Abstract
For descriptor systems of the form Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t), existing results are mostly for systems with uncertainties in the A matrix only. The case where the E matrix is perturbed renders its robust analysis quite involved and has seldom been touched by researchers. This paper will show that if E, A, B, and C are all interval matrices, the robust controllability and/or observability problems can be solved in terms of the structured singular value μ of certain fixed matrices. Necessary and sufficient conditions are given using the structured singular value μ by changing the problem into a robust nonsingularity problem for a class of uncertain matrices.
| Original language | English |
|---|---|
| Pages (from-to) | 1768-1773 |
| Number of pages | 6 |
| Journal | IEEE Transactions on Automatic Control |
| Volume | 44 |
| Issue number | 9 |
| DOIs | |
| Publication status | Published - 1999 |
| Externally published | Yes |
Keywords
- Controllability
- Descriptor systems
- Interval matrix
- Observability
- Structured singular value μ
ASJC Scopus subject areas
- Control and Systems Engineering
- Computer Science Applications
- Electrical and Electronic Engineering