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Abstract 

A novel method for the continual, cuff-less estimation of the systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) values based on signal complexity analysis of the 

photoplethysmogram (PPG) and the electrocardiogram (ECG) is reported. The proposed 

framework estimates the blood pressure (BP) values obtained from signals generated from 14 

volunteers subjected to a series of exercise routines. Herein, the physiological signals were first 

pre-processed, followed by the extraction of complexity features from both the PPG and ECG. 

Subsequently the complexity features were used in regression models (artificial neural network 

(ANN), support vector machine (SVM) and LASSO) to predict the BP. The performance of 

the approach was evaluated by calculating the mean absolute error (MAE) and the standard 

deviation (STD) of the predicted results and compared with the recommendations made by the 

British Hypertension Society (BHS) and Association for the Advancement of Medical 

Instrumentation (AAMI). Complexity features from the ECG and PPG were investigated 

independently, along with the combined dataset. It was observed that the complexity features 

obtained from the combination of ECG and PPG signals resulted to an improved estimation 

accuracy for the BP. The most accurate DBP result of 5.15 ± 6.46 mmHg was obtained from 

ANN model, and SVM generated the most accurate prediction for the SBP which was estimated 

as 7.33 ± 9.53 mmHg. Results for DBP fall within recommended performance of the BHS but 

SBP is outside the range. Although initial results are promising, further improvements are 

required before the potential of this approach is fully realised. 

Key words blood pressure (BP) · complexity analysis · photoplethysmogram 

(PPG) · electrocardiogram (ECG) · machine learning  

 

1 Introduction 

Unhealthy lifestyle choices and dietary habits have led to the prevalence of rising blood 

pressure (BP) which could result in hypertension and increase the risks of cardiovascular 

diseases. One-third of global deaths is related to cardiovascular diseases of which hypertension 

has become a highly prevalent risk factor and a worldwide health problem (Organization,Group 

2003). One important method of preventing hypertension both clinically and through self-

administration is the continuous monitoring of BP, and with the ubiquity of smartphones and 

wearable devices, these procedures could make use of the internet of things (IoT) to make 

healthcare delivery more effective (Qi et al. 2017). Thus, the increasing need for optimal 

mobile and user-friendly diagnostic tools for monitoring ailments such as hypertension has 
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promoted the development and adoption of non-invasive cuff-less continuous BP measurement 

and methods. 

Most research studies aimed at developing ambulatory and continual BP monitoring systems 

adopt a combination of electrocardiogram (ECG) and photoplethysmogram (PPG) (Buxi et al. 

2015; Mukkamala et al. 2015; Sun et al. 2016; Zaki et al. 2016; Zhang et al. 2017). Pulse wave 

velocity (PWV), pulse arrival time (PAT) and pulse transit time (PTT) all rely on the theory 

that pressure waves propagating along arterial vessels are related to the vessel wall properties. 

In general, PTT and BP values have been parameterised through linear, logarithmic or 

exponential relationships (Sharma et al. 2017). In principle, PAT-based approaches for cuff-

less BP monitoring require two simultaneously collected physiological signals (e.g. ECG and 

PPG) (Mukkamala et al. 2015). Moreover, the measurement and collection of two 

physiological signals requires more complex instrumentation, which are susceptible to 

measurement errors. For instance, in the detailed procedures to estimate BP by PAT using PPG 

and ECG signals, the calculated systolic BP (SBP) and diastolic BP (DBP) errors for normal 

and healthy patients were deduced to be in the range -18.3 to 14.8 mmHg and -12.1 to 8.2 

mmHg respectively (Goli,Jayanthi 2014). However, this wide range of errors might not be 

effective for diagnosis in practice.  

The additional complexity of measuring 2 physiological signals simultaneously can be 

mitigated by estimating BP values based on either ECG or PPG alone. BP estimation can be 

facilitated using machine learning and artificial intelligence. In practice, the collection of ECG 

signal usually involves the application of electrodes to the body which is inconvenient for 

continuous measurement, as such most investigators usually utilise PPG signals to estimate BP 

mainly because of the design simplicity and ease of use (Wang et al. 2018; Addison 2016; 

Suzuki 2015; Visvanathan et al. 2013). This technique exploits various machine learning and 

signal processing algorithms to estimate BP. Herein, features related to the BP which are 

obtained after pre-processing the PPG signal are fed into machine learning models which 

subsequently generates an estimate of the BP values (Kachuee et al. 2016). Recently, a method 

for estimating SBP and DBP using features extracted solely from the PPG signal and an 

artificial neural network (ANN) computed a mean absolute error (MAE) of 4.20 ± 2.79 mmHg 

and 2.27 ± 1.82 mmHg for SBP and DBP respectively (Wang et al. 2018). 

It is important to note that although the use of PPG signals to predict BP is simple and 

convenient, experimental artefacts introduced from motion and ambient noise usually affects 

the accuracy. Thus, other studies have also investigated methods to estimate BP using only the 

ECG (Simjanoska et al. 2018; Yang et al. 2017; Wu et al. 2016; Monroy Estrada et al. 2014). 

In an earlier report, a relationship between BP and ECG was demonstrated by resolving the 

systolic and diastolic portions of the ECG signals and the obtained average error were 2.70% 

for systole and 4.35% for diastole (Monroy Estrada et al. 2014). Also, the morphological 

features of ECG signals have been used to calculate BP values through the use of ANN models. 

In this research, the average error rate of the BP measurement is lower than 5% (1.96%/2.14% 

which is approximately 2.38 ± 3.66 mmHg/1.57 ± 4.17 mmHg for SBP/DBP) when compared 

with a mercury sphygmomanometer (Wu et al. 2016). Hitherto, different from utilising the 

morphology of the ECG signals, a recent report obtained BP values by combining complexity 

analysis of the ECG with machine learning models. In this case, the MAE for the SBP and DBP 

were respectively obtained as 7.72 mmHg and 9.45 mmHg whilst a value of 8.13 mmHg was 

obtained for the mean arterial pressure (Simjanoska et al. 2018).  

The research reported in this paper is based on the extraction of different complexity features 

from both PPG and ECG signals such as: autoregressive (AR) coefficients, and Hjorth 

parameters. Some of the features adopted in this paper have been used for recognition of heart 
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rhythm, or the measurement of heart rate variability during myocardial ischaemia (Zhao,Zhang 

2005; Leonarduzzi et al. 2010; Li,Zhou 2016) but not for BP estimation. These parameters are 

then used to create a regression model such as an ANN or SVM in order to estimate BP. This 

novel approach is in contrast to earlier studies which utilised the PTT or morphological features 

of the ECG and/or PPG to predict BP (Zhang et al. 2017; Zaki et al. 2016; Kachuee et al. 2016; 

Millasseau et al. 2006). This paper is to our knowledge the first use of complexity features 

from PPG signals to determine BP, and also the first to compare this approach and ECG based 

methods. 

 

2 Background Theory 

The following subsections describe the parameters extracted to develop the BP estimation 

methods. 

2.1 PTT 

BP is the pressure created from circulating blood on vessel walls that aids the flow of blood 

from the ventricle to the aorta and peripheral vessels. The pressure wave along the arterial 

vessels and its speed depend on arterial properties such as: elasticity, stiffness, thickness of the 

artery wall, and size of the artery. PTT is related to the propagation speed of the pressure wave, 

which can be explained by the Moens-Korteweg equation (Mukkamala et al. 2015): 

𝑃𝑊𝑉 =
𝐷

𝑃𝑇𝑇
=  √

𝐸ℎ

2𝑟𝜌
                                    (1) 

where PWV is the velocity of the pulse wave (m/s), D is the length of the vessel (m), PTT is 

the pulse transit time (s), E is Young’s modulus of the arterial wall (Pa), ρ is the blood density 

(kg/m3), h is the thickness of the vessel wall (m), and r is the radius of vessel (m).  

Young’s modulus of the arterial wall E is not a constant value, which follows the empirical 

exponential relationship with the fluid pressure P according to (Hughes et al. 1978): 

PeEE 

0=
                     (2) 

where E0 and γ are subject-specific parameters which depend on the thoracic aorta and 

abdominal aorta, e = 2.718 is Euler’s number and P is the BP (mmHg) within the vessel. In 

practice, it is assumed that the change in elasticity is much greater than the change in the radius 

of vessels or wall thickness. Subsequently, the elasticity increases with the rise of BP, which 

leads to an increase in the PWV and hence decrease in PTT. Although there are some 

limitations, the PAT (time delay between the the PPG and ECG signals) is often used as a 

surrogate for the PTT.  

 

2.2 Other features 

Autoregressive model coefficients 

AR coefficients are utilised to classify and extract features from signals. Due to the reduced 

dimensions of feature vectors, the classification can be done quickly. An AR model is a 

representation of a type of random process and it indicates that the output variable depends 

linearly on its own previous values and on a stochastic term. An AR model with order p, and 
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signal x[n] at time constant n can be represented as a linear combination of p previous values 

of the same signal. Accordingly, the AR (p) model is defined as: 

𝑥[𝑛] = ∑ 𝑎[𝑖]𝑥[𝑛 − 𝑖] + 𝑒[𝑛]
𝑝
𝑖=1     (3) 

where a[i] is the i-th coefficient of the model, e[n] corresponds to a white noise source with 

mean value of zero, and p is an arbitrary order. There are different methods to estimate the 

coefficients of an AR model, in this work, an 8-order AR model was adopted to represent each 

heartbeat according to the ARfit method (Zhao,Zhang 2005). Thus, there are 8 features 

extracted from the AR model coefficients utilised in this research. 

Multifractal wavelet leader 

Multifractal analysis can be used to study scaling phenomena and long-term correlations in 

time series which in turn can be used to quantify the distribution of their singularities. In 

practice, this can be used to analyse the fluctuations of heart rate variability caused by 

myocardial ischaemia. The wavelet leader based multifractal formalism is a new approach for 

multifractal analysis which shows improvement on myocardial ischaemia detection. In this 

feature extraction, multifractal 1-D wavelet leader estimate is applied to find the Holder 

exponents and the second cumulant of the scaling exponents. Specifically, the Holder 

exponents and second cumulant characterizes the signal regularity and departure from linearity 

respectively (Leonarduzzi et al. 2010). 

Shannon Entropy (SE) values 

SE is used to measure the uncertainty of the information content in given systems. Daubechies 

wavelet with 4 vanishing moments (db4) were found to perform well in the ECG classification 

(Li,Zhou 2016). In this research, this wavelet is also adopted to extract features from the 

maximal overlap discrete wavelet packet transform. In terms of decomposition level, the signal 

cannot be expressed well when the level is too small and a very large one can lead to a large 

number of features with many values close to zero. Accordingly, the decomposition level is set 

to range from 4 to 6. It is found that the best results are achieved at level 5 and they are 

presented in the following sections. Due to the space limitation, the results for decomposition 

level 4 and 6 are not presented here but they can be provided upon request. SE can be calculated 

from Equation (4) based on the probability distribution of the energy (Li,Zhou 2016): 

𝑆𝐸𝑖.𝑗 = − ∑ 𝑝𝑖,𝑗,𝑘 ∗ log (𝑝𝑖,𝑗,𝑘)𝑁
𝑘=1     (4) 

where 𝑝𝑖,𝑗,𝑘  is the k-th coefficient at the i-th level for the j-th node. A total of 32 features are 

extracted from the SE model. 

Hjorth parameters 

Signal mobility and signal complexity are parameters computed by using the Hjorth parameters 

method (Kugiumtzis,Tsimpiris 2010). They are indicators of statistical properties used for 

signal processing in the time domain. The mobility parameter represents the mean frequency 

or the proportion of standard deviation of the power spectrum. This is defined as the square 

root of the variance of the first derivative of the signal divided by its variance. The signal 

complexity parameter represents the change in frequency. This parameter compares the signal's 

similarity to a pure sine wave. Signals that are identical to a sine wave have complexity 

parameter of unity (Simjanoska et al. 2018). 

Heart rate 
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Heart rate is the number of times a person’s heart beats per minute. At rest, the heart rate for 

adults ranges from 60 to 100 beats per minute (Hori,Okamoto 2012). Heart rate depends on the 

individual, weight, age, heart conditions, use of medication, and activity state. Heart rate is 

used as a feature to predict BP. 

 

3 Methods 

3.1 Experiments 

Ethical approval was provided by the Ethics Committee, Faculty of Engineering, University of 

Nottingham. 

 

3.1.1 Subjects and devices 

14 male volunteers (age: 30 ± 13 years; height: 166 ± 15 cm; weight: 62 ± 13 kg) participated 

in this study. All of the subjects are healthy with no clinically apparent arterial disease or 

physical abnormality. Four hours prior to the experiment, the subject was asked to avoid drinks 

that contained caffeine or a heavy meal to prevent a large variability in blood pressure.  

A data acquisition device (Nexus-10 Mark II) converted the analogue signal into digital form 

before transmitting to a laptop for further processing via Bluetooth. The device is battery-

operated to reduce electrical hazard and has a built-in amplifier with low input noise, high input 

impedance and high common mode rejection ratio. In this research, one bipolar channel was 

used for ECG measurement with surface electrodes according to lead II configuration. The 

PPG signal from the fingertip was measured by a Nexus BVP (NX-BVP1A) sensor which 

consists of red and infra-red light sources and a photodetector to measure relative blood volume 

through the blood vessels in the finger.  

 

3.1.2 Data acquisition 

The PPG sensor was clamped to subject’s right index finger and ECG electrodes were attached 

on the chest using adhesive pads (Figure 1). A sphygmomanometer (OSTAR, P2) was placed 

on the subject’s left arm.  
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Fig. 1  Sensor placement on subject for PPG and ECG signal measurement 

 

The PPG, ECG and BP were measured simultaneously from subjects at successive intervals 

between pedalling on an exercise bike, this physical exertion would likely result in an increase 

in BP as the heart rate increases. The sampling frequency for the data acquisition was 256 

samples/second with 24 bit resolution. Each subject was asked to sit on an exercise bike 

(Domyos VM740) with their hands on the armrests. As PPG signals can be sensitive to motion, 

the subjects were asked to stay still during the measurement period. Each measurement 

experiment took 26 minutes and involved three parts:  

(I) the subject stayed still for 6 minutes and the PPG, ECG, and BP were recorded every 2 

minutes.  

(II) the subject cycled at a fixed intensity (108 W with 60 turns per minute) for 1 minute and 

rested for another minute. This process was repeated 4 times whilst the measurements were 

taken during the rest periods.  

(III) the subject cycled with the same intensity as in (II) for 6 minutes and measurements were 

recorded every 2 minutes three times after the exercise is completed.  

Hence, there are 10 sets of data collected from each subject under different states and all data 

were monitored and recorded through BioTrace+ software (Mind Media B.V. Netherland). 

Accordingly, there was a total number of 140 sets of data corresponding to PPG, ECG and BP 

values that were simultaneously recorded in the course of this experiment. 

 

3.2 BP estimation 

3.2.1 Signal pre-processing 

A total of 140 sets of data corresponding to ECG, PPG, SBP and DBP values, were collected 

from 14 people in various scenarios after different duration of exercise. However, a few 

datasets were invalid as they either failed to record certain signals (e.g. missing certain BP 
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values) or included unmanageable outliers. After screening the results, 129 groups from the 

dataset were retained for the next step of signal pre-processing. These datasets contained 

complete ECG, PPG, SBP and DBP values. 

Since the duration of the signal recordings ranged from 14 seconds to more than 1 minute 

according to BP acquisition time, 10 seconds of signals are selected for each group of data and 

there are 129 groups in total. The acquired raw PPG signal was then pre-processed by a 

Chebyshev II bandpass filter with the lower and upper cut off frequencies of 0.5 and 10 Hz 

respectively. This procedure was used to remove the noise from the raw PPG signal which in 

turn increases the signal quality index (SQI) (Liang et al. 2018). The raw ECG signal is 

processed by a Butterworth bandpass filter with cut off frequencies of 0.5 and 40 Hz to remove 

the baseline wander, and to suppress spurious data fluctuations due to motion (Shin et al. 2010). 

Subsequently, the PPG and ECG signals were normalized and their peaks in each period were 

ascertained. The most stable period of the both signals were chosen by selecting the highest 

cross-correlation coefficient between cycles, these were defined by neighbouring peaks and 

were used in the succeeding feature extraction. 

 

3.2.2 Feature extraction, portioning and model construction 

Table 1 summaries all the features extracted and used for BP estimation in this work. PAT and 

heart rate were extracted from the peaks of the PPG and ECG signals, and other features were 

obtained from complexity analysis. The PAT value is calculated from the time interval between 

the R-peak of the ECG and the systolic peak of the PPG within one heartbeat. Heart rate is 

calculated from the measurement of the peak-to-peak time interval of the PPG or ECG signals. 

Apart from the PAT and heart rate, the remaining features were extracted separately from both 

PPG and ECG signals. Hence, the number of complexity features is doubled, and there are 90 

features in total from each group of dataset.  

 

Table 1  Extracted features from ECG and PPG signals 

Feature name 

Number 

of 

features  

Pulse arrival time (PAT) 1 

Autoregressive (AR) model coefficients of order 8 8 

Multifractal 

wavelet 

leader 

Second cumulant of scaling 

exponents 
1 

Holder exponents 1 

Shannon Entropy (SE) values for the maximal 

overlap discrete wavelet packet transform at level 5 
32 

Hjorth 

parameters 

Signal mobility 1 

Signal complexity 1 

Heart rate 1 

 

Due to the limited number of subjects participating in the experiment, in the first stage, samples 

from all volunteers were merged and there are 129 samples in total. Then they are divided into 

training and testing set with the ratio of 7:3 following earlier studies. Since the purpose of this 
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research was to investigate the performance of machine learning models using complexity 

analysis, three cases were proposed to predict BP using the features from Table 1: 1) ECG 

features alone; 2) PPG features alone; 3) features from both ECG and PPG as well as PAT. 

It is ideal to separate the training and testing samples from the same set of subjects, which is 

often referred to as inter-patient scheme. However, it is often not practical in this research area 

because of the limited sample data when the researchers choose to recruit the subjects and 

collect the data by themselves (Zhang et al. 2019; Li et al. 2018; Islam et al. 2017). Nevertheless, 

this study also applies the inter-patient scheme and aims to reinforce the results in the first stage. 

In our proposed work, 5-fold and 3-fold cross validations are employed. With respect to 5-fold 

cross validation, 14 volunteers are split into 4 folds of 3 subjects and 1 fold of 2 subjects. And 

in the case of 3-fold cross validation, 14 volunteers are split into 2 folds of 5 subjects and 1 

fold of 4 subjects. Each cross validation experiment is repeated 20 times to achieve the final 

result. 

In addition to the comparison between using complexity features from ECG and PPG, this 

study also presents a comparison between the performances of various learning methods in 

utilising these features. In this comparison, a simple linear regression model (i.e., Least 

Absolute Shrinkage and Selection Operator (LASSO) regression model), a strong and 

nonlinear model (i.e., Support Vector Machine (SVM)) as well as an ANN model were 

included. LASSO regression was used for both variable selection and regularization in order 

to improve the prediction accuracy and interpretability of the statistical model it produces (Fu 

1998). LASSO regression is included in this research to investigate the performance of linear 

regression on BP estimation. SVM is a suitable and powerful learning algorithm in terms of 

generating strong models with minimal training resources and a high noise tolerance (Kachuee 

et al. 2016). The parameters of SVM, such as kernel function and kernel scale, are optimized 

using “OptimizeHyperparameters” option of  “fitrsvm” function in MATLAB in training. The 

optimization procedure involves using a 5-fold cross validation process for the training data. 

Although the same features are used for the estimation of SBP and DBP, two separate models 

were trained for each of these targets.The optimized parameters of SVM for different settings 

in the first stage are listed as follows: 

 

Table 2 Kernel function and kernel scale for SVM models 

 PPG and ECG PPG only ECG only 

SVM Parameters 

(SBP) 

Kenel Function Gaussian Polynomial 

with order 3 

Linear 

Kernel Scale 6.8909 2.9690 4.6193 

 

SVM Parameters 

(DBP) 

Kenel Function Gaussian Linear Linear 

Kernel Scale 6.4089 3.8306 4.6391 

 

ANN is a bio-inspired system based on the structure and functions of biological neural 

networks, which has been used on a variety of tasks (Maind,Wankar 2014). The structure of 

ANN is determined empirically, including the number of hidden layers (1 and 2), number of 

hidden nodes (5, 10 and 15) and training algorithm (Levenberg-Marquardt, Bayesian 

Regularization and BFGS Quasi-Newton). The results indicate that the combination of 1 hidden 

layer, 10 hidden nodes and Bayesian Regularization algorithm generate most accurate 

prediction. The default hyperbolic tangent sigmoid transfer function is used for the hidden layer 
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and it can be written as f(x) = (exp(x) − exp(−x))/(exp(x) + exp(−x)). A linear transfer 

function is used for the output layer since the blood pressure is in the form of continuous target 

values.  

 

4 Results 

Each model was implemented to predict DBP and SBP values from a dataset separated into 

training and testing categories in which overlap between categories is avoided. To execute the 

main tasks in this investigation, features extracted from either PPG or ECG signals (Table 1) 

were used to predict BP values, then PAT and features from both PPG and ECG signals were 

utilized for the BP estimation. Subsequently, LASSO, SVM and ANN models were deployed 

whilst the calculated MAE and STD were then used for model evaluations. The results from 

the first stage where the data are merged are given in Section 4.2-4.6 while the results of 

employing inter-patient scheme are given in Section 4.7. 

 

4.1 Measured BP distribution 

BP histograms obtained from the sphygmomanometer data are presented in Figure 2. The SBP 

and DBP ranged from 97 mmHg to 148 mmHg and 53 mmHg to 108 mmHg respectively. 

These relatively large ranges can be attributed to the different levels of exercise which the 

subjects were made to undertake. Accordingly, the sensitivity of the results reflects the 

robustness in the prediction of BP values.  

 

  

   (a)          (b) 

Fig. 2  Histogram of the BP values measured using: (a) SBP; (b) DBP. 

 

Note that the number of features extracted from either ECG or PPG signals was 45, as described 

in Sections 3.2.2. Relatedly, the number of features extracted from the combination of ECG 

and PPG signals was 90 (including PAT and heart rate). 
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4.2 Results using features extracted from only the ECG 

Table 3 shows the results from the three machine learning models for DBP and SBP estimation. 

The features used in this section were extracted solely from the ECG signal. The best 

performance of the DBP and SBP were respectively obtained from SVM and ANN with 

corresponding values of 5.48 ± 7.07 mmHg and 8.08 ± 10.47 mmHg. 

 

Table 3  Comparison of the performance between various machine learning models using 

complexity features from ECG. 

 Diastolic Blood 

Pressure (mmHg) 

 Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.99 7.35 8.08 10.47 

SVM 5.48 7.07 8.25 10.74 

LASSO 6.33 7.82 8.66 10.85 

 

4.3 Results using features extracted from only the PPG 

Table 4 compares the performance of various machine learning models for features extracted 

solely from PPG signals. Herein, the predicted values of the DBP obtained from all three 

models were similar, also, these results were comparatively better than those predicted for the 

SBP. With respect to the prediction of the SBP, it was observed that the performance of the 

LASSO was slightly better than those generated by the ANN and SVM models. The predictions 

obtained from ANN and LASSO resulted in the best performance for DBP and SBP with values 

of 5.52 ± 6.73 mmHg and 9.44 ± 11.63 mmHg respectively.  

 

Table 4  Comparison of the performance between various machine learning models using 

complexity features from PPG 

 Diastolic Blood 

Pressure (mmHg) 

 Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.52 6.73 13.05 17.77 

SVM 5.31 7.05 10.57 12.86 

LASSO 5.79 7.40 9.44 11.63 

 

4.4 Results using features extracted from both PPG and ECG signals 

A comparison between various machine learning models using features extracted from both 

PPG and ECG are shown in Table 5. In this case, the MAE of DBP is similar for each learning 

method and ANN resulted in the optimal prediction of 5.15 ± 6.46 mmHg. Also, the predicted 

value of 7.33 ± 9.53 mmHg generated by the SVM was the optimal result for the SBP.  In line 

with these findings, it was observed that features extracted from both the ECG and PPG signals 

resulted in higher prediction accuracy compared to those obtained solely from either ECG or 

PPG signals as shown in Tables 3 and 4. 
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Table 5  Comparison of the performance between various machine learning models using 

PTT and the features extracted from PPG and ECG 

 Diastolic Blood 

Pressure (mmHg) 

Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.15 6.46 7.99 10.34 

SVM 5.22 6.65 7.33 9.53 

LASSO 5.73 7.28 8.94 11.01 

 

It is important to highlight that there is no available literature to compare the results obtained 

from extracting features from PPG because this work is the first report BP prediction with 

features extracted from the PPG signal through the use of complexity analysis. Thus, for the 

sake of consistency, the results obtained from this research were compared with official 

standards because their stipulated values are general. 

 

4.5 Evaluation of the results obtained from the models relative to the British 

Hypertension Society (BHS) Standard 

The results from the complexity analysis carried out in this work were compared with the BHS 

standard as shown in Table 6. Generally, the BHS standard grades BP measurement devices 

based on the cumulative percentage errors under 5, 10 and 15 mmHg (O'Brien et al. 2001). In 

this work, the predicted values of DBP obtained from the ANN model was consistent with 

Grade A as stipulated by the BHS standard. Furthermore, the predicted values of the DBP 

obtained from SVM and LASSO models were in congruence with Grade B of the BHS standard. 

However, the estimations of the SBP obtained from all three models was not consistent with 

the BHS standard. 

 

Table 6  Comparison with the BHS standard (O'Brien et al. 2001) 

 
Cumulative Error Percentage 

DBP SBP 

 
≤5 

mmHg 

≤10 

mmHg 

≤15 

mmHg 

≤5 

mmHg 

≤10 

mmHg 

≤15 

mmHg 

Including 

all 

features 

ANN 60.53 % 89.47 % 97.37 % 44.74 % 71.05 % 76.32 % 

SVM 52.63 % 84.21 % 97.37 % 47.37 % 71.05 % 84.21 % 

LASSO 50.00 % 84.21 % 94.74 % 28.95 % 68.42 % 73.68 % 

 

BHS 

standard 

Grade A 60 % 85 % 95 % 

Grade B 50 % 75 % 90 % 

Grade C 40 % 65 % 85 % 

 

4.6 Evaluation of the results obtained from the models relative to the Association for the 

Advancement of Medical Instrumentation (AAMI) Standard 

The AAMI standard requires BP measurement devices to achieve MAE and STD values lower 

than 5 mmHg and 8 mmHg, respectively (Jones,Hall 2002). According to Table 5, the 
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implemented models for the DBP estimation displayed STD values lower than the maximum 

acceptable STD values, moreover, the MAE values for the DBP obtained from all models were 

slightly outside the acceptable limit of the AAMI standard. Also, the MAE and STD values of 

the SBP obtained from all the three models were also outside the stipulated limits.  

 

4.7 Results of inter-patient scheme using 5-fold and 3-fold cross validation 

In order to reinforce the results of the first stage where the data of different subjects are 

merged before train-test split, inter-patient scheme using 5-fold and 3-fold cross validations 

are adopted. To reduce variability, 20 rounds of cross validation are performed using 

different random partitions. The results over different rounds are used to calculate the final 

MAE and STD, which are shown in Table 7-12.  

 

Table 7  Average BP prediction results from 5-fold cross validation based on subject division 

using complexity features from ECG. 

 Diastolic Blood 

Pressure (mmHg) 

 Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 6.22 6.93 8.19 10.75 

SVM 5.69 7.56 8.96 11.09 

LASSO 6.95 8.27 9.38 11.49 

 

Table 8  Average BP prediction results from 5-fold cross validation based on subject division 

using complexity features from PPG 

 Diastolic Blood 

Pressure (mmHg) 

 Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.63 6.78 12.94 13.87 

SVM 5.75 7.11 9.76 13.01 

LASSO 6.10 7.83 10.89 12.17 

 

Table 9  Average BP prediction results from 5-fold cross validation based on subject division 

using complexity features from PPG and ECG 

 Diastolic Blood 

Pressure (mmHg) 

Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.11 5.74 8.13 10.17 

SVM 5.85 7.06 8.23 9.94 

LASSO 6.42 7.85 9.37 10.56 

 

Table 10  Average BP prediction results from 3-fold cross validation based on subject 

division using complexity features from ECG. 
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 Diastolic Blood 

Pressure (mmHg) 

 Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 6.15 7.09 8.15 10.51 

SVM 5.74 7.39 8.74 11.18 

LASSO 6.97 8.43 9.43 11.27 

 

Table 11  Average BP prediction results from 3-fold cross validation based on subject 

division using complexity features from PPG 

 Diastolic Blood 

Pressure (mmHg) 

 Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.67 6.77 12.47 13.69 

SVM 5.78 7.24 9.83 13.08 

LASSO 6.08 7.99 11.20 12.11 

 

Table 12  Average BP prediction results from 3-fold cross validation based on subject 

division using complexity features from PPG and ECG 

 Diastolic Blood 

Pressure (mmHg) 

Systolic Blood 

Pressure (mmHg) 

 MAE STD MAE STD 

ANN 5.12 5.86 8.19 10.21 

SVM 5.81 7.13 8.41 10.05 

LASSO 6.49 7.87 9.16 10.24 

 

It can be seen that 5-fold and 3-fold cross validation expriements generate similar results. In 

comparison with the results in the first stage, ANN still performs well and there are only very 

small increases in MAE while STD stays relatively the same. SVM and LASSO seem to 

generate less accurate predictions in terms of MAE for all three different scenarios. Overall, 

the results of the inter-patient scheme are consistent with the results in the first stage with slight 

deterioration with SVM and LASSO models.  

 

5 Discussion 

With respect to the accuracy of the models in predicting the BP based on the source of the 

complexity features, it was observed that the ANN model has the highest accuracy for 

predicting the SBP obtained from ECG. Moreover, with the features extracted from a 

combination of the ECG and PPG signals, the most accurate prediction of SBP was obtained 

by the SVM model. The accuracy of all three models improved when the features were 

extracted from a combination of the ECG and PPG signals.   

From an assessment of the prediction efficacy of the different models, SVM was more accurate 

in predicting the DBP obtained from the ECG signals, whereas the prediction of DBP values 

obtained from either the PPG or its combination with the ECG signals more accurately 

predicted by the ANN model. The higher prediction accuracy displayed by the ANN model 

could be attributed to its strong ability to learn and optimally resolve non-linear and complex 
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relationships (Maind,Wankar 2014). The optimal prediction of the DBP from features extracted 

from the ECG signals as exhibited by the SVM model could be linked to this model’s strong 

ability to resolve non-linear relationships coupled with its minimal requirement for training 

resources and high noise tolerance (Kachuee et al. 2016). It is interesting to point out that the 

three different models were all able to predict DBP more accurately than SBP, using all 

combinations of models and signals. 

It is noteworthy to mention that the accuracy of the models in predicting the SBP values 

generated from features extracted from either or both the ECG and PPG signals are similar to 

the results in the literature (Sun et al. 2016; Kachuee et al. 2016; Simjanoska et al. 2018). With 

regards to the DBP estimation, the most accurate predictions were generated from features 

extracted from the combination of ECG and PPG, and the errors were not significantly large. 

From a broader perspective, it can be concluded that features extracted from the combination 

of both signals resulted in accurate prediction of both the DBP and SBP by all three models 

considered. In line with this, the simplicity, ability to be designed as a wearable component, 

and other practical advantages of the PPG monitoring unit generally make it a viable system 

that could be adopted for the continual monitoring of BP. 

With respect to the evaluation of the model with the BHS standard, it was observed that the 

estimation of the DBP values with the aid of the ANN model was consistent with Grade A, 

whereas the data obtained from the SVM and LASSO models can be classed under Grade B. 

Although the results of the SBP obtained from all three models deviated from the stipulated 

the BHS and AAMI standards, nevertheless, the error margin could be narrowed further. For 

example, in this research, all 14 volunteers are males mainly because the adoption of the chest 

electrodes would be inconvenient for female volunteers. Accordingly, two major limitations of 

this study could be linked to the bias in the results obtained from one sex, and the small number 

of subjects. In line with this, future investigations aimed at further developing this study would 

include both sexes, and the sample size of subjects would also be increased, so a wide range of 

different people’s data will increase the accuracy of the results. Moreover, the stress induced 

from the controlled exercise undertaken by the subjects could also introduce experimental 

artefacts which may affect the acquired physiological signals, thus, the signal pre-processing 

aspect of this work should be further optimised. Additionally, more accurate results could be 

obtained by making measurement only at rest, not during exercise, and by training the neural 

networks using personalized data from individuals over a longer period. This indicates that the 

adopted models may still be optimised to achieve accurate predictions in accordance with the 

criteria set out by these standards. 

Inter-patient scheme is used by employing 5-fold and 3-fold cross validation on the subjects 

and its results are overall consistent with the results from the first stage. ANN is proved to 

provide especially robust results. 

Although, the BP estimations within this work were obtained through the use of ANN, SVM 

and LASSO regression models, it is pertinent to state that the inclusion of more machine 

learning models with complex structures coupled with the novel approach at feature extraction 

reported in this work could result in the generation of more accurate BP estimations. Relatedly, 

even though the two morphological features of PAT and heart rate were added to the signal 

complexity features, still, future aspects of this research would benefit from incorporating more 

morphological features in order to further improve the accuracy of the BP estimation. 
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6 Conclusion 

In this article, a novel method for BP estimation using complexity analysis to extract features 

from PPG and ECG signals has been proposed. The participants in this study were a group of 

14 male volunteers subjected to different exercise scenarios from which signals of ECG and 

PPG together with BP values were simultaneously measured. In all, 129 distinct datasets were 

adopted for pre-processing, and these served as the input for the signal complexity analysis 

which resulted in the extraction of 90 features from the PPG and ECG signals. Three regression 

models, ANN, SVM and LASSO, were adopted for the separate prediction of DBP and SBP. 

Unlike in traditional methods in which the BP values were predicted by processing the 

morphological features from both the PPG and ECG signals, the approach adopted in this study 

utilised signal complexity analysis to resolve the information encoded in the PPG or ECG 

signals thereby making it possible to use machine learning models to predict the SBP and DBP. 

Accordingly, this work described a novel approach for the estimation of BP. Furthermore, the 

use of signal complexity analysis demonstrated that in addition to being able to extract features 

from either PPG or ECG signals with relatively high prediction capabilities of the BP, the 

extraction of features from a combination of both signals markedly increased the prediction 

accuracy.  
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