Abstract
Incorporating mobile-edge computing (MEC) in the Internet of Things (IoT) enables resource-limited IoT devices to offload their computation tasks to a nearby edge server. In this article, we investigate an IoT system assisted by the MEC technique with its computation task subjected to sequential task dependency, which is critical for video stream processing and other intelligent applications. To minimize energy consumption per IoT device while limiting task processing delay, task offloading strategy, communication resource, and computation resource are optimized jointly under both slow and fast-fading channels. In slow fading channels, an optimization problem is formulated, which is nonconvex and involves one integer variable. To solve this challenging problem, we decompose it as a 1-D search of task offloading decision problem and a nonconvex optimization problem with task offloading decision given. Through mathematical manipulations, the nonconvex problem is transformed to be a convex one, which is shown to be solvable only with the simple Golden search method. In fast-fading channels, optimal online policies depending on the instant channel state are derived even though they are entangled. In addition, it is proved that the derived policy will converge to the offline policy when the channel coherence time is low, which can help save extra computation complexity. Numerical results verify the correctness of our analysis and the effectiveness of our proposed strategies over the existing methods.
| Original language | English |
|---|---|
| Pages (from-to) | 16546-16561 |
| Number of pages | 16 |
| Journal | IEEE Internet of Things Journal |
| Volume | 9 |
| Issue number | 17 |
| DOIs | |
| Publication status | Published - 1 Sept 2022 |
| Externally published | Yes |
Keywords
- Internet of Things (IoT)
- mobile-edge computing (MEC)
- resource allocation
- sequential task dependency
- task offloading
ASJC Scopus subject areas
- Signal Processing
- Information Systems
- Hardware and Architecture
- Computer Science Applications
- Computer Networks and Communications