TY - GEN
T1 - PerReactor
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
AU - Zhu, Hengde
AU - Kong, Xiangyu
AU - Xie, Weicheng
AU - Huang, Xin
AU - He, Xilin
AU - Liu, Lu
AU - Shen, Linlin
AU - Zhang, Wei
AU - Gunes, Hatice
AU - Song, Siyang
N1 - Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - In dyadic human-human interactions, individuals may express multiple different facial reactions in response to the same/similar behaviours expressed by their conversational partners depending on their personalised behaviour patterns. As a result, frequently-employed reconstruction loss-based strategies lead the training of previous automatic facial reaction generation (FRG) models to not only suffer from the 'one-to-many mapping' problem, but also fail to comprehensively consider the quality of the generated facial reactions. Besides, none of them considered such personalised behaviour patterns in generating facial reactions. In this paper, we propose the first adversarial FRG model training strategy which jointly learns appropriateness and realism discriminators to provide comprehensive task-specific supervision for training the target facial reaction generators, and reformulates the 'one-to-many (facial reactions) mapping' training problem as a 'one-to-one (distribution) mapping' training task, i.e., the FRG model is trained to output a distribution representing multiple appropriate/plausible facial reaction from each input human behaviour. In addition, our approach also serves as the first offline FRG approach that considers personalised behaviour patterns in generating of target individuals' facial reactions. Experiments show that our PerReactor not only largely outperformed all existing offline solutions for generating appropriate, diverse and realistic facial reactions, but also is the first offline approach that can effectively generate personalised appropriate facial reactions.
AB - In dyadic human-human interactions, individuals may express multiple different facial reactions in response to the same/similar behaviours expressed by their conversational partners depending on their personalised behaviour patterns. As a result, frequently-employed reconstruction loss-based strategies lead the training of previous automatic facial reaction generation (FRG) models to not only suffer from the 'one-to-many mapping' problem, but also fail to comprehensively consider the quality of the generated facial reactions. Besides, none of them considered such personalised behaviour patterns in generating facial reactions. In this paper, we propose the first adversarial FRG model training strategy which jointly learns appropriateness and realism discriminators to provide comprehensive task-specific supervision for training the target facial reaction generators, and reformulates the 'one-to-many (facial reactions) mapping' training problem as a 'one-to-one (distribution) mapping' training task, i.e., the FRG model is trained to output a distribution representing multiple appropriate/plausible facial reaction from each input human behaviour. In addition, our approach also serves as the first offline FRG approach that considers personalised behaviour patterns in generating of target individuals' facial reactions. Experiments show that our PerReactor not only largely outperformed all existing offline solutions for generating appropriate, diverse and realistic facial reactions, but also is the first offline approach that can effectively generate personalised appropriate facial reactions.
UR - https://www.scopus.com/pages/publications/105004004052
U2 - 10.1609/aaai.v39i2.32159
DO - 10.1609/aaai.v39i2.32159
M3 - Conference contribution
AN - SCOPUS:105004004052
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 1665
EP - 1673
BT - Special Track on AI Alignment
A2 - Walsh, Toby
A2 - Shah, Julie
A2 - Kolter, Zico
PB - Association for the Advancement of Artificial Intelligence
Y2 - 25 February 2025 through 4 March 2025
ER -