
Received: 7 February 2023 | Accepted: 29 March 2023

DOI: 10.1002/sae2.12041

R E S E A R CH AR T I C L E

Climate and environmental data contribute to the prediction
of grain commodity prices using deep learning

Zilin Wang1 | Niamh French2 | Thomas James2 | Calogero Schillaci3 |

Faith Chan4,5,6 | Meili Feng4 | Aldo Lipani1

1University College London (UCL),

London, UK

2Wegaw SA, Trélex, Switzerland

3European Commission, Joint Research

Centre (JRC), Ispra, VA, Italy

4School of Geographical Sciences, University

of Nottingham Ningbo China, Ningbo, China

5Water@Leeds and School of Geography,

University of Leeds, Leeds, UK

6Research Centre for Intelligent Management

& Innovation Development/Research Base for

Shenzhen Municipal Policy & Development,

Southern University of Science and

Technology, Shenzhen, China

Correspondence

Aldo Lipani, University College London (UCL),

London, UK.

Email: aldo.lipani@ucl.ac.uk

Funding information

None

Abstract

Background: Grain commodities are important to people's daily lives and their

fluctuations can cause instability for households. Accurate prediction of grain prices

can improve food and social security.

Methods & Materials: This study proposes a hybrid Long Short‐Term Memory (LSTM)‐

Convolutional Neural Network (CNN) model to forecast weekly oat, corn, soybean and

wheat prices in the United States market. The LSTM‐CNN is a multivariate model that

uses weather data, macroeconomic data, commodities grain prices and snow factors,

including Snow Water Equivalent (SWE), snowfall and snow depth, to make multistep

ahead forecasts.

Results: Of all the features, the snow factor is used for the first time for commodity

price forecasting. We used the LSTM‐CNN model to evaluate the 5, 10, 15 and 20

weeks ahead forecasting and this hybrid model had the lowest Mean Squared Error

(MSE) at 5, 10 and 15 weeks ahead of prediction. In addition, Shapley values were

calculated to analyse the feature contribution of the LSTM‐CNN model when

forecasting the testing set. Based on the feature contribution, SWE ranked third, fifth

and seventh in feature importance in the 5‐week ahead forecast for corn, oats and

wheat, respectively, and 7–8 places higher than total precipitation, indicating the

potential use of SWE in grain price forecasting.

Conclusion: The hybrid multivariate LSTM‐CNN model outperformed other models and

the newly involved climate data, SWE, showed the research potential of using snow as

an input variable to predict grain prices over a multistep ahead time horizon.
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1 | INTRODUCTION

Recently, commodities have been considered a core asset class by

financial investors. Research has shown that the inclusion of

commodities in an investor's portfolio can hedge risk, particularly in

turbulent times (e.g., the 2008 financial crisis) (Cheng & Xiong, 2013).

Inaccurate forecasting of commodity prices can invite a commodity

price collapse with spillover effects to other markets, especially in the

current unstable world situation, including pandemics and climate

change (Salisu et al., 2020). Of all the categories of commodities,
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grain commodities prices play a critical role in everyone's daily life.

Fluctuations in grain commodities prices pose a threat to consumers

and lead to instability in the incomes and operations of farmers'

households (Ayankoya et al., 2016).

Different approaches to agricultural commodity price forecasting

have been tried, which can be divided into two major categories, namely

univariate models and multivariate models. Univariate models use

historical records of prices to make forecasts, such as Auto‐Regressive

Integrated Moving Average models (ARIMA) (Jadhav et al., 2017; Pujiati

et al., 2018) and its variants (Adanacioglu & Yercan, 2012; Divisekara

et al., 2021; Li et al., 2012; Mithiya et al., 2019; Naidu et al., 2014), which

are statistical modelling technique in commodity price forecasting

credited with the ability to capture time series trends, and as such have

mostly achieved relatively high levels of accuracy. However, ARIMA and

its variants require large datasets and cannot capture the nonlinear

relationship between historical and future records, machine learning

methods like artificial neural networks (ANN) in commodity price

forecasting come into play (Monge & Lazcano, 2022; Wang et al., 2019).

Using univariate models has inherently limited predictability, as

the prices are affected by numerous additional input variables (Shu &

Gao, 2020). Multivariate variables are necessary to strengthen the

performance of prediction models. Commonly used deep learning

models include ANN (Ayankoya et al., 2016) and Long Short‐Term

Memory (LSTM) (Ly et al., 2021; Rasheed et al., 2021). These models

have good predictive power in single‐step forecasting. For compari-

son, we choose the LSTM as one of the comparative models.

Nevertheless, some studies did not predict multistep ahead prices,

and for those that did, the accuracy of multistep ahead predictions

would be lower than that of single‐step ahead forecasts.

Variables considered in multivariate modelling can be discussed from

the supply and demand side. Yield is the main source of supply, which is

determined by the area harvested (acreage) and yield per hectare.

Acreage, which generally reflects the net return to farmers who grow

food, experienced a rising in the US grain market during the 1980s and

1990s (Westcott & Hoffman, 1999), but the acreage in the United States

is approaching the maximum capacity recently (USDA, 2022a). Factors

such as climate and weather conditions mainly affect agricultural yields.

Higher temperatures may not only reduce the time farmers spend in the

field (Kjellstrom et al., 2009), but may also cut down the grain yields

owing to water shortages and higher evaporation rates (Hertel &

Lobell, 2014). Apart from this, for precipitation, Mendelsohn et al. (1994)

noted that this factor may affect the price of grains. Hence, temperature

and precipitation as easily obtainable weather factors are often taken as

predictors in agricultural yields or pricing models (Cammarano et al., 2013;

Gu et al., 2022; Nhita et al., 2019; Oktoviany et al., 2021).

Crude oil is another factor that can influence the grain price

directly and indirectly from supply side. Farmers need energy to

power machinery and fuel transport vehicles, as well as energy‐

intensive products such as pesticides and fertilisers to help them

grow grains (Hitaj & Suttles, 2016). In this way, a major part of the

costs of agricultural production stems from crude oil, implying that a

significant portion of agricultural production costs is from crude oil.

According to the USDA (2022b), the combined costs of chemicals,

energy and electricity accounted for 8.8% of the cost of producing

corn, 9.8% of soybeans and 10.4% of wheat in the United States (US)

from 2010 to 2016. Hence, fluctuations in crude oil prices are often

considered in agricultural price models.

Exports are a critical factor affecting the demand for US grains. Grain

shortages and grain developments in other countries can increase or

decrease the demand for US grains, thereby affecting their prices

(Schwartz, 1986). Among the factors that influence export, exchange

rates can exert an impact on export demand. If the dollar is weak, buyers

of US exports will find the price of US commodities to be lower, and then

the demand will increase respectively, leading to higher prices. None-

theless, if the dollar rises, buyers will turn to the same commodities

produced in other countries (Central for Agricultural and Rural Develop-

ment, 2022). For example, wheat is cheaper in Argentina than in the

United States, making cheaper alternatives available to countries such as

Indonesia and the Philippines that traditionally import US corn to feed

their animals (World Grain, 2016). Moreover, the fluctuations of other

countries' currencies can also influence US grain (Chambers & Just, 1981).

When the currencies of competitor countries rise, the US export demand

rises accordingly even though the US dollar does not change (Central for

Agricultural and Rural Development, 2022).

A set of environmental variables have been tested to predict the

grain yield (Ayankoya et al., 2016; Ly et al., 2021; Rasheed

et al., 2021), however, the snow‐related indicators were not yet

been included in predictive models. Snow is an essential resource,

providing water and climate regulation for communities near

mountainous areas (Qin et al., 2020; Sturm et al., 2017). For example,

the snow melt, which is the surface runoff generated from melting

snowpack, is a vital water resource feeding the downstream daily

activities, such as agricultural production, hydroelectricity generation

and water supply (Sturm et al., 2017). Grain production in the

western US, southern Europe, western China and Central Asia is

currently most dependent on snowmelt to support their irrigated

agriculture, producing a large fraction of irrigated crops (e.g., wheat,

corn and rice). According to a global study by Qin et al. (2020), grains

such as wheat, soybeans and corns all rely partly on snowmelt for

irrigation, with 50% of irrigation water provided by snowmelt for

wheat, 38% for corn and 10%–20% for soybeans. In the United

States, 17% of corn, 12% of soybeans and 12% of wheat are irrigated

(Lopez et al., 2022). Snowmelt affects not only the production of

irrigated crops but rainfed crops, such as oats, can also be affected by

snowmelt. SWE can be regarded as a form of delayed precipitation.

About 48% of the annual rainfall comes from melting snow, hence

the indicator SWE reveals the amount of water that will be available

as rainfall in the future, which may inform the weather conditions in a

few months or weeks (Field & Heymsfield, 2015). The snowpack also

acts as a natural water tower for storing winter precipitation, which

melts in springtime. Abnormal low snowpacks can lead to water

shortages and groundwater deficits, which can create instability in

the production of rain‐fed agriculture (Diffenbaugh et al., 2015;

Moroizumi et al., 2009; Li et al., 2017). In such cases, taking the snow

data into account may improve the performance in predicting

commodity prices several weeks or months out.
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This study focuses on a hybrid model that is capable of predicting the

weekly prices of four grain commodities—oats, corn, soybeans and wheat

—in the US market. The hybrid model LSTM‐CNN which has not

previously been studied in any deep learning predictions of grain prices

can predict the prices of the four grain commodities in a multistep ahead

horizon, which combines LSTM and CNN architectures. As a multivariate

model, it not only involves traditional weather factors such as grain prices

and macroeconomic factors to predict grain prices but also considers

snow factors. The contributions of various factors for the prediction, in

particular the snow factors, are investigated.

2 | METHODS

2.1 | Dataset description

In this study, we considered 17 variables that can be divided into

three categories: weather, macroeconomics and the prices of the four

crops. Three traditional weather factors, which were mean minimum

temperature, mean maximum temperature and total precipitation for

the US, were retrieved from the National Oceanic and Atmospheric

Association (NOAA) (2022) website. Three novel weather factors,

snow‐related indicators, have been chosen, namely Snow Water

Equivalent (SWE), snowfall and snow depth. SWE indicates the water

content of the snowpack when it melts. In other words, SWE

represents the amount of water in the snow that can become runoff

(Seibert et al., 2015). Snow depth is the depth of the snowpack, and

snowfall is the amount of snow that falls on a given day. SWE data

were retrieved from the website of the United States Department of

Agriculture (USDA), which contains daily records of SNOTEL sensor

data covering all western US states (USDA, 2022c). Snowfall and

snow depth data were retrieved from a comprehensive database

called the Global Historical Climatology Network (GHCNd), which

aggregates all daily climate records worldwide (National Oceanic and

Atmospheric Administration, 2022). In this study, stations in the US

that record snow depth and snowfall were searched to calculate

weekly snowfall totals and average snow depth values.

The macroeconomics data included crude oil West Texas

Intermediate (WTI) prices, gold prices, and four exchange rates

between the US and its four top destinations of grain export

(Commodity, 2022), which were the USD and CAD, EUR, CNY and

MXN respectively. All the macroeconomics data, spanning from 1990

to 2021, were available at www.Investing.com.

The selected grains were oats, corn, soybeans and wheat

(including spring wheat and winter wheat), which are staple foods

regularly consumed by humans and are therefore substitutes for each

other and compete in the global market.

2.2 | Data preparation

In this study, all variables are time series data, which need to be

processed into suitable datasets that can be utilised by deep learning

architectures. First, we address the issue of missing values, since some

features are monitoring data such as temperature, precipitation,

snowfall, SWE and snow depth are often confronted with this issue.

As missing values can affect the training and evaluation process of

the model, the forward fill technique is used to replace missing

entries in the dataset with the last valid observations. Based on the

ADF tests (Supporting Information: Table S1), this data set is

nonstationary. In other words, the inherent trends and seasonality

of the time series data affect the values of the time series across

time. To remove the trend from the time series, data differencing is

performed to transform the nonstationary data into stationary data.

In this study, first‐order differencing is performed, where the

previous value is subtracted from each value in the series.

To ensure that all features are in the same range of values, we

apply the Min–Max scalar function to normalise all feature vectors in

the dataset. MinMax normalisation uses the minimum and maximum

values of the observations to convert values in the range of 0 and 1.

After data transformation and normalisation, the dataset is

divided into two parts. 70% of the dataset is used for training the

model and 30% for testing it. The entire dataset is then regrouped

using the sliding window method to create a new series of sample

data containing both input and target variables (see Supporting

Information: Figure S1). Each sample has 20 input time steps (X) and

the target variable can contain 5‐ or 10‐time steps (Y) depending on

the prediction target (e.g., 5 weeks ahead or 10 weeks ahead).

To avoid over‐fitting, there is a need to apply cross‐validation

when training the model. Since we are dealing with time series the

rolling forecasting origin is used. A small set of data from the origin is

utilised to train the model, and the next set of data is used to evaluate

it (Hyndman & Athanasopoulos, 2021). The first two sets of data are

then combined and used as the training set for the next training

round, and another set is used as a validation set and so on, until all

the training sets have been used to train the model. The training set

has been divided into five folds on a rolling forecasting origin. When

using the testing dataset to evaluate the model, the last fold, which is

the entire training set, is adopted to train and validate the model. A

visual illustration is given in Figure 1.

2.3 | Proposed LSTM‐CNN

A schematic illustration of the structure of the proposed hybrid

model is provided in Figure 2. Instead of having a CNN accept the

input data, the LSTM‐CNN model has the LSTM as the initial layer

accepting the time series data and extracting valuable patterns from

the information in the time‐dependent and stored blocks. In their

study, He et al. (2019) examined the performance of CNN‐LSTM and

LSTM‐CNN for gold price prediction. It turned out that the LSTM‐

CNN model performed better than the CNN‐LSTM model, probably

because using the LSTM layer as the starting layer allows each input

unit to have an output unit with the memory/information of all the

other units already processed. Afterwards, the one‐dimensional (1D)

CNN layer receives the output, extracts the local features and makes

WANG ET AL. | 3
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predictions (Luft et al., 2022). However, in the CNN‐LSTM layer, the

CNN layer, as the initial layer, reorganizes the data and extracts only

some features (Lu et al., 2022).

After the CNN layer, this research adopts maximum pooling once

(=1) and flattens the data. The flattening layer then feeds the output

into the fully connected layer to produce predictions. Two dropout

layers are added to the LSTM‐CNN model. The first dropout layer

receives the output of the LSTM model, whilst the second dropout

layer precedes the flattening layer, making the data a 1D array. The

dropout layer is added to prevent overfitting.

The deep learning model has a series of hyperparameters. To find

the optimal combination of hyperparameters, it is desirable to train

the model using different sets of hyperparameters, which involve

batch size, number of epochs, hidden layers, neurons or filters, and

learning rate. A common approach to finding the best combination of

hyperparameters is to employ the grid search method proposed by

Larochelle et al. (2007), which is an exhaustive search that trains the

model in a manually specified hyperparameter space for each

combination of hyperparameters. Despite this, sufficiently fine

hyperparameter optimization processes are computationally

F IGURE 1 The cross‐validation on a
rolling forecasting origin.

F IGURE 2 The structure of LSTM‐CNN
model. 1D, one‐dimensional; LSTM‐CNN,
Long Short‐Term Memory‐Convolutional
Neural Network.

4 | WANG ET AL.
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expensive. Bergstra and Bengio (2012) proposed a random search

technique that was proved to be more efficient than the grid search

for tuning experiments. Their experimental results reveal that grid

search tends to assign too many trials to those dimensions that are

not important while covering less of the more critical dimensions. In

this study, the random search technique is used to tune the

hyperparameters.

Once the best training model is obtained, it is used to predict the

testing set. The predicted values were then compared with the

observed true values to assess the performance of the developed

model. As baselines, three other models were also trained in the same

process to make predictions on the testing set, which were LSTM,

CNN and ARIMA. As ARIMA is a univariate statistical model, the

transformed sliding window dataset was employed to train each

feature using ARIMA, and the average performance was used as the

comparison value. The Mean Squared Error (MSE) was chosen as

the metric to evaluate the models. In statistics, MSE measures the

average of the squares of the errors of a prediction model. In other

words, it is the calculation of the mean squared difference between

the predicted and true values.

2.4 | Feature analysis

To clarify the contribution of each feature in this study, the SHAP

tool was used to understand the output of the LSTM‐CNN model

(see Supporting Information: Tables S2, S3). SHAP is a library

developed by Lundberg and Lee (2017), which calculates Shapley

values. The Shapley values define the feature contribution of a

selected feature. This is done by computing the expected difference

between the predicted value of the training model with and without

the selected feature for each subset of features (Molnar, 2022). Each

input variable (unit of time) has its own Shapley value. Averaging was

performed to calculate the mean Shapley value for different weeks

and different years. The features were then ranked according to their

corresponding years and weeks to obtain how the importance of the

feature varies with the year and week.

3 | RESULTS

3.1 | Model performance

The performance in terms of MSE values for the four models: ARIMA,

CNN, LSTM and LSTM‐CNN, is demonstrated. The hyperparameters

of the LSTM‐CNN model were tuned for best performance on a

15‐week prediction and a 20‐week input time step. In the proposed

model, LSTM had two layers, but CNN had only one layer. The whole

combination of hyperparameters is revealed in Table 1. For a fair

comparison, the other models were also trained with a maximum of

80 epochs and a learning rate of 0.001.

In Figure 3a, we showed the MSE trends for the five models

when predicting 5, 10, 15 and 20 weeks with the same

hyperparameter settings. The ARIMA had the highest MSE value at

each time horizon and had a low MSE value at 5 weeks, but its

performance deteriorated when the number of weeks rose. Like

ARIMA, CNN also tended to increase the MSE when the prediction

range increased. The LSTM model had a decreasing trend along the

changing weeks, and its MSE value was lower than that of the CNN,

but in 5 weeks, the MSE values were slightly higher than those of the

CNN models. The LSTM‐CNN model had the lowest MSE value in 5,

10 and 15 weeks than other models. At 10 weeks, LSTM‐CNN

achieved the lowest MSE value, being around 0.0086 (Table 2).

The MSE values of the normalised lag difference of the LSTM‐

CNN model were divided into each grain price to see which grain

price is better predicted. Figure 3b indicates the MSE values for four

grain products, which are oats, corn, soybeans and wheat. The LSTM‐

CNN model performed the worst in predicting oat prices and the best

in predicting wheat. In addition, the MSE values for corn were close

to those of wheat. The MSE values show that corn, soybeans and

wheat all had the lowest MSE values in the 20 weeks ahead of the

forecast.

3.2 | Feature contribution

3.2.1 | Average contribution

To gain an insight into the variation in the feature contribution of

each grain price, this research calculated the Shapley values for all 17

features at 5, 10, 15 and 20 weeks. The mean Shapley value of all

samples was calculated to gain a general sense of the feature

contribution. 5‐ and 20‐week were chosen to be placed in the result

section, as the differences in MSE values between these two steps

were the most pronounced. In Figure 4, it can be noted that wheat

TABLE 1 The results of the hyperparameters optimisation for
LSTM‐CNN model with 15 weeks ahead prediction and all deep
learning model use 80 Epochs with the learning rate of 1 × 10−3.

Model Hyperparameter Value

LSTM‐CNN LSTM layers 224

Dropout rate 0.55

LSTM layers 96

Dropout rate 0.15

Conv 1D 224

Dropout rate 0.65

Dense layer 448

ARIMA ARIMA(p,q,d) 2,1,0

LSTM LSTM layer 256

CNN Conv 1D 64

Abbreviations: 1D, one‐dimensional; ARIMA, Auto‐Regressive Integrated
Moving Average models; LSTM‐CNN, Long Short‐Term Memory‐
Convolutional Neural Network.
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prices made the largest contribution to all grain prices. Of traditional

weather factors, the minimum temperature made the greatest

contribution to oats and maize, whereas total precipitation made

the greatest contribution to soybeans. In addition, the maximum

temperature made the greatest contribution to wheat. Of the snow‐

related features, SWE had the largest contribution, and the

contribution of SWE was greater than that of other weather features

in predicting oats, corn and wheat. It ranked higher than crude oil

WTI in predicting corn prices and wheat prices. Nevertheless,

snowfall made a relatively small contribution to grain prices, while

snow depth ranked in the middle.

The overall distribution of features in the 20‐week prediction

was similar to the prediction of the 5‐week (Figure 5). Grains'

substitutes ranked among the most contributing features. In contrast,

the substitute grain feature that contributed most to wheat in the

20‐week forecast is corn, while in the 5‐week forecast, it is wheat

itself. In forecasting oat and corn prices, corn's contribution rose,

compared to its ranking in the 5‐week forecast. In oats, SWE was also

the highest of the weather features (including those related to snow),

but in the other three grain price forecasts, it did not contribute as

much as in the 5‐week, but still ranked in the middle. Apart from

these, snow depth ranked in the middle place in the 5‐week ahead of

prediction (Figure 4), but its contribution declined in the 20‐week

ahead of prediction and was among the last few least vital features.

3.2.2 | Yearly variation of feature contribution

The average Shapley value was recalculated based on the year and

week of the forecasting period. Figure 6 shows the yearly variation of

the feature contribution of wheat for the 10 weeks ahead of the

prediction, ranging from 2012 to 2021. Each bar has a base value,

which does not involve any feature in the current prediction, that is,

the average prediction value of the training set. In the graph, the blue

bars indicate that the feature has a negative impact on the prediction,

in other words, driving the output to a lower value; conversely, the

red bars indicate that the feature has a positive impact, that is,

increasing the value. The magnitude of SWE's contribution was

significant in 2012 and 2021, whereas in 2012, it showed a negative

impact. Then, in the rest of the years, its contribution was very small

and hidden from the graph, but it was not until a decade later in 2021

that it made a significant positive contribution.

3.2.3 | Weekly variation of feature contribution

Figure 7 shows how the feature contributions change with the

year of the week, reorganised in the same way as the year

variation, but according to the weekly values. The x‐axis is the

weekly value, ranging from the first week to the last week of the

F IGURE 3 (a) The MSE distribution of ARIMA, CNN, LSTM and LSTM‐CNN model at 5, 10, 15 and 20 weeks. (b) The MSE value of LSTM‐
CNN in predicting the prices of oats, corn, soybeans and wheat. ARIMA, Auto‐Regressive Integrated Moving Average models; LSTM‐CNN, Long
Short‐Term Memory‐Convolutional Neural Network; MSE, Mean Squared Error.

TABLE 2 The MSE value of ARIMA, CNN, LSTM and LSTM‐CNN
model at 5, 10, 15 and 20 weeks.

ARIMA CNN LSTM LSTM‐CNN

5 weeks 0.0107 0.0092 0.0096 0.0090

10 weeks 0.0160 0.0094 0.0092 0.0086

15 weeks 0.0220 0.0095 0.0098 0.0088

20 weeks 0.0283 0.0096 0.0091 0.0092

Abbreviations: ARIMA, Auto‐Regressive Integrated Moving Average

models; LSTM‐CNN, Long Short‐Term Memory‐Convolutional Neural
Network; MSE, Mean Squared Error.
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year. On the y‐axis, there is a central point parallel to the x‐axis

that represents the base value. Here, only the SWE, snowfall and

snow depth were extracted to understand how snow‐related

features affect the price of wheat during the year (see Supporting

Information: Figures 2–4, for weekly variations in other features).

These three snow‐related features shared a common characteristic

in that they had little impact on prices over a period of

approximately 15–20 weeks, but the exact timing did not match.

F IGURE 4 Feature contribution of LSTM‐CNN model at 5 weeks ahead on (a) Oats, (b) Corn, (c) Soybeans and (d) Wheat. LSTM‐CNN, Long
Short‐Term Memory‐Convolutional Neural Network.

F IGURE 5 Feature contribution of LSTM‐CNN model at 20 weeks ahead on (a) Oats, (b) Corn, (c) Soybeans and (d) Wheat. LSTM‐CNN, Long
Short‐Term Memory‐Convolutional Neural Network.
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For example, SWE occurred between 25 and 40 weeks, snowfall

occurred 2–3 weeks earlier, and snow depth started at a similar

time to snowfall but ended synchronously as SWE. SWE and snow

depth had opposite effects on wheat prices. Specifically, in the first

2 months of the year, snow depth made a positive contribution,

but SWE had a negative one. During weeks 8–20, snow depth

contributed to explain the prices decrease, but during Weeks

13–25 (where SWE had some delayed patterns over snow depth),

SWE was a positive contributor, and its contribution was the

greatest during this period. Then, at the end of the year, that is, in

weeks 40–53, SWE contributed negatively, while snow depth

contributed positively.

4 | DISCUSSION

4.1 | Performance analysis

In this study, a multivariate hybrid model LSTM‐CNN was used to

predict grain prices multiple steps ahead. The performance of the

F IGURE 6 The distribution of Shapley values of wheat at 10 weeks ahead of prediction over the years.

8 | WANG ET AL.
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hybrid model achieved the lowest MSE values of normalised lag

difference at 10 weeks. However, the prediction performance of the

multivariate model did not change significantly with increasing

number of prediction time steps. At the short‐term prediction, that

is, 5 weeks ahead of prediction, the univariate model ARIMA also

showed low MSE values, which indicates that ARIMA has good

predictive power in short‐term forecasting. Such an observation has

been found in other studies as well. Ly et al. (2021) also noted in their

study that the LSTM did not perform better than the traditional

ARIMA model in single‐step ahead forecasting the cotton and oil

prices. Also, in the study of Sun and Jin (2022), the ARIMA model

achieved better results in 1‐h ahead to forecast the wind speed.

Possible reasons for this are that ARIMA can capture time series

correlations within the dataset and is a sophisticated inferential

device which can explore the underlying factors of price volatility.

These factors are not likely to change significantly in the short term

to cause a major change in prices. As a result, ARIMA performs well

for short‐term forecasting of various time series data

(Levenbach, 2017). However, knowing only the underlying factors

that cause price volatility is not sufficient to predict a longer range of

prices. Hence, as the number of prediction steps increases, the

advantages of multivariate models that incorporate more explanatory

factors become apparent.

The hybrid model has lower MSE values indicating that the

combination of CNN and LSTM performed better in predicting grain

prices at 5, 10 and 15 weeks ahead. Such a result could be attributed

to the hyperparameter tuning of the LSTM‐CNN based on the

predictions for 15 weeks ahead. As a result, lower MSE values were

observed at 10 and 15 weeks. In the study of Madaeni et al. (2022),

they also found that the hybrid model achieved better results than

the single CNN and LSTM models. At 5 weeks, CNN had lower MSE

values than LSTM, but at 10, 15 and 20 weeks, it performed worse

than LSTM. Also, at 20 weeks ahead, the LSTM performed slightly

better than other models. This finding coincides with part of the

results of Yan et al. (2021), which compared the predictive power of

CNN, LSTM and CNN‐LSTM for air quality index. Their study shows

that the LSTM is the optimal model for multihour prediction,

demonstrating its advantages to explicitly modelling the temporal

dynamics when predicting longer time series data (Ordóñez &

Roggen, 2016).

The better performance of the CNN over the LSTM at 5 weeks

may be attributed to the ability of the CNN to partially include the

temporal dependence of the dataset (Madaeni et al., 2022). However,

when the number of time steps increases, the advantage of

incorporating more past information into the LSTM is revealed. The

combination of LSTM and CNN may integrate the strengths of both

F IGURE 7 Weekly distribution of Shapley values for (a) SWE, (b) snowfall, and (c) snow depth in 10 weeks for wheat price forecasts.
SWE, snow water equivalent.
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models in that the CNN is better able to capture correlations

between variables, while the LSTM deals with the temporal dynamics

of the input variables (Madaeni et al., 2022; Ordóñez &

Roggen, 2016).

4.2 | Interpretation of features contribution

Wheat is the main grain source of carbohydrates available to humans,

which has a protein content of up to 13%, relatively higher than other

grains, and, is grown on more land (Curtis et al., 2002). This

significance makes the price of wheat an indicator of food security

(Grote et al., 2021) and is often considered in agricultural policy-

making. For example, in 2013, the European Union began to consider

information on wheat prices in the development of the Common

Agricultural Policy (European Union, 2022). Given the importance of

wheat, it is reasonable to be the largest contributor to determining

grain prices.

Corn also makes a significant contribution to grain prices,

especially when the forecast horizon increases. Like oats, corn is

mainly used to feed livestock and farmers tend to switch to oats as

their feed if the price of corn rises. Alternatively, if corn prices fall,

consumption of corn as a feed grain will increase (Zwer, 2016).

Despite this, not only does the substitution effect enable corn to

influence the prices of other grains, but the US government's ethanol

subsidies also enable corn prices to influence other grains' prices. The

ethanol subsidies are designed to promote farmers to produce more

corn to meet the growing demand for biofuels (Tyner, 2015). Thus,

US farmers have increased the area planted to corn at the expense of

wheat and soybeans. The reduction in wheat and soybeans

production has led to an increase in prices (Babcock, 2012).

Weather factors generally contribute more to the price of corn

than other grains, probably since corn yield is sensitive to hail and

strong wind damage (Fox et al., 2011). Given this, in the case of corn,

temperature and precipitation show a high ranking of contribution

than other grains.

4.3 | Snow feature analysis

Three snow‐related features were included in this study, namely

cumulative SWE, mean snow depth and cumulative snowfall. Of

these, SWE contributed most to the four crops at 5‐ and 20‐week

ahead of prediction. In addition, SWE ranked higher than the total

precipitation when forecasting oat, corn and wheat prices 5 weeks

ahead, which also occurred when forecasting oat, soybean and wheat

prices 20 weeks ahead. This may be because one of the factors of

concern for agricultural development is how much water is available

to supply the crops. Precipitation can meet the needs of rainfed

crops. However, irrigated crops rely on irrigation techniques to obtain

a reliable source of water (Qi et al., 2020). Irrigation can obtain water

from a variety of sources including reservoirs, tanks and wells that

collect water from snow melt, lakes, and basins (Shah et al., 2019).

SWE refers to the amount of snowpack in terms of water equivalent,

which will evaporate as part of precipitation and melt as streams,

providing information on water security for agricultural practices in

the current year (Biemans et al., 2019; Diffenbaugh et al., 2015). As

such, SWE might provide more information on food prices than

precipitation in some cases.

Snow depth is a two‐sided factor in agricultural practice. For one

thing, the snow cover acts as an insulating blanket, protecting the

crop from the dynamics of winter minimum temperatures and

protecting the soil from deep frosts that can deteriorate soil physical

quality and the biological component for the following season

(Campbell et al., 2014). Thick snow depth keeps the crop under

freezing pressure (Zhu et al., 2022). However, there is less of a direct

relationship between snowfall and crop growth. The impact of

snowfall on food prices stems in part from the amount of snowfall

and the depth of snow (Quante et al., 2021). Another possible

relationship between snowfall and grain prices is that when snowfall

is extremely heavy, it can give rise to climatic hazards, that

is, blizzards, affecting crop growth and local transportation (The

New York Times, 2022). Despite this, the spatial and temporal extent

of the impact of blizzards is limited compared to the national scale,

resulting in its contribution to grain price forecasts being limited.

To understand the specific patterns of snow impacts on grain

prices, snow features are discussed in terms of patterns of

contribution by year and week, and changes in the contribution of

different grain types.

4.4 | Snow features contribution pattern of
the year

Among the yearly variations of the contributing features, the

contribution of SWE was significant in 2 years, one in 2012 and

the other in 2021. In 2012, SWE drove the wheat prices to a lower

level, and in 2021, the SWE drove the prices to a higher level, but

snow depth contributed negatively. As suggested in the study of

McCreight et al. (2014), many areas in the western US had relatively

low snow depths and SWE, and depending on the location, they

could have been 50% below the normal range in 2012. On 13–17

February 2021, North America experienced a winter storm with

temperatures as low as below freezing, extending from southern

Texas to the Gulf of Mexico (The New York Times, 2022).

One of the patterns found from the results is that there are sub‐

weekly variations every year from late spring to early autumn when

there is only a little snow. During that time, snow features are hard to

make any contribution to price prediction. In spring, the contribution

of SWE to wheat prices reached a peak, implying the significance of

the amount of SWE in spring for wheat production. However, it

would be arbitrary to directly conclude that wheat prices will increase

or decrease because of the negative or positive effects from snow‐

related features. This is because the underlying mechanisms of

influence are very complicated, and no linear relationship can be

detected. The impact of snow is critical, with both too little and too

10 | WANG ET AL.
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much snow causing prices to move in unpredictable directions.

However, it hints at the importance of understanding the exact

relationship between snow and food, both to better predict price

dynamics and to ensure food security and achieve Sustainable

Development Goal (SDG) 2.

4.5 | Variation in SWE contribution to different
grains

The spatial distribution of oats, corn, soybeans and wheat varies in

the US. Oats are mainly grown near the Great Lakes in the northern

part of the United States, with South Dakota being the main producer

of oats in the US (Government of Alberta, 2022) (Figure 8a). Corn

production is concentrated in the heartland of the US (USDA, 2022d),

mainly in the Midwestern states of which the states of South Dakota,

Nebraska, Minnesota, Iowa, Illinois and Kansas are a part (Figure 8b).

States that contribute to soybean production are in the central part

of the United States, including Iowa, Illinois, Minnesota, South

Dakota, Nebraska, Indiana and Ohio (Figure 8c). Wheat production

spreads across the states, with comparable yields of winter and

spring wheat (Government of Alberta, 2022). Winter wheat is grown

in the western and central regions, whereas spring wheat is grown

mainly in the north‐western part of the United States, covering

Wisconsin, North Dakota, Montana and South Dakota (Figure 8d),

where the share of snowmelt on average runoff is higher than other

states according to Li et al. (2017)

A glance at the spatial distribution of grain production in the

United States reveals that the main production states for oats,

wheat and corn are the states next to the western region, where

the SWE monitoring stations are located. The increased contri-

bution of SWE to soybean price prediction from 5 to 20 weeks

may be owing to the fact that snowmelt from the western states

takes longer to reach the central region, where soybeans are

primarily grown. Hence, the SWE contribution is more evident

with a longer prediction horizon. Another possible explanation is

that oats, corn and spring wheat are sown between April and

May, while soybeans are sown between May and June when SWE

has the least values and cannot give any indication of price

(Government of Alberta, 2022).

Nonetheless, to clarify the relationship between SWE and

different grain prices, an in‐depth study of streamflow dynamics

and the spatial and temporal fluctuations of different grain yields and

prices is required. Furthermore, using only 20 weeks of historical data

as an input variable to forecast prices 5–20 weeks into the future

may lack sufficient information to make longer‐term predictions. For

predictions of the 5 weeks in the future, snow features may be able

to provide sufficient information, but for 20‐week forecasts, a longer

history should be considered as an input variable to allow the model

to learn the full round of weather cycles over the course of a year.

F IGURE 8 The production distribution of (a) Oats, (b) Corn, (c) Soybeans and (d) Wheat in the United States (USDA, 2022e).

WANG ET AL. | 11
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4.6 | Application scenarios of the LSTM‐CNN
model

The study was contributing to lowering uncertainty in the prediction

of grain prices almost 5 months in advance, giving farmers enough

time to plan the next round of sowing and harvesting. Also, farmers

could use the predicted four grain prices, namely oats, corn, soybeans

and spring wheat, all of which are sown in the spring, to decide which

type of crops they should plant, and how to minimise cultivation and

storage costs and maximise benefits.

The model is best suited for predicting spring wheat prices,

compared to the other three crops. First, wheat prices are predicted

with the highest accuracy. Second, the average time from sowing to

germination and then to harvest for spring wheat is approximately 4

months (USDA, 2022f). This is within 20 weeks of the prediction

range of the proposed model.

For oats and soybeans, although their predictions are not as

accurate as those for wheat prices, they also have a life cycle of

around 4–5 months (USDA, 2022f). Thus, the model proposed can

also provide some direction for farmers planning to grow oats and

soybeans. For corn, however, the life cycle is over 20 weeks. Corn is

usually sown in April‐May and harvested in October–November, a

period of about 6–7 months (USDA, 2022f). Therefore, this model

may not provide farmers with future corn prices over a sufficiently

long period. In the future, a model with extended prediction time

steps could be developed to accommodate the life cycle of corn. A

more comprehensive study could also be carried out to examine the

extent to which the time series of snow makes a negative and

positive contribution to grain prices, considering the accelerated

melting rate of glaciers and snowpack due to climate change (Zhu

et al., 2022). Considering the importance of snowmelt for the

acquirer recharge, we must consider the soil water capacity as a

limiting factor in future climates (Zwer, 2016).

4.7 | Limitation

When comparing the LSTM‐CNN model with other predictive

models, the epochs and learning rate are based on the result of the

hyperparameter tuning of the LSTM‐CNN in 15 weeks. Conse-

quently, the hyperparameter settings may not be the most optimal

combination for the CNN and LSTM models. Alternatively, the better

performance of the LSTM‐CNN model at Weeks 5, 10 and 15 may be

because the hyperparameters were tuned based on the predictions at

15 weeks. This may not be the optimal hyperparameter setting for

the LSTM‐CNN at 5, 10 and 20 weeks.

To get a thorough understanding of the trends at different input

time steps, experiments with different input time steps are necessary

to clarify how the output of the proposed model changes and how

other models change in the same setup. However, due to time

constraints, this experiment was out of the scope of this research.

Instead, in this study, the input variable steps were set up fixed to be

20 weeks. For the LSTM‐CNN model, the optimal input variable may

be represented by other values. Furthermore, the time step of the

optimal input variable may differ across the prediction range. Also, it

is possible that the current 20‐week input step is suitable for the

LSTM‐CNN model, but when changing to other ranges of input time

steps, other comparison models such as CNN and LSTM may perform

better than LSTM‐CNN.

5 | CONCLUSION

In this study, we propose a hybrid multivariate LSTM‐CNN model for

grain commodities price prediction that uses weather factors, grain

prices, macroeconomic factors and a novel class represented by

snow‐related time series data—as features to predict multistep price

advance. The LSTM‐CNN model integrates LSTM and CNN models,

with the LSTM responsible for remembering the long‐term and short‐

term memory of grain prices and the CNN is used to learn the

dependencies between the input variables and extract key features.

We performed hyperparameter optimisation to generate the optimal

combination of hyperparameters for the LSTM‐CNN model to predict

prices 15 weeks in the future. We used the metric MSE to compare

the performance of the LSTM‐CNN with the ARIMA, CNN and LSTM.

The best hyperparameter combination resulted in the LSTM‐CNN

model having the lowest MSE values at 5, 10 and 15 weeks ahead,

compared with other models. The LSTM‐CNN model was best suited

for predicting wheat prices, with wheat having the best prediction

performance than other grains. In addition, the LSTM‐CNN model

was able to predict prices 20 weeks out, which goes beyond the

entire life cycle of wheat, giving farmers enough time to better plan

the next round of sowing based on the predicted prices.

To investigate the contribution of features, Shapley values were

used to calculate the contribution of each feature to the different

grain price predictions. Wheat had the highest contribution in all four

grain price forecasts. For the snow‐related features, SWE ranked

highly in the 5 weeks ahead forecasts and was also the largest

contributor to the three snow features, whether 5 or 20 weeks

ahead. In some cases, SWE ranked higher than total precipitation,

suggesting that SWE contains more hydrological and weather

information to support grain price forecasts than total precipitation.

Therefore, in the future, SWE could be a potential variable for

multistep ahead forecasting of grain prices.

Although SWE has a high ranking of contribution in the 5 weeks, its

dropping of ranking in 20 weeks demonstrates the SWE still has

exploration potential to contribute to the predictions with a longer input

time steps. Hence, studies like increasing the input time steps of variables

can be conducted to investigate whether with an increased time range of

SWE can improve the prediction outcome of grain prices. Also, the

prediction time range can be extended to see how the LSTM‐CNNmodel

performed in an even further prediction horizon.

The significant contribution of snow‐related features, particularly

SWE, suggests the research potential of using snow as an input

variable to predict not only grain prices but also other agricultural

commodities and even stock and energy prices over a multistep

12 | WANG ET AL.
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ahead of the prediction horizon. Furthermore, this study reveals a

possible correlation between grain prices and snow time series, but

the exact mechanism of correlation cannot be observed from the

feature contribution analysis alone. These studies could help policy

stakeholders to develop timely policies to ensure better food and

social security.
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