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Abstract

In this paper, we start from the no-arbitrage constraints in option pricing and develop a novel

hybrid gated neural network (hGNN) based option valuation model. We adopt a multiplicative

structure of hidden layers to ensure model differentiability. We also select the slope and weights

of input layers to satisfy the no-arbitrage constraints. Meanwhile, a separate neural network

is constructed for predicting option-implied volatilities. Using S&P 500 options, our empirical

analyses show that the hGNN model substantially outperforms well-established alternative mod-

els in the out-of-sample forecasting and hedging exercises. The superior prediction performance

stems from our model’s ability in describing options on the boundary, and in offering analytical

expressions for option Greeks which generate better hedging results.

JEL code: C63, F47

Keywords: Finance; Artificial neural networks; Implied volatilities; Option Greeks; Hedging.

∗Management Science and Business Economics Group, Business School, University of Edinburgh, 29 Buccleuch
Place, Edinburgh EH8 9JS, UK. Email: jason.caoyi@gmail.com.
†Corresponding author. University of Nottingham Business School China, University of Nottingham Ningbo,

Ningbo 315100, P. R. China. Email: xiaoquan.liu@nottingham.edu.cn. Phone: +86 574 88180000 ext 8207.
‡Business School, Xian Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China 215123. Email:

jia.zhai@xjtlu.edu.cn



1 Introduction

Option valuation is a much devoted area in the financial economics literature. Since the seminal

work of Black and Scholes (1973), many pricing models have been developed that extend restrictive

assumptions of the Black and Scholes (BS) model and advance our understanding of options and the

market in which they are traded. Well-known parametric models include the stochastic volatility

model of Heston (1993), the jump diffusion models of Merton (1976), the stochastic volatility

with jump model of Bates (1996) and Bakshi et al. (1997), and the double-jump model of Eraker

et al. (2003). In parallel, nonparametric specifications such as the GARCH option pricing of Duan

(1995), the spline based method of Bliss and Panigirtzoglou (2002), and quadratic approximation

of Jackwerth and Rubinstein (1996) are formulated. From different perspectives, these models try

to accommodate the stylized volatility smile with different levels of empirical success.

Option valuation is also a topical issue in the data science literature as sophisticated numerical

methods make it possible to achieve great pricing and forecasting precision (see Dugas et al., 2001;

Garcia and Gencay, 2000; Gradojevic et al., 2009; Liu et al., 2019, for example). As a popular data

science method, the neural network is gaining popularity and increasingly being adopted in option

valuation and hedging since the early effort of Hutchinson et al. (1994) (see Buehler et al., 2019;

Culkin and Das, 2017; Dugas et al., 2009; Liang et al., 2009; Yao et al., 2000, for example). Ruf

and Wang (2020) offer an excellent and updated literature review.

Motivated by the above strands of the literature, in this paper we propose an economically

meaningful hybrid gated neural network (hGNN) based option valuation model. We start from

both the neural network architecture and six necessary and sufficient no-arbitrage constraints in the

option valuation theory. We select the softplus function as the activation function in hidden neurons

and construct a multiplicative structure to maintain its differentiability. Meanwhile, the slope and

weights of the linear function in input layers must satisfy the no-arbitrage constraints. We finalize

the structure with a pre-processing module before the input layer. This pre-processing module

also meets economic constraints and is added to enhance the input-output mapping capability.

Furthermore, we build a separate neural network for modeling and predicting latent option-implied

volatilities, an essential input in option pricing models. Hence, our model is called a hybrid gated

neural network (hGNN) based model.

The model design contributes to the financial economics literature as well as the data science

literature. Our first contribution is that by taking into account the essential no-arbitrage con-
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straints, our model attaches economic meaning to the neural network architecture. Quite often,

the data science methods start with specifically designed architectures, i.e., a number of neuron

layers or infinite dimensional hyperplane, and consider option pricing as a nonlinear and complex

regression problem. The mapping relationship between the input and the output is learned from

a large amount of data. These models usually aim at building complex neural network algorithms

to enhance the learning capability for improved mapping performance (Hutchinson et al., 1994;

Gradojevic et al., 2009). Hence, they are often compared to a black box, indicating that the eco-

nomic interpretability and internal functionality of these models are opaque to most users (Knight,

2017a,b; McNelis, 2005).

More recently, a burgeoning theme emerges in this area as studies implement an economic hint

or select particular activation functions to satisfy economic constraints, thus offering economic

interpretability (see Gilpin et al., 2018; Guidotti et al., 2018; Mudrakarta et al., 2018; Ribeiro

et al., 2016; Yang et al., 2017, for example). Our paper builds upon and extends this strand of

the literature as we try to introduce economic intuition into neural network models, a traditionally

technical and data-driven approach. As an important aspect of this contribution, our proposed

hGNN model allows us to obtain analytical expressions for European option Greeks, and we believe

our paper is the first to do so. These analytical Greek letters would facilitate option traders to

better design and implement trading and hedging strategies and underscore the practicality of our

model.

We also contribute to the literature by offering comprehensive empirical evidence that our hGNN

model outperforms popular neutral network based models as well as economically motivated models

such as those featuring stochastic volatility and jumps in underlying asset returns. They include

a deep neural network (dNN) model, the best-performing specification in Andreou et al. (2008,

2010) (AnNN), a stochastic volatility model, a stochastic volatility model with stochastic interest,

and a stochastic volatility model with jumps. These three stochastic volatility based models come

from the seminal work of Bakshi et al. (1997). Our sample includes more than 2 million S&P 500

options over 952 trading days from 22 May, 2014, to 2 March, 2018. We implement a rolling scheme

to produce 7- and 30-day ahead option price forecasts, which are evaluated by two loss functions.

Furthermore, we perform a delta hedging exercise based on 7- and 30-day re-balancing frequencies.

Our empirical results show that the hGNN model performs better in generating more precise option

price forecasts and smaller errors in the hedging exercise. This is the case regardless of forecasting

horizons, put or call option type, option moneyness, time to maturity, or the loss function.
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What drives this superior performance? To address this question, we form two groups of options.

The first group includes the most mispriced options according to the dNN model, and the second

group contains a randomly selected sample of the remaining options. We observe that options

in Group 1, which the dNN model has a hard time predicting, tend to be short-dated ones with

extreme moneyness. Our hGNN model is constructed based on no-arbitrage conditions, including

option boundary conditions, and is trained by synthetic prices for thinly traded options, it thus

substantially outperforms the other two neural network based models in predicting options in Group

1. This underscores the empirical prowess of our model.

The rest of the paper is structured as follows. In Section 2, we provide the methodological and

empirical considerations that motivate our specific model design. Section 3 discusses the model

structure, introduces no-arbitrage constraints in the option pricing literature, proves that our model

satisfies these constraints, and constructs a separate neural network for modeling option-implied

volatilities. In Section 4, we derive analytical expressions for European option Greeks based on

the hGNN model, and outline a delta-hedging strategy. Section 5 conducts empirical analyses and

robustness tests using S&P 500 options. Finally, Section 6 concludes.

2 Design motivation

The architecture and algorithm of our hGNN model are motivated by the following considerations.

1. Empirically, Gradojevic et al. (2009) show that neural network based models usually perform

poorly for deep OTM and very long- and/or short-dated options. The paper addresses this

issue by grouping options according to their moneyness and maturity, and constructing sep-

arate models for each group. Although this leads to improved empirical performance, the

grouping is static and cannot adapt to changing market conditions. Furthermore, the paper

does not cover very deep out-of-money call options and the algorithm is computationally

cumbersome. More recently, Yang et al. (2017) design an architecture of neural networks

with selected no-arbitrage theories for European call options but fail to consider European

put options or important boundary conditions. This leaves a gap in the literature.

2. As a key input for option valuation, the volatility is a latent variable that needs to be proxied.

In an unreported empirical examination, we follow the hybrid neural network model in An-

dreou et al. (2008) and find that using the BS implied volatilities instead of realized volatilities
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as the volatility proxy significantly improves option pricing accuracy. This motivates us to

build a separate structure for predicting option-implied volatilities.

3. To the best of our knowledge, analytic expressions for European option Greeks, i.e., the partial

derivatives of option prices with respect to underlying asset price, volatility, strike price, and

time to maturity, have not been derived for neural network based models. Hence the black

box criticism towards this type of models (Knight, 2017a,b).

4. Most importantly, the economic interpretation of option pricing models represents the biggest

gap between theory motivated models in the finance literature and data science based models.

The latter may fit the data very well due to their data-driven and data-intensive nature but

falls short of offering economic intuition. Our paper represents a step towards bridging this

gap.

3 Model construction

In this section, we first briefly outline the non-arbitrage constraints for European options. We

then develop our hGNN model and show that it fully satisfies the constraints. Finally, a separate

neural network is constructed for modeling and predicting implied volatilities.

3.1 No-arbitrage constraints

In the financial economics theory, there exists a risk-neutral probability measure Q under which

the discounted asset price is a martingale (Delbaen and Schachermayer, 1994; Cochrane, 2001).

This allows us to write the call option price as follows:

C(K,St, τ, σt, r) = e−rτ
∫ ∞
K

(ST −K)+f(ST |St, τ)dQτ (ST ). (1)

Likewise for put options we have the following:

P (K,St, τ, σt, r) = e−rτ
∫ K

0
(K − ST )+f(ST |St, τ)dQτ (ST ), (2)

where K is the strike price, St is the underlying asset price at time t, T is the expiry date, τ = T − t

is time to maturity, σt is the volatility at time t, rt is the risk-free interest rate, and C and P are

the call and put option prices, respectively.

4



We follow Theorem 2.1 in Roper (2010) and the call option surface constraints in Fengler and

Hin (2015) to estimate a continuous function of option prices. Thus, option prices C and P and

the variables (K,St, τ, σt, r) observed at time t are subject to the following constraints:

(c1) Convexity in K

Both C and P are convex across K for τ ≥ 0. C is monotonically non-increasing with K,

whereas P is monotonically non-decreasing with K. Hence, ∂C
∂K ≤ 0 and ∂P

∂K ≥ 0.

(c2) Monotonicity in τ

Both C and P are non-decreasing with K > 0. Hence, ∂C
∂τ ≥ 0 and ∂P

∂τ ≥ 0.

(c3) Strike limit

When τ > 0, limK→∞C = 0 for call options, and limK→0 P = 0 for put options.

(c4) Boundary conditions

(St −K)+ ≤ C ≤ St for call options, and (K − St)+ ≤ P ≤ Ke−rτ for put options.

(c5) Expiry value

When τ = 0, C = (St −K)+ and P = (K − St)+.

(c6) Constraints (c1), (c3), and (c4) imply that option prices are twice differentiable with respect

to K for all τ > 0. Hence, ∂2C
∂K2 ≥ 0 and ∂2P

∂K2 ≥ 0.

The proof for (c1)-(c6) follows Theorem 2.1 in Ait-Sahalia and Duarte (2003).

3.2 Model design under constraints

Existing neural network based option valuation models usually adopt the traditional three-layer

architecture: an input layer with N input variables, a hidden layer with H neurons, and an output

layer with a single neuron. Each hidden neuron includes a certain type of activation function: either

a sigmoid function as in Gradojevic et al. (2009), or a hyperbolic tangent function as in Andreou

et al. (2008, 2010). These models achieve nice empirical performance by utilizing the input-output

mapping capability of a neural network, or a stack of neural networks, but pay little attention to

the no-arbitrage constraints central to option valuation. Therefore, they perform poorly for options

with extreme moneyness and long-/short-dated maturity.

Our proposed model improves upon these. It also has a three-layered structure but before

the input layer, we add a division module with three inputs (K,St,Ψ) and one output of option
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moneyness:

m = (K/St)
Ψ, (3)

where Ψ is a call/put indicator: it is 1 for call options and -1 for put options. This design accom-

modates both call and put options with m = K/St and m = St/K, respectively. The input layer

has Ni = 4 input variables (m, τ, σt, r), which are called features in the data science literature.

Contrary to Andreou et al. (2010) and Das and Padhy (2017), we use these variables as the input

of the Black-Scholes model for two reasons. First, our model aims to solve the canonical option val-

uation problem and our approach is the same as those in the traditional finance literature. Second,

using these variables as the input makes it possible for our proposed model to provide analytical

expressions for the Greeks.

The hidden layer of our model consists Nh neurons, and each neuron contains a gated network

architecture activation function following the architecture in Memisevic (2013) and Sigaud et al.

(2015). This gated structure is an extension of the deep learning building block in Bengio (2013)

and LeCun et al. (2015). It is particularly well-suited for multiplicative interactions between the

input and output as in our case, and selected to maintain the model’s first- and second-order

differentiability so that it satisfies no-arbitrage constraints (c1)-(c6). Finally, the output layer

contains an additive linear function with one output variable called the target.

Based on the above considerations, our proposed GNN option valuation model y(m, τ, σt, r),

illustrated in Figure 1, is expressed as follows:

y(m, τ, σt, r) =

Nh∑
j=1

[
σ+(bmj −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σ+(brj ± re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
, (4)

where σ+() is the softplus function σ+(x) = log (1 + ex). The weights (wmj , wτj , wrj , w
σt
j ) and biases

(bmj , bτj , brj , b
σt
j ) are parameters to be estimated. The + and − in (brj ± re

wrj ) are for call and put

options, respectively. The sign in each σ+() function is designed according to specific constraints.

In the architecture of Figure 1, the model has four input variables: moneyness m, time to matu-

rity τ , volatility σt, and interest rate r. Each input variable is directly connected to Nh numbers of

softplus activation functions, and their outputs are directly connected to Nh multiplication gates.

Thus, each multiplication gate has inputs from four softplus activation functions corresponding to

four input variables. The outputs of Nh multiplication gates are aggregated into an addition gate

for generating the final output. Hence, the output y(m, τ, σt, r) can be expressed in Eq.(4) as the

6



Figure 1. The architecture of the gated neural network (GNN) model

This figure shows the architecture of the gated neural network. The variables (m, τ, σt, r) are the inputs of the hidden

layer, σ+(.) is the softplus function, and× is the multiplication gate.

…… …… …… ……

𝑚 𝜏 𝜎𝑡 𝑟

…… …… …… ……
𝑁ℎ

𝑁ℎ 𝑁ℎ 𝑁ℎ 𝑁ℎ𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙ 𝜎+ ∙

× × ×

𝑦

Call?
Put?

𝐾, 𝑆𝑡
×

𝜎+ ∙

Call/put operator: 𝑚 = ൗ𝐾 𝑆𝑡

Ψ
, Ψ=1 for call, Ψ=-1 for put

Multiplication gate

Hidden neuron with softplus activation function

Output layer

Hidden layer

Input layer

+

+ Addition gate

𝑁ℎ Number of hidden neurons

Ψ
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cumulative form of four outputs from the activation function based on the inputs.

Our proposed model exhibits two clear advantages compared with existing models in the liter-

ature. First and very importantly, from the option pricing perspective, our model integrates the

no-arbitrage constraints as the prior to support the logic of the option valuation. Hence, the model

goes beyond a large scaled connection of the neurons and is able to reflect option pricing theories.

From the data science perspective, incorporating external knowledge facilitates the model’s learning

of input features and enhances the overall performance (Hu et al., 2016; Kursuncu et al., 2019).1

Proposition 1. The architecture of the activation function in equation (4) satisfies constraints

(c1), (c2), (c3), and (c6).

Proof: Constraint (c1)

The derivative of a softplus function σ+(x) can be obtained as follows:

d log (1 + ex)

dx
=

ex

1 + ex
=

1

1 + e−x
. (5)

The function 1
1+e−x is called the sigmoid, which can also be used as an activation function. We

represent it as σs = 1
1+e−x thus σ′+(x) = σs(x). In this way, constraint (c1) can be written as

follows:

∂y

∂m
=

Nh∑
j=1

[
−ew

m
j σs(b

m
j −me

wmj )
] [
σ+(bτj − τe

wτj )
] [
σ+(brj ± re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
. (6)

Hence, ∂y
∂m ≤ 0. Consider the definition of moneyness, we have the following for call options:

∂y

∂K
=

∂y

∂m

∂m

∂K
=

∂y

∂m

1

St
≤ 0. (7)

Likewise for put options:
∂y

∂K
=

∂y

∂m

∂m

∂K
= − ∂y

∂m

St
K2
≥ 0. (8)

Proof: Constraint (c2)

1 It is important to note that, unlikely the traditional divide and conquer approach such as that adopted in
Gradojevic et al. (2009) in which options are categorized into groups and different neural networks are trained
separately for each group, we use all the training data simultaneously on our model. We only group options according
to moneyness and maturity when summarizing the results.
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Similarly, we can express the constraint (c2) for call and put options as follows:

∂y

∂τ
=

Nh∑
j=1

[
σ+(bmj −me

wmj )
] [
ew

τ
j σs(b

τ
j + τew

τ
j )
] [
σ+(brj ± re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
≥ 0. (9)

Proof: Constraint (c3)

We have limK→∞m = limK→∞
K
St

= ∞ for call options, and limK→0m = limK→0
St
K = ∞ for put

options. Furthermore,

lim
m→∞

σ+(bmj −me
wmj ) = lim

m→∞
log

(
1 + e(bmj −me

wmj )

)
= log

(
1 + e−∞

)
= 0. (10)

Thus, limK→∞C = 0 for calls and limK→0 P = 0 for puts.

Proof: Constraint (c6)

Based on the proof for constraint (c1), we have the following:

∂2y

∂m2
=

Nh∑
j=1

[
e2wmj σ′s(b

m
j −me

wmj )
] [
σ+(bτj − τe

wτj )
] [
σ+(brj ± re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
, (11)

where σ′s(x) = σs(x)(1− σs(x)) ≥ 0, thus ∂2y
∂m2 ≥ 0 and we have the following:

∂2y

∂K2
=

∂2y

∂m∂K
=

∂2y

∂m2

(
∂m

∂K

)2

+
∂y

∂m

∂2m

∂K2
. (12)

For call options, ∂2m
∂K2 = 0, thus:

∂2y

∂K2
=

∂2y

∂m2

1

S2
t

≥ 0. (13)

Likewise for put options:
∂2y

∂K2
=

∂2y

∂m2

S2
t

K4
+
∂y

∂m

2St
K3

. (14)

Since dividing a positive constant on both sides of an equation does not change the sign of the

equation, we divide St
K3 on both side of equation (14) and let F(y,m) = m ∂2y

∂m2 + 2 ∂y
∂m for K > 0

and St > 0. To determine the value of F(y,m), we approximate it by the second-order Taylor

expansion and obtain the following:

F(y,m) = 2y′ +my′′ ≈ f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2
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= y′(a)2 + y′′(a)m ≈ f ′(a)(m− a) + f ′′(a)
(m− a)2

2
. (15)

Finally, to approximate the value of F(y,m), we solve two equations m−a = 2 and m = (m−a)2

2 and

obtain a = 0 and m = 2. Therefore, F(y,m) ≈ y(2) ≥ 0. This completes the proof of constraints

(c1), (c2), (c3) and (c6).

The output layer contains one neuron for the final estimated option price Ĉ and P̂ as follows:

y(m, τ, σt, r) =


Ĉ, if Ψ = 1

P̂ , if Ψ = −1

(16)

where y(m, τ, σt, r) is the output value of the GNN.

To summarize, our GNN is able to map four features, i.e., the moneyness m, maturity time τ ,

volatility σt, and the interest rate r, to the target option price y(m, τ, σt, r), while ensuring that

important no-arbitrage constraints are satisfied.

3.3 Boundary conditions

Usually the output bound of regression-type applications of a neural network is achieved by

scaling or normalizing the target variables rather than modifying the model structure, as the struc-

ture is determined by data. The downside of this data-driven approach is manifestoed in the poor

pricing performance for deep OTM and extreme short- or long-dated options (Andreou et al., 2008,

2010; Gradojevic et al., 2009). This underlines the importance of satisfying the option boundary

constraints (c4) and (c5).

The options on the boundary are those with strike prices approaching zero, St, or infinite, and

those very close to maturity. These options are thinly traded in the market, and this lack of data

undermines data science models. To cope with this, we synthesize prices for these options based

on available market data and use synthesized prices as hints for our model. This useful approach

is first developed in Abu-Mostafa (1993, 1994) and becomes a popular approach to compensating

an imbalanced dataset in the literature (Barua et al., 2014; Chawla et al., 2002; Galar et al., 2012;

Khoshgoftaar et al., 2011). Abu-Mostafa (1995), Cao et al. (2015), Cao et al. (2016), and Garcia

and Gencay (2000), in particular, implement the method with financial data.

Prices for options with K = 0 and τ = 0 are straightforward to calculate via constraints (c4)

and (c5): C = St and P = 0 when K = 0, and C = (St −K)+ and P = (K − St)+ when τ = 0.
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For every τ , we synthesize virtual option prices with K = 0 and for every K, we synthesize virtual

option prices with τ = 0. For ATM options with K = St, we synthesize virtual calls that are

slightly ITM, and obtain put prices via the put-call parity. This follows Song and Xiu (2016),

which compensate low trading volume of ITM calls by obtaining call prices from OTM puts.

Options with K = ∞ do not exist. We synthesize prices for these options using the Black-

Scholes model with an almost zero call option price. We take advantage of the precision of modern

computers and take 2−126, the number closest to zero under the single-precision floating-point

format (IS Committee, 2008), as the option price for iteratively calculating the strike price. For

example, to synthesize a call option with τ = 15, we obtain strike price K by solving 2−126 =

BS (K,St = 4973.07, τ = 15, r = 0.02, σt = 0.296), where the implied volatility σt = 0.296 corre-

sponds to strike price K = 5700. Due to the convexity constraint, we solve this by the traditional

Newton Raphson method, and obtain K = 11087.52 and C = 2.003× 10−39. Likewise, for each τ ,

we synthesize a call option with almost zero price and infinite strike price. All alternative models

in this paper are trained with the same dataset that includes market data and the prices for these

synthesized options on the boundary.

To train our hGNN model, we use a powerful stochastic gradient descent optimization algorithm

in Kingma and Ba (2017) with the mean absolute percentage error (MAPE) as the loss function.

This R package GradDescent is obtained from Wijaya et al. (2018). We follow the empirical study

of Zhou et al. (2016) and set the optimal values of number of hidden neurons Nh = 100, the number

of epochs to be 100, batch size as 100, and learning rate as 10−3 (see also Cheng et al., 2020; Yu

et al., 2019).

3.4 Modeling implied volatilities

Volatility is an essential input to option pricing models. In the literature, modeling option-

implied volatilities follows two main directions. For deterministic volatility functions (DVF), im-

plied volatilities are usually expressed as a function of option moneyness, time to maturity, and

lagged implied volatilities (Andreou et al., 2010, 2014; Chalamandaris and Tsekrekos, 2014). Mean-

while, Dunis et al. (2013) and Konstantinidi et al. (2008) incorporate economic variables, such as

the yield curve slope, interest rate, and stock index returns, in a vector autoregression (VAR) to

obtain volatility forecasts. In these studies, the determinants m, τ and IV m,τ
t−l are either regressed

linearly by AR or VAR models (Dunis et al., 2013), or nonlinearly as m2, τ2, or mτ enter the DVF.

The implicit assumption is that implied volatilities are well described by these determinants via a
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pre-defined relation.

We extend these studies in two ways. First, data-wise, we implement the principal component

analysis (PCA) to extract the most relevant information from the determinants while reducing

the computational complexity; second, methodologically, we adopt a deep neural network for a

data-defined nonlinear model with two modules. We assume that implied volatilities IV m,τ
t are

determined by moneyness m, time to maturity τ , and lagged volatilities IV m,τ
t−l , l ∈ 1, ..., L, where

L = 10 is considered the optimal VAR lag in Dunis et al. (2013). Hence, we construct a vector of

12 dimensions Xm1,τ1
t =

[
m1, τ1, IV

m1,τ1
t−1 , . . . , IV m1,τ1

t−10

]T
for implied volatilities Ym1,τ1

t = IV m1,τ1
t

of m1 and τ1 on day t. We collect implied volatilities Y
mi,τj
t of all available mi and τj (i = 1, . . . , I

and j = 1, . . . , J) on day t to construct a matrix of input data for day t, and the final data consist

N such matrices from day t to t−N + 1.

Our implied volatility model includes two modules. For the first module, we implement the

PCA to extract five most important components, PCp, p = 1, . . . , 5, that are able to explain most

of the variation in volatility (Kolanovic and Krishnamachari, 2017). The corresponding principal

component scores PSp, p = 1, . . . , 5 are used to predict implied volatilities. The second module is a

multi-layer feed-forward artificial neural network, also termed the deep neural network (Fischer and

Krauss, 2018; Krauss et al., 2017). It has one input layer with five neurons corresponding to five

principal components, two hidden layers with 30 and 10 neurons, respectively, and an output layer

with a linear transfer function. Each neuron in the hidden layers contains a hyperbolic tangent

sigmoid activation function. To control overfitting, we perform regularization by an input-dropout

ratio of 0.2 and a hidden dropout ratio of 0.5 (Hinton et al., 2012; H2O, 2018). We train this model

with 200 epochs, which indicate the number of passes to carry out over the training dataset.

To forecast one-day ahead implied volatilities on day t+1 from mi and τj , we construct the

[1× 12] input vector X
mi,τj
t+1 =

[
mi, τj , IV

mi,τj
t , . . . , IV

mi,τj
t−9

]T
, and multiply it with the [12× 5]

principal component coefficient matrix to obtain the pricinpal component scores PSt+1 = X
mi,τj
t+1 ×

Ccoef . The PSt+1 are subsequently fed into the model to forecast implied volatilities Y
mi,τj
t+1 =

IV
mi,τj
t+1 . To predict N -day ahead implied volatilities, a daily rolling scheme is performed. We first

predict implied volatilities on day t+2 with data from t−8 to t+1, whereby volatilities on day t+1

are forecasted; we then predict implied volatilities on day t+3 from data from t−7 to t+2, whereby

volatilities on day t+1 and day t+2 are forecasted; and so forth. If N > 10, the forecasts are based

entirely on forecasted implied volatilities. Although this rolling scheme potentially deteriorates the

precision of long-term volatility forecasts, our empirical results exhibit strong performance.
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To summarize, we first obtain option-implied volatility IV m,τ
t for day t from moneyness m,

option time to maturity τ , the interest rate r, and implied volatilities IV m,τ
t−n , n = 1, ..., 10 from the

previous 10 days. Once we know IV m,τ
t , it is used together with m, τ , r to forecast option prices

on day t.

4 Option Greeks

A main motivation for this paper is to develop the hGNN model in such a way that it offers

analytical expressions for European option Greeks. This allows the model to lend itself readily

in hedging strategies, and represents a key contribution of our paper. Given the structure of our

model in equation (4), we first derive the option Greeks in this section. We then outline how they

are used in hedging exercises.

4.1 Analytical option Greeks

Option ∆

European call option ∆ is expressed as follows:

∆Ĉ =
∂Ĉ

∂S

=
∂Ĉ

∂y

∂y

∂m

∂m

∂St

=

Nh∑
j=1

[
−ew

m
j σs(b

m
j −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σ+(brj + rew

r
j )
] [
σ+(bσtj + σte

w
σt
j )
](
−K
S2
t

)

=
m

St

Nh∑
j=1

[
ew

m
j σs(b

m
j −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σ+(brj + rew

r
j )
] [
σ+(bσtj + σte

w
σt
j )
]
, (17)

where m = K
St

, σ+(x) = log (1 + ex), and σs = 1
1+e−x . Likewise, the ∆ for European put option

can be written as follows:

∆P̂ =
∂P̂

∂S

=
∂P̂

∂y

∂y

∂m

∂m

∂St

=

Nh∑
j=1

[
−ew

m
j σs(b

m
j −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σ+(brj − re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
] 1

K
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= − 1

K

Nh∑
j=1

[
ew

m
j σs(b

m
j −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σ+(brj − re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
.(18)

Option ν

European option νĈ is given as follows:

νĈ =
∂Ĉ

∂σt

=
∂Ĉ

∂y

∂y

∂σ
=
∂P̂

∂y

= ew
σt
j

Nh∑
j=1

[
σ+(bmj −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σ+(brj + rew

r
j )
] [
σs(b

σt
j + σte

w
σt
j )
]

(19)

where σs = 1
1+e−x .

Option Θ

The option ΘĈ can be expressed as follows:

ΘĈ =
∂Ĉ

∂τ

=
∂Ĉ

∂y

∂y

∂τ

= ew
τ
j

Nh∑
j=1

[
σ+(bmj −me

wmj )
] [
σs(b

τ
j + τew

τ
j )
] [
σ+(brj ± re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
. (20)

Option ρ

The ρĈ of European call option can be written as follows:

ρĈ =
∂Ĉ

∂r

=
∂Ĉ

∂y

∂y

∂r

= ew
r
j

Nh∑
j=1

[
σ+(bmj −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σs(b

r
j + rew

r
j )
] [
σ+(bσtj + σte

w
σt
j )
]
. (21)

Likewise for put options:

ρP̂ =
∂P̂

∂r
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=
∂P̂

∂y

∂y

∂r

= −ew
r
j

Nh∑
j=1

[
σ+(bmj −me

wmj )
] [
σ+(bτj + τew

τ
j )
] [
σs(b

r
j − re

wrj )
] [
σ+(bσtj + σte

w
σt
j )
]
. (22)

4.2 Hedging exercises

We are interested in the hedging performance of our hGNN model as options are an essential

risk management tool for investors. We implement a conventional delta-neutral hedge following

Bakshi et al. (1997): For the SV model, we hedge both the price and volatility risks with positions

in the underlying asset and in a second option contract; for the SVSI model, we involve a bond

for hedging the interest rate risk in addition to the hedging strategy of the SV model; for the SVJ

model, due to the difficulty associated with stochastic jump sizes (Bates, 1996; Merton, 1976), we

implement a partial hedge for which only the diffusion risks are neutralized but the jump risk is

unhedged. For the hGNN model, we hedge the risks in the underlying price, volatility, and interest

rate with positions in the underlying asset, a second option contract, and a bond.

Suppose we sell one call option with time to maturity τ and strike price K. We need to hedge

the price risk with a position in VS,t shares of the underlying asset, the interest rate risk with a

position in VB,t units of τ -period discount bond, and the volatility risk with a position in VC,t units

of a second call option with the same maturity τ but different strike price K̄. The overall portfolio

value at time t can be expressed as V0,t + VS,tSt + VB,tBt,τ + VC,tCt,τ,K̄ , where V0,t represents the

initial cash position. The derivation of VS,t, VB,t, and VC,t is outlined in Bakshi et al. (1997) as

follows:

VC,t =
∆V,t,τ,K

∆V,t,τ,K̄

, (23)

VS,t = ∆S,t;τ,K −∆S,t,τ ;K̄VC,t, (24)

VB,t =
1

Bt,τ%τ

(
∆R,t,τ ;K̄VC,t −∆R,t,τ ;K

)
, (25)

V0,t = Ct,τ ;K − VS,tSt − VC,t,τ ;K̄ − VB,tBt,τ . (26)

For the hGNN model, ∆S , ∆V , and ∆R are equivalent to the Greek letters ∆Ĉ , νĈ , and ρĈ specified

in equations (17), (19), and (21), respectively.

The hedged portfolio thus constructed is updated at each time interval ∆t when it is re-balanced.
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Hence, the hedging error can be written as follows:

εt+∆t = V0,te
r∆t + VS,tSt+∆t + VB,tBt+∆t,τ−∆t + VC,tCt+∆t,τ−∆t;K̄ − Ct+∆t,τ−∆t;K . (27)

In the empirical analysis, we choose ∆t=7 and 30 days following Bakshi and Madan (2000) and

summarize the average hedging error. We train the model with the first 60% of data and use the

remaining 40% to evaluate the hedging performance without re-training the model.

5 Data and empirical analysis

In this section, we first describe the options data used for the empirical analysis. We then

compare the performance of the hGNN model with that of well-established models in the literature

in terms of forecasting option prices and hedging.

5.1 Data

We use options and futures written on the S&P 500 index. As both contracts share the same

underlying asset and maturity dates, index options can be considered as if they are written on

the futures thus dividends are not considered. The underlying index level, strike prices, time to

maturity, settlement prices, and trading volume are obtained from the data vendor IVolatility.com

and contain 2,061,308 European options over 952 trading days from 22 May, 2014, to 2 March,

2018. Similar information is obtained for S&P index futures over the same sample period. Table

1 summarizes our dataset. We observe that on average put options are more frequently traded

with larger volume and open interest than calls. Options have around two months to maturity on

average. We also note that there are a reasonable number of different strikes per day for both calls

(124) and puts (177).
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Table 1. Summary statistics for S&P 500 options

This table summarizes the S&P 500 options that we use in the empirical analysis, including the number of trading

days, the mean, maximum and minimum values of the trading volume, open interest, time to maturity (in days),

number of different strikes per day, and moneyness. VDOTM, DOTM, and DITM stand for very deep OTM, deep

OTM and deep ITM options. The sample period is from 22/5/2014 to 02/03/2018.

Call Put

Trading days 952 952

Trading volume Mean 14 26
Max 49376 62384
Min 0 0

Open Interest Mean 76 160
Max 41527 59190
Min 0 0

Time to maturity Mean 60 60
Max 183 183
Min 0 0

Strikes per day Mean 124 177
Max 337 357
Min 10 26

Moneyness (K/F) Mean 1.0101 0.8653
Max 1.3304 1.5682
Min 0.0352 0.3285

DITM <=0.80 21357
ITM (0.8, 0.99] 242123 >1.01 114829
ATM (0.99, 1.01] 94256 (0.99, 1.01] 92617
OTM (1.01, 1.2] 397712 (0.8, 0.99] 729690
DOTM >1.2 5747 (0.6, 0.8] 309316
VDOTM <=0.6 53661

Total obs. 761195 1300113
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We categorize all options into one of five moneyness groups, as the literature shows that the

neural network based option valuation models are better at pricing some moneyness groups than

others. In terms of option maturity, short-, medium- and long-term options have fewer than 90

days, between 90 to 180 days, and more than 180 days to maturity, respectively. We evaluate

forecasting performance with two loss functions: the mean absolute percentage errors (MAPE) and

the root mean square errors (RMSE). The statistical significance of forecasting error differences is

gauged via the popular pairwise comparison developed in Diebold and Mariano (1995).

We compare the out-of-sample forecasting performance of the proposed hGNN model with two

neural network based models: the best-performing deep neural network (dNN) model in Krauss

et al. (2017), and the best-performing configuration in Andreou et al. (2008) (AnNN). They are

implemented by the H2O, an open-source data science platform (Phan et al., 2017) in the R package

h2o (LeDell, 2018). We also include three popular traditional option pricing models specified in

Bakshi et al. (1997): the stochastic volatility (SV) model, the stochastic volatility and stochastic

interest rate (SVSI) model, and the stochastic volatility with random jumps (SVJ) model. We

follow exactly the specifications in (Bakshi et al., 1997) for these three models.

The models are used to generate out-of-sample option prices from 19 March, 2015, to 2 March,

2018, in a rolling scheme. We set the training and validation window to be 300 days and the trained

models are tested in the following 7 or 30 days. Afterwards the training and validation window

rolls forward for 7 or 30 days and used for the second testing. This goes on until the end of the

sample period.

5.2 Empirical results

Implied volatility prediction

Table 2 summarizes the MAPE and RMSE of forecasted implied volatilities over 7- and 30-day

horizons for call (Panel A) and put (Panel B) options. We find that overall our model performs

well in generating option-implied volatility forecasts with a lot of precision. For example, regardless

of the option type or the prediction horizon, the worst MAPE is only 1.69% for 30-day long-term

call options, while the best is 0.91% for 7-day long-term calls. We note that, not surprisingly, the

7-day ahead forecasts tend to be more accurate than 30-day ones. Furthermore, volatility forecasts

for calls are slightly better on average than those for puts across loss functions, and forecasts for

deep ITM options are better than those for deep OTM options across both forecast horizons and

loss functions.
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Table 2. Forecasting performance of S&P implied volatilities

This table summarizes the forecasting performance of implied volatilities for S&P 500 options measured by the mean

absolute percentage error (MAPE) and root mean squared error (RMSE). The first training window is 300 days from

22/05/2014 to 18/03/2015, and the first testing window is from 19/03/2015 to 26/03/2015 for the 7-day window,

and from 19/03/2015 to 20/04/2015 for the 30-day rolling window. The training and testing windows are rolled 7 or

30 days forward until 02/03/2018. Short-, medium- and long-term options have less than 90 days, between 90 to 180

days, and more than 180 days to maturity, respectively. See also notes to Table 1 for option moneyness categories.

Short-term options Medium-term options Long-term options

MAPE RMSE MAPE RMSE MAPE RMSE

Panel A. Call options
7-day ahead DITM 0.9853 0.0797 1.1904 0.0573 0.9061 0.0754

ITM 1.1105 0.0681 1.0660 0.0634 1.1045 0.0651
ATM 1.1989 0.0688 1.1529 0.0616 1.1976 0.0627
OTM 1.2276 0.0688 1.2182 0.0605 1.2370 0.0623
DOTM 1.2405 0.0795 1.2331 0.0669 1.2856 0.0630

30-day ahead DITM 1.5380 0.0791 1.6023 0.0569 1.6924 0.0748
ITM 1.5079 0.0674 1.4452 0.0629 1.3732 0.0650
ATM 1.6157 0.0682 1.5684 0.0611 1.5123 0.0625
OTM 1.6404 0.0682 1.6289 0.0600 1.5848 0.0621
DOTM 1.6668 0.0795 1.6477 0.0664 1.6402 0.0628

Panel B. Put options
7-day ahead ITM 0.9905 0.8189 0.9264 0.7648 0.9569 0.8548

ATM 1.0540 0.3302 1.0540 0.3302 0.9625 0.7800
OTM 1.1483 0.3548 0.9962 0.5986 0.9833 0.6789
DOTM 1.2119 0.5127 1.1381 0.5874 1.0988 0.6250
VDOTM 1.2253 0.7088 1.2195 0.6615 1.2040 0.6715

30-day ahead ITM 1.3082 0.8095 1.1627 0.7614 1.1809 0.8525
ATM 1.3629 0.3280 1.3629 0.3280 1.1592 0.7783
OTM 1.5018 0.3528 1.2404 0.5955 1.2362 0.6770
DOTM 1.6042 0.5101 1.4795 0.5839 1.3820 0.6232
VDOTM 1.6351 0.7043 1.6193 0.6574 1.5991 0.6688
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Table 3. The 7-day ahead forecasting performance of alternative option valuation models

This table reports the 7-day ahead forecasting performance of the proposed hybrid Gated Neural Network (hGNN),

the deep Neural Network (dNN), and Andreou et al. Neural Network (AnNN), SVJ, SVSI, and SV models for S&P

500 options. See also notes to Tables 1 and 2 for option moneyness and time-to-maturity categories.

MAPE RMSE

hGNN dNN AnNN SVJ SVSI SV hGNN dNN AnNN SVJ SVSI SV

Panel A. Call options

Short-term

DITM 0.9068 4.7082 7.7459 8.5967 8.1560 14.427 14.470 111.01 187.00 187.86 187.71 191.58
ITM 1.4380 5.3417 6.4899 6.8020 7.8699 8.2488 2.8624 11.126 15.206 15.752 15.847 21.334
ATM 1.4949 14.142 18.370 18.366 19.281 18.910 0.5959 4.4155 6.1233 6.1062 6.1942 7.0094
OTM 1.4952 23.961 34.928 30.588 35.529 36.173 0.1684 1.5617 2.3448 1.1951 5.1573 4.0795
DOTM 1.5015 26.785 40.960 38.816 42.715 43.621 0.0121 0.2198 0.3571 0.2783 3.1528 1.8341

Medium-term

DITM 1.4382 11.395 14.084 14.549 15.740 17.414 13.920 127.70 204.10 204.89 204.58 211.28
ITM 1.4234 3.4555 4.5304 4.5983 5.2669 11.835 3.5713 10.086 13.041 13.836 15.101 19.440
ATM 1.5009 6.2692 7.4090 7.3818 9.4576 10.944 1.4096 6.6432 8.6026 8.5779 10.931 10.388
OTM 1.5017 19.351 27.716 23.150 29.874 28.118 0.4046 2.8234 3.6683 2.2458 4.6349 5.2668
DOTM 1.5020 27.695 40.730 34.329 42.691 40.773 0.0108 0.1695 0.3182 0.1582 3.0418 3.0173

Long-term

DITM 0.7664 12.258 10.259 10.631 10.823 16.861 3.4092 51.384 43.658 43.988 43.818 43.986
ITM 1.5732 4.5289 5.8295 5.9598 8.1337 6.6131 4.1677 15.281 19.582 20.408 21.916 24.904
ATM 1.7651 8.0328 9.0606 9.0476 9.2289 12.733 1.9879 10.033 12.761 12.742 12.847 15.701
OTM 1.4663 21.861 32.236 28.984 32.465 33.788 0.5136 4.9001 6.3626 5.7121 7.4535 8.8917
DOTM 1.6415 26.935 45.679 40.798 48.116 47.093 0.0132 0.1886 0.2798 0.5022 2.3312 0.7599

Panel B. Put options

Short-term

ITM 1.0300 2.3728 3.6747 4.4018 3.9382 8.5679 4.0006 19.377 37.152 37.289 38.594 40.297
ATM 1.2255 4.3285 5.9002 6.3042 8.7863 12.205 0.4406 1.3171 1.8434 2.6990 2.2552 7.7955
OTM 1.4453 10.491 13.916 13.909 16.157 17.997 0.1460 0.6522 0.8543 0.8244 2.4273 2.6853
DOTM 1.5025 16.735 22.808 15.824 23.163 23.447 0.0257 0.2562 0.4256 0.3252 2.4540 2.6174
VDOTM 1.4968 22.898 33.878 30.808 34.492 35.872 0.0093 0.1532 0.2648 0.2566 2.5461 2.5967

Medium-term

ITM 0.6312 1.4410 2.8226 3.0859 5.4275 9.8405 1.4533 8.6912 13.267 14.132 14.307 19.514
ATM 1.2204 4.3368 5.9128 6.2270 7.7942 6.1552 0.4285 1.3172 1.8422 1.9906 2.8081 7.4748
OTM 1.0526 2.1472 3.2850 3.2755 5.8862 7.8656 0.3839 0.8739 1.2428 1.2254 1.8100 6.0545
DOTM 1.5116 6.0621 6.9096 3.0653 9.8328 8.0143 0.0958 0.4076 0.4889 0.4064 1.5006 1.6148
VDOTM 1.5024 17.436 23.186 19.727 25.054 23.973 0.0147 0.1723 0.2488 0.2383 3.2091 0.5432

Long-term

ITM 0.9337 1.6884 2.8824 3.3583 4.3139 9.2650 1.7487 4.1576 5.3781 5.7307 8.3144 11.765
ATM 0.7864 1.5756 2.7518 3.6772 5.3466 4.1328 0.9397 1.8656 3.0347 3.6323 5.2289 8.2881
OTM 1.0330 1.7011 2.9022 2.8981 4.7031 5.1092 0.4890 0.9234 1.5192 1.4919 3.1351 5.5123
DOTM 1.5893 4.0484 4.8505 2.3919 7.8489 6.9475 0.1784 0.3701 0.4663 0.3127 2.7136 0.8474
VDOTM 1.4360 14.137 16.652 13.762 19.117 18.580 0.0302 0.2479 0.2638 0.2618 0.6910 1.6563

Option price prediction

In Table 3, we report the baseline out-of-sample prediction results for the 7-day ahead hori-

zon between our proposed hGNN model and alternative models. We summarize the forecasting

performance for call (Panel A) and put (Panel B) options across different time to maturity and

moneyness over two loss functions.

We find that the hGNN model consistently produces lower forecasting errors compared with the

dNN and AnNN. For deep ITM calls that traditional neural network based models have a hard time

predicting, the MAPE and RMSE for the hGNN are a mere 0.9% and 14.5, respectively, and they

compare favorably with the other two models whereby the MAPE and RMSE are 4.7% and 111

for the dNN, and 7.8% and 187 for the AnNN, respectively. This superior forecasting performance
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is also evident for put options. For VDOTM puts, the forecasting errors measured by the MAPE

and RMSE for the proposed model is 1.44% and 0.03, respectively, for long-term options, whereas

they are 14% and 0.25 for the dNN, and 17% and 0.26 for the AnNN, respectively.2

Furthermore, we show that the hGNN model exhibits significantly improved performance com-

pared with traditional SVJ, SVSI, and SV models with much smaller MAPE and RMSE. This is

the case regardless of the option type, time to maturity, or option moneyness, and highlights the

computational prowess of neural network based option valuation models.

For robustness, we conduct the same exercises over 30-day ahead forecasting horizon. We

further determine the statistical significance of the pricing error differences for 7- and 30-day ahead

forecasting errors between all six models via the Diebold and Mariano (1995) and Giacomini and

White (2006) tests. These robustness tests show that the hGNN model continues to outperform

the other five models with more precise forecasts, and is always the preferred model statistically

to alternative models according to statistical inferences based on Diebold and Mariano (1995) and

Giacomini and White (2006) tests.3

What drives this significantly improved forecasting performance by the hGNN model? To

address this question, we form two groups of options. Group 1 includes 29,771 options, which are

among the top 1% of our sample with the largest absolute percentage errors (APE) according to

the dNN model, whereas Group 2 contains 294,795 options that are randomly selected from the

rest of the sample. By taking a closer look at the characteristics and pricing performance of these

two groups of options, we hope to better understand the driving factor behind the success of the

hGNN model relative to the dNN and AnNN models.

In Table 4, we provide a simple summary of these two groups of options along the moneyness

(K/F) and maturity dimensions. We note that overall options in Group 1 tend to be OTM in

terms of moneyness, and much more short-dated in option maturity. In Figure 2, we illustrate the

MAPE differences between the dNN and hGNN models in orange bars and between the AnNN and

hGNN models in grey bars across forecasting horizons, option moneyness, and time to maturity. It

is striking that for Group 1 options on the left of each panel, the MAPE differences are substantial:

moving from DITM to DOTM options, the error differences increase dramatically within the same

time-to-maturity group. For example, for 30-day ahead forecasts for call options, the MAPE differ-

ences are around 40% for DITM options but they go beyond 100% for DOTM options, indicating

2 With the same volatility inputs, we show that the Black and Scholes model produces much less accurate forecasts
of option prices. These results are shown below in Table A1.

3 The results for robustness tests, unreported to conserve space, are available in the online appendix.
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Table 4. Summary statistics for S&P 500 options in Groups 1 and 2

This table reports summary statistics of moneyness (K/F) and annualized time to maturity (TTM) for S&P 500

options in Groups 1 and 2: Group 1 contains options with the largest 1% of absolute percentage error from the dNN

model, whereas Group 2 contains other options.

7-day ahead calls 30-day ahead calls 7-day ahead puts 30-day ahead puts

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

K/F Mean 1.1169 0.4922 1.1189 0.4911 0.8471 0.3627 0.8628 0.3695
Median 1.1275 0.4971 1.1110 0.5058 0.8693 0.3814 0.8758 0.3894
Max 1.3401 1.2357 1.3105 1.2165 1.4684 1.4581 1.4953 1.4392
Min 0.4414 0.0047 0.2788 0.0012 0.3624 0.0004 0.3937 0.0009

TTM Mean 0.0815 0.6862 0.0722 0.6889 0.0460 0.6790 0.0383 0.6862
Median 0.0700 0.6849 0.0495 0.6758 0.0368 0.6512 0.0326 0.6540
Max 0.2165 0.9826 0.2047 0.9899 0.2028 0.9914 0.2141 0.9863
Min 0.0000 0.4897 0.0000 0.4959 0.0000 0.4819 0.0000 0.4901

that hGNN is able to generate prediction error that is 100% smaller than that generated by the

dNN or the AnNN models for DOTM option group.4 This pattern is also observed in the other

panels for Group 1 options, highlighting the methodologically contribution of our model that it is

exactly for these options on the moneyness boundary that our hGNN model massively outperforms

the dNN and AnNN.

Meanwhile, the error differences for Group 2 options also increase gradually from DITM to

DOTM options but with a much smaller magnitude. For DOTM options, the biggest MAPE

differences tend to take place for short-term options at around 40-50%. This indicates that although

the hGNN model generates more accurate out-of-sample option price predictions, the improvement

tends to be milder.

In Figure 3, we further visualize the forecasting errors generated by the three models for indi-

vidual options in Group 1. It is evident that the black dots, representing pricing errors generated

by the hGNN model, lies below the blue dots, i.e. pricing errors from the dNN model, whereas the

green dots, i.e., pricing errors generated by the AnNN model, are all over the place.

Hedging performance

Finally, we focus on the hedging performance of alternative models with 7- and 30-day re-

balancing. Figure 4 shows the option Greeks δ, ν, Θ, and ρ for call options across strike prices

and time-to-maturity. The average hedging errors for options with different time-to-maturity and

moneyness are reported in Table 5. We note that across the board, the hGNN model consistently

generates smaller average hedging error than the alternative models except one case whereby its

4 In some cases, as option prices are smaller than one, the MAPE can be greater than 100%.
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Figure 2. Comparison of forecasting performance of alternative option valuation models

This figure shows the difference in the mean absolute percentage error (MAPE) for the deep Neural Network (dNN)

and the Andreou et al. Neural Network (AnNN) when compared to the hybrid Gated Neural Network (hGNN) model

for options in Groups 1 and 2. The Y-axis is in percent. See also notes to Tables 1 and 2 for option moneyness and

time-to-maturity categories.

MAPE difference of pricing 7 days ahead call option 

 

 

MAPE difference of pricing 30 days ahead call option 

 

0
10
20
30
40
50
60
70
80

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70
80

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

0

20

40

60

80

100

120

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0

20

40

60

80

100

120

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

MAPE difference of pricing 7 days ahead call option 

 

 

MAPE difference of pricing 30 days ahead call option 

 

0
10
20
30
40
50
60
70
80

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70
80

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

0

20

40

60

80

100

120

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

D
IT

M

IT
M

A
TM

O
TM

D
O

TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0

20

40

60

80

100

120

D
IT

M

IT
M

A
TM

O
TM

D
O

T
M

D
IT

M

IT
M

A
TM

O
TM

D
O

T
M

D
IT

M

IT
M

A
TM

O
TM

D
O

T
M

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

MAPE difference of pricing 7 days ahead put option 

 

 

MAPE difference of pricing 30 days ahead put option 

 

0
10
20
30
40
50
60
70

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70
80

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70
80

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

MAPE difference of pricing 7 days ahead put option 

 

 

MAPE difference of pricing 30 days ahead put option 

 

0
10
20
30
40
50
60
70

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70
80

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 1

dNN-hGNN AnNN-hGNN

0
10
20
30
40
50
60
70
80

IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM IT
M

A
TM

O
TM

D
O

TM

V
D

O
TM

Short Medium Long

Group 2

dNN-hGNN AnNN-hGNN

23



Figure 3. Forecasting performance of alternative neural network based option valuation models
for individual options in Group 1

This figure shows the absolute percentage error (APE) of the hybrid Gated Neural Network (hGNN), the deep Neural

Network (dNN), and the Andreou et al. Neural Network (AnNN) models for Groups 1 options which lie in the top

1% of absolute percentage error (APE) according to the dNN model. See also notes to Tables 1 and 2 for option

moneyness and time-to-maturity categories.
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Figure 4. Greek letters for call options obtained via the hGNN model

This figure shows the option price with respect to the underlying asset (δ), volatility (ν), time-to-maturity (Θ), and

interest rate (ρ) across different strike prices obtained via the hGNN model.
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hedging error is slightly bigger. As the hedging performance is based on trading strategies involving

options, the underlying asset, and bonds, smaller hedging errors represent the true economic value

that the hGNN model generates for market participants relative to the other models.

To summarize, the empirical analyses conducted in this section show that the proposed hGNN

option valuation model outperforms the other neural network based models as well as traditional

models both in generating significantly smaller option price predictions and in offering smaller

error on average in hedged portfolios using options. The results are robust with respect to different

option moneyness, time to maturity, forecasting horizons, and the put/call type.

Robustness check

In addition to the baseline results, we have further examined the prediction performance of

these six option pricing models over 30-day ahead forecasting horizon. Using the Diebold and

Mariano (1995) and Giacomini and White (2006) tests, we show that the forecasting errors from

our proposed model is significantly smaller than those from the other models over both 7- and

30-day ahead horizons. This is also the case for grouped options.
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Table 5. The hedging performance of alternative option valuation models

This table reports the average hedging error when portfolios are re-balanced every 7 or 30 days for the hGNN,

dNN, AnNN, SVJ, SVSI, and SV models for S&P 500 call options. The forecasting period is from 29/08/2016 to

02/03/2018. See also notes to Tables 1 and 2 for option moneyness and time-to-maturity categories.

7-day rebalance 30-day rebalance

hGNN dNN AnNN SVJ SVSI SV hGNN dNN AnNN SVJ SVSI SV

Short-term

DITM -0.0582 -0.0939 -0.0862 -0.1162 -0.1062 -0.1662 -0.1898 -0.2387 -0.2698 -0.2998 -0.2898 -0.3498
ITM -0.0675 -0.0866 -0.0873 -0.1173 -0.1073 -0.1673 -0.1411 -0.2124 -0.2224 -0.2524 -0.2424 -0.3024
ATM -0.0550 -0.0739 -0.0924 -0.1224 -0.1124 -0.1724 -0.1347 -0.2027 -0.2447 -0.2747 -0.2647 -0.3247
OTM -0.0402 -0.0722 -0.1073 -0.1373 -0.1273 -0.1873 -0.0973 -0.1995 -0.2835 -0.3135 -0.3035 -0.3635
DOTM -0.0412 -0.0715 -0.0999 -0.1299 -0.1199 -0.1799 -0.1041 -0.1928 -0.2833 -0.3133 -0.3033 -0.3633

Medium-term

DITM -0.0625 -0.0949 -0.1442 -0.1742 -0.1642 -0.2242 -0.1894 -0.2727 -0.3126 -0.3426 -0.3326 -0.3926
ITM -0.0475 -0.0810 -0.0950 -0.1250 -0.1150 -0.1750 -0.1615 -0.2050 -0.2782 -0.3082 -0.2982 -0.3582
ATM -0.0526 -0.0661 -0.0792 -0.1092 -0.0992 -0.1592 -0.1087 -0.2000 -0.1974 -0.2274 -0.2174 -0.2774
OTM -0.0324 -0.0680 -0.0974 -0.1274 -0.1174 -0.1774 -0.0769 -0.1972 -0.2752 -0.3052 -0.2952 -0.3552
DOTM -0.0140 -0.0432 -0.0789 -0.1089 -0.0989 -0.1589 -0.0331 -0.1279 -0.2185 -0.2485 -0.2385 -0.2985

Long-term

DITM -0.1043 -0.1016 -0.1198 -0.1498 -0.1398 -0.1998 -0.2170 -0.2635 -0.3127 -0.3427 -0.3327 -0.3927
ITM -0.0525 -0.0843 -0.1174 -0.1474 -0.1374 -0.1974 -0.1506 -0.2085 -0.2935 -0.3235 -0.3135 -0.3735
ATM -0.0315 -0.0797 -0.1131 -0.1431 -0.1331 -0.1931 -0.1101 -0.2026 -0.2767 -0.3067 -0.2967 -0.3567
OTM -0.0126 -0.0630 -0.0972 -0.1272 -0.1172 -0.1772 -0.0429 -0.1590 -0.2841 -0.3141 -0.3041 -0.3641
DOTM -0.0226 -0.0515 -0.0909 -0.1209 -0.1109 -0.1709 -0.0424 -0.1527 -0.2510 -0.2810 -0.2710 -0.3310

6 Conclusion

The recent literature has seen substantial advancement in a number of new option pricing

models based on data science methods that generate more precise option price forecasts. However,

a major issue for this kind of models is the lack of economic intuition and interpretation. Hence,

they are considered a black box to the mainstream finance industry.

This study represents a novel approach in addressing this issue. We develop a hybrid gated

neutral network (hGNN) model for option valuation that not only produces superior prediction

accuracy as many neural network based models do, but also offers analytical expressions for option

Greeks which improves its hedging performance. We start from no-arbitrage constraints in the

option pricing theory that all models need to meet, construct a multiplicative structure for the hid-

den neurons to maintain its differentiability, and select the slope and weights in the input layer to

satisfy the no-arbitrage constraints. We further train this model with synthesized theoretical values

for options on the boundaries thus ensuring that all constraints are satisfied. Furthermore, we con-

struct a separate neural network model for forecasting option-implied volatilities with information

from option moneyness, time to maturity, and lagged implied volatilities.

Using daily data from May 2014 to March 2018, we show empirically that our hGNN model

consistently and significantly outperforms both neural network based models such as the dNN and

AnNN, and traditional models such as the stochastic volatility model with jumps in forecasting
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Table A1. The 7-day ahead forecasting performance of the Black and Scholes model

This table reports the 7-day ahead forecasting performance of the Black and Scholes option valuation model for S&P

500 options. The implied volatilities are predicted via the neural network model outlined in Section 3.4. See also

notes to Tables 1 and 2 for option moneyness and time-to-maturity categories.

MAPE RMSE MAPE RMSE

Call options Put options

Short-term

DITM 10.661 129.77 ITM 23.356 109.45
ITM 12.652 36.923 ATM 14.325 10.859
ATM 7.6431 3.8802 OTM 27.353 6.9819
OTM 123.94 25.140 DOTM 40.076 7.0761
DOTM 588.55 101.74 VDOTM 45.565 5.9635

Medium-term

DITM 96.314 689.02 ITM 11.402 19.917
ITM 35.996 89.599 ATM 13.539 11.802
ATM 27.852 77.758 OTM 20.180 22.304
OTM 321.42 66.937 DOTM 33.089 7.4446
DOTM 1501.9 752.14 VDOTM 42.698 1.5740

Long-term

DITM 76.612 352.95 ITM 11.951 16.194
ITM 4.1100 20.146 ATM 14.029 25.493
ATM 9.0711 11.912 OTM 19.256 15.299
OTM 291.89 912.84 DOTM 29.534 5.9951
DOTM 1556.2 982.50 VDOTM 39.901 2.9784

S&P 500 option prices across board. It also offers smaller hedging errors in a delta hedging strategy

involving stocks and bonds compared with alternative models. These empirical findings substantiate

the novelty of our model as a step towards formulating neural network based models with economic

insight.
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