Evaluation of the corrosion and oxidation resistance of NiCoCrAlY cladding on CMSX-4 by laser cladding

Dariush Beiranvandi, Reza Shoja Razavi, Alireza Mirak, Mohammad Reza Borhani, Hamed Naderi Samani, Fareed Kermani

Research output: Journal PublicationArticlepeer-review

1 Citation (Scopus)

Abstract

This study uses laser cladding to investigate the hot corrosion and oxidation behavior of CMSX-4 claddes with NiCoCrAlY powder. High-temperature oxidation tests were conducted at 1050°c for 50, 100, 150, and 200 h on 4 samples, while 6 samples underwent hot corrosion testing at 850°c for 6 h. The innovative application of laser cladding enables the creation of a γ′ and β interdendritic phase microstructure. High-temperature oxidation tests reveal a growth rate of 0.05 μm/h in oxide layer thickness between 50 and 200 h, accompanied by a surface weight increase rate of approximately 0.8 mg/cm2.h. The oxide layer's regeneration, continuity, and density are observed at 200 h, highlighting the innovative potential of this technique. Fracture oxidation is observed at 150 h in some TGO layer regions, but at 200 h of oxidation, the TGO layer's regeneration, continuity, and dense TGO was observed at the cladding interface. The TGO forms at 1050°c consist of Al2O3, Cr2O3, and CoO oxides, with Al2O3 as the main oxide phase. The study's findings demonstrate the ability of laser cladding to enhance the thermal protection of CMSX-4, showcasing a promising innovation in the field.

Original languageEnglish
Pages (from-to)4875-4883
Number of pages9
JournalJournal of Materials Research and Technology
Volume33
DOIs
Publication statusPublished - 1 Nov 2024
Externally publishedYes

Keywords

  • CMSX-4
  • Hot corrosion
  • Laser cladding
  • NiCoCrAlY cladding
  • Oxidation

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Surfaces, Coatings and Films
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Evaluation of the corrosion and oxidation resistance of NiCoCrAlY cladding on CMSX-4 by laser cladding'. Together they form a unique fingerprint.

Cite this