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Abstract 

Soils are relevant to our human life and the microbial communities that use them as 

habitats can actively participate in biogeochemical cycles. Fertilizer application, one of 

the most common agronomic management practices, is diverse and long-term in nature. 

However, the effects of long-term fertilization with different types of fertilizers on 

microbial microorganisms in soils are not fully understood. In this study, we collected 

bulk soil samples based on 16S rRNA sequencing from 103 publications of 10308 long-

term fertilization experiments from various locations worldwide and environmental 

metadata corresponding to each sample. To explore the importance of different 

environmental variables as well as the interaction effects between variables, we 

evaluated three tree-based machine learning models, RandomForest, XGBoost, and 

LightGBM, and used the state-of-the-art interpretation method SHAP to interpret the 

models, whose hyperparameters were optimized by Bayesian optimization algorithm. 

Ultimately, 20 randomized experiments showed that soil organic carbon, inorganic 

fertilizer application amount, and sampling depth were the three most 

essential predictors of soil microbial Shannon diversity. The local SHAP imputation 

values revealed the robustness of the importance of soil organic carbon, as its SHAP 

value increased almost monotonically with its value. Furthermore, SHAP analysis for 

fertilization treatment duration demonstrated that the soil microbial community had 

reached a steady state under long-term fertilization. In addition, the interaction between 

the use of N fertilizer and soil organic carbon and soil pH, respectively, was revealed 

by SHAP interaction analysis. This work demonstrates that the tree-based machine 

learning algorithm combined with the interpretable machine learning algorithm SHAP 

has the potential to predict soil microbial Shannon diversity and to analyze global and 

local attribution. This is critical for capturing the level of environmental factors and 

directing agricultural operations in a way that preserves soil stability. 
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Chapter 1 Introduction 

More than one-third of the Earth's land surface is covered by the agroecosystem, which 

provides a wide range of services to ecological and anthropogenic networks (Tilman, 

Cassman et al. 2002, Smith, Martino et al. 2008). To supply the global food production 

needs of the growing population, crop productivity has been enhanced by the increasing 

use of organic fertilization and synthetic chemical fertilization in agricultural practice 

(Hartmann and Six 2023). However, the overuse and misuse of fertilization may bring 

negative impacts on the ecosystem, including soil acidification, soil degradation, 

eutrophication of surface water, and greenhouse gas emission (Laborde, Mamun et al. 

2021). 

The soil microorganisms play vital roles in biogeochemical cycling, 

bioremediation, climate regulation, and mediating plant growth (Bender, Wagg et al. 

2016, Hartmann and Six 2023). The diversity, composition, and stability of the soil 

microbial community are vital to maintaining soil ecosystem sustainability and function 

(Dan, Sadler et al. 2020). Soil bacterial communities could be disturbed easily and 

interact with the surrounding environment sensitively in response to environmental 

change. 

Long-term nutrient addition can adversely affect soil physical structure and 

chemical properties, which in turn affect soil microbial communities. There were 

extensive studies that focused on the biochemical properties and enzyme activities of 

soil under different fertilization strategies, whereas the studies focusing on the 

interaction of soil microbial communities in response to nutrient addition are still 

fragmented and inconsistent. For example, some studies found that long-term chemical 

fertilization reduced soil microbial diversity due to the decrease in soil pH, while Hou 

et al. showed that the microbial biomass carbon and microbial alpha diversity were 

higher at a proper nitrogen fertilization addition rate than the treatments without 

fertilization (Hou, Ren et al. 2023). In terms of organic fertilization addition, some 

research indicated that manure addition increased soil bacterial diversity, while Guo et 
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al. found manure addition had no significant effect on soil bacterial diversity (Guo, Wan 

et al. 2020). 

There were meta-analyses that integrated studies under different fertilization 

managements to explore the general trends in soil biochemical properties change and 

the main effect factors. Recently, some studies demonstrated that soil biological data 

such as alpha diversity might be more precise to predict soil health status under 

fertilization, and several meta-analyses focused on the change of the dominant taxa and 

the diversity index were conducted. A global meta-analysis integrating 105 papers 

showed that the application of organic fertilizers significantly elevated soil organic 

carbon (SOC), total nitrogen (TN), and microbial biomass carbon (MBC) contents and 

significantly increased soil bacterial alpha diversity compared to the non-fertilized 

group (Dang, Li et al. 2022). Meanwhile, they found inorganic fertilizer application 

decreased soil pH and thus had a negative effect on soil microbial alpha diversity and 

community composition, such as the significant reduction in the abundance of taxa such 

as Verrucomicrobia, Planctomycetes, and Nitrospirae. However, these studies mainly 

revealed the regulation by the information of papers which were already done in 

bioinformatic analysis, for example, the alpha diversity indexes were calculated 

through different rarefaction methods among studies, as it might bring some disturbing 

in the results. 

Thus, we used a downstream analysis framework started with the raw sequencing 

data, attempting to infer the composition of bacterial communities in the bulk soil under 

different fertilization practices, as well as to determine the bacterial community 

interactions, dynamics, and threshold of the living condition under a broad list of 

environmental metadata, and to identify the most important and relevant environmental 

variables to construct a robust model to predict the microbial community diversity. It 

will provide general principles for conducting proper fertilization practices in the 

agricultural ecosystem to maintain both soil fertility and productivity by adjusting the 

soil microbial community. 

Here, we collected 16S rRNA amplicon sequencing raw data of bulk soil under 

different fertilization managements from various gene banks, and processed and 
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merged these data through bioinformatic methods. We also collected a wide range of 

environmental factors for each sample, considering to fully understand the relationship 

between soil microbial community and surrounding habitat. (1) We hypothesized that 

there are different effects of microbial community composition, diversity, and function 

under different fertilization. After long-term nutrient addition, the co-occurrence 

network patterns would evolve separately, with different keystone taxa merging in the 

microbial community. To this end, we calculated different matrixes and determined the 

keystone taxa of the microbial group under different fertilization practices. (2) Since 

considering microbial diversity is explicitly shaped by various environmental factors, 

we hypothesized that there would be some main effects to determine the soil microbial 

diversity under long-term fertilization, and it is also necessary to explore the interactive 

effects among environmental variables. For example, the influence of different nutrition 

addition rates on soil microbial diversity would be entirely different under various pH 

conditions. To this end, we constructed several optimized machine learning models to 

focus on the effect of different environmental factors on soil microbial alpha diversity, 

and we used state-of-art interpretable artificial methods to figure out the regulation of 

the main effect and the interactive effect. After figuring out the various regulation way 

driven by various environmental conditions in relation to the diversity index, we could 

find a tipping point of maintaining the diversity of the soil bacterial community. Overall, 

this work provided an overview of the microbial community traits under long-term 

fertilization, gained an understanding of how the environmental variables would 

influence the soil bacteria directly and interactively, and offered a robust model to 

predict the bacteria alpha diversity index under various fertilization management, 

which would identify the promising prospect. 
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Chapter 2 Literature review 

2.1 Soil microbiome 

2.1.1 The vital significance of soil microbiome within the ecosystem 

Microorganisms are an essential component of biodiversity and constitute a complex 

ecosystem with their environment (Dan, Sadler et al. 2020). A microbiome is a 

collection of all microorganisms and their genetic information in a particular 

environment or ecosystem, which includes the interactions of microorganisms with 

their environment and hosts (Hartmann and Six 2023). Soil, as a link between the 

atmosphere, hydrosphere, lithosphere, and biosphere, contains organisms, minerals, 

organic matter, water, and air in the soil sphere. And the soil is essential to the survival 

of plant systems on Earth, as well as animal and human activity. Because of its unique 

physical structure and complicated chemical composition, the soil is an ideal habitat for 

microbial growth and reproduction. According to statistics, the total number of 

microorganisms in soil worldwide exceeds 1030, and each gram of soil contains 

hundreds of millions of microbial cells (Bardgett and van der Putten 2014). Being a key 

link between the above- and below-ground parts of the soil ecosystem, the soil 

microbiome also plays an irreplaceable and critical role in soil nutrient cycling, energy 

flow, ecosystem structure maintenance, and ecosystem function regulation (Doran and 

Zeiss 2000, Bardgett and van der Putten 2014). The soil microbiome is a significant 

driver of elemental biogeochemical cycling. As a result, the soil microbiome is a crucial 

resource for maintaining normal human productive life and the earth's ecosystem 

equilibrium. 

In terms of the decomposition and transformation of soil materials, soil 

microorganisms ensure the recycling of many macronutrients by participating in 

complex and diverse metabolic processes such as organic matter decomposition and 

biosynthesis, including carbon fixation, conversion of monosaccharide polysaccharides, 
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nitrogen fixation, and nitrification (Amundson, Berhe et al. 2015, Banerjee and van der 

Heijden 2023). These processes provide nutrients for plant growth and make an 

important contribution to the formation of soil aggregates and the accumulation of 

fertility. In carbon cycling, for example, bacteria mainly mineralize and break down 

small molecule carbohydrates, whereas fungi primarily break down refractory carbon 

and destroy plant leftovers. In terms of nitrogen cycling, soil microorganisms also 

influence nitrogen transformation efficiency (Vitousek and Howarth 1991). They 

regulate nitrogen fixation and loss at various phases of nitrogen transformation by using 

their metabolism or releasing enzymes that impact nutrient utilization efficiency. When 

soil microbes change nutrients in the soil, they are also engaged in the process of 

nutrient acquisition by plants. Some legumes, for instance, have symbiotic nitrogen-

fixing bacteria in their rhizosphere that enhance nitrogen uptake and utilization. In 

addition, certain mycorrhizal fungi and root-promoting beneficial bacteria also improve 

plant uptake of nutritional components in the soil. At the same time, soil 

microorganisms can play a purification role for organic pollutants entering the soil from 

exogenous sources, and specific microbes can transform or completely degrade 

mineralized organic contaminants via metabolic or co-metabolic processes (Amundson, 

Berhe et al. 2015). Microbial metabolism can change the toxicity and efficacy of metal 

and metalloid pollutants under altered redox conditions in the soil environment. In 

conclusion, soil microorganisms are frequently involved in the majority of biophysical-

chemical processes in soils, including the cyclic transformation of nutrients on the one 

hand and the transport and transformation of pollutants in soils on the other. 

More and more studies show that soil microorganisms are to some extent related 

to other organisms such as plants and humans. This "One Health" status is closely 

related to other ecosystem services and functions such as plant diversity, decomposition 

of apoplastic plants, and global climate change (Banerjee and van der Heijden 2023). 

Some genetic influences in soil microbial systems can ensure the relative stability 

of composition and structure. They, on the other hand, preserve community diversity 

through functional redundancy and variation, which can be classified as community 

structural diversity, species diversity, genetic diversity, and functional diversity. This 
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resistance and resilience of the soil microbial system allow the soil microbial 

community to respond and adjust to external dynamic changes, thus maintaining the 

function of the soil ecosystem (Saleem, Hu et al. 2019). When plant systems are 

exposed to plant pathogens, for example, inter-rooted beneficial bacteria in the soil can 

boost inter-rooted immunity and thereby prevent plant pathogen proliferation and 

dissemination. In this way, the effect of improving plant resistance, reducing plant 

morbidity, and reducing the risk of transmission of some human pathogenic bacteria to 

humans through plants is achieved (Hannula, Ma et al. 2020). Simultaneously, the 

dynamics of the soil microbiome act as a regulator of global climate change. The soil 

system develops a sequence of responses in response to changes in the external 

environment (Jansson and Hofmockel 2020). A temperature rise, for example, modifies 

microbial activity and hence accelerates the breakdown of organic carbon by soil 

microbes (Romero-Olivares, Allison et al. 2017). On the other hand, it indirectly affects 

soil carbon balance by shifting plant system functioning, such as the release of 

apoplastic matter, and hence contributes to CO2 emissions. Soil microorganisms can 

also produce secondary metabolically active compounds like antibiotics, which are a 

significant source of biological resources. 

Therefore, the maintenance of soil microbial community health, as reflected in soil 

microbial biomass, activity, and diversity, is critical for ecosystem stability, 

environmental protection, and rational development at regional and global scales. 

 

2.1.2 Soil microbiome ecology research methods 

Soil has a huge number of microorganisms of various taxa and functions. 1g of soil 

includes approximately 109 microbial cells and more than 106 microbial species, 

according to estimates (Bardgett and van der Putten 2014). The numerous bacteria, 

fungi, actinomycetes, and protozoa that live in soil are essential components of a 

healthy soil ecosystem. Furthermore, they serve an important role in guaranteeing the 

buildup and mineralization of soil organic matter, resulting in healthy plant growth, as 
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well as drivers of biogeochemical cycling of critical elements such as carbon, nitrogen, 

and phosphorus (Calderón, Spor et al. 2017). The structure and diversity of soil 

microbial communities, however, vary greatly due to factors such as soil-forming 

parent material, the great degree of geospatial variability in geographic location, the 

differentiation of climatic conditions such as rainfall and temperature, the type of 

vegetation cover, and the influence of anthropogenic activities. Soil microbial ecology 

has been increasingly investigated by domestic and international research scholars to 

examine the interaction and patterns of soil microorganisms and soil environment 

(Jansson and Hofmockel 2018). 

Traditional methods for determining soil microbial diversity include direct assay, 

plate scribing dilution pure culture method, and physiological and biochemical assay. 

The direct assay methodology employs light and electron microscopes to directly 

observe and count microorganisms in a sample (Thompson, Sanders et al. 2017). The 

plate scribing dilution pure culture method refers to the method of isolating or screening 

microorganisms by inoculating a plate with a suitable dilution concentration by coating 

it with a gradient dilution after the suspension containing single-celled microorganisms 

is well mixed and homogenized. Physiological and biochemical assay techniques 

include the Biolog method, phospholipid fatty acid (PLFA) assay, and ergocalciferol 

method, etc. The Biolog method is an approach for exploring microbial diversity based 

on microorganisms' ability to utilize carbon sources differently. It enables the 

identification of pure microbe species as well as the comparative examination of overall 

differences in diverse environmental microbial communities. The phospholipid fatty 

acid (PLFA) analysis method is based on the fact that the composition and content of 

phospholipid fatty acids on living cell membranes are relatively stable and have high 

biological specificity, allowing quantification of biomass and ecological structure of 

large taxa in soil ecosystems (Frostegård, Tunlid et al. 1991). Ergocalciferol is a 

significant component of fungal and protozoan cell membranes. And the ergocalciferol 

method could estimate fungal biomass by detecting ergocalciferol levels. But this 

method cannot detect diversity. 

The first generation of sequencing technology, Sanger sequencing, emerged in the 
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late twentieth and early twenty-first centuries, allowing for in-depth analysis of 

microbial communities directly at the molecular level without relying on traditional 

methods such as complex and laborious pure culture and determination of microbial 

markers (Simon, Lalonde et al. 1992). The usage of dideoxy triphosphate nucleotides 

with fluorescent labeling groups, which can be utilized to abort DNA strand expansions 

and collected by imaging equipment, is at the core of first-generation sequencing 

technology. However, first-generation sequencing is confined to large-scale utilization 

at the experimental level because of high sequencing costs and low throughput. Second-

generation high-throughput sequencing technology, also known as "next-generation 

sequencing technology," enables rapid sequencing while synthesizing, lowering 

sequencing costs and increasing sequencing speed while maintaining high accuracy, as 

demonstrated by Roche's 454 sequencing system, Illumina's Hiseq sequencing system, 

and ABI's Solid sequencing system (Lane, Pace et al. 1985, Sanchez-Cid, Tignat-Perrier 

et al. 2022). The composition of microorganisms in environmental samples and their 

potential ecological functions can be studied using high-throughput sequencing 

techniques. Among the more widely utilized technologies in soil ecology are amplicon 

sequencing of marker genes and metagenomics. The method of PCR amplification of 

DNA collected from environmental materials using primers for specific genes and 

analysis of the amplification products is known as amplicon sequencing of marker 

genes. The marker genes include 16S rRNA, 18S rRNA, and functional genes relevant 

to the carbon and nitrogen cycles, etc (Callahan, Wong et al. 2019). The process of 

extracting all DNA from environmental samples without PCR amplification of target 

fragments and randomly interrupting them into fragments for sequencing, which can 

reflect all genetic information of the entire community in environmental samples and 

can deeply explore the potential functions of microbial communities, is known as 

metagenomics. This study is mainly based on the results of 16S rRNA sequencing of 

bacteria, which is described in detail here. 16S rRNA is a segment of DNA, which is 

the gene used by the bacterial genome to encode the small subunit of the ribosome. S 

is the sedimentation coefficient of ribosomes; for example, the prokaryotic ribosome is 

the 70S and is made up of two subunits, 50S, and 30S, with 16S being a portion of the 
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small subunit. The 16S gene has the character of a "molecular clock" during the 

evolution and proliferation of bacteria, in that it has certain structural and functional 

conservation. Specifically, this segment includes 9 variable regions and 10 conserved 

regions. The conserved regions reflect the kinship between species and can be used to 

design primers with generality to complete the amplification of variable regions, and 

the gene sequences of variable regions can reflect the differences between species, and 

the species can be specifically identified by amplifying, and sequencing the genes of 

variable regions. 

Currently, 16S rRNA-based DNA sequencing of environmental samples has been 

applied to almost all natural environments, including common agricultural soils, natural 

water bodies, sewage and sludge from wastewater treatment plants, permafrost layers 

in polar regions, marine sediments, and plant inter-root and inter-leaf.  

In soil microbial ecology, the 16S rRNA sequencing of environmental samples 

allows for diversity analysis of soil microbial communities. Diversity analysis includes 

calculating and analyzing the microbial composition of different samples, calculating α 

diversity to compare the diversity of species within samples, calculating β diversity to 

compare the diversity of community structure between samples, and exploring the 

diversity of community functions by functional annotation and prediction.  

Data mining of 16S rRNA sequencing results can efficiently elucidate the 

properties of environmental samples and the associations between samples by selecting 

appropriate statistical tests, data processing methods, and software. For example, 

STAMP software (Parks, Tyson et al. 2014) can perform statistical tests for differences 

in species abundance and functional differences between groups and visualize the 

results; LefSe analysis (Segata, Izard et al. 2011) can find biomarkers for differences in 

abundance between different treatments; Co-occurrence analysis is used to compare the 

interactions between different samples and different bacteria by constructing a 

correlation coefficient matrix; Mantel test finds the association between samples, 

microbial communities, and environmental factors by comparing the correlation 

between the environmental factor matrix and the microbial community matrix, etc. The 

Mantel test is used to find the association between samples, microbial communities, 
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and environmental factors by comparing the correlation between environmental factors 

and microbial community matrices.  

Various functional annotation software, such as PICRUSt (Douglas, Maffei et al. 

2020), Tax4Fun (Wemheuer, Taylor et al. 2020), and FAPROTAX (Louca, Parfrey et al. 

2016), is constantly being upgraded. The prediction of community function using 16S 

rRNA gene sequences, however, is not a replacement for sequencing and analysis of 

specific functional genes and metagenomics techniques, because the presence of a 

certain class of microorganisms does not necessarily imply that they have specific 

functional genes or perform related functions. However, the function gene abundance 

results predicted by 16S rRNA sequences can be used as a basis for subsequent 

experimental design of metagenomics, metatranscriptomics, and so on. 

 

2.2 Impact of fertilizer application on soil microbiome 

The soil microbiome is a significant indication of soil quality. Not only does the 

microbial community play a crucial role in maintaining soil ecosystem balance, but soil 

microbial diversity is also directly related to soil ecosystem stability and the ability to 

recover from disturbance stress. As a popular agronomic management practice, 

fertilizer application has direct or indirect impacts on soil physicochemical parameters, 

as well as on the biomass, composition, and function of soil microbial communities 

(Thiele-Bruhn, Bloem et al. 2012). Various fertilizer management approaches, as 

exogenous inputs of varying nature, have varying effects on soil ecosystems. The 

effects of inorganic fertilizer application, organic fertilizer application, and organic 

fertilizer mix on soil microorganisms are described below. 

 

2.2.1 Impact of inorganic fertilizer application on soil microbiome 

Inorganic fertilizers are chemically manufactured and processed fertilizers that do not 

contain organic matter. They include nitrogen, phosphorus, potash, and compound 
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fertilizers. Numerous research studies have shown that the use of inorganic fertilizers 

increases crop yield. However, the low utilization rate of inorganic fertilizers leads to 

their overuse by humanity, allowing a huge amount of inorganic fertilizer into the soil 

environment. Many studies are looking into how additional inorganic fertilizer 

stimulation in the soil environment may affect the soil microbial community. Several 

studies have shown that applying inorganic fertilizer to the soil enhances the organic 

matter content and promotes the growth and metabolism of the soil microbial 

community. Geisseler et al., for example, found that adding inorganic fertilizer 

increased microbial biomass carbon (MBC) in rice soils by 26% and soil organic carbon 

content by 13% in a meta-analysis of rice soils (Geisseler, Linquist et al. 2017). A global 

study of long-term inorganic fertilizer application revealed through 

metagenomic sequencing that nitrogen fertilization boosted bacterial abundance while 

also improving denitrification and nitrate reduction by bacteria (Li, Tremblay et al. 

2020). Some studies, however, have shown that the use of inorganic fertilizers might 

lower the biomass of soil microbes, such as a meta-analysis by Jian et al., which found 

that the application of N fertilizer increased soil organic carbon and total N by 7.6% 

and 15.3%, respectively, but reduced MBC by 9.5% (Jian, Li et al. 2016). Liu et al. 

discovered that the addition of inorganic fertilizer decreased MBC by 20%, which was 

followed by an 8% drop in soil microbial respiration (Liu and Greaver 2010). A meta-

analysis by Yang et al. of soil microbial diversity found that nitrogen fertilizer 

application resulted in a drop in soil microbial diversity, which was found to be 

dominated by a fall in pH (Yang, Cheng et al. 2020). Dang et al.'s global meta-analysis 

also revealed that inorganic fertilizer application reduced soil pH and had a detrimental 

influence on soil microbial diversity and community composition, such as a significant 

decrease in soil Verrucomicrobia, Planctomycetes, Nitrospirae, and other taxa 

abundance (Dang, Li et al. 2022). 

In particular, the impacts of inorganic fertilizers on soil microorganisms can be 

examined from the following aspects. The first is the influence of added inorganic 

fertilizer on soil structure, such as the application of massive quantities of potassium 

fertilizer, which causes the exchange and soaking of salt-based ions such as Ca2+ and 
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Mg2+ in the soil, subsequently causing the soil to become slabbed and less permeable. 

Hence, the aforementioned processes influence the distribution and survival of soil 

microbial communities in soil aggregates. According to Shun et al., the addition of 

inorganic fertilizer reduces the versatility of soil agglomerates and alters soil enzyme 

activity (Han, Delgado-Baquerizo et al. 2021). The second is the effect of inorganic 

fertilizer addition on soil physicochemical properties. The addition of inorganic 

fertilizer alters the pH and organic matter content of the soil, influencing the makeup 

and function of the microbial community indirectly. The effect of inorganic fertilizer 

application varies depending on the soil type because of variations in pH values. Hou 

et al., for example, demonstrated that at an applied N fertilizer rate of 200 kg N ha-1yr-

1, soil pH was significantly lower while MBC was significantly higher in black soil 

(Hou, Ren et al. 2023). Furthermore, microbial alpha diversity was higher at lower 

planting densities than in the treatment without N fertilization. However, when 400 kg 

N ha-1yr-1 N fertilizer was applied, soil microbial diversity was much lower than in the 

control and the treatment with moderate N fertilizer application. According to Hui et 

al., N fertilizer application reduced microbial diversity in black soils by 13.2% 

to 48.5%, with pH being the most important determinant (Wang, Xu et al. 2018). 

Meanwhile, the fall in soil pH caused by long-term N fertilizer promoted the 

proliferation of acidophilic bacteria. Shi et al. discovered that long-term inorganic 

fertilizer application to red soils substantially lowered soil microbial biomass and 

functional bacterial activity compared to unfertilized controls (Shi, Zhao et al. 2021). 

According to Xun et al., pH correction with moderate amounts of lime applied to acidic 

red soils could minimize the negative impacts of long-term inorganic fertilizer 

treatment and increase network stability (Xun, Huang et al. 2017). 

 

2.2.2 Impact of organic fertilizer application on soil microbiome 

Organic fertilizers are fertilizers composed of organic substances, including manure and 

urine from human life; animal manure and manure compost from livestock and poultry 
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farming green manure, cake manure, and biogas fertilizer from some agricultural 

production. Organic fertilizers provide nutrients such as nitrogen, phosphorus, 

potassium, amino acids, and trace elements, which are essential in agricultural 

production. They can greatly improve soil structure by stimulating the development of 

soil aggregates and altering the distribution and activity of microbes, in addition to 

providing macronutrients or micronutrients. Shun et al., for example, demonstrated that 

applying organic fertilizer enhanced the multifunctionality of soil aggregates. when 

compared to treatments without and with inorganic fertilizer, the activity of C, N, P, and 

S cycling functional enzymes in soil micro agglomerates with particle size less than 53 

um was dramatically increased (Han, Delgado-Baquerizo et al. 2021). Tian's research 

found that long-term organic fertilizer application enhanced the fraction of soil macro 

agglomerates and the nutritional content of C, N, and P in soil macro agglomerates. 

Also, long-term organic fertilizer application enhanced the biomass of soil bacteria in 

each particle size agglomeration. Meanwhile, the long-term application of organic 

fertilizer enhanced crop yield compared to the long-term application of inorganic 

fertilizer (Tian, Zhu et al. 2022). 

Simultaneously, a number of long-term localization investigations have revealed 

that applying organic fertilizer greatly enhances soil MBC, soil microbial respiration, 

and enzyme activity, supporting the creation of more stable microbial contact networks. 

A global meta-analysis integrating 105 papers showed that organic fertilizer application 

significantly increased SOC, TN, and MBC in soil (Dang, Li et al. 2022). Moreover, 

when compared to the control group that did not receive fertilizer, the administration of 

organic fertilizer dramatically enhanced the alpha diversity of soil bacteria. On the one 

hand, long-term field experiments conducted in black soil in northeastern China by 

Xiaojing et al. revealed that the addition of manure as organic fertilizer directly 

enhanced the available phosphorus (AP) concentration in the soil (Hu, Gu et al. 2023). 

Organic fertilizer, on the other hand, altered the number of relevant functional genes 

involved in the soil phosphorus cycle, expedited microbial phosphorus transformation, 

and decreased microbial phosphorus uptake as well as enhanced plant phosphorus 

bioavailability. Semenov's research also revealed that exogenous microbes from 
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organic fertilizer application die out quickly, whereas other native taxa proliferate over 

time as a result of changes in organic matter, nutrition, and physicochemical qualities 

caused by organic fertilizer application (Semenov, Krasnov et al. 2021). Andera et al. 

collected soil samples for analysis after applying fertilizer to Italian farms where cow 

manure, chicken manure, and pig manure were applied individually (Laconi, Mughini-

Gras et al. 2021). The results reveal that bacteria from manure had no effect on the soil's 

native microbiome thirty days after application and that bacteria from manure did not 

survive in the soil. It can be seen that the effect of organic fertilizers on soil 

microorganisms needs to be explored in terms of the nature of the organic fertilizer 

itself and the duration of application. Various organic fertilizers introduce different 

types of carbon sources and carbon-to-nitrogen ratios into the soil, resulting in 

variations in the abundance of microbes with various functions. As when plant straw is 

added, the stimulation of high cellulose exogenous sources can make cellulolytic 

microorganisms more competitive. A 47-year field trial showed that continuous 

application of green manure increased bacterial biomass in the soil compared to 

treatments without manure and that the ratio of fungi to bacteria was higher in soils 

treated with green manure compared to treatments with manure application. The 

abundance of microorganisms with a predominantly polymer-based carbon source 

utilization increased when manure was added (Elfstrand, Hedlund et al. 2007). However, 

the degradation rates of different manures differed, as did the impacts on soil microbes. 

Peng et al. discovered that the alpha diversity of bacteria in soil samples treated with 

fresh swine manure was substantially larger than that of the unfertilized treatment group, 

whereas the alpha diversity of bacteria in soil samples treated with chicken manure was 

not significantly different from that of the control group(Li, Wu et al. 2020). However, 

chicken manure application considerably affected the community structure of soil 

microorganisms, with Plancomycetaceae and Thauera having significantly higher 

relative abundance than the other treatment groups. In terms of application timing, long-

term application of organic fertilizers is generally considered to improve soil structure 

and increase the accumulation of organic matter in the soil. For the short-term 

application of organic fertilizers, some studies have shown that application of organic 
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fertilizers during the crop growing season causes soil microorganisms to respond in a 

short-term time frame, as reflected by an increase in soil microbial load and activity. 

However, the response varies depending on the type of organic fertilizer used. Chunmei 

et al. discovered that short-term application of composted pig manure fertilizer 

disturbed soil bacteria more intensely than fresh chicken manure and pig manure, 

resulting in a lower abundance of bacteria Actinobacteria and nitrifying bacteria 

Nitrospirae, both of which are involved in organic matter synthesis (Ye, Huang et al. 

2022). Several research, however, found that using organic manure as a slow-release 

fertilizer had little influence on soil microbial community structure in the short term, 

owing to the fact that organic manure does not immediately offer fast-acting nutrients 

(Pimentel, Hepperly et al. 2005). 

 

2.2.3 Impact of combined inorganic and organic fertilizer application 

on soil microbiome 

Organic fertilizer application can provide organic carbon and common nutrients like N, 

P, and K, as well as medium and micronutrients or active compounds like amino acids, 

humic acid, and so on. With the physical action of macromolecules, it can also improve 

soil structure and physicochemical qualities, and it is a more prevalent nutrient addition 

measure in agricultural management. However, the actual nutrient content of organic 

fertilizers is low, and because it is a slow-release fertilizer, it takes time for 

microorganisms to break down into plant-available nutrients when applied to the soil 

as an exogenous substance. As a result, an increasing number of research are being 

conducted to investigate the appropriate application of organic and inorganic fertilizers 

in conjunction.  

A combination of organic and inorganic fertilizers assures increased crop yields 

and enhances soil fertility without causing acidification, which probably occurs when 

inorganic fertilizers are over-applied. It has been demonstrated that a combination of 

organic and inorganic fertilizers can boost the carbon sequestration capacity of surface 
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tillage soils, which is important for sustainable agriculture (Chaudhary, Dheri et al. 

2017). This is because when there is sufficient and stable organic matter in the soil, the 

soil's microbial community becomes more stable and healthier. And this technique of 

application may be able to generate a consistent improvement in agricultural food 

production (Shahid, Nayak et al. 2017). A comprehensive trial was also conducted by 

Enke et al. They evaluated soil chemical and biological indicators for a control group 

without fertilizer application, application of inorganic fertilizer, application of organic 

fertilizer, and farmyard manure mixed with inorganic fertilizer under their farming 

practices for 30 years (Liu, Yan et al. 2010). The results showed that soil SOC, TN, 

MBC, and microbial biomass nitrogen (MBN) increased significantly when organic and 

inorganic fertilizers were mixed, as did the activity of functional enzymes in the soil, 

and crop yields were significantly higher than in the organic fertilizer only group, the 

inorganic fertilizer only group and the control group with no fertilizer.  

There are different views on whether the buffering effect of organic and inorganic 

fertilizer blends on soil pH plays a major role in regulating the soil microbial community. 

As one study found, a continuous manure and inorganic fertilizer application strategy 

for 33 years increased soil pH from 5.7 to 6.5, and this increase in pH buffering capacity 

increased the activity of cellulases and convertases in the soil (Saha, Prakash et al. 

2008). Nonetheless, another study indicated that the increase in soil enzyme activity 

caused by the combined application of manure and inorganic fertilizer was caused by 

the increase in nutrients from the manure treatment rather than the buffering impact of 

pH (Zhang, Sun et al. 2019). At the same time, the effectiveness of organic application 

combined with chemical fertilizers on soil microorganisms is highly dependent on local 

meteorological circumstances and soil properties. In the tropics, for example, inorganic 

fertilizers are easily lost through surface runoff, leaching, and volatilization, whereas 

some organic fertilizers are mineralized at a faster rate by microorganisms. As a 

consequence, while performing relevant investigations, these environmental elements 

needy to be considered. 

In terms of the response of soil microorganisms to combined organic and inorganic 

fertilizer, some studies have focused on the effect of enzyme activity in soil as an 
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indicator of a fertility evaluation. Zhang et al. applied pig manure and inorganic 

fertilizers in different proportions to a subtropical red soil region in southern China, and 

they discovered that combined fertilizer applications significantly increased the 

activities of β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and 

leucine aminopeptidase (LAP) enzyme activities in soil (Zhang, Dong et al. 2015). 

Moreover, Zhang proposed that the amount of inorganic phosphorus fertilizer applied 

should not exceed 44 kg ha-1 yr-1. Aside from investigating the indicator of microbial 

response: and enzyme activity, another part of the study focused on the dynamic 

response of the microbial community to fertilizer application, DNA extraction of the 

soil bacterial community, and comprehensive analysis in conjunction with soil 

physicochemical properties. According to Hui et al., bacteria are more susceptible to 

manure, and the combined application of nitrogen fertilizer and manure in black soils 

can greatly enhance the abundance and diversity of bacteria, with the abundance of 

bacteria increasing twice as much as the diversity increasing 46.6% (Wang, Xu et al. 

2018). Shi et al. reported that combining organic and inorganic fertilizers in acidic red 

soils could adjust the pH of the soil, increase the diversity of nitrogen-fixing bacteria, 

create a more complex and stable co-occurrence network, and increase the potential 

efficiency of biological nitrogen fixation in soil (Shi, Zhao et al. 2021). The results of 

Dali et al. showed that the combination of organic and inorganic fertilizers increased 

the content of total organic carbon (TOC), TN, available potassium (AK), total 

dissolved nitrogen (TDN), available phosphorus (AP), as well as increasing crop yields 

and improving the activity of soil microorganisms and the diversity of metabolic 

pathways for decomposing organic matter (Song, Dai et al. 2022). Furthermore, 

metagenomic sequencing studies indicated that long-term application of organic-

inorganic blended fertilizers enhanced genes for organophosphorus mineralization by 

bacteria while decreasing genes for phosphorus assimilation by microorganisms, 

consequently controlling crop nutrient uptake (Hu, Gu et al. 2022). Long-term use of 

organic-inorganic mixed fertilizers was also found to enhance the soil microbiome's 

nitrogen fixation and nitrification (Li, Wang et al. 2020). Much of the research indicates 

that combined organic and inorganic fertilizers alter the structure and function of soil 
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microbial communities and have an impact on the biogeochemical cycling of important 

elements. 

 

Chapter 3 Data collection and processing 

3.1 Data collection 

A comprehensive literature survey was performed through the Web of Science Core 

Collection, Google Scholar, and Scopus up to October 2022 using keywords “long-term” 

or “decades” or “years” and “fertiliz*” and “microbial community” and “soil”. The 

articles were selected based on the following criteria: (1) studies containing high-

throughput sequencing data of the 16S rRNA gene in bulk soil were included; (2) long-

term fertilization experiments and field surveys with explicit agricultural practice 

history were included; (3) the field trail with less than one-year duration was excluded. 

We recorded the accession number of raw sequencing data and then excluded the 

studies with absence or inaccurate data. Based on these steps, we establish the bacterial 

sequencing dataset from bulk soil under long-term fertilization, which contains a total 

of 10308 samples from 103 individual publications. For each sample, we also collected 

a wide range of parameters for accurate analysis including environmental factors, soil 

properties, agricultural practice factors, and sequencing conditions.  

Environmental factors, as background information for each sampling point, include 

geographical location, altitude, mean annual temperature (MAT), mean annual 

precipitation (MAP), ecosystem type (grassland or cropland), and sampling depth.  

Soil properties include soil pH, soil organic carbon (SOC), total nitrogen (TN), 

ammonium nitrogen (NH4
+-N), nitrate nitrogen (NO3

−-N), and soil texture (classified 

based on the United States Department of Agriculture, USDA, source: 

http://www.nrcs.usda.gov/). To obtain climate condition data that were not provided in 

the publication, we extracted MAP and MAT from the WorldClimate 

(https://www.world climate.com) based on the latitude and longitude of sampling sites.  
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Agricultural practice factors include four fertilization types (control group without 

any fertilization, chemical fertilization, organic fertilization, and chemical fertilization 

combined with organic fertilization), fertilization practice duration, the annual 

application rate of each fertilization, crop rotation patterns (rotation or monoculture), 

soil status when sampling (fallow or planting), whether the sampling site plant cover 

crop or apply straw mulching management.  

And sequencing conditions include primer pairs, sequencing region for 16S rRNA, 

and sequencing instruments.  

 

 

Figure 1. The map of the samples’ distribution 

3.2 Bioinformatics analysis  

According to the accession number, we downloaded the raw data as FASTQ files from 

NCBI by using the Sratoolkit tool. Bioinformatic processing was performed using 

QIIME2 (version 2021.11.0) following our previous study. For each individual study, 

we used Cutadapt to remove primers that were recorded in the literature and then used 

VSEARCH to join the paired end reads. As for samples of which primers were already 

removed or reads were already joined before uploading to NCBI, these steps were 

skipped.  
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We used default quality thresholds by QIIME2’s quality-filtered command to filter 

the low-quality reads and used Deblur to denoise sequences, then the amplicon 

sequence variants (ASVs) for each individual study were obtained. Then we merged 

ASVs from all the studies by merge-seqs command and made taxonomical annotation 

by the feature-classifier command based on the full-length 16S rRNA gene SILVA v138 

database, which could integrate studies sequenced in different 16S rRNA gene regions 

by phylogenetic placement. ASVs annotated to mitochondria, chloroplasts, and those 

that could not be classified at the kingdom level there were removed. ASVs that were 

present in ten or fewer samples were also removed for downstream analysis. There were 

eventually 2176 samples remaining for further analysis after removing those below 

2000 reads and rarefying samples to 2000 reads. Shannon’s diversity index and Chao1 

index were calculated to evaluate the alpha diversity of each sample. 

In addition, to prove the chosen rarefaction level did not bring bias to our results, 

we performed correlation analysis between the diversity indexes under different 

rarefaction levels (rarefied to 2000 versus 10000 reads per sample). We found that there 

were highly significant correlations between the Chao1 indexes under the rarefaction 

level of 2000 reads per sample and of 10000 reads per sample (R2 = 0.941; P < 0.0001), 

and the same results showed in Shannon’s diversity indexes (R2 = 0.985; P < 0.0001), 

which provided evidence that our rarefaction option did not influence the global 

analysis pattern of soil microbial community. 

 Finally, we used a conservative algorithm, the Functional Annotation of 

Prokaryotic Taxa (FAPROTAX), to analyze the potential functional groups of bacteria, 

which is widely used in functional annotations of prokaryotic taxa in environmental 

samples. 

 

3.3 Model environmental variables processing 

As mentioned in the data collection part, we collected various environmental data 

including environmental conditions, soil properties, agricultural practice factors, and 
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sequencing conditions. Firstly, we grouped fertilization application rate, duration of 

fertilization use, and some of soil properties into several classes according to the data 

properties (e.g., soil can be classified as acidic, neutral, or alkaline based on soil pH.) 

and data distributions: (1) annual application rate of organic fertilization < 4000 kg ha-

1 , 4000 kg ha-1 ≤ annual application rate of organic fertilization ≤ 13000 kg ha-1 , annual 

application rate of organic fertilization > 13000 kg ha-1 ; (2) annual application rate of 

chemical fertilization < 200 kg ha-1 , 200 kg ha-1 ≤ annual application rate of chemical 

fertilization ≤ 400 kg ha-1 , annual application rate of chemical fertilization > 400 kg ha-

1 ; (3) annual application rate of nitrogen fertilization < 100 kg ha-1 , 100 kg ha-1 ≤ 

annual application rate of nitrogen fertilization ≤ 250 kg ha-1 , annual application rate 

of nitrogen fertilization > 250 kg ha-1 (we also divided the annual application rate of 

potassium fertilization and phosphorus fertilization into three categories including low, 

medium, high application amount based on the data distribution, respectively.); (4) 

duration of fertilization use < 5 years, 5 years ≤ duration of fertilization use ≤ 15 years, 

15 years < duration of fertilization < 25 years, 25 years ≤ duration of fertilization ≤ 30 

years, duration of fertilization >30 years; (5) one rotation period ≤ 1 year, one rotation 

period > 1 year; (6) soil pH < 6.5, 6.5 ≤ soil pH ≤ 7.5, soil pH > 7.5; (7) SOC < 10 mg 

kg-1, 10 mg kg-1 ≤ SOC ≤ 20 mg kg-1, 20 mg kg-1 < SOC < 30 mg kg-1, SOC ≥ 30 mg 

kg-1 ; (8) TN < 1.5 mg kg-1, 1.5 mg kg-1 ≤ SOC ≤ 3 mg kg-1, SOC > 3 mg kg-1. After this 

step, we got continuous and discrete variables. 

To gain more necessary variables to develop the model, we investigated one-hot 

encoding to transform data with discrete features. One-hot coding is mainly used to 

encode data with discrete features. This method maps the categorical values to integer 

values, and each integer value is represented as a binary vector, then the discrete 

features could be analyzed as continuous features without considering the underlying 

numerical relationship among features. 
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Chapter 4 Methodology 

As we hypothesized that there would be different effects on microbial communities 

under different fertilization managements, we focused on the composition and diversity 

of microbial communities first. To better understand the interactions of taxa in 

microbial communities, we constructed co-occurrence networks of microbial species 

for different treatments. The co-occurrence network would show the evolution patterns 

by calculating the correlation matrixes of microbial taxa, which could determine the 

closeness and association among taxa. We could also estimate the stability of the 

networks and determine the keystone taxa of different treatments by calculating and 

comparing related metrics of co-occurrence networks.  

Because soil microbial diversity would be disturbed by various environmental 

factors, we used different tree-based machine-learning models to determine the 

importance of environmental variables to the Shannon index. And the environmental 

variables with high importance indicate a stronger positive or negative influence on soil 

microbial diversity. We hypothesized that these important variables would bring main 

effects on the Shannon index of the soil microbial community, whereas at the same time, 

there would be interactions among these variables. So here we used a SHAP value-

based method to explore the main effects and interactive effects. 

The work can be almost divided into seven parts, which are shown in Figure 2. 
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Figure 2. The work-flow chart of the entire work 

 

4.1 Co-occurrence network analysis  

Studies have demonstrated that the evaluation of microbial co-occurrence networks 

could investigate the complexity and the interactions among taxa. 

We constructed the co-occurrence networks of the soil microbial community under 

different fertilization treatments based on a Spearman correlation method. Firstly, we 

remove ASVs of which the cumulative occurrence frequency was presenting below 

0.01%. P values were corrected by a multiple test way based on the Benjamini-

Hochberg false discovery rate (FDR). A random matrix theory (RMT) approach was 

employed to determine the correlation similarity threshold, then the pairwise 



 29 

association between ASVs with an adjusted P-value below 0.05 and a score higher than 

the threshold were retained. Networks were visualized in Gephi.  

We use natural connectivity to determine the discrimination of structural stability 

from the complex network by removing nodes in the network and evaluating how 

rapidly the stability decrease. Then we calculated the modularity of each network by 

the greedy modularity optimization method. Nodes in the same module are tightly 

connected with each other and less connected with the nodes outside the module.  

Then we estimated the connectivity of each node by calculating within module 

connectivity (Zi) and among module connectivity (Pi), which were used to classify the 

nodes into four categories based on their topological roles in the whole network, 

including module hubs (Zi > 2.5 and Pi < 0.62), network hubs (Zi > 2.5 and Pi > 0.62), 

connectors (Zi < 2.5 and Pi > 0.62) and peripherals (Zi < 2.5 and Pi < 0.62). Among 

them, the module hubs and connectors mean the nodes which are highly connected with 

other nodes within a module and among the modules, respectively, which may be an 

important part to interact and mediate in one module (module hubs) and among modules 

(connectors). Network hubs are highly connected both within and among modules. Taxa 

of network hubs are expected to be vital in functioning and mediating interactions for 

the whole community. Peripherals are nodes with fewer connections than other nodes.  

To describe the topological features of the networks comprehensively, we also 

calculated a set of metrics including average degree, graph density, average path length, 

network diameter, clustering coefficient, betweenness centrality, and closeness 

centrality. The degrees refer to the number of connections for one node; the average 

degree refers to the average connections of all the nodes in the network; the average 

path length refers to the average value of the distance between any pairs of the nodes; 

graph density refers to the ratio of the number of edges that occur to the number of 

possible edges, reflecting the cohesive nature of the network; the network diameter 

refers to the maximum value of the distance between any two nodes in the network; 

cluster coefficient refers to the closeness of the nodes in the network, also known as 

transferability. Among these parameters, average degree, graph density, and cluster 

coefficient indicate the associations of the network, the higher parameters suggest a 
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more connected network. As for each node of the network, we used the betweenness 

centrality and closeness centrality to describe the node-level features. Betweenness 

centrality refers to the number of shortest paths through a particular node and closeness 

centrality refers to the average distance of one node to other nodes, with higher values 

indicating the shorter distance from other nodes. Higher values of betweenness 

centrality and closeness centrality indicate a more important core position of a node in 

the network. 

 

4.2 Tree-based machine-learning models 

Tree-based machine learning models are increasingly common nonlinear models for the 

prediction and attribution study of biotic and abiotic dynamics within ecosystems. 

RandomForest, XGBoost, and LightGBM are tree-based machine-learning models that 

perform exceptionally well on regression applications. These three models are utilized 

in this study to assess the performance impacts on microbial Shannon diversity 

regression prediction and to achieve the optimal model. 

This study utilizes the RandomForest, LightGBM, and XGBoost regression 

approach built in the Python version of sklearn, lightgbm, and xgboost library. In this 

work, the 5-fold cross-validation procedures are applied to test the accuracy of the 

model. In 5-fold cross-validation, the original data are randomly separated into 5 groups, 

four subsets of which are utilized as training data, while the remaining one subset is 

preserved for validation. 

4.2.1 RandomForest 

RandomForest, a machine learning method introduced by Breiman in 2001. It is an 

expanded variation of bagging and varies from bagging chiefly in that it involves 

randomized feature selection. RandomForest offers high prediction accuracy, is more 

tolerant to outliers and noise, and is less prone to overfitting. The technique is simple 

and quick, as well as straightforward to implement. It is widely used in data mining and 
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modeling. The general workflow of the RandomForest algorithm is as follows. 

 

 

Figure 3. The flow chart of the RandomForest algorithm 

4.2.2 XGBoost 

XGBoost is one of the boosting algorithms, which has been the major option of 

many researchers in various issues due to its great computing efficiency and strong 

prediction outcomes. As the boosting approach is dependent on the gradient direction 

of the loss function to identify the weak prediction model for each step, the algorithm 

is termed gradient boosting. Shrinkage and column subsampling algorithms are used to 

minimize model bias and variation in XGBoost. The general workflow of the XGBoost 

algorithm is as follows. 
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Figure 4. The flow chart of the XGBoost algorithm 

4.2.3 LightGBM 

LightGBM, newly created by Microsoft, is a highly efficient algorithm based on 

GBDT for handling issues with high-dimensional features and large-size data. 

LightGBM is a cutting-edge gradient-boosting framework that leverages tree-based 

learning approaches. It is designed with quicker training speed, less memory use, and 

greater accuracy. LightGBM contains two innovative features: gradient-based one-
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sided sample (GOSS) and exclusive feature bundling (EFB). These two characteristics 

assist lower the data sample size and feature size during model training, without 

compromising accuracy or efficiency considerably. In addition, LightGBM is adjusted 

to overcome the limitations of other models, such as huge memory consumption, 

sluggish training speed, and extended running duration, by employing the histogram 

technique to simplify the data representation and minimize memory use. 

4.2.4 Tree-based machine-learning model hyperparameters 

It is very crucial to understand and clarify the meaning and tuning range of 

hyperparameters of machine learning model algorithms before tuning. As all three 

algorithms are tree-based, they have many hyperparameter settings that are essentially 

the same or similar. For the convenience of illustration, parameters having the same or 

comparable meanings are discussed together. 

boosting: the type of base evaluator to be used. Usually, the default "gbdt" is used. 

num_iterations: the number of weak classifiers in integrated learning, or the number of 

trees if the base evaluator is a tree model. In general, a larger value is good for 

improving the model's precision but also increases the complexity and computation 

time of the model. When the num of iterations reaches the threshold, the accuracy will 

no longer increase but fluctuate in a small range. 

learning_rate: the learning rate of the modeling process, which can also be 

interpreted as the step length of the learning process. A large value will speed up the 

iterations and reach the limit of the algorithm very quickly. However, it may not 

converge to the true optimum. Conversely, the smaller the value, the more space is left 

for the tree to be built later, which may lead to better model accuracy. However, the 

iteration speed will be slower. 

n_estimators: the number of training trees in tree-based models. 

max_depth(or num_leaves): The maximum depth of the tree and the number of 

leaves per tree. The theoretical connection is num_leaves = 2^( max_depth). However, 

this simple conversion is not good in practice. The reason is that for a fixed number of 
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leaves, leaf-type trees are usually much deeper than depth-type trees. Unconstrained 

depths can lead to overfitting. They can be set too large to make the tree more complex 

and more accurate, but this leads to overfitting. Therefore, it is not good to set its value 

too high. 

reg_alpha: The weight coefficient of the regularization term, which is set to prevent 

overfitting. The larger the value the more conservative the model is. 

gamma: The reduction of the minimization loss function requires the leaf nodes of the 

tree to make a division, subtracting some leaf nodes whose presence makes the loss 

function larger, so this value acts as a pruning function. The larger the value, the more 

conservative the algorithm is. 

min_child_weight: The least sample weight sum among the child nodes. If the total 

sample weights of a leaf node is less than this value, then the splitting process is finished. 

The larger the value of this parameter the more conservative the algorithm is. 

bagging_fraction: the proportion of the sample that is sampled, taking a value 

between 0 and 1. Feeding the model a little fewer data at a time makes it less overfitting 

and allows for better generalization, but the model will train more slowly. 

The above parameters are largely meant to improve the training speed of the model, 

the model accuracy, and the generalization ability of the model. In many circumstances, 

the three are in conflict. High model training speed tends to lead to some loss of 

accuracy. Model accuracy increase may lead to overfitting. The purpose of modeling is 

to obtain a model with as high a precision as feasible without taking a lot of time and 

space and at the same time with generalization capabilities. Consequently, how 

determining the suitable hyperparameter values is of major relevance for the 

comprehensive performance of the model. 

 

4.3 Bayesian optimization algorithm 

The parameters of a machine learning model directly determine the model's efficacy 

and efficiency. Some of these parameters can be approximated via optimization 
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methods, but others, known as hyperparameters, cannot be learned from the input and 

therefore have to be supplied before the model is trained. The RandomForest, XGBoost, 

and LightGBM models all include numerous hyperparameters, and the values of the 

hyperparameters have a large influence on the model’s regression prediction, hence 

hyperparameter optimization is a critical stage in modeling. Random search, grid search, 

genetic algorithm, and Bayesian tuning are among the tuning strategies. Relying on grid 

search to obtain model hyperparameters is highly challenging since it frequently takes 

an inordinate amount of time and server processing resources.  

Bayesian optimization is an excellent method for hyperparameter optimization. Its 

algorithm design makes it feasible to obtain accurate models with both accuracy and 

efficacy. And it is essentially a robust algorithm that is efficient for the stochastic, 

nonconvex, and even discontinuous basis objective functions. Thus, this study applies 

the Bayesian optimization algorithm to optimize the parameters of the tree-based 

machine learning models. 

The Bayesian optimization algorithm finds the optimal value of a function by 

constructing the posterior probability of the output of a black box function with a known 

finite number of sample points. Unlike grid search and random search, the Bayesian 

optimization algorithm framework is sequential, which means the current optimal value 

search is based on the outcomes of previous searches and takes full use of the known 

data.  

The Bayesian optimization algorithm is based on Bayes’ theorem. The principle of 

Bayesian optimization is to find the 𝑋∗ in the hyperparameter space that makes the 

model generalization performance optimal in the number of dimensions 𝑑, which can 

be expressed as: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓(𝑥) 

Bayesian optimization employs a probabilistic surrogate model to simulate the 

present black-box objective function and an acquisition function to estimate the most 

probable position of the best advantage based on the current data. To prevent falling 

into local optima, Bayesian optimization algorithms frequently integrate a degree of 

randomness, making a tradeoff between random exploration and taking values based 
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on the posterior distribution. 

According to Bayes’ theorem, the model parameters are updated in the following 

equation: 

𝑝(𝑓|𝐷1:𝑡) =
𝑝(𝐷1:𝑡|𝑓)𝑝(𝑓)

𝑝(𝐷1:𝑡)
 

𝐷1:𝑡 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑡 , 𝑦𝑡)} 

𝑦𝑡 = 𝑓(𝑥𝑡) + 𝜀𝑡 

Where 𝑓 is the unknown objective function; 𝐷1:𝑡 is the observed training set; 𝑥𝑡 

is the hyperparameter vector; 𝑦𝑡 is the observed value; 𝜀𝑡 is the observed error; 𝑝(𝑓) 

is the prior probability model of 𝑓 ; 𝑝(𝐷1:𝑡|𝑓)  is the likelihood distribution of 𝑦 ; 

𝑝(𝐷1:𝑡)  is the marginal likelihood distribution, and 𝑝(𝑓|𝐷1:𝑡)  is the posterior 

probability model of 𝑓 , indicating the confidence level of the unknown objective 

function rectified a priori by the observed data set. 

The sampling function is the referenced qualification for the Bayesian optimization 

algorithm to acquire the next sample point in the hyperparameter space. In this study, 

expected improvement method is employed as the sample function, which can be 

represented as: 

{
𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓(𝑥)

𝛼(𝑥) = [𝜇(𝑥) − 𝑞+]𝜙(𝑍) + 𝜎(𝑥)𝜑(𝑧)
 

where 𝑥𝑡+1  is the hyperparameter of the evaluation; 𝛼(𝑥)  the objective 

function; 𝜇(𝑥) is the mean value; 𝜎(𝑥)  is the standard deviation value; 𝑞+  is the 

maximum value of the current objective function; 𝜙(𝑍) is the cumulative distribution 

function of the Gaussian distribution, and 𝜑(𝑧) is the probability density function of 

the distribution. 

4.4 Interpretable method: SHAP 

The state-of-the-art TreeExplainer-based SHAP is based on the Shapley value from the 

cooperative game theory, namely, TreeExplainer-based SHapley Additive exPlanations. 

In this paper this approach is used to find important environmental variables for soil 

microbial diversity and to investigate local attribution and interactions between 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/probability-density-function
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variables in the Shannon diversity index predicted by the tree-based machine-learning 

model 

The goal of the variable attribution approach is to explain the model by assigning 

an importance value to each feature used by the model. A linear model can be described 

as: 

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑑𝑥𝑑 

Linear models are considered to be inherently interpretable because they 

summarize the importance of each feature in terms of scalar values. The importance of 

variable 𝑖  for a linear model 𝑓  is 𝜙(𝑓) = 𝛽𝑖 . 𝜙(𝑓)  is called global variable 

attribution, which explains the model in a holistic way. Because the variables in a linear 

model are constrained to have a linear relationship with the model predictions, the 

relationship between that variable and the model output can be described in terms of 

the slope of the variable under sufficient statistics. Nevertheless, in many circumstances, 

we may choose to give a more personalized interpretation, especially for sample-

specific predictions 𝑓(𝑥𝑠), rather than for the model as a whole. As a result, 𝜙𝑖(𝑓, 𝑥𝑠) 

is local variable attribution, which meets 𝜙𝑖(𝑓, 𝑥𝑠) = 𝛽𝑖𝑥𝑖
𝑠, explaining the variable of 

a particular sample 𝑠. 

In practical application scenarios, the relationship between 𝑥𝑠  and 𝑓(𝑥𝑠) 

constructed by machine learning models is generally a nonlinear model that allows for 

complex interactions between variables. Therefore, we no longer have the slope in the 

linear model to summarize the global variables ascribed to 𝜙(𝑓). Instead, it is a very 

good way to utilize the Shapley method to attribute 𝜙𝑖(𝑓, 𝑥𝑠) to local variables to 

explain the model's predictions for a specific sample. 

Shapley value is a method of assigning credits to each player in a cooperative game. 

We proceed via Shapley to acquire the variable contribution to the prediction of 

individual models in the three tree-based machine learning models presented in this 

study. The process can be described as follows. 

𝜙𝑖(𝑣) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))

𝑆⊆𝑁\{𝑖}

 

Where 𝑖  is the instance to be interpreted; 𝑁 = {1, … , 𝑑}  and 𝑆  is the set and 
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subset of variables used in the model, respectively; |𝑁| is the number of the variables 

and 𝑣(𝑆) is the prediction of the subset 𝑆; 

SHAP interprets the predicted output of the model as the sum of the attribute values 

of each individual variable as follows. 

𝑓(𝑥) = 𝜙0 + ∑ 𝜙𝑖𝑥𝑖

|𝑁|

𝑖=1

 

Where 𝑓 is the interpretable model; 𝜙0 denotes the mean value of the prediction 

values and 𝜙𝑖𝑥𝑖 is the SHAP value for variable 𝑖 in sample 𝑥. 

In the tree-based SHAP approach, the imputation of variables can be described 

below. 

𝜙𝑖 =
1

𝑀
∑

1

(𝑀−1
|𝑆|

)𝑆⊆𝑁\{𝑖}

𝐶(𝑖|𝑆) 

where 𝑁 = {1, … , 𝑑} is the set of variables used in the model; 𝑆 is the subset of 

𝑁\{𝑖} ; |𝑆|  is the number of the variables; 𝐶(𝑖|𝑆) = 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)  is the 

contribution of variable 𝑖  to the interpretable model 𝑓 ; We use an approximate 

method to compute the hard-to-compute 𝑓(𝑆) , namely, path-dependent feature 

perturbation algorithm. This perturbation causes the samples to end up dropping to 

different leaf nodes. Thus, passing each path from the root to a leaf node of the tree is 

equivalent to perturbing a subset of the input features. Each leaf node will contain a 

proper proportion of all possible subsets in the set 𝑁. Then the SHAP value calculating 

process can be rewritten as: 

𝜙𝑖 = ∑ ∑
𝜔(|𝑃|, 𝑗)

𝐿𝑗 (
𝐿𝑗−1

|𝑃|
)𝑃∈𝑆𝑗

(𝑃0
𝑖,𝑗

− 𝑃𝑧
𝑖,𝑗

)𝑣𝑗

𝑗∈𝑁

 

Where 𝑆𝑗 is the subset of variables that appear at leaf node 𝑗; 𝑃 is the subset of 

𝑆𝑗 ; 𝐿𝑗  is the path length from the root node to the leaf node 𝑖 . 𝜔(|𝑃|, 𝑗)  is the 

proportion of all subsets of 𝑃 ; 𝑃0
𝑖,𝑗

  and 𝑃𝑧
𝑖,𝑗

  denote the proportion of subsets 

containing and not containing variable 𝑖 in all subsets, respectively. 

The global interpretation of a variable is the mean value of the sum of the absolute 

values of its local interpretations for all samples, which can be considered feature 
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importance as well. 

Additionally, the SHAP values of a variable can be deconstructed into its main 

effects plus its SHAP interaction values with all other variables.  

Similar to the SHAP value, the interactive effects can be further analyzed based on 

the Shapley interaction index from game theory, which enables the separate assessment 

of main and interaction local effects for each instance. Mathematically, the SHAP 

interaction value between 𝑖 and 𝑗 is described as follows. 

𝜙𝑖,𝑗(𝑓, 𝑥) = ∑
|𝑆|! (|𝑁| − |𝑆| − 2)!

2(|𝑁| − 1)!
∇𝑖,𝑗(𝑓, 𝑥, 𝑆)

𝑆⊆𝑁\{𝑖,𝑗}

 

When 𝑖 ≠ 𝑗, and 

∇𝑖,𝑗(𝑓, 𝑥, 𝑆) = 𝑓𝑥(𝑆 ∪ {𝑖, 𝑗}) − 𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆 ∪ {𝑗}) + 𝑓𝑥(𝑆) 

Where 𝑁 = {1, … , 𝑑} is the set of variables used in the model. 

Specifically, considering pairwise variables 𝑖 and 𝑗, the SHAP value of variable 

𝑖 for an instance can be decomposed into three parts. The first part is the main effect, 

representing an individual contribution without any interaction of other input variables. 

In addition, the second part is the interactive effect between the two variables 𝑖 and 𝑗. 

And the third is the interactive effects between variable 𝑖 and all other variables except 

𝑗, namely, the residual. 

 

4.5 Model performance metrics 

The prediction of soil bacterial microbial diversity for long-term fertilization 

treatment is a regression problem. As a result, the RandomForest, XGBoost, and 

LightGBM regression model performances were assessed using the coefficient of 

determination (R Squared, R2), mean squared error (MSE), root mean squared error 

(RMSE), and mean absolute error (MAE), defined as follows. 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 

𝑆𝑆𝑅 = ∑(�̂�𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
=

𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (�̂�𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖)2𝑛
𝑖=1

 

Where 𝑦𝑖 is the observed value, and �̂�𝑖 is the predicted value. 

MSE is the residual squared mean of the observed value and the predicted value, 

and its smaller value indicates better model performance. RMSE is the arithmetic 

square root of the mean of the squared residuals of the observed and predicted values, 

which is sensitive to extreme and minimal values. And this metric can show the degree 

of dispersion of the sample, with smaller values suggesting better model performance. 

MAE is the average of the absolute errors of the observed and predicted values, which 

can better reflect the error of the predicted values. R2 is the ratio of SSR to SST, which 

value ranges from [0,1]. The R2 value closer to 1 means the better the model 

performance.  
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Chapter 5 Results 

5.1 Microbial diversity and community composition 

Table 1 shows the top ten taxa in terms of relative abundance at the phylum level under 

different long-term fertilization treatments. It is noteworthy that in terms of the 

frequency of phylum, the top ten ranked phylum in the control without fertilizer and in 

the treatment with inorganic fertilizer were higher than 90% in all samples. The top 

three in all samples were Proteobacteria, Actinobacteriota, and Myxococcota, with 

frequencies of 0.998, 0.995, and 0.974, respectively.  

Specifically, the relative abundance of Crenarchaeota was 1.68% in the non-

fertilized treatment group and 2.25% in the inorganic fertilized treatment group. These 

results showed that fertilization had a beneficial effect on the growth of Crenarchaeota, 

with the greatest increase in abundance with organic fertilizer alone, followed by 

organic-inorganic mixed fertilizer, and the least increase in abundance with inorganic 

fertilizer.  

At the same time, it was discovered that Chloroflexi was also the most abundant 

taxon after fertilization, with the largest increase of 30.54% with organic-inorganic 

combined fertilization, followed by 13.53% with inorganic fertilization and 5.765% 

with organic fertilization. The taxa whose abundance decreased after fertilization were 

Verrucomicrobiota, Planctomycetota, and Myxococcota, among which 

Verrucomicrobiota was the most sensitive to organic fertilization, with 44.96% 

reduction in abundance by organic fertilization alone and 38.3% reduction by combined 

organic-inorganic fertilization; Myxococcota was also sensitive to the application of 

organic fertilizer, with a reduction of 18.91% (organic fertilizer only), 21.81% (organic-

inorganic mixture) and 8.29% (inorganic fertilizer only), respectively. 

 

Table 1. The top ten taxa in terms of relative abundance of soil bacteria at the phylum 

level under different long-term fertilization treatments.: CK (the control group without 
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fertilization), IF (the inorganic fertilization treatment group), OF (the organic 

fertilization treatment group), and IFOF (the inorganic and organic fertilization 

combined treatment group). 

 Phylum 
Relative 

abundance 
 Phylum 

Relative 

abundance 

CK 

Proteobacteria 23.66% 

IF 

Proteobacteria 25.14% 

Acidobacteriota 17.93% Acidobacteriota 17.14% 

Actinobacteriota 16.33% Actinobacteriota 15.96% 

Chloroflexi 7.53% Chloroflexi 8.70% 

Verrucomicrobiota 5.80% Verrucomicrobiota 5.76% 

Bacteroidota 5.42% Bacteroidota 4.65% 

Planctomycetota 4.83% Planctomycetota 4.39% 

Gemmatimonadota 3.87% Gemmatimonadota 4.22% 

Myxococcota 3.15% Myxococcota 2.89% 

Firmicutes 2.10% Firmicutes 2.57% 

OF 

Proteobacteria 23.13% 

IFOF 

Proteobacteria 22.49% 

Acidobacteriota 16.74% Acidobacteriota 18.78% 

Actinobacteriota 12.11% Actinobacteriota 16.72% 

Bacteroidota 9.95% Chloroflexi 10.84% 

Chloroflexi 7.99% Bacteroidota 4.63% 

Planctomycetota 4.37% Gemmatimonadota 4.23% 

Gemmatimonadota 4.83% Verrucomicrobiota 3.58% 

Crenarchaeota 3.54% Planctomycetota 3.16% 

Firmicutes 3.34% Crenarchaeota 2.62% 

Verrucomicrobiota 3.19% Myxococcota 2.46% 

 

The top ten taxa in terms of relative abundance at the order level under different 

long-term fertilization treatments are shown in Table 2. After fertilization, the relative 

abundance of Rhizobiales, Gaiellales, Chthoniobacterales, Pyrinomonadales, and 
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Solirubrobacterales dropped. Specifically, the relative abundance of Rhizobiales 

decreased by 25.94% with mixed fertilizers, 21.67% with organic fertilizers, and the 

lowest rate of 9.06% with inorganic fertilizers. Gaiellales' response to fertilization is 

also notable. Gaiellales had the biggest decline in relative abundance when only organic 

fertilizer was used, with a decrease ratio of 39.10%, but this taxon had a smaller 

decrease ratio when only inorganic fertilizer and organic-inorganic mixed fertilizer 

were used, with 8.52% and 9.66%, respectively.  

Also, we found that the taxa that significantly increased in relative abundance after 

fertilization were Xanthomonadales and Nitrososphaerales. After the addition of 

inorganic fertilizer, mixed fertilizer, and organic fertilizer, the relative abundance of 

Xanthomonadales increased by 106.31%, 71.15%, and 62.46%, respectively. 

Nitrososphaerales increased in relative abundance by 20.77%, 45.82%, and 96.52%, 

respectively, with inorganic, mixed, and organic fertilizers.  

Relative abundance of Acidobacteriales increased by 23.19% and 29.54% with 

inorganic and mixed fertilizers, respectively, but dropped by 28.69% with organic 

fertilizers alone. Similarly, Gemmatimonadales showed an increase in relative 

abundance when inorganic fertilizers only and mixed fertilizers were applied, with an 

increase of 10.97% and 10.48%, respectively; but a decrease in the relative abundance 

of 11.85% when only organic fertilizers were applied. Frankiales grew in relative 

abundance by 36.37% and 32.58% when inorganic fertilizer was supplied, including 

inorganic fertilizer only and mixed groups, respectively, but decreased by 39.84% when 

just organic fertilizer was applied. Interestingly, Vicinamibacterales was the taxon that 

responded positively to organic fertilization, with relative abundance increasing by 8.42% 

and 19.45% when mixed fertilizer and organic fertilizer were used alone, respectively, 

while relative abundance decreased slightly when inorganic fertilizer was used alone, 

at a rate of 0.12%.  

We also identified the taxon that responded positively only to organic fertilizer 

application only, Chitinophagales, which increased its relative abundance by 54.61% 

with organic fertilizer application only but decreased its relative abundance by 6.93% 

and 27.81% with the addition of inorganic fertilizer and mixed fertilizer, respectively. 
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Further, we found that the effect of fertilization on the high abundance taxon 

Burkholderiales was not significant, and the relative abundance of Burkholderiales all 

decreased slightly when different fertilizers were applied, but the decrease ratios were 

0.52% (inorganic fertilizer application), 1.87% (organic-inorganic mixture fertilizer 

application), and 1.49% (organic fertilizer application). 

Table 2. The top ten taxa in terms of relative abundance of soil bacteria at the order 

level under different long-term fertilization treatments. 

 Order 
Relative 

abundance 
 Order 

Relative 

abundance 

CK 

Rhizobiales 7.002% 

IF 

Burkholderiales 6.946% 

Burkholderiales 6.983% Rhizobiales 6.368% 

Vicinamibacterales 5.172% Vicinamibacterales 5.166% 

Gaiellales 4.548% Gaiellales 4.161% 

Chthoniobacterales 3.759% Gemmatimonadales 3.865% 

Chitinophagales 3.707% Chitinophagales 3.450% 

Pyrinomonadales 3.564% Pyrinomonadales 3.101% 

Gemmatimonadales 3.482% Acidobacteriales 2.970% 

Acidobacteriales 2.411% Chthoniobacterales 2.835% 

Solirubrobacterales 2.193% Xanthomonadales 2.575% 

OF 

Burkholderiales 6.879% 

IFOF 

Burkholderiales 6.852% 

Vicinamibacterales 6.178% Vicinamibacterales 5.608% 

Chitinophagales 5.731% Rhizobiales 5.185% 

Rhizobiales 5.485% Gaiellales 4.109% 

Nitrososphaerales 3.238% Gemmatimonadales 3.847% 

Gemmatimonadales 3.070% Acidobacteriales 3.124% 

Gaiellales 2.770% Pyrinomonadales 2.723% 

Bacillales 2.292% Chitinophagales 2.676% 

Sphingomonadales 2.267% Chthoniobacterales 2.488% 

Pyrinomonadales 2.039% Nitrososphaerales 2.402% 
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In addition, we classified the soil samples into three categories based on pH: acidic, 

neutral, and alkaline soils, with the goal of determining whether there are substantial 

changes in microbial composition in distinct acid and alkaline states, generated 

following long-term fertilization. We found that the top ten phyla of soil microbial 

composition under all three classifications were Proteobacteria, Acidobacteriota, 

Actinobacteriota, Chloroflexi, Bacteroidota, Verrucomicrobiota, Planctomycetota, 

Gemmatimonadota, Myxococcota, and Firmicutes. Among them, Proteobacteria, 

Acidobacteriota, and Actinobacteriota were the top three taxa in terms of relative 

abundance.  

Acidobacteriota had a relative abundance of 17.52% in acidic soils, making it the 

second most common taxon in the total abundance of microbial communities in acidic 

soils. But Acidobacteriota placed third in overall abundance for alkaline and neutral 

soils, with relative abundances of 14.76% and 16.89%, respectively. Meanwhile, the 

total abundance of Proteobacteria taxa in acidic soils was 25.47%, greater than in 

neutral (21.59%) and alkaline (22.43%) soils. However, the relative abundance of 

Actinobacteriota in alkaline soils was highest (20.03%). The relative abundance of 

Actinobacteriota in acidic and neutral soils was 15% and 17.73%, respectively.  

At the same time, we found that Gemmatimonadota was more abundant in alkaline 

soils with a relative abundance of 4.8%, in contrast to 3.73% and 3.82% in acidic and 

neutral soils, respectively. Bacteroidota taxa preferred acidic and neutral soils with a 

relative abundance of 5.8% and 6.19%, respectively, but in alkaline soils, the relative 

abundance was 3.9%. We further analyzed the microbial composition of different pH 

soils at the order level.  

 

Table 3. The top ten taxa in terms of relative abundance of acid, Neutral, and alkaline 

soil bacteria at the order level. 
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 Order 
Relative 

abundance 
 Order 

Relative 

abundance 

Acid 

Burkholderiales 7.284% 

Neutral 

Burkholderiales 6.346% 

Rhizobiales 6.655% Vicinamibacterales 6.119% 

Vicinamibacterales 4.346% Rhizobiales 5.591% 

Gaiellales 4.025% Gaiellales 4.347% 

Acidobacteriales 3.691% Chitinophagales 3.662% 

Gemmatimonadales 3.579% Gemmatimonadales 3.360% 

Chitinophagales 3.512% Pyrinomonadales 3.228% 

Chthoniobacterales 3.319% Chthoniobacterales 2.805% 

Pyrinomonadales 2.945% Bacillales 2.242% 

Sphingomonadales 2.570% Solirubrobacterales 2.064% 

Alkaline 

Nitrososphaerales 8.180% 

Vicinamibacterales 7.230% 

Burkholderiales 6.353% 

Gaiellales 5.229% 

Rhizobiales 5.122% 

Gemmatimonadales 3.365% 

Solirubrobacterales 2.894% 

Pyrinomonadales 2.337% 

Micrococcales 2.277% 

Chitinophagales 2.267% 

 

The top ten taxa in terms of relative abundance of acid, Neutral, and alkaline soil 

bacteria at the order level are shown in Table 3. Interestingly, we discovered that the 

percentage of Burkholderiales and Rhizobiales in acidic soils was higher than in neutral 

and alkaline soils. Moreover, Acidobacteriales taxa were abundant in acidic soils with 

a relative abundance of 3.691%, but only 0.7% and 1% in alkaline and neutral soils, 

respectively. Similarly, the Ktedonobacterales taxon was 1.8% in acidic soils but only 
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0.53% and 0.45% in alkaline and neutral soils, accordingly. Chthoniobacterales were 

the favored taxon in acidic and neutral soils, with relative abundances of 3.332% and 

2.8%, respectively, while alkaline soils had a relative abundance of only 0.93%.  

It is worth noting that some taxa prefer to grow in alkaline soils, such as 

Nitrososphaerales, which has the highest relative abundance in alkaline soils (8.2%), 

but only 0.98% and 1.996% in acidic and neutral soils. The relative abundance of 

Gaiellales was 5.2% in alkaline soils and 4.02% and 4.35% in acidic and neutral soils, 

respectively.  

Micrococcales, Pirellulales, and Thermomicrobiales were also taxa that preferred 

alkaline soils and their relative abundance in alkaline soils was more than double that 

of neutral and acidic soils. The relative abundance of Cytophagales taxa in neutral and 

alkaline soils was 1.12% and 1.16%, respectively, whereas it was just 0.07% in acidic 

soils. 

 

 

Figure 5. Stacked histograms of the relative abundance of taxa at the phylum level for 

each soil sample. The composition of each sample forms a vertical bar and is presented 

in grouped clusters based on the type of fertilizer applied. 
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In addition to the exploration of the changes in soil microbial species abundance 

under different fertilization treatments, we also evaluated microbial alpha diversity for 

each sample. Obviously, Figure 6 indicates that the four groups show almost identical 

patterns for the different microbial alpha diversity indexes. Both the Shannon index and 

the inverse Simpson index of soil microbial alpha diversity were considerably 

decreased after the application of inorganic fertilizers. The Shannon diversity index did 

not change significantly for soils with just organic fertilizer treatment, but the inverse 

Simpson diversity index did. In addition, microbial alpha diversity was reduced to 

varying degrees in soils with a combination of organic and inorganic fertilizers. In 

general, fertilizer application to the soil had an effect on bacterial alpha diversity, but it 

is crucial to highlight that the levels of the effect differed depending on the fertilizer. 

 

 

Figure 6. The boxplots of soil microbial alpha diversity for three different fertilizer 

treatment groups and the control group, containing Shannon diversity index (a) and 

inverse Simpson diversity index (b). Significance tests were performed separately for 

each fertilization group and control group. P values are indicated by asterisks: *P≤0.05; 

**P≤0.01; ***P≤0.001; ****P≤0.0001. 

 

Generally, fertilization practices would change soil microbial composition and 

diversity. Inorganic fertilization decreased soil microbial diversity significantly, while 

the addition of organic fertilization did not show increases in the diversity indexes. 
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5.2 Comparison of microbial co-occurrence networks under 

different fertilization treatments  

Based on the correlation and significance of the ASVs, microbial co-occurrence 

networks were constructed for the four groups of inorganic fertilizer, organic fertilizer, 

organic-inorganic combined fertilizer, and no fertilizer. Figure 7 depicts the different 

soil microbial co-occurrence networks under these four treatments. Each point 

represents a bacterial microorganism, and the edges between points indicate that there 

is a strong correlation between pairs of points that exceeds the RMT method's threshold, 

and the P-value after the FDR method is less than 0.05, denoting that the relationship 

between pairs of points is significantly strong. The color of the points is used to identify 

which modules they belong to. It is worth noting that the colors of the points reflect 

different modules in different co-occurrence networks, implying we need to analyze the 

module composition of each co-occurrence network independently. 
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Figure 7. Soil microbial co-occurrence networks, which were constructed based on 

different fertilization treatment samples, (a) denotes the control group, (b) denotes the 

inorganic fertilization group, (c) denotes the inorganic-organic combined fertilization 

group, and (d) denotes the organic fertilization group. 

 

The co-occurrence network with organic fertilizer application and organic-

inorganic blended fertilizer application is obviously more complex than the co-

occurrence network without fertilizer application and with inorganic fertilizer only, as 

evidenced by the co-occurrence network with organic fertilizer and organic-inorganic 

blended fertilizer application having a greater number of modules. Numerically, the 

degree of modularity of the co-occurrence network was 0.208 for the control group that 

did not receive fertilization, 0.204 for the treatment group that received only inorganic 

fertilization, 0.607 for the treatment group that received inorganic-organic mixed 

fertilization, and 0.738 for the treatment group that received only organic fertilization. 

Furthermore, the number of points in the co-occurrence network of both the organic-

inorganic mixed fertilizer treatment group and the organic fertilizer treatment group 

was greater than that of the control group and the inorganic fertilizer treatment group, 

particularly the number of points in the co-occurrence network of the organic fertilizer 

treatment group (1509), which was 62.4% and 79.0% greater than that of the control 

group (929) and the inorganic fertilizer treatment group (843), respectively. This 

supports recent findings that organic fertilizer application might increase the 

complexity of soil networks. 

Figure 8 depicts the degrees, eigen centrality parameters, and network destruction 

resistance of the microbial co-occurrence network for each of the four treatments. 

Furthermore, the average degree of the cooccurrence network in the inorganic fertilizer 

and non-fertilizer treatment groups was 248.9 and 278.2, respectively, which were 

greater than the average degree of the cooccurrence network in the organic fertilizer 

and inorganic-organic mixed fertilizer treatment groups, 196.6 and 106.8, respectively. 

Also, the graph density of the inorganic fertilizer (0.296) and no fertilizer (0.3) 

treatment groups was higher than that of the organic fertilizer (0.13) and combined 
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inorganic-organic fertilizer (0.106) groups. Furthermore, Eigenvector centrality 

considers both the weight magnitude of the corresponding connections of the points 

and the centrality of the points' neighboring nodes, i.e., nodes connected to the central 

node have greater centrality than those connected to the secondary nodes. Figure 8 (b) 

clearly shows the distribution of Eigenvector centrality in the four co-occurrence 

networks, indicating that the control and inorganic fertilizer treatment groups have 

higher values than the organic fertilizer treatment group, and are significantly higher 

than the inorganic-organic mixed fertilizer treatment group. The trends of Eigenvector 

centrality, mean degree size and plot density could indicate that whether organic 

fertilizer was applied or not had a great influence on the connectivity of the soil 

microbial co-occurrence network. 

The natural connectivity index depicts the degree of connectedness. The trend of 

the network's natural connectivity may be fitted linearly during the random removal of 

500 points one by one from the four individual co-occurring networks, as shown in 

Figure 8 (a). However, the slope of the network's natural connectedness for the no-

fertilizer and inorganic fertilizer-only groups, both approximately 0.45, is greater than 

that of the organic-inorganic combined fertilizer and organic fertilizer groups, both 

about 0.2. In the case of random point deletion, the natural connectivity of the network 

is naturally affected. The magnitude of this effect, however, may be described by the 

slope, and the assumption that networks with a lower slope have greater resilience to 

destruction and stability is credible. In conclusion, investigations on the natural 

connection of microbial co-occurrence networks in terms of resistance to destruction 

illustrate that networks with organic or organic-inorganic blended fertilizers are more 

stable.
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Figure 8. eigenvector centrality (b) and degree (c) for the three treatment groups and 

the control group. The point represents the point that appears in the co-occurrence 

network, and the color of the point indicates which group of co-occurrence networks it 

is in. (a) shows the process of natural connectivity resistance detection for the four co-

occurrence networks. 

 

We found that different long-term fertilization induces the soil microbial 

community to evolve separately, with more highly modular networks after the addition 

of organic fertilization. At the same time, the networks of organic fertilization were 

more stable, which means that the long-term use of organic fertilization would make 

the soil microbial community more connective and stable. 

 

5.3 Soil microbial community function 

The FAPROTAX method allows functional annotation of amplicon sequencing data. 

And the FAPROTAX functional annotation of soil bacterial communities yielded 92 

functional community groupings. We classified these functional groups into four 

categories in order to investigate the functional composition of soil microbial 
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communities under varied fertilization treatments and climatic circumstances. The four 

functional groups are those associated with the carbon cycle, those associated with the 

nitrogen cycle, those associated with the sulfur cycle, and other functions. Here we 

focus on the first three functions related to the material cycle, and the functional 

annotation results are shown in Figure 9.  

Functions related to the carbon cycle include chemoheterotrophy, aerobic 

chemoheterotrophy, fermentation, hydrocarbon degradation, methylotrophy, aromatic 

compound degradation, phototrophy, aromatic hydrocarbon degradation, methanol 

oxidation, photoheterotrophy, oxygenic photoautotrophy.  

In the carbon cycle, chemoheterotrophy, aerobic chemoheterotrophy and 

photoheterotrophy were the three functions that appeared with the highest frequency. It 

is worth noting that soil microbial samples treated with inorganic fertilizer had a high 

abundance in all three functions. In particular, when inorganic fertilizer was applied to 

the soil, the chemoheterotrophy function increased by roughly 11.8% as compared to 

the soil without fertilizer. Yet, for both organic and organic-inorganic fertilizer 

combinations, the function of their chemoheterotrophy did not differ significantly from 

the control group. Interestingly, for the aerobic chemoheterotrophy function, these soils 

showed the same pattern across fertilization treatment groups, i.e., a 10.2% increase in 

functional abundance with inorganic fertilization, with little difference between the 

other two fertilizers and no fertilization. Yet, soils treated solely with organic fertilizers 

exhibited distinct functions, including fermentation, hydrocarbon degradation, and 

methylotrophy. These three carbon cycle functions were significantly higher in soil 

samples fed with only organic fertilizers than in soil samples fertilized with no fertilizer, 

inorganic fertilizer, or organic-inorganic blends. The organic-inorganic fertilizer 

combination appears to be distinguished in the carbon cycle function as aromatic 

compound degradation and phototrophy function that is significantly lower than the 

other three cases, but the enhancement of methanol oxidation function brought by the 

organic and inorganic fertilizer combination is not available in the other cases. 

Specifically, it was 40.0%, 12.5%, and 6.6% greater, respectively, than the control, 

inorganic fertilizer application, and organic fertilizer application groups. 
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For the nitrogen cycle, the functions associated with the nitrogen cycle include 

nitrification, denitrification, nitrite ammonification, nitrite respiration, aerobic 

ammonia oxidation, aerobic nitrite oxidation, nitrate reduction, nitrate respiration, 

nitrogen respiration, and nitrogen fixation.  

As seen in Figure 9, the four most frequent functions in the nitrogen cycle were 

nitrification, denitrification, nitrite respiration, and aerobic ammonia oxidation. It is 

noteworthy that denitrification, nitrite respiration, and nitrogen fixation decreased after 

fertilization, regardless of the type of fertilizer applied. After applying only inorganic 

fertilizers to the soil, nitrate respiration increased by 54.9% compared to the non-

fertilizer treatment group, while this value increased to 155.5% and 101.6% when the 

comparison was made with organic-inorganic fertilizer mix and organic fertilizer. 

Nitrogen respiration followed the same pattern as nitrate respiration. Also, when 

compared to the other three treatment groups, the treatment group with solely organic 

fertilizers had the highest levels of nitrification, nitrite ammonification, aerobic 

ammonia oxidation, and aerobic nitrite oxidation. Surprisingly, there was a similar but 

lower level of variation in the soils mixed with organic and inorganic fertilizers for 

these four nitrogen cycle functions, i.e., for these four functions, the organic-inorganic 

fertilizer mix showed an increase compared to the no fertilizer group, but the increase 

was less than that of the soils with only organic fertilizers. 

Finally, sulfur cycle-related functions include sulfate respiration, respiration of 

sulfur compounds, sulfur respiration, thiosulfate respiration, and dark oxidation of 

sulfur compounds. It is worth noting that, with the exception of dark oxidation of sulfur 

compounds, the organic fertilizer-only group had the highest values of sulfur-related 

functions among the four treatment groups. However, the organic fertilizer soil had the 

second highest functional level of dark oxidation of sulfur compounds and was only 

24.1% lower than the highest value holder, organic-inorganic mixed fertilizer soil, 

despite the fact that the organic fertilizer soil was about 78.7% higher than the control 

group. 

Consequently, these results suggested that applying different fertilizers to the soil 

alters not just the soil microbial community, but also the potential functions associated 
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with soil nutrient cycling. 

 

Figure 9. The heatmap of soil microbial functions under different fertilization 

treatments and different climatic zones, and the abundance of each function occurring 

in soil microbial samples. 

 

5.4 Prediction of soil microbial diversity under different 

fertilization treatments 

Prediction of soil bacterial microbial diversity under different fertilization treatments is 

a regression problem. In this study, we adopted five efficient tree-based machine-
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learning models: RandomForest, XGBoost, and LightGBM. We used a Bayesian 

optimization algorithm to perform 500 iterations of each model hyperparameter at five 

different starting positions. This approach allows the optimal combination of model 

hyperparameters to be obtained over an estimable time horizon, allowing each model 

to compare the accuracy of each model for test machine detection while maximizing 

the model's benefits. The optimal hyperparameters for each model are shown in Table 

4 below. 

 

Table 4. The optimized hyperparameters of tree-based models 

RandomForest 

n_estimators 911 

min_samples_split 5 

min_samples_leaf 8 

max_depth 5 

XGBoost 

booster 'gbtree' 

gamma 3.36 

learning_rate 0.01 

max_depth 3 

min_child_weight 18 

n_estimators 969 

reg_alpha 0 

LightGBM 

boosting_type 'gbdt' 

n_estimators 727 

max_depth 3 

num_leaves 6 

learning_rate 0.01 

reg_alpha 18.41 

reg_lambda 14.18 
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We evaluate model performance using four scores: R2, MSE, RMSE, and MAE. 

These four scores are obtained using distinct data calculation formulas and have 

different performance in different situations, each with its own set of advantages and 

limitations, which can help us understand the model's prediction performance in many 

aspects and more accurately. For example, RMSE is very sensitive for extreme data, 

which is sometimes noisy data. Nevertheless, MAE, defined as the average absolute 

value of the difference between the observed and predicted values, is much more robust 

to outliers. Therefore, we believe that when we compare the prediction results of a 

machine learning model trained on the training data set to the actual results on the test 

data set, the prediction values that are closer to the real values are better. That is, the 

machine learning model that predicts more accurately is better. It is vital to note that 

the model performs better when the R2 value is close to 1. Smaller MSE, RMSE, and 

MAE values, on the other hand, indicate that the model performs better. The model 

metrics are shown in Table 5 below. 

 

Table 5. The model metrics of tree-based models 

 R2 MSE RMSE MAE 

RandomForest 0.501 0.172 0.414 0.259 

XGBoost 0.542 0.146 0.382 0.251 

LightGBM 0.534 0.149 0.386 0.252 

 

RandomForest does not perform as well as XGBoost and LightGBM in general, 

and its scores are lower than those of the other two GBDT-based models invented later 

than it. The regression model is trained by minimizing the root mean square error 

(RMSE) between observed and predicted microbial soil microbial diversity. 

Furthermore, the MAE scores of these two exact gradients boosting decision tree 

models are nearly identical. As a result, XGBoost was chosen as the final model for the 

following variable imputation effect analysis as the best-performing model. 
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5.5 Revealing important environmental variables for 

microbial diversity in long-term fertilization soils 

The SHAP approach is employed to interpret the contribution of model variables to a 

tree-based machine learning model. SHAP is a novel and effective machine learning 

interpretation method for analyzing the contribution of machine learning model 

predictions. SHAP can quantitatively indicate the local contribution of predictors for 

each sample. Variables having high absolute SHAP values are critical for the model's 

prediction accuracy. The models were randomly reconstructed using twenty distinct 

random seeds to eliminate bias due to randomness, and the SHAP list for each model 

was counted. We achieved a robust global variable importance result. 

Figure 10 shows the importance of the SHAP global variables for XGBoost 

previously trained for microbial diversity regression prediction. The results are sorted 

from greatest to smallest by the median. Clearly, the most crucial variable is soil organic 

carbon. Soil organic carbon (SOC), total soil nitrogen (TN), and soil pH value were 

important in terms of soil physicochemical properties from various perspectives; as 

for fertilization, the type of fertilizer applied and the amount of inorganic fertilizer 

applied were very important in determining diversity; from the climatic perspective, 

mean annual temperature and mean annual precipitation were also important to a large 

extent; I n terms of sampling conditions, sample depth and elevation of sampling sites 

are also critical for the model to effectively predict diversity. 
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Figure 10. The importance of model variables sorted in descending order. The value 

was calculated using the absolute SHAP values of the distinct models constructed 

randomly for the full sample of 20 times. 

 

The local SHAP values of the regression model can quantify whether a variable 

has a positive or negative effect on the predicted outcome, as well as the magnitude and 

volatility of the effect value across different ranges of variable values. Three significant 

factors were considered here: fertilizer application duration, soil organic carbon (SOC), 

and soil total nitrogen (TN). The predicted attributed SHAP values based on the 

variables for all samples are shown in the scatter plot Figure 11. As shown in Figure 11 

(a), when the soil was fertilized for less than about 20 years, the SHAP values for the 

duration of fertilization were negative, indicating that the effect of fertilization 

application duration was negative. Yet, when the fertilizer application period exceeded 

20 years, the fertilizer treatment had a positive effect on microbial diversity. Noticeably, 

for the same duration of fertilizer application, the SHAP values were taken differently, 
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and intuitively, the distribution of SHAP values at the same horizontal coordinate on 

the image was wide rather than narrow. This is an effect of the interaction of other 

variables for fertilization duration. For example, the same duration of fertilizer 

application in acidic and alkaline soils can lead to different effects of fertilizer duration, 

or there can be differences in the magnitude of the effect of the same duration of 

fertilizer application under different soil physicochemical conditions. Figure 11 (b) 

shows that Soil organic carbon content has mostly positive effects on soil microbial 

diversity. Specifically, there is a tipping point in the SHAP value of SOC around its 

SOC value of 10, implying that at smaller values than the tipping point, the soil is 

deficient in organic matter nutrients, which inhibits the enhancement of soil microbial 

diversity. However, if the SOC content of the soil reaches a healthy level, i.e., above 

the tipping point, the organic matter content of the soil has a positive effect on the 

maintenance of microbial diversity in the soil. In the same way, Figure 11 (c) shows 

that soil total nitrogen content is mostly positive for soil microbial diversity, which is 

consistent with the understanding that soil total nitrogen content represents, to some 

extent, the nutrient level of the soil. Consistent with the results for SOC, there was a 

tipping point in the trend of SHAP values for soil total nitrogen. This means that when 

the total nitrogen concentration of the soil falls below about 1, the soil is nitrogen-

depleted and not conducive to the growth of soil microbial diversity. When the 

soil total nitrogen content surpasses the tipping point, the soil total nitrogen has a 

positive effect on the regression model's predictions, regardless of the amount beyond 

which it is exceeded. 
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Figure 11. Scatter plots of the values of soil organic carbon and soil total nitrogen and 

their corresponding SHAP values for all samples at the time of fertilization treatment. 
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5.6 Environmental variables’ main effect and pairwise 

interaction effects of soil microbial diversity. 

One of the most important advantages of the game-theoretic-based SHAP algorithm is 

that it outputs local SHAP effects for each individual sample of the variables for each 

of the three model variables we have chosen. Furthermore, the effect of a single variable 

can be decomposed into the variable's direct effect and an indirect effect based on the 

variable-variable interaction. When studying the effects of pairs of variables, the SHAP 

effect of the specified variable can be split into a sum of three components. These three 

components are SHAP main effect (i.e., the effect of the specified variable alone); 

SHAP interaction effect (i.e., the quantification of the interaction effect between the 

specified variable and another variable, equally, the change in the effect of the presence 

or absence of the other variable on the effect of this variable); and SHAP residual effect 

(i.e., the sum of the effects of all variables other than these two variables on the specified 

variable).  

Figure 12 depicts the effect of pH on soil microbial diversity, as well as the 

interaction effect of nitrogen fertilizer application on the SHAP value. of pH. The four 

subplots in Figure 12 represent the SHAP effect of pH; the SHAP main effect of pH; 

the interaction effect of pH and nitrogen fertilizer application; and the residual effect of 

pH, respectively. It can be seen from Figure 12 (a) that acidic soil has an inhibitory 

effect on microbial diversity, while alkaline soil has a promoting effect on that. Figure 

12 (b) shows the main effect of pH on soil microbial diversity. It is clear that this 

main effect is much narrower than the SHAP of pH, which is also consistent with the 

principle. Figure 12 (c) illustrates that a low pH (< 5) nitrogen fertilizer application is 

advantageous to soil microbial diversity. Figure 12 (d) supports the results in (c) 

because the residual effect of pH is unstable, i.e., the SHAP residuals are distributed in 

different positions over the range of pH values. This proves that the conclusions we 

obtained earlier are robust. 
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Figure 12. The effect of pH on soil microbial diversity and the interaction effect 

between nitrogen fertilizer application and pH. 

 

Figure 13 depicts the interaction effect of soil organic carbon and the amount of 

nitrogen fertilizer placed on soil organic carbon on the SHAP value of soil 

microbial diversity. Figures 13 (a) and (b) show that, like pH, increasing soil organic 

carbon concentration has a positive influence on soil microbial diversity. From Figure 

13 (c), the negative effect of the interaction between nitrogen fertilizer application and 

soil organic carbon was due to the excessive application of nitrogen fertilizer. In 

addition, as shown in Figure 13, a moderate application of nitrogen fertilizer can have 

a favorable influence on microbial diversity. It should be highlighted, however, that 

moderate nitrogen fertilizer application was a positive effect on pH and soil organic 

carbon, which interacted with diverse variables. 



 64 

 

Figure 13. The effect of soil organic carbon on soil microbial diversity and the 

interaction effect between nitrogen fertilizer application and soil organic carbon. 

 

Figure 14 shows the SHAP values of the annual mean temperature and the SHAP 

interaction values between pH and annual mean temperature on the XGBoost model. 

The effect of annual mean temperature on soil bacterial microbial diversity was divided 

by 14°C, as shown in Figure 14 (a), with environments less than 14°C having a negative 

effect on soil microbial diversity and environments greater than 14°C having a positive 

effect on soil microbial diversity. Also, at a cut-off of about 14 degrees Celsius, more 

acidic soils in soils less than 14 degrees Celsius have a beneficial effect on the SHAP 

values of the annual mean temperature. This beneficial effect is offset by a more pH-

rich environment in soils above 14°C. Additionally, Figure 14 (d) reveals that for the 

SHAP values of annual mean temperature, the residual variables other than annual 

mean temperature and pH are still somewhat unstable, indicating the validity of our 

findings. This may be due to the fact that the ambient temperature affects the soil 

temperature to some extent. Different microorganisms have their own temperatures 

adapted for growth and reproduction, which directly affects microbial diversity. 

Furthermore, variations in soil temperature alter the activity of numerous enzymes in 
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the soil, resulting in changes in the function of the soil microbial community and thus 

indirectly influencing soil microbial diversity. 

 

 

Figure 14. The effect of annual mean temperature on soil microbial diversity and the 

interaction effect between soil pH and annual mean temperature. 

 

Chapter 6 Discussion 

6.1 Soil microbial community composition and functional 

composition under different fertilization treatments 

Here, we used a comprehensive meta-analysis approach to explore the microbial 

community composition and diversity under different long-term fertilization 

managements. We also studied the microbial community pattern under different soil pH 

conditions to investigate the potential response of typical taxa. Large differences in the 

soil microbial community composition were determined among three commonly 

employed fertilization practices. This is not surprising, since the response of the relative 
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abundance and diversity of soil microbial communities is determined by their own 

biochemical characteristics, metabolic adaptations, and ecological selection, which are 

closely linked to the physical and chemical properties of the soil under different 

fertilization practices (Geisseler and Scow 2014). We provided a macroscopic view of 

integrating global studies for a more universal conclusion. 

After the long-term application of inorganic fertilization, the diversity of the soil 

bacterial community decreased, which is consistent with the findings of previous 

studies (Larkin, Griffin et al. 2010). There may be several reasons for this phenomenon. 

Firstly, the addition of NH4
+ may promote the procession of nitrification, which leads 

to the release of H+, thus increasing soil acidification with the decrease of soil 

pH(Geisseler, Linquist et al. 2017). When soil pH changed to acid status, it would bring 

negative effects on the growth of soil microorganisms. Secondly, it has been shown that 

the application of inorganic fertilization might increase the availability of nitrogen in 

the soil, which would decrease the diversity of the soil microbial community indirectly 

(Zeng, Liu et al. 2016). Thirdly, the application of inorganic fertilization might 

stimulate the growth of some specific taxa, then the evenness would get lower, which 

finally causes lower bacterial diversity (Hartmann, Frey et al. 2015). Besides, the results 

of SHAP analysis showed that the amount of inorganic fertilization was the third most 

important influencing factor affecting the soil microbial diversity, which means that 

inorganic fertilization could strongly influence the diversity index with a negative effect. 

However, we found that the relative abundance of some taxa was elevated in soils with 

long-term inorganic fertilizer application, such as Xanthomonadales and 

Acidobacteriales. The positive response of Xanthomonadales to inorganic fertilizer 

application was reported in many studies, for example, a significant decrease in soil 

bacterial diversity and a significant change in bacterial composition at the phyla level 

was reported in a field with long-term inorganic fertilizer application in the USA, while 

among all the dynamic taxa, Xanthomonadales was one of the most abundant taxa 

(Campbell, Polson et al. 2010). The long-term inorganic fertilization practices were 

found to result in significantly different bacterial community composition with a higher 

relative abundance of some acidotolerant taxa, for example, Acidobacteriales, which 
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could respond positively to the decrease of soil pH (Megyes, Borsodi et al. 2021). 

Meanwhile, members of Xanthomonadales and Acidobacteriales were demonstrated to 

play key roles in exchanging nutrients among bacterial species by the ability of 

degrading hydrocarbons, they could utilize various carbon substrates and survive in 

nutrient-prone or low-nutrient areas, so the higher abundance of Xanthomonadales and 

Acidobacteriales under organic fertilization also agreed well with the results of our 

analysis in the functional annotation of the species (Figure 9), which showed that the 

functions related to carbon cycling, especially chemoheterotroph, were higher under 

inorganic fertilization than the un-fertilized treatments and organic fertilization 

treatments. 

Microbial diversity under long-term organic fertilization and combined 

fertilization did not show trends of increase, which were in accordance with previous 

studies. While the addition of organic fertilization significantly increased the proportion 

of some taxa, including Chitinophagales, Vicinamibacterales. Chitinophagales were 

identified as bioindicators of the environment with high available phosphorous and 

nutrients (Mason, Eagar et al. 2021). Some studies also demonstrated that the relative 

abundance of Chitinophagales was positively correlated with the increasing pH, so it 

could be concluded to the facts that the addition of organic fertilization (including the 

organic fertilization treatments and organically combined with inorganic fertilization 

treatments) improves the buffering capacity of soil pH. Meanwhile, it is worth noting 

that Chitinophagales were reported to survive in the high concentration of 

aminoglycosides antibiotics, which means that the addition of manure might bring some 

antibiotic-resistant bacteria into the soil (Deng, Mao et al. 2022). However, some 

studies demonstrated that the microorganisms from manure could not live in the soil 

for a long time. Our finding provided a view that the existence of antibiotic resistance 

bacteria might be stimulated by the antibiotic pressure under lasting organic fertilization. 

Some members of Vicinamibacterales have been proven to solubilize phosphate in the 

soil, which could increase the available phosphorous in the soil and promote plant 

growth (Wu, Rensing et al. 2022). In future work, we may further focus on the isolation 

and identification of phosphorus-solubilizing bacteria in soil by long-term fertilization 
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in order to explore a more effective transformation of phosphorus. The results in 

FAPROTAX also indicated that the functional microbial group of sulfate respiration 

and respiration of sulfur compounds were significantly higher than the un-fertilized 

group, which showed great potential in the functional microbial communities to be 

further identified and utilized under long-term organic fertilization and co-fertilization. 

6.2 Microbial co-occurrence networks of different types of 

fertilization treatments 

In microbial co-occurrence networks, species grouped in the same module are 

highly interconnected with each other, and species in the same module interact with 

each other more frequently than those with microorganisms located in other modules. 

The modularity of the soil microbial network under organic fertilization (both only 

organic fertilization treatments and co-fertilization treatments) is higher than that of the 

un-fertilized and chemical fertilization treatments (Figure 7 (a) (b) (c) (d)). Since 

modules can be explained as ecological niches for microorganisms, we found that the 

application of organic fertilizers leads to a more pronounced differentiation of microbial 

ecological niches, perhaps due to the use of complex nutrients selectively enriching 

microbes with specific functions, which is in good agreement with our findings in the 

functional annotation part (Figure 9). Meanwhile, we found that the stability of co-

occurrence networks performed well under organic fertilization. To this end, we can 

deduce that the soil networks under organic fertilization assign more modules for 

various functions, and the networks owned stable interaction after long-term continuous 

fertilization, which is consistent with previous studies (Ling, Zhu et al. 2016). 

6.3 Feasible soil microbial diversity prediction and 

contribution analysis by tree-based machine-learning models 

and SHAP approach 

As our meta-analysis was based on various studies, it may bring cascading effects 
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on the analysis of soil microbial patterns. To understand comprehensively how 

environmental variables could influence soil microbial diversity directly and indirectly, 

we performed a contribution analysis by tree-based machine-learning models and used 

an interpretable SHAP analysis. We ranked and analyzed the potential influence of a 

large number of factors including climate conditions, soil physical and chemical 

properties of samples, and sequencing conditions. 

We found that the amount of nitrogen addition should be determined by soil pH 

and soil organic carbon, as these environmental variables were various under long-term 

fertilization. For example, the addition of nitrogen fertilization was believed to suppress 

the soil microbial diversity, however, we found that when it was considered to add into 

a high SOC concentration soil, the negative influence would change into a positive 

influence. A meta-analysis of the influence of long-term nitrogen addition to soil 

diazotroph community showed consistent results (Zheng, Xu et al. 2023). They found 

that the negative effect of nitrogen fertilization addition on the diversity of nitrogen-

fixing microbial taxa diminished with increasing soil organic carbon, and explained that 

this may be due to the presence of more potential carbon energy driving microbial 

nitrogen fixation at higher organic carbon concentrations and the fact that high organic 

carbon concentrations would ensure the carbon and nitrogen stoichiometric balance 

which nitrogen-fixing microbes themselves need to maintain. Therefore, our study also 

needs to be further refined, and we need to explore the specific mechanisms of these 

interactive factors.  

 

Chapter 7 Conclusion 

In this thesis, we outline the significance of soil microbes within the ecosystem and the 

related research background. Data from 10308 long-term fertilization publications from 

103 publications worldwide were collected, including 16S rRNA amplicon sequencing 

and environmental metadata.  Then, we performed data downloading, data 

processing, and data merging for all 16SrRNA amplicon data to obtain a large species-
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annotated table of soil bacteria. We also compared the effects of different fertilizer types 

on soil microorganisms, including species composition, microbial alpha diversity, and 

microbial co-occurrence networks. Finally, we proposed using three tree-based 

machine learning models, RandomForest, XGBoost, and LightGBM, in conjunction 

with the interpretable machine learning method SHAP, to predict and attribute soil 

microbial Shannon diversity under various fertilization treatments. The main 

conclusions are as follows: 

(1) Through biochemical processing and statistical analysis of 10308 soil samples from 

long-term fertilizer application experiments, we found patterns of changes in soil 

microbial community composition after the long-term application of various fertilizers. 

And by exploring the significantly changed species, we analyzed their significance in 

terms of their microbial preferences and functions. Furthermore, we evaluated the alpha 

diversity of soil bacteria and discovered that it was significantly lower in samples with 

inorganic fertilizer treatment to the control group without fertilizer application. 

FAPROTAX functional annotations were also performed for soil microorganisms in 

different fertilization treatments. Moreover, the functional intensity of the biogenic 

elemental cycle, including carbon, nitrogen, and sulfur, was estimated under different 

fertilization treatments. 

(2) By calculating the correlation between microbes and the P-value after FDR 

adjustment, and after filtering with a random matrix theory threshold, this paper 

obtained the microbial co-occurrence network after three different long-term fertilizer 

treatments and the control group without fertilizer. The study discovered that using only 

organic fertilizer or organic-inorganic combined fertilizer resulted in a more modular 

microbial network with more diversified modules. In this article, 500 random node 

deletions were performed on each of the four constructed networks, with the changes 

in natural connectedness recorded and fitted. The module destruction resistance test 

results were found to be close to linear for all three treatments, with the destruction 

resistance of the network with organic fertilizer and organic-inorganic combined 

fertilizer application is higher. 

(3) In addition, we innovatively build three tree-based machine learning models in 
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combination with the interpretable algorithm SHAP and optimize each of these models 

with hyperparameters through plain Bayesian optimization. After obtaining the best-fit 

models, we performed local and global quantitative attribution of variables for model 

prediction using the game-theoretic-based Shapley value and used 20 randomized 

construction experiments to identify the three most important predictors of soil bacterial 

Shannon diversity: soil organic carbon, inorganic fertilizer application amount, and 

sampling depth. To investigate the extent of the interaction between variables in the 

local contribution, we calculated the SHAP interaction value. As a result, the interaction 

between the amount of nitrogen fertilizer applied and the soil organic carbon and soil 

pH, respectively, was revealed. 
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