks 96.04±0.87 96.40±0.70 93.79±1.13 93.02±1.37 96.35±0.97 93.48±1.65 94.72±0.62 96.24±0.77 96.46±0.78
penbased 89.88±0.68 92.91±0.75 93.60±0.67 88.82±0.95 93.12±0.72 94.08±1.72 95.84±1.35 94.00±0.73 93.70±0.69
phoneme 80.27±1.74 80.14±1.87 79.79±1.38 78.13±1.36 79.94±1.76 79.29±2.74 82.59±1.78 82.68±1.36 80.50±2.25

pima 74.21±5.02 75.12±5.88 73.82±4.90 73.69±4.58 74.86±5.70 74.47±2.92 75.24±5.51 74.61±5.04 75.90±3.56
saheart 70.35±3.06 69.91±3.93 67.74±5.10 67.74±5.10 70.12±4.70 71.44±5.89 72.97±4.16 68.83±5.62 73.38±4.84

satimage 84.40±1.08 84.27±1.22 85.44±0.87 81.40±1.43 85.86±0.86 82.18±1.41 85.16±1.28 84.99±0.54 86.12±1.14
segment 94.72±1.22 93.77±1.23 94.20±1.76 92.64±1.81 94.50±1.02 92.77±2.87 90.22±1.51 95.11±1.57 94.59±1.12
seismic 93.42±0.01 93.42±0.01 82.66±3.04 81.19±2.97 93.42±0.01 93.38±0.13 89.86±1.77 93.03±0.81 93.46±0.12
sonar 78.37±9.17 76.99±10.02 76.97±9.42 76.49±9.84 77.42±9.46 77.93±10.01 76.53±6.63 81.14±9.98 80.28±10.73

spambase 93.78±0.97 94.07±0.75 90.16±1.33 89.94±1.32 93.98±1.29 91.11±1.19 89.83±1.93 93.57±1.01 94.46±0.69
specfheart 78.54±8.72 78.56±7.28 75.07±11.65 75.07±11.65 81.15±9.48 78.26±5.54 76.36±5.48 78.21±6.00 82.70±7.77

tae 34.40±1.79 34.40±1.79 32.44±1.61 32.44±1.61 34.40±1.79 47.13±9.51 47.60±15.25 52.92±12.41 58.57±15.67
thoracic 83.83±1.49 83.40±1.96 82.34±2.25 81.91±3.05 83.83±1.79 84.90±0.67 85.53±0.85 84.26±1.70 84.26±1.79
titanic 77.60±2.40 77.60±2.40 77.60±2.40 77.60±2.40 77.60±2.40 77.88±1.48 79.10±1.00 79.05±1.53 77.74±2.43

transfusion 76.21±0.43 76.21±0.43 74.47±4.40 74.47±4.40 76.21±0.43 76.21±0.43 77.80±4.58 79.68±2.37 77.80±3.91
vehicle 65.62±5.28 65.61±3.74 64.66±4.05 61.36±6.21 67.73±3.21 69.03±5.88 78.16±6.32 74.70±2.99 69.87±5.40
vowel 64.14±5.50 64.55±4.72 66.87±4.99 63.64±4.69 64.65±5.28 64.15±3.76 71.52±5.47 68.69±4.52 65.15±5.50
wine 98.30±2.74 97.19±3.96 96.60±2.93 97.71±2.96 98.30±2.74 93.33±7.31 96.01±3.71 96.63±2.75 98.30±2.74

wisconsin 96.93±2.61 97.22±2.32 97.07±2.75 97.36±2.37 97.22±2.78 96.64±2.07 95.61±2.27 95.47±2.71 97.36±2.16
yeast 56.75±4.29 57.42±4.32 57.15±4.00 57.15±3.64 57.35±4.19 55.59±4.70 55.47±3.02 56.74±3.22 59.30±3.06

AVG 77.23 77.38 75.13 74.50 77.75 77.20 77.38 79.66 80.59

Table 5.8: Ranks of the Wilcoxon test when comparing state-of-the-art classifiers.

Algorithm MRmD-RNB WANBIA CAWNB AIWNBL AIWNBE RNB ResNet PWedRVFL FTT

MRmD-RNB - 1019.5 1034.0 1015.0 1034.0 1029.5 998.5 788.0 751.0
WANBIA 15.5 - 408.0 817.0 946.0 232.0 593.5 496.0 334.0
CAWNB 1.0 627.0 - 868.0 973.0 262.5 621.5 507.0 358.0
AIWNBL 20.0 218.0 167.0 - 780.5 94.0 450.0 376.0 145.0
AIWNBE 1.0 89.0 62.0 254.5 - 42.5 341.0 337.5 115.5

RNB 5.5 803.0 772.5 941.0 992.5 - 676.0 543.0 433.5
ResNet 36.5 441.5 413.5 585.0 694.0 359.0 - 448.0 182.0

PWedRVFL 247.0 539.0 528.0 659.0 697.5 492.0 587.0 - 284.0
FTT 284.0 701.0 677.0 890.0 919.5 591.5 853.0 751.0 -

5.4.3 Comparisons to state-of-the-art classifiers

The proposed MRmD is integrated with RNB [9], named MRmD-RNB, and com-

pared with five state-of-the-art NB classifiers including WANBIA [21], CAWNB [22],

AIWNBL [20], AIWNBE [20] and RNB [9], and three deep-learning models including

ResNet [203], FTT [8] and PWedRVFL [204].
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As shown in Table 5.7, the proposed MRmD-RNB obtains the highest classification ac-

curacy on 29 datasets out of 45 datasets among all the compared methods. Compared

with the recent attribute weighting methods, AIWNBL and AIWNBE [20], the pro-

posed MRmD-RNB achieves an average improvement of 5.46% and 6.09%, respectively.

Compared with the previous best naive Bayes classifier, RNB [9], the proposed MRmD-

RNB achieves an average improvement of 2.84%. The performance gains on some of

the datasets are significant. For example, the performance gains on “balance”, “bupa”,

“hayes” and “tae” are more than 17% over RNB [9]. Among them, both “hayes” and

“tae” have a relatively small number of instances and attributes. The NB classifier may

overfit to these small datasets due to few training samples. The proposed discretization

method greatly enhances the generalization ability of the state-of-the-art NB classifier

and hence significantly improves the classification performance.

The proposed MRmD-RNB achieves a higher average classification accuracy than the

three compared deep-learning models. We conjecture that due to the lack of sufficient

representative training samples, the deep-learning models may overfit to the training

data. The proposed MRmD-RNB well boosts the generalization capability in both

discretization and classifier design, and hence demonstrates excellent classification per-

formance.

We also conduct the Wilcoxon signed-rank test on the performance gains over the state-

of-the-art classifiers. As shown in Table 5.8, the proposed MRmD-RNB significantly

outperforms all the compared methods, as all the ranks in the first row are much larger

than the significance value of 692.

5.4.4 Ablation study

To evaluate the performance gain brought by the generalization capability, we compare

the proposed method with the following discretization methods under the naive Bayes

classification framework.

MRO: Only the Max-Relevance criterion is used. This serves as the baseline which does

not consider the generalization capability at all.



Chapter 5. A Max-relevance-min-divergence Criterion for Data Discretization with
Applications on Naive Bayes 111

MRC : Only the Max-Relevance criterion is used, but the number of cut points is

restricted to the number of classes, as in CAIM [23] and CACC [25].

MRT : Only the Max-Relevance criterion is used, but the number of cut points is re-

stricted to the twice number of cut points derived by MRmD. The average accuracy

Table 5.9: Comparisons of different discretization methods when constraining the
number of cut points using: 1) the number of classes, MRC ; 2) MRmD criterion,
MRmD; 3) twice the number of cut points derived by MRmD, MRT ; 4) no constraint

at all, MRO.

MRC MRmD MRT MRO

Acc # of Cut Points Acc # of Cut Points Acc # of Cut Points Acc # of Cut Points

abalone 25.32±1.64 198.00± 0.00 25.54±1.70 71.30±3.89 25.46±1.83 140.60±7.78 19.55±1.76 5515.80±12.36
appendicitis 85.00±7.82 14.00± 0.00 87.91±12.10 3.70±1.34 85.18±10.52 7.40±2.67 84.91±7.75 138.60±7.50
australian 86.22±3.89 24.00± 0.00 86.37±3.86 29.50±4.55 87.09±3.62 55.60±8.93 71.44±3.69 717.80±7.86

auto 65.83±8.00 123.80± 0.42 76.93±10.75 204.30±11.71 75.59±9.98 382.10±20.55 78.46±10.87 759.00±7.47
balance 86.40±2.01 12.00± 0.00 91.04±1.70 14.70±1.25 78.10±6.45 16.00±0.00 91.84±0.48 16.00±0.00
banana 58.77±2.02 4.00± 0.00 72.96±2.44 16.60±4.14 70.43±3.31 33.20±8.28 60.85±1.83 2529.70±11.58
bands 66.60±4.01 38.00± 0.00 73.64±6.42 34.10±1.85 69.94±6.90 67.20±4.13 75.88±3.60 643.90±5.99

banknote 85.13±4.33 8.00± 0.00 91.55±1.64 28.30±3.50 88.19±3.43 56.60±7.00 82.14±3.17 1671.60±14.19
bupa 60.27±7.49 12.00± 0.00 68.42±7.29 13.40±2.46 61.71±10.08 26.80±4.92 60.57±8.33 251.90±5.38

clevland 57.36±6.12 37.00± 0.00 58.07±8.89 17.70±2.83 59.12±2.79 3.80±2.04 53.24±5.80 319.60±3.06
climate 91.10±1.73 36.00± 0.00 93.51±3.38 12.00±1.83 91.66±1.83 24.00±3.65 91.49±0.86 1337.10±15.88

contraceptive 46.44±2.76 21.00± 0.00 52.21±3.02 12.40±1.26 46.58±2.87 19.80±2.04 50.65±2.95 61.70±0.48
crx 84.93±6.45 26.00± 0.00 86.23±6.25 12.80±0.92 84.93±6.45 22.90±1.79 74.77±4.15 721.80±5.83

dermatology 97.01±2.97 89.30± 0.67 98.63±1.95 40.40±0.97 95.03±4.11 70.00±1.33 96.99±3.03 140.30±1.06
ecoli 82.42±6.18 41.90± 0.32 84.28±5.05 15.50±1.35 79.98±7.44 29.10±2.77 68.81±8.30 288.90±2.23

flare-solar 68.01±5.45 12.00± 0.00 68.29±5.43 11.30±1.42 68.29±5.92 15.70±1.89 68.66±6.14 17.60±0.70
glass 68.15±6.77 54.00± 0.00 75.67±9.03 18.30±1.89 64.58±8.04 36.60±3.78 57.91±9.16 635.40±10.73

haberman 73.58±9.21 6.00± 0.00 74.80±4.29 2.90±1.20 72.92±6.66 5.80±2.39 71.59±4.32 75.70±2.50
hayes 84.05±10.19 11.00± 0.00 80.09±11.34 7.90±1.10 80.44±10.04 9.70±1.25 83.46±8.16 11.00±0.00
heart 81.11±9.79 22.50± 0.71 84.07±8.91 9.80±1.32 81.48±10.33 17.80±2.30 71.85±8.04 265.50±2.95

hepatitis 82.63±7.83 34.60± 0.97 86.54±11.19 39.50±8.63 83.25±7.96 73.90±16.97 81.42±7.81 185.20±3.85
iris 91.33±5.49 12.00± 0.00 94.00±7.34 10.60±1.43 90.00±7.86 21.20±2.86 92.00±8.20 52.80±2.04

mammographic 80.96±5.21 10.00± 0.00 83.36±4.16 19.70±4.81 82.62±3.17 34.60±8.83 82.42±4.14 75.90±1.52
movement 67.88±9.12 1350.00± 0.00 68.90±8.84 1395.90±43.86 68.02±6.06 2791.80±87.73 48.57±8.64 16060.10±147.14
newthyroid 95.82±4.05 15.00± 0.00 97.66±3.96 12.30±1.06 95.80±3.44 24.60±2.12 95.35±5.83 133.40±3.89
pageblocks 90.55±1.45 50.00± 0.00 94.10±0.85 454.50±31.84 93.15±1.28 909.00±63.68 93.75±1.00 3147.50±27.28
penbased 83.55±0.97 160.00± 0.00 88.67±0.86 252.30±5.95 86.28±0.84 504.60±11.89 87.85±0.88 1581.40±2.12
phoneme 76.26±2.25 10.00± 0.00 79.13±2.30 6.00±0.00 76.06±2.42 12.00±0.00 75.83±1.68 5589.50±19.03

pima 73.03±4.57 16.00± 0.00 74.61±3.58 64.00±11.24 72.91±4.52 128.00±22.49 67.57±6.11 783.60±9.09
saheart 69.91±6.18 17.00± 0.00 70.79±3.58 18.30±4.06 70.56±6.07 35.60±8.11 59.07±5.94 936.70±8.97

satimage 79.81±1.70 216.00± 0.00 82.28±1.37 559.70±9.39 82.11±1.42 1119.40±18.79 82.39±1.23 2245.80±5.20
segment 85.76±2.54 116.90± 0.32 92.29±1.69 205.50±8.14 89.48±2.05 406.70±16.47 83.03±1.38 9186.50±34.23
seismic 85.64±2.60 27.00± 0.00 93.42±0.01 0.40±0.70 93.42±0.01 0.80±1.40 91.14±1.67 1025.40±8.76
sonar 75.49±10.49 120.00± 0.00 78.40±10.08 43.90±4.28 74.99±10.69 87.80±8.56 63.82±12.68 4275.50±39.92

spambase 90.98±1.37 113.90± 0.32 90.53±1.75 341.20±31.30 90.55±1.44 660.30±59.18 91.24±1.12 7480.40±18.82
specfheart 75.96±8.83 88.00± 0.00 79.71±6.80 172.80±15.53 77.83±7.36 341.90±27.99 79.38±4.87 946.40±12.95

tae 46.11±12.83 11.00± 0.00 56.57±15.45 55.10±6.64 58.58±16.50 78.40±3.50 57.46±10.58 83.00±1.41
thoracic 81.91±2.70 22.00± 0.00 82.98±3.47 9.40±2.07 82.55±2.62 14.00±3.27 81.28±4.11 193.10±3.28
titanic 77.96±2.24 4.00± 0.00 78.19±2.34 2.90±0.32 77.96±2.24 3.90±0.32 77.87±2.35 5.00±0.00

transfusion 75.14±4.74 8.00± 0.00 77.94±3.55 18.50±3.54 76.33±3.02 37.00±7.07 73.53±4.46 139.40±4.17
vehicle 58.16±5.82 72.00± 0.00 63.37±5.10 178.60±13.23 61.10±4.61 353.20±23.86 61.58±4.80 1174.40±4.53
vowel 56.67±6.52 123.00± 0.00 64.04±4.62 85.40±5.02 54.75±5.34 169.70±9.31 23.03±3.77 6479.50±14.74
wine 94.87±6.85 39.00± 0.00 98.30±2.74 16.70±0.48 94.31±8.58 33.40±0.97 92.16±4.74 655.60±7.89

wisconsin 96.78±2.64 18.00± 0.00 97.36±2.37 18.00±1.25 96.63±2.40 36.00±2.49 97.36±2.37 70.50±1.27
yeast 45.85±6.05 63.00± 0.00 58.83±3.50 17.10±1.10 39.98±3.76 33.20±2.20 50.47±3.60 368.00±2.75

AVG 75.39 77.93 79.16 101.67 76.35 198.93 73.44 1755.41

over 10-fold cross-validation and the average number of cut points are summarized in

Table 5.9 and the classification accuracy across datasets for comparing MRmD with

other three variants are presented in Fig. 5.2 where the classification accuracies over all

datasets are sorted in ascending order with respect to MRmD. As shown in Fig. 5.2, the

proposed MRmD often achieves the highest classification accuracy among the compared
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Figure 5.2: Classification accuracy across datasets for comparisons of the Max-
Relevance criterion with different constrains.

methods. As detailed in Table 5.9, the proposed MRmD obtains the highest classifica-

tion accuracy averaged over 45 datasets. Compared with MRO that does not consider

the generalization capability, the proposed MRmD achieves an improvement of 5.72% on

average, which is the performance gain brought by the generalization capability through

the proposed MRmD discretization scheme. By restricting the number of cut points to

the number of classes, MRC enhances the generalization capability, but it may lead to

a severe loss in discriminant information, as the number of classes may be as small as

2. The proposed MRmD hence outperforms MRC by 3.77% on average. MRT utilizes

twice as many cut points as MRmD, which leads to a decrease of 2.81% on average from

MRmD. This set of results demonstrate that the proposed MRmD can better balance

the discriminant power and generalization capability, thus achieving higher classification

accuracy.

5.5 Summary

Previous data discretization methods often overemphasize maximizing the discriminant

information while overlooking the primary goal of data discretization in classification,

i.e., to enhance the generalization ability of a classifier. To address this problem, a
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Maximal-Dependency-Minimal-Divergence scheme is proposed to simultaneously maxi-

mize the generalization capability and discriminant information. The proposed MDmD

criterion is difficult to implement in practice due to the difficulty in estimating the

high-order mutual information. We hence propose a more practical solution, Maximal-

Relevance-Minimal-Divergence criterion, which discretizes one attribute at a time in a

top-down manner. The proposed MRmD criterion generates a discretization scheme with

a trade-off between retaining the discriminant information and improving the general-

ization ability for the subsequent classifier. Experimental results on the 45 benchmark

datasets demonstrate that the proposed MRmD significantly outperforms all the com-

pared discretization methods and, by integrating the proposed MRmD with RNB, the

resulting MRmD-RNB significantly outperforms all the compared classifiers.

The performance gain of the proposed MRmD may be limited by two factors: 1) The

greedy top-down hierarchical splitting algorithm only leads to a near-optimal discretiza-

tion scheme. Other more sophisticated search algorithms such as genetic algorithms

and hyperheuristics can be used to approximate the optimal solution better. 2) The

proposed MRmD simplifies the MDmD criterion by ignoring the high-order feature in-

teraction as it is difficult to reliably estimate the multivariate distributions, which may

lead to some information loss. A possible improvement is to consider the high-order

feature interaction when designing the discretization criterion.



Chapter 6

Boosting the Discriminant Power

of Naive Bayes via Feature

Augmentation

Naive Bayes has been widely used in many applications because of its simplicity and

ability in handling both numerical data and categorical data1. However, lack of modeling

of correlations between features limits its performance. In addition, noise and outliers

in the real-world dataset also greatly degrade the classification performance. In this

paper, we propose a feature augmentation method employing a stack auto-encoder to

reduce the noise in the data and boost the discriminant power of naive Bayes. The

proposed stack auto-encoder consists of two auto-encoders for different purposes. The

first encoder shrinks the initial features to derive a compact feature representation in

order to remove the noise and redundant information. The second encoder boosts the

discriminant power of the features by expanding them into a higher-dimensional space

so that different classes of samples could be better separated in the higher-dimensional

space. By integrating the proposed feature augmentation method with the regularized

naive Bayes, the discrimination power of the model is greatly enhanced. The proposed

method is evaluated on a set of machine-learning benchmark datasets. The experimental
1This work has been published in the 2021 International Conference on Pattern Recognition [184]

and the extended version has been submitted to Pattern Recognition.
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results show that the proposed method significantly and consistently outperforms the

state-of-the-art naive Bayes classifiers.

6.1 Introduction

Naive Bayes (NB) has been widely used in many applications, e.g., text classification [17,

206, 207], action recognition [208], scene recognition [209] and malware detection [210].

Naive Bayes is a simple and effective classification model. One notable advantage of NB

is its ability of handling mixed data types, e.g., both categorical and numerical data.

For simplicity, it often assumes that features are independent to each other conditioned

on the classification variable. However, the independence assumption rarely holds in

reality.

To address this problem, many approaches have been developed, e.g., structure exten-

sion [11, 12], instance selection [57], instance weighting [14], feature selection [17] and

feature weighting [9, 20, 22]. Among them, feature weighting approaches [9, 20, 22]

have attracted a lot of attention recently, which assign different weights to features to

decouple the correlation between features [9, 20, 22]. In [20], attributes and instance

are weighted simultaneously. Recently, Wang et al. developed a regularized attribute

weighting framework to automatically balance the generalization ability and discrimina-

tion power of NB classifier [9]. These methods partially alleviate the problem, but still

not well model the feature correlation.

Artificial defects commonly exist in real-world applications, e.g., missing values or noisy

samples. To handle noisy samples and extract the intrinsic data characteristics, many

subspace approaches have been developed to remove the unreliable features and ex-

tract the discriminant features [26, 133, 134, 154, 162]. For example, Principal Com-

ponent Analysis (PCA) is often used for dimensionality reduction by projecting the

high-dimensional features into a lower-dimensional space [26, 160, 162, 211]. In litera-

ture, auto-encoders have been widely used for filling missing values [212] and denoising

[210, 213].
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In this paper, we aim to address the following three challenges of naive Bayes: 1) Remov-

ing the noisy and unreliable feature dimensions; 2) Modeling the correlation between

features so that the subsequent naive Bayes could make better use of the discriminant in-

formation residing in features; 3) Boosting the discriminant power of features. To tackle

these three challenges, we resort to stacked auto-encoder [214]. Stacked auto-encoder is

often trained in a self-supervised manner. A portion of the feature entities are intention-

ally masked off, and the encoder maps the original feature to a lower-dimensional code to

remove the noise and uncover the underlying intrinsic data characteristics. The code is

then used to reconstruct the original feature [210, 213], with the target of minimizing the

reconstruction error. In such a way, the stack auto-encoder could effectively remove the

noise, and embed the discriminant information into the compact codes [210, 213, 215].

Apparently, the correlation between features is embedded into the codes as well, which

is beneficial to the subsequent naive Bayes classifier.

To the best of our knowledge, the stacked auto-encoder has never been used for boost-

ing the discriminant power of features. It is often advantageous to map the feature into

a higher-dimensional space so that the features can be linearly separable [175]. The

stacked auto-encoder, however, often maps the feature into a compact representation,

which many result in discriminant information loss. To tackle this problem, we propose

a stacked auto-encoder consisting of two encoders: shrink encoder and expansion en-

coder. The shrink encoder derives a compact feature representation while the expansion

encoder maps the derived compact codes into a higher-dimensional space to enhance the

discriminant power of the features. Furthermore, by concatenating the learned repre-

sentation with the original feature and reconstructed one, the classification performance

of the subsequent regularized naive Bayes is significantly improved.

The proposed Feature-Augmented Regularized Naive Bayes (FAR-NB) is compared with

the state-of-the-art NB classifiers on a set of machine-learning datasets for various ap-

plications. It significantly and consistently outperforms all the compared methods. The

average performance gain on 20 datasets is 5.71% compared with the second best method,

RNB [9].
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Our main contributions can be summarized as follows: 1) We propose a feature aug-

mentation method for naive Bayes to exploit the feature correlation and reduce data

noise using the stacked auto-encoder. 2) The designed stacked auto-encoder can greatly

boost the discriminant power of features by mapping them into a higher-dimensional

space, which greatly improves the classification performance. 3) The proposed method

is integrated with the regularized naive Bayes and achieves superior performance against

state-of-the-art NB classifiers.

6.2 Related Work

Feature extraction methods have been widely utilized to discover the compact feature

representations from the raw data, which can be broadly categorized into statistical

methods [26, 153, 154] and neural networks [210, 214, 216, 217]. The former include

Principal Component Analysis [153, 154], Linear Discriminant Analysis [26] and many

others, and the latter include Auto-encoder (AE) [210, 214], Artificial Neural Network

[217], Convolutional Neural Network (CNN) [216], and many others.

The auto-encoder encodes the input features in a self-unsupervised way, aiming to de-

rive a compact feature representation by mapping the feature into a lower-dimensional

space [215]. There are many variations of AEs, e.g., sparse auto-encoder [218], denoising

auto-encoder [213], contractive auto-encoder [219] and convolutional auto-encoder [220].

In literature, the feature learning approaches for naive Bayes are less explored. In [210],

an unsupervised feature learning approach is developed for malware classification us-

ing the auto-encoder and the performance of naive Bayes classifier has been greatly

improved. Recently, Khamparia et al. utilized deep stacked auto-encoder for chronic

kidney disease classification to learn representative features [214].
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6.3 Proposed Feature-Augmented Regularized Naive Bayes

6.3.1 Preliminaries of Regularized Naive Bayes

In the Bayesian classification framework, the posterior probability is defined as:

P (c|x) = P (x|c)P (c)

P (x)
, (6.1)

where x is the feature vector, c is the classification variable, P (c) is the prior probability,

P (x) is the evidence, P (x|c) is the likelihood probability distribution and P (c|x) the

posterior probability. Because it is difficult to reliably estimate the likelihood probability

P (x|c) due to the curse of dimensionality, in naive Bayes methods, the likelihood is often

estimated by assuming the feature independence,

P (x|c) =
m∏
j=1

P (xj |c), (6.2)

where xj is the j-th feature dimension of x and m is the feature dimensionality. Despite

its simplicity, naive Bayes has shown good performance in many applications [17, 206–

210].

Apparently the feature correlation is not modeled in naive Bayes. To address this prob-

lem, many feature weighting approaches [9, 20, 22] have been developed. In WANBIA

[21], each feature is assigned a different weight to highlight the feature with a large

discriminant power,

PI(x|c) =
m∏
j=1

P (xj |c)wj , (6.3)

where wj is the weight for the j-th feature dimension. The weights are optimized by

minimizing the mean squared error between the estimated posteriors and the posteriors

derived using ground-truth labels. Jiang et al. showed that a class-specific weight could

further enhance the discrimination power of naive Bayes [22],

PD(x|c) =
m∏
j=1

P (xj |c)Wc,j , (6.4)



Chapter 6. Boosting the Discriminant Power of Naive Bayes via Feature
Augmentation 119

where Wc,j is the entry for the weight matrix W for the j-th attribute of the class

c. As a result, different weights are assigned to attributes for different classes. Class-

specific attribute weights provide more discriminant power, but the model complexity

is considerably increased, so the generalization capability may decrease. To tackle this

problem, regularized naive Bayes [9] determines the likelihood probability as,

PR(x|c) =
m∏
j=1

(
(1− α)PD(xj |c)Wc,j + αPI(xj |c)wj

)
, (6.5)

where PD(xj |c) is the likelihood weighted using the class-dependent weight matrix

W , PI(xj |c) is the likelihood weighted using the class-independent weight vector w

and α is the hyper-parameter for balancing these two models. The model parameters

M = {W ,w, α} are optimized using a gradient descent procedure [9]. These weighted

naive Bayes [9, 20, 22] utilize attribute weights to emphasize the discriminative features.

However, they could not fully exploit the discriminant information between features.

6.3.2 Overall Architecture of the Proposed Method

Figure 6.1: The overall architecture of the proposed FAR-NB method by resorting
an stacked auto-encoder to generate the augmented feature set and then enhance the

subsequent regularized naive Bayes for classification.

The proposed method aims to address the following three challenges of previous naive

Bayes methods: 1) Noise removal; 2) Encoding the feature correlation; 3) Boosting

the discriminant power of naive Bayes. Towards these objectives, we propose a Feature-

Augmented Regularized Naive Bayes to learn a discriminant feature representation using

an stacked auto-encoder. The overall architecture of the proposed method is shown in

Fig. 6.1. It consists of two main stages: unsupervised feature learning using the stacked
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auto-encoder and the subsequent regularized naive Bayes. The proposed stacked auto-

encoder consists of a shrink encoder to derive the compact feature representation and

an expansion encoder to boost the discriminant power of the features.

Denote the input features as X = {x1,x2, ...,xn}, where xi ∈ Rm is the feature vector

for the i-th sample, m is the feature dimensionality and n is the number of instances.

To remove the noise and encode the correlation information between features, the shrink

encoder is designed to learn a compact feature representation Y ∈ Rk×n using all the

initial feature dimensions of X. Then, the expansion encoder is designed to map Y

into higher-dimensional features Z ∈ Rh×n to boost the discriminant power. Then, the

reconstructed features X̃ are derived from the codes Z. The learned features Z are

concatenated with the original features X and the reconstructed ones X̃ as the final

features.

The stacked auto-encoder is trained in a self-supervised way, in which some feature

dimensions of x are intentionally masked off, and the target is to minimize the re-

construction error, towards the objective of removing the noise in data and unveiling

the underlying data characteristics. But different from previous stacked auto-encoders

[210, 214] that often derive a compact code from the input feature, in our framework,

the stacked auto-encoder is designed to boost the discriminant power of features as well

by using the expansion encoder. The number of neurons of the inner layers (feature

dimensionality k of Y and feature dimensionality m of Z) of the stacked auto-encoder

is automatically adjusted according to optimally remove the data noise and boost the

discriminant power.

Finally, the regularized naive Bayes [9] is trained using the concatenated features as the

input. Some preliminaries of the regularized naive Bayes [9] are given in Section 6.3.1.

The optimization of the RNB [9] can be found in Section 6.3.5.

6.3.3 Feature Learning Using Stacked Auto-encoder

The designed stacked auto-encoder aims to achieve the following three targets for the

subsequent naive Bayes classifier: noise removal, extracting feature correlation and
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boosting the discriminant power of the model. More specifically, the stacked auto-

encoder is designed as a feed-forward network to reconstruct X into X̃ with the min-

imum reconstruction errors. The proposed network contains two encoders: shrink en-

coder and expansion encoder.

The shrink encoder extracts the intrinsic data characteristics and encodes them into a

compact representation, i.e., it maps the input X to Y ∈ Rk×n, where k ≤ m is the

number of neuron in the first inner layers,

Y = S(W sX + bs), (6.6)

where S : Rm×n → Rk×n is the activation function of the shrink encoder, W s ∈ Rk×m

is the weight matrix and bs ∈ Rk is the bias. The activation function is defined as,

S(x) =


0, if x ≤ 0,

x if 0 < x ≤ 1,

1 if x ≥ 1.

(6.7)

The expansion encoder maps the compact feature Y into a higher dimensional space,

Z = E(W eY + be), (6.8)

where E : Rk×n → Rh×n is the activation function of the expansion encoder defined

similarly as in Eqn. (6.7), and h ≥ k. W e ∈ Rh×k is the weight matrix and be ∈ Rh is

the bias.

During the decoding phase, the encoded feature representations Z are transformed back

into the original feature space to derive the reconstructed features Ỹ ,

Ỹ = D(W dZ + bd), (6.9)

where the logistic sigmoid function is used for decoding,

D(z) =
1

1 + e−z
. (6.10)
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Then Ỹ is similarly transformed back to X̃.

The auto-encoder is trained to minimize the Mean Square Error (MSE) between the

input X and the reconstructed X̃,

LAE =
1

n

n∑
i=1

m∑
j=1

(xij − x̃ij)
2. (6.11)

In the traditional stacked auto-encoder, all the encoders are shrink encoders, aiming

to derive a compact feature representation so that the unreliable classification informa-

tion could be removed and the discriminant information embedded across features can

be encoded into Z. However, some discriminant information may be lost during this

process.

6.3.4 Boosting Discriminant Power of Regularized Naive Bayes

To boost the discriminant power of the regularized naive Bayes, we propose to map the

compact codes into a higher-dimensional space using the expansion encoder. It remains

an open question to determine the optimal feature dimensionalities k of Y and h of Z,

as they are affected by many factors. 1) The number of training samples n. When n

is small, there are insufficient samples to train a reliable network, and hence a smaller

network is preferred, i.e., k and h should be kept small. 2) The number of classes.

Intuitively, when the number of classes is large, more training samples are needed to

reliably estimate the data distribution of each class. Given a fixed number of training

samples, we hence prefer a simpler network, i.e., k and h should be smaller. 3) If the

input feature dimensionality m is large, there is probably a large amount of redundant

information residing in features, and hence we prefer to compress the features into a

smaller k-dimensional space, and a slightly larger h to boost the discriminant power. 4)

If m is relatively small, we prefer to maintain k similar but smaller than m and then

map the compact codes into a slightly higher h-dimensional space so that the features

of different classes are linearly separable. The optimal pair of (k, h) is determined

empirically in experiments.
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The learned feature representation Z, the original features X and the reconstructed X̃

all contain discriminant information in different feature spaces. To make full use of all

the available discriminant information, we propose to fuse them by concatenating them

into the final feature representation as,

F = X ⊕Z ⊕ X̃. (6.12)

6.3.5 Optimizing Regularized Naive Bayes

The concatenated features F are split into the training set Ftr and the testing set Fte.

During the training process, the following loss function is used to optimize the regularized

naive Bayes,

LRNB =
1

2

∑
fi∈Ftr

∑
c

(P (c|fi)− P̃ (c|fi))2, (6.13)

where P (c|fi) is the posterior derived from the ground-truth labels,

P (c|fi) =


1 if c = cj ,

0 otherwise.

(6.14)

P̃ (c|fi) is the estimated posterior with the regularized likelihood function defined in

Eqn. (6.5),

P̃ (c|fi) = P (c)PR(fi|c)/P (fi). (6.15)

The optimal model parameters M∗ = {α∗,W ∗,w∗} of the regularized naive Bayes are

derived by minimizing the loss function defined in Eqn. ((6.13)) using a gradient-descent-

based optimization procedure. More details can be found in [9].

During testing, the posterior probability P̂ (c|t) for a given testing instance t ∈ Fte is

estimated by using Eqn. (6.15) with the optimal model M∗. Finally, the class label for

each t ∈ Fte is derived by using the MAP estimation as follows:

ĉ(t) = argmax
c∈C

P̂ (c|t), (6.16)
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where C is the set of labels for all classes.

6.4 Experimental Results

6.4.1 Experimental Settings

The proposed FAR-NB is compared with state-of-the-art NB classifiers including RNB [9],

WANBIA [21], CAWNB [22] and AIWNB [20], as summarized in Table 6.1. The ex-

Table 6.1: Summary of compared naive Bayes classifiers.

Algorithm Description

RNB [9] Wrapper-based regularized attribute weighting
method

CAWNB [22] Wrapper-based class-specific attribute weighting
method

WANBIA [21] Wrapper-based class-independent attribute weight-
ing method

AIWNB [20]
Filter-based attribute and instance weighting
method, either eager learning AIWNBE or lazy
learning AIWNBL

periments are conducted on a collection of benchmark datasets from the University of

California at Irvine (UCI) repository 2, which contains a wide range of domains such as

medical, business and biology. The number of instances is distributed between 150 and

10992 and the number of attributes varies between 2 and 60. These 20 machine-learning

datasets can provide a comprehensive evaluation of the effectiveness of the proposed

method. More details of these datasets are described in Tables 6.2. The classification

accuracy of each algorithm is derived using 10-fold cross-validation.

6.4.2 Ablation Study

For an ablation study, the proposed method is compared with the following methods:

Original Features: The original feature is fed into the regularized naive Bayes [9]

for classification. This comparison could demonstrate the effectiveness of the proposed

feature augmentation method in contrast to using the original features.
2https://archive.ics.uci.edu/ml/index.php
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Table 6.2: The datasets are collected from real-world applications in various domains.
The number of instances varies between 150 and 10992 and the feature dimensionalities

are distributed between 2 and 60.

Inst. Attr. Class Domain

Balance 625 4 3 Social
Banana 5300 2 2 Artificial

Banknote 1372 5 2 Business
Bupa 345 6 2 Medical

Clevland 303 13 5 Medical
Contraceptive 1473 9 3 Medical

Ecoli 336 7 8 Biology
Hayes 160 4 3 Social

Iris 150 4 3 Biology
Mammographic 961 5 2 Medical

Newthyroid 215 5 3 Medical
Penbased 10992 16 10 Artificial
Satimage 6435 36 7 Medical
Segment 2310 19 7 Artificial

Sonar 208 60 2 Physical
Specfheart 267 44 2 Physical

Tae 151 5 3 Education
Vowel 990 13 11 Artificial
Wine 178 13 3 Chemical
Yeast 1484 8 10 Biology

Baseline: The stacked auto-encoder [215] is chosen as the baseline method to derive a

compact feature representation and the derived features are fed into the regularized naive

Bayes [9] for classification. The feature dimension of the bottleneck layer is empirically

set to half of the input feature dimensionality. The comparison to this baseline can show

the power of the proposed feature augmentation method, in contrast to compressing the

input feature as in most existing auto-encoders [210, 214, 215].

As shown in Table 6.3, FAR-NB achieves the highest classification performance on all

datasets in comparison to using the original features and the compact feature repre-

sentation derived using the traditional stacked auto-encoder [215]. Compared with the

original features, the average classification accuracy for the compact features has been

greatly reduced by more than 7%. It shows that directly applying the traditional stacked

auto-encoder could not produce good performance. The proposed method utilizes the

stacked auto-encoder in a very different way, which greatly boost the discriminant power

of the model and hence significantly improves the classification accuracy by 13.27% on
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Table 6.3: Classification accuracy of the proposed FAR-NB comparing with RNB
and baseline method in which the auto-encoder is used to derive a compact feature

representation for regularized naive Bayes.

Original Features Baseline FAR-NB

Balance 0.7186 0.6703 0.8815
Banana 0.7338 0.4483 0.8621

Banknote 0.9278 0.8053 0.9854
Bupa 0.5327 0.5798 0.5882

Clevland 0.5773 0.5619 0.6237
Contraceptive 0.5234 0.4243 0.5485

Ecoli 0.8339 0.6640 0.8430
Hayes 0.6003 0.6101 0.7750

Iris 0.9333 0.9467 0.9600
Mammographic 0.8263 0.6671 0.8419

Newthyroid 0.9535 0.8974 0.9621
Penbased 0.9311 0.9097 0.9542
Satimage 0.8577 0.8684 0.8699
Segment 0.9459 0.8333 0.9593

Sonar 0.7742 0.6727 0.7983
Specfheart 0.8114 0.7820 0.8269

Tae 0.3440 0.3440 0.4683
Vowel 0.6465 0.5616 0.8192
Wine 0.9719 0.8595 0.9941
Yeast 0.5729 0.3982 0.5965

AVG 0.7508 0.6752 0.8079

average. These demonstrate the effectiveness of the proposed feature augmentation ap-

proach over the traditional stacked auto-encoder.

6.4.3 Comparisons to State-of-the-art Naive Bayes Classifiers

The comparisons to the state-of-the-art NB methods on 20 benchmark datasets are

summarized in Table 6.4. The average classification accuracy of each algorithm over

the datasets is summarized at the bottom of Table 6.4, which provides a straightforward

comparison of different approaches. To measure the significance of the performance gain,

a paired one-tailed t-test with p = 0.05 significance level is deployed. W/T/L values

over all datasets are presented at the bottom of Table 6.4, indicating that the proposed

method wins on W datasets, ties on T datasets and loses on L datasets.

As shown in Table 6.4, the proposed FAR-NB consistently outperforms all the com-

pared methods on all the datasets. Among them, FAR-NB is significantly better than
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Table 6.4: Comparisons between FAR-NB and other state-of-the-art NB methods.
The proposed FAR-NB significantly and consistently outperforms all the compared
methods on all the datasets. On average, the performance gain of FAR-NB is 5.71%

compared with the previous best method, RNB [9].

FAR-NB RNB [9] CAWNB [22] WANBIA [21] AIWNBE [20] AIWNBL [20]

Balance 0.8815 0.7186 0.7186 0.7186 0.7153 0.7008
Banana 0.8621 0.7338 0.7338 0.7283 0.7198 0.7332

Banknote 0.9854 0.9278 0.9278 0.9213 0.9206 0.9257
Bupa 0.5882 0.5327 0.5327 0.5327 0.4202 0.4202

Clevland 0.6237 0.5773 0.5845 0.5773 0.5717 0.5815
Contraceptive 0.5485 0.5234 0.5179 0.5139 0.5072 0.5112

Ecoli 0.8430 0.8339 0.8338 0.8251 0.8223 0.8223
Hayes 0.7750 0.6003 0.6003 0.6003 0.6003 0.6003

Iris 0.9600 0.9333 0.9333 0.9333 0.9267 0.9267
Mammographic 0.8419 0.8263 0.8252 0.8252 0.8242 0.8232

Newthyroid 0.9621 0.9535 0.9535 0.9580 0.9576 0.9532
Penbased 0.9542 0.9311 0.9289 0.8988 0.8882 0.9360
Satimage 0.8699 0.8577 0.8420 0.8440 0.8140 0.8544
Segment 0.9593 0.9459 0.9381 0.9472 0.9264 0.9420

Sonar 0.7983 0.7742 0.7699 0.7837 0.7649 0.7697
Specfheart 0.8269 0.8114 0.7856 0.7854 0.7507 0.7507

Tae 0.4683 0.3440 0.3440 0.3440 0.3244 0.3244
Vowel 0.8192 0.6465 0.6364 0.6414 0.6364 0.6687
Wine 0.9941 0.9719 0.9719 0.9830 0.9771 0.9660
Yeast 0.5965 0.5729 0.5756 0.5675 0.5715 0.5715

AVG 0.8079 0.7508 0.7477 0.7464 0.7320 0.7391
W/T/L - 12/8/0 13/7/0 13/7/0 15/5/0 15/5/0

RNB, CAWNB, WANBIA, AIWNBE and AIWNBL on 12, 13, 13, 15 and 15 datasets,

respectively. Compared with wrapper-based attribute weighting methods, e.g. RNB,

CAWNB and WANBIA, the proposed FAR-NB obtains the performance gain of 5.71%,

6.02% and 6.15% on average, respectively. Compared with filter-based AIWNBE and

AIWNBL, FAR-NB achieves improvements of 7.59% and 6.88% for the average classifi-

cation accuracy over 20 datasets. These demonstrate the effectiveness of the proposed

feature augmentation method.

For a better visualization, the performance gain of FAR-NB over the second best per-

formed method, RNB [9], on each dataset is shown in Fig. 6.2. FAR-NB obtains more

than 10% of improvement for classification accuracy on 5 datasets, e.g., ‘Banana’, ‘Bal-

ance’, ‘Hayes’, ‘Tae’ and ‘Vowel’. Besides, FAR-NB can achieve more than 2% of perfor-

mance gain compared with RNB [9] on most datasets.
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Figure 6.2: The performance gain of the proposed FAR-NB on each dataset compared
to RNB [9].

6.5 Summary

The performance of naive Bayes is often limited by lack of the correlation information

between features. Many approaches have been developed to alleviate this problem, e.g.,

feature weighting methods. But these approaches could not fully exploit the discriminant

information between features. In this paper, we propose a feature augmentation method

for the regularized naive Bayes to extract the discriminant information between fea-

tures, reduce data noise and boost the discriminant power of the model. Towards these

objectives, we resort to the stacked auto-encoder. Different from traditional stacked

auto-encoders that map the original features into compact codes, the proposed FAR-NB

consists of two encoders, one removes the noise and unreliable information, and another

maps the derived compact code into a higher-dimensional space to boost the discrimi-

nant power of the model. To further boost the classification performance, the derived

features are concatenated with the original features and the reconstructed ones as the

augmented features. The proposed feature augmentation method is integrated with

the regularized naive Bayes. It is compared with state-of-the-art NB classifiers on 20

datasets for various applications. Experimental results demonstrate that the proposed

FAR-NB consistently and significantly outperforms all the compared NB classifiers on

all datasets.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we study the naive Bayes classification framework and aim to address the

independent assumption from different perspectives. This chapter is organized as follows.

In Section 7.1.1, our contributions of naive Bayes classifier on regularized attribute

weighting framework are presented. The contributions of achieving a better trade-off

between generalization ability and discrimination power on discretization for naive Bayes

classifier is given in Section 7.1.2. The contributions of exploiting the discriminant

information in the data by feature augmentation framework for naive Bayes classifiers

are discussed in Section 7.1.3. The comparative study between the proposed methods is

described in Section 7.1.4. Finally, Some potential research directions are discussed in

Section 7.2.

7.1.1 Contributions on regularizing attribute-weighting framework on

naive Bayes

Recently in literatures, we find that class-dependent attribute-weighting naive Bayes has

poor generalization capabilities on relatively small datasets. Therefore, we propose to

add a regularization term to alleviate the problem. The regularization term is extracted

from a simpler naive Bayes which has better generalization capabilities. The proposed

129
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regularized naive Bayes (RNB) is hence derived by integrating the regularization term

into the class-specific attribute weighted naive Bayes method. A gradient-descent-based

optimization procedure has been designed to derive the optimal model parameters in-

cluding class-dependent weight matrix W , class-independent weight vector w and the

hyper-parameter α. We test various naive Bayes classifiers and RNB demonstrates a

superior performance to others.

7.1.2 Contributions on discretization methods for naive Bayes

Naive Bayes methods often utilize the discretization method to improve the efficiency

and generalization ability of the classification model. Most discretization methods only

exploit the data characteristics based on the labeled data while ignoring the amount of

unlabeled data. To better utilize the overall discriminant information, a semi-supervised

discretization framework is designed to boost the discrimination power of naive Bayes

classifiers. A pseudo-labeling technique is first utilized to derive the pseudo labels for

unlabeled data. Then, an adaptive discriminative discretization is introduced to strate-

gically lower the threshold of selection criterion in MDLP and reduce the information loss

during the discretization process. Finally, the proposed semi-supervised discretization

method is integrated with state-of-the-art naive Bayes classifiers and greatly enhanced

their performance.

Another problem of previous data discretization methods is that they often overem-

phasize maximizing the discriminant information while overlooking the primary goal

of data discretization in classification, i.e., to enhance the generalization ability of the

classifier. To address this problem, a Maximal-Dependency-Minimal-Divergence scheme

is proposed to simultaneously maximize the generalization capability and discriminant

information. The proposed MDmD criterion is difficult to implement in practice due

to the difficulty in estimating the high-order mutual information. We hence proposed

a more practical solution, Maximal-Relevance-Minimal-Divergence criterion, which dis-

cretizes one attribute at a time in a top-down manner. The proposed MRmD criterion

generates a discretization scheme with a trade-off between retaining the discriminant

information and improving the generalization ability for the subsequent classifier.



Chapter 6. Conclusion and Future Work 131

7.1.3 Contributions on feature augmentation method for naive Bayes

As known, the performance of naive Bayes is often limited by lack of the correlation

information between features. Many approaches have been developed to alleviate this

problem, e.g., feature weighting methods. But these approaches could not fully exploit

the discriminant information between features. In this paper, we propose a feature aug-

mentation method for the naive Bayes to extract the discriminant information between

features, reduce data noise and boost the discriminant power of the model. Toward these

objectives, we resort to the stacked auto-encoder. Different from traditional stacked

auto-encoders that map the original features into compact codes, the proposed FAR-NB

consists of two encoders, one removes the noise and unreliable information, and another

maps the derived compact code into a higher-dimensional space to boost the discrimi-

nant power of the model. To further boost the classification performance, the derived

features are concatenated with the original features and the reconstructed ones as the

augmented features. The proposed feature augmentation method is integrated with the

regularized naive Bayes.

7.1.4 Comparison of the proposed improvements on naive Bayes

To analyze the superior of the proposed methods, the comparison between the original

naïve Bayes and the proposed methods has been shown in Table 7.1 including Regu-

larized Naive Bayes (RNB) [9], Semi-supervised Adaptive Discriminative Discretization

for Naive Bayes (SADD-NB) [177], Maximal-Relevancy-Minimal-Divergence for Naive

Bayes (MRmD-NB) [196], and Feature Augmented Naive Bayes (FA-NB) [184]. In the

experiment, 45 machine-learning benchmark datasets are used for comprehensive eval-

uation and the description of these datasets is shown in Table 6.2. The classification

accuracy of each algorithm is derived using 10-fold cross-validation. As shown in Ta-

ble 7.1, the proposed RNB, SADD-NB, MRmD-NB and FA-NB outperform the naive

Bayes with the performance gain of 2.84%, 3.92%, 4.22% and 1.74% on average classi-

fication accuracy, respectively. Among them, the proposed MRmD achieves the highest

classification accuracy indicating its robust ability to handle diverse data by focusing

on maximizing discriminant information and generalization ability during discretization.
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Table 7.1: Comparisons of the proposed methods including Regularized attribute-
weighting NB, NB based on Semi-supervised Adaptive Discriminative Discretization
(SADD-NB), NB based on Max-Relevancy-Min-Divergence discretization (MRmD-NB)

and Feature Augmented naïve Bayes (FA-NB).

NB RNB SADD-NB MRmD-NB FA-NB

abalone 0.2496 0.2674 0.2537 0.2554 0.2528
appendicitis 0.8709 0.8755 0.8682 0.8791 0.8591
australian 0.8449 0.8680 0.8535 0.8637 0.8492

auto 0.6732 0.8244 0.7402 0.7693 0.7105
balance 0.7266 0.7186 0.8784 0.9104 0.7568
banana 0.7247 0.7338 0.7198 0.7296 0.7519
bands 0.5045 0.7069 0.7605 0.7364 0.7087

banknote 0.9205 0.9278 0.9322 0.9155 0.9118
bupa 0.5715 0.5327 0.6576 0.6842 0.5824

clevland 0.5545 0.5857 0.5611 0.5807 0.5769
climate 0.9352 0.9426 0.9259 0.9351 0.9426

contraceptive 0.5051 0.5227 0.5194 0.5221 0.5180
crx 0.8565 0.8652 0.8507 0.8623 0.8551

dermatology 0.9782 0.9864 0.9807 0.9863 0.9784
ecoli 0.8216 0.8339 0.8662 0.8428 0.8400

flare-solar 0.6754 0.6820 0.6885 0.6829 0.6800
glass 0.7206 0.7197 0.7429 0.7567 0.7246

haberman 0.7285 0.7318 0.7451 0.7480 0.7318
hayes 0.5202 0.6003 0.8220 0.8009 0.6736
heart 0.8407 0.8519 0.8370 0.8407 0.8370

hepatitis 0.8383 0.8404 0.8533 0.8654 0.8463
iris 0.9267 0.9333 0.9600 0.9400 0.9400

mammographic 0.8221 0.8263 0.8305 0.8336 0.8232
movement 0.6056 0.6875 0.7777 0.6890 0.7104
newthyroid 0.9489 0.9580 0.9485 0.9766 0.9628
pageblocks 0.9311 0.9633 0.9393 0.9410 0.9401
penbased 0.8766 0.9311 0.8843 0.8867 0.8764
phoneme 0.7689 0.8022 0.7765 0.7913 0.7789

pima 0.7526 0.7486 0.7682 0.7461 0.7538
saheart 0.6624 0.7012 0.6903 0.7079 0.6710

satimage 0.8210 0.8577 0.8245 0.8228 0.8283
segment 0.9104 0.9459 0.9372 0.9229 0.9216
seismic 0.8200 0.9342 0.8371 0.9342 0.8475
sonar 0.7688 0.7742 0.8023 0.7840 0.7699

spambase 0.8989 0.9394 0.9018 0.9053 0.9094
specfheart 0.7305 0.8114 0.7561 0.7971 0.7403

tae 0.3442 0.3440 0.5024 0.5657 0.3442
thoracic 0.8213 0.8362 0.8191 0.8298 0.8213
titanic 0.7760 0.7760 0.7787 0.7819 0.7506

transfusion 0.7500 0.7621 0.7474 0.7794 0.7447
vehicle 0.5910 0.6774 0.6372 0.6337 0.6195
vowel 0.6030 0.6465 0.7576 0.6404 0.6485
wine 0.9886 0.9830 0.9830 0.9830 0.9775

wisconsin 0.9728 0.9722 0.9736 0.9736 0.9721
yeast 0.5695 0.5729 0.5979 0.5883 0.5647

MEAN 0.7494 0.7778 0.7886 0.7916 0.7668

SADD-NB performs closely to the best, leveraging semi-supervised learning to achieve

remarkable accuracy gains, particularly effective in exploiting the discriminant informa-

tion residing in unlabeled data. RNB shows consistent improvements by incorporating a



Chapter 6. Conclusion and Future Work 133

simple and effective regularization framework, thus mitigating overfitting and enhancing

generalization. FA-NB exhibits the promising improvement and validates naive Bayes

could benefit from augmented feature representations. Overall, these enhanced meth-

ods provide significant advancements over the original NB classifier, with MRmD and

SADD emerging as the most effective enhancements, highlighting their potential for

broader application in various classification tasks.

7.2 Future work

In the future, we plan to further improve the robustness of naive Bayes classifiers and

apply the proposed techniques to real-world applications.

7.2.1 Simultaneous discretization and feature selection framework for

naive Bayes

Data discretization and feature selection are two data reduction techniques in the field

of machine learning, pattern recognition and data mining. Feature selection methods

have been explored over the last decades to reduce the noise and redundancy in fea-

ture sets and improved classification performance. However, existing researches rarely

consider discretization and feature selection simultaneously. We have already proposed

an information-based discretization method. By combining discretization with feature

selection, there are two main directions: a) Combine MRmD with existing feature se-

lection methods: Information theory is widely used in feature selection techniques such

as Maximal-Relevance-Minimal-Redundancy (mRMR) and Conditional Mutual Infor-

mation Maximization (CMIA). Thus, we can directly combine MRMG with mRMR or

CMIA to make the data more concise and effective. b) Design a discretization-based

feature selection method: Data discretization and feature selection interact with each

other during the selection process. Therefore, we can select the discretization scheme

and feature subset simultaneously by designing an information-based selection criterion.
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7.2.2 Wrapper-based discretization for naive Bayes

Traditional feature selection and discretization often utilize the greedy search to find

the solution which may result in the local optimum. To approach the global optimal

solution, many evolutionary algorithms are applied by designing a set of objective func-

tions. Thus, the proposed MRmD discretization can be turned into an optimization

problem by defining the objective function to maximize the discriminant information

and generalization ability. Then, the evolutionary methods, e.g., the genetic algorithm

and particle swarm optimization, can be applied to jointly consider the whole feature

space. Hence, the derived discretization scheme could enhance the performance of naive

Bayes classifiers.



Chapter 8

Appendix

8.1 Formulation for RNB

In this section, a brief derivation of the gradients of f w.r.t W and w is provided.

Firstly, the partial derivative of f w.r.t. each element of W , wc,j , is calculated as:

∂f

∂wc,j
= −α

∑
x∈D

(
P (c|x)− P̂ (c|x)

) ∂P̂D(c|x)
∂wc,j

. (8.1)

Denote γD(W ) = πc
∏

j θ
wc,j

c,j . Then, P̂D(c|x) defined in (3.7) can be re-written as

P̂D(c|x) = γD(W )∑
c′ γD(W ) . It is easy to show that

∂P̂D(c|x)
∂γD(W )

=

∑
c′ 6=c γD(W )

(
∑

c′ γD(W ))2
, (8.2)

∂γD(W )

∂wc,j
= γD(W ) log(θc,j). (8.3)

Derive ∂P̂D(c|x)
∂wc,j

using the chain rule by utilizing (8.2) and (8.3), and then plug it into (8.1)

to obtain the partial derivative of f w.r.t. wc,j as defined in (3.15).

Secondly, the partial derivative of f w.r.t. wj is derived as:

∂f

∂wj
= −(1− α)

∑
x∈D

∑
c

(
P (c|x)− P̂ (c|x)

) ∂P̂I(c|x)
∂wj

. (8.4)
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Denote γI(w) = πc
∏

j θ
wj

c,j . Similarly, P̂I(c|x) defined in (3.8) can be re-written as

P̂I(c|x) = γI(w)∑
c′ γI(w) . Note that every term in the summation of the denominator is a

function of wj . The partial derivative ∂P̂I(c|x)
∂wj

is calculated as:

∂P̂I(c|x)
∂wj

=
1∑

c′ γI(w)

(
∂γI(w)

∂wj
− P̂I(c|x)

∑
c′

∂γI(w)

∂wj

)

Similar to (8.3), it is easy to show that ∂γI(w)
∂wj

= γI(w) log(θc,j). Plug it into (8.4), the

partial derivative of f w.r.t. wj shown in (3.16) can be obtained.
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