Abstract
In this work, solar TiO2 photocatalysis was used for sacrificial hydrogen generation from formaldehyde. Platinum was loaded onto a TiO 2 photocatalyst by a solar photodeposition method to suppress the electron/hole recombination process. The photocatalyst inside the reactor was irradiated from the top with a solar simulator. Photocatalytic hydrogen generation from formaldehyde was influenced by the solution pH, platinum loading (wt %) on TiO2, catalyst concentration, light intensity, and initial formaldehyde concentration. A Langmuir-type model fitted well with the experimental data, and the values of surface reaction rate constant, k, and the adsorption equilibrium constant, K, are 2.3598 × 10-6 mol min-1 and 17.73 M-1, respectively. Apparent quantum yield (QY) was higher for the UV light-driven hydrogen generation (10.91%) compared to the solar light-driven hydrogen generation (1.24%).
| Original language | English |
|---|---|
| Pages (from-to) | 5023-5029 |
| Number of pages | 7 |
| Journal | Industrial and Engineering Chemistry Research |
| Volume | 52 |
| Issue number | 14 |
| DOIs | |
| Publication status | Published - 10 Apr 2013 |
| Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering