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Abstract— Smart pervasive sensor networks are becoming an 
important part of our daily lives. Low-power, high-availability 
and high-throughput 5G mobile networks provide the necessary 
communication means for highly pervasive sensor networks, 
introducing a technological disruption to health monitoring. The 
meaningful use of large concurrent sensor networks in healthcare 
requires multi-level health knowledge integration with sensor data 
streams. In this paper, we highlight some software engineering 
and data-processing issues that can be addressed by metamorphic 
testing. The proposed solution combines data streaming with 
filtering and cross-calibration, use of medical knowledge for 
system operation and data interpretation, and IoT-based 
calibration using certified linked diagnostic devices. 

Keywords - data streaming, digital wellbeing health monitoring, 
Internet of Things, oracle problem, sensor networks 

I. INTRODUCTION 
 Wireless sensor networks (WSNs) are collections of 
spatially distributed specialized sensors that concurrently 
monitor, record and communicate data representing 
measurements of environmental variables or a given system’s 
descriptors. WSNs can be distributed, such as those that monitor 
air quality in a defined geographic area; or localized, such as 
personal health monitoring sensor networks [1]. In the past, the 
main challenges facing WSNs were hardware constraints and 
limited energy resources. Now, the main problems relate to the 
ability to capture, process, store, synchronize, and manage 
multiple data streams from large and dynamic WSNs, and be 
able to respond in real time when needed [2]. Data accumulation 
rate is accelerating. According to popular estimates, the total 
amount of data doubles every two years, or even faster. The 5G 
mobile infrastructure, expected to roll out by 2020 will see rapid 
expansion of data capacity and usage (Table I) [3].  

 The increase of volume, speed, and coverage of data 
communication raises various technological, software, and 
societal challenges. Technological challenges include a need to 

improve energy efficiencies, miniaturization, robustness of 
sensors, and Internet of Things (IoT) device performance. 
Software challenges include the need to develop and implement 
software engineering solutions and robust algorithms for 
filtering, compression, and real-time decision making. Societal 
challenges relate to safety, security, and a range of ethical issues 
including ownership, privacy, and right to access and use data. 

TABLE I.  5G MOBILE NETWORK CAPABILITIES [3] 

5G capabilities Range Improvement 
Latency of data travel 
between points 1 ms 10 times 

Number of simultaneous 
connections 5/m2 100 times 

Peak data rates 50Gbit/s 50 times 
Normal user data rates 1 Gbit/s 100 times 
Traffic volume  50 Tbytes/s 100-1000 times 
 

  The physical scope of 5G networks is expanding, with 
WSNs introducing an additional layer of complexity. A 5G 
mobile phone will support at least 40 wide area network (WAN) 
bands and multiple radio frequencies for wireless local area 
networks (WLAN) [4]. Different types of LANs have been 
defined by size, such as personal area (PAN), home area (HAN), 
and storage (SAN) networks, as well as larger networks such as 
campus area (CAN) or metropolitan area (MAN).  Table II 
shows some sample network types, according to physical scope. 

 The networking infrastructure has enabled connectivity and 
communication between devices, objects, systems, and living 
beings. Embedded sensors, electronics, communication devices 
and software provide for collection, processing and exchange of 
data and action or response to certain situations. These actions 
or responses may involve sensing of the environment and 



alerting and prompting people to respond to various situations 
and conditions. Alternatively, the responses can be automated. 
For example, a car sensor system may detect an approaching car 
and alert the driver if two cars are on a collision course. Self-
driving cars will automatically adjust to the situation on the road. 
The systems, devices and objects that involve sensors, data 
communication, and real time responses are usually referred to 
as smart technologies. They include devices, such as smart 
phones, clocks, cameras, or appliances; systems such as smart 
cars, homes, buildings, or hospitals (or broader geographic 
areas, such as smart cities [13-15]). The convergence of sensor 
systems, embedded electronics, information and 
communications technology (ICT), real-time data analytics, 
machine learning, and artificial intelligence methods for 
decision making have enabled the emergence of the Internet of 
Things (IoT). IoT is the network of devices and systems, such as 
vehicles and home appliances, that interact, exchange data, and 
make decisions about their collective operations in response to 
changes or following pre-defined protocols [16].  

TABLE II.  NETWORK TYPES, BY PHYSICAL SCOPE 

Type of network (area) Acronym Range* Reference 
Nanoscale – MCF [5] 
Near field NFC D2D [6] 
Body BAN D2D [7] 
Personal PAN D2D [7] 
Near-me NAN D2D [8] 
Home HAN LAN [9] 
Airport  – LAN [9] 
Storage SAN LAN [10] 
Campus CAN WAN [11] 
Metropolitan MAN WAN [11] 
Cloud – IAN [12] 

*MCF – molecular communication framework, D2D – device to device 
communication, LAN – local area network, WAN – wide area network, IAN – 
Internet area network. 
 
 Sensor systems and IoT generate huge amounts of data that 
are growing exponentially [17]. These data are termed Big Data 
– they have such a large size and high complexity that traditional 
methods for capture, processing, transferring, analysis and 
storage are inadequate. Some of the main characteristics of Big 
Data are that they have high volume, are not suitable for storage 
into relational databases, and are generated and processed at 
high speed [18]. Big Data are commonly characterized by Vs: 
volume, velocity, variety, variability, veracity, visualization, 
and value [18,19]. 

 Data have been generated at a faster pace than we are able to 
process and analyze. Whereas traditional data analytics mainly 
employs statistics, Big Data analytics often involves machine 
learning (ML), mathematical modeling, and artificial 
intelligence (AI) [20-22]. Data accumulation, fueled by sensor 
networks and IoT devices, is faster than our ability to manage 
and use, creating several bottlenecks that need to be addressed: 

a) real-time pre-processing of data to reduce them to a workable 
size; b) synchronization of different data streams that enable 
extraction of critical information and provide context awareness; 
c) new algorithms for real time responses; and d) management 
of knowledge and its real-time deployment. 

 Although extensive literature is available in this field, some 
fundamental questions need clarification, and guidelines are 
weak. In this paper, we address some of these questions and 
provide guidelines for practical applications using sensor 
networks. First, we provide an analysis of data types generated 
by sensor networks and IoT devices and offer an insight into data 
management: filtering, synchronization, and their use in the 
context of knowledge management. Second, we examine 
practical examples and analyze key issues using health 
monitoring and wellbeing enhancement. Third, we provide an 
insight into the use of software engineering, including new 
requirements for software testing for the management and use of 
sensor systems. 

II. SENSOR NETWORKS DATA AND DATA ANALYTICS 
 Data generated by sensor networks are different from those 
generated by data loggers because individual sensors generate 
data cooperatively and data are often processed and filtered at 
the source. Examples of sensor networks include those 
embedded in smart phones and watches, health bands, vehicles 
(cars, buses, drones), smart homes, security systems, and IoT 
devices, amongst others. In the past, data were typically 
collected and analyzed offline for future business decisions. 
Very few applications were real-time, such as critical 
applications in power grid management, intensive care 
monitoring, or autopilot systems. These applications were not 
adaptive – they were designed to respond to a set of pre-defined 
conditions. Contemporary sensor networks are multi-agent 
systems that can measure variables, and perceive the state and 
behavior of their environment, responding accordingly [23]. 

 Technical design of sensor networks is well developed: the 
capture, storage and processing of data by small sensor networks 
is done routinely and reliably. On the other hand, learning from 
sensor network data has created new challenges – the large scale 
of data, understanding the data, energy requirements, and 
appropriate and timely responses [24]. The number of sensors 
may be very large, and they are distributed and often of different 
types. The data streams need to be combined and synchronized 
to adequately interpret continuously flowing data. Data 
represent continuous measurements of changing environments. 
Understanding, interpreting and learning from these data (and 
providing adequate responses or actions) requires the 
application of AI and ML. A common goal of sensor network 
systems research is to enable their intelligent behavior [23]. It is 
important to understand the new types of data generated by 
sensor networks and their analytics requirements. Among 
various data domains, biomedical data may be amongst the most 
complex to manage and use: such data are comprehensive, 
diverse, heterogeneous, and isolated to protect individuals’ 
privacy. 

 Data processing distinguishes several layers of knowledge 
embedded in the original raw data. This is captured, for example, 
in the DIKW knowledge pyramid [29], which defines 
hierarchical relationships between data, information, 



knowledge, and wisdom. Our modification of the DIKW model 
is shown in Figure 1, where the raw data are analyzed using 
statistical methods or machine learning to obtain high value data 
such as summaries, reports, or critical information that can be 
used to support decision making and provide appropriate actions 
and responses [25]. 

 

Fig. 1.  Modified DIKW hierarchy (DIUWV). The data are basic elements 
without meaning, information level introduces the relationships or rules, 
understanding enables the description of patterns, wisdom is about the ability 
to understand and describe principles, while vision enables the application of 
these principles to new and useful designs 

 Defining biomedical data types is complex because of the 
multiple dimensions to be considered for understanding and 
classification. Biomedical data can be classified according to 
structure, data processing level, application domain, and 
intended purpose [25]. Data may be structured or unstructured. 
For example, a diagnosis can be recorded in a structured form 
such as ICD diagnostic codes [26], or unstructured, such as 
textual descriptions. Structured forms facilitate comparative 
analysis and easy generation of statistics. Disadvantages include 
the high rate of false coding (false positives or false negatives) 
[27], and the loss of information captured in a textual 
description, but not in the international classification of disease 
(ICD10) code. It may be difficult to record a correct diagnosis 
that combines multiple concurrent health conditions, typically 
stated as a primary diagnosis along with comorbidities [28].  

 Biomedical data are used in various types of information 
systems. Examples are administrative, financial, clinical, 
research, operations, pharmaceutical, laboratory, and radiology 
systems; electronic health records; clinical trials data; and 
clinical and disease registries [30]. The key issue with these 
systems is the interoperability of these independent information 
systems [31]. The rapid development of sensor networks and 
IoT have created new challenges for merging traditional 
biomedical information systems with massive data streams – 
creating challenges for real-time decisions making [32, 33].  

 The most granular level of biomedical data are specialized 
data types, including: demographics and socioeconomic data, 
patient encounters, medication, symptoms, diagnoses, 
diagnostics (laboratory, imaging, and other tests), genetics, 
social history, family history, lifestyle (fitness, purchases), 
environmental data/exposure (climate, weather, pollution, 
health maps, and others), and social networks. The growth of 
Big Data generated by sensor networks from data streams has 

created challenges for both integrating these massive amounts 
of data into information systems, and for the development of 
data-processing algorithms. 

III. MONITORING HEALTH AND WELLBEING 
Existing applications of WSN have mostly focused on 

monitoring [34] and management of identified health issues in 
individuals [35,36]. Wellbeing is defined as the psychological, 
social and physical resources needed to meet the specific 
psychological, social and/or physical needs of an individual 
[37]. It has three components: life satisfaction, pleasant affect, 
and unpleasant affect [37]. In this section we discuss how 
ubiquitous WSNs can help address these three considerations. 
These considerations affect our lives at varying degrees of scale, 
from the micro (individual/ personal) to the macro 
(societal/large populations). Wellbeing data largely overlap 
health data, and the same infrastructure can be used for data 
collection and processing. A major difference is that medical 
diagnosis devices typically require governmental agency, such 
as FDA, certification, but wellbeing sensor devices typically do 
not. This situation is changing, and the number of FDA certified 
wearables is increasing, blurring the distinction among medical, 
health, and wellbeing applications. 

 At the micro level, we consider body area networks (BANs) 
to be the primary source of data. BAN level sensors are 
wearable, non-invasive devices that provide a quantified 
measure of some physiological state or activity of the wearer 
[38]. Examples include electroencephalogram (EEG) headsets, 
heart rate (HR) and heart rate variation (HRV) bands and straps, 
and pedometers. Concerns have been highlighted over the 
validity and accuracy of consumer grade devices [39,40]. At the 
macro level, the inferences we can draw from combinations of 
multiple redundant sensors at the BAN level enable cross-
calibration, and improvement in the accuracy and reliability of 
the measurements. Raw measurements by multiple sensors are 
commonly imprecise but their combinations, after calibration 
and data processing, offer resilience against inaccurate 
measurements in the network. Sensor systems provide for 
continuous monitoring of the environment and detect changes in 
environmental variables. Real-time algorithms enable responses 
including the adjustments of the environment or alerts to the 
individual about the need for response to the noted changes. 
These adaptations and responses to the streaming data can 
positively impact an individual’s physical and psychological 
states. Furthermore, such adaptations can inform a broader, 
societal benefit: groups become healthier, with improved 
wellbeing. As the global population ages, pressure on healthcare 
systems is increasing. This is especially so for age-related 
diseases, such as cancer and heart disease, and for declines in 
mental health. The issue of continuous monitoring using sensors 
and wearables becomes ever more necessary [41]. 

The application of ubiquitous WSNs to health monitoring 
and societal wellbeing is a major disruptive trend for a 
traditional care-giving system. The availability of highly 
individualized data enables smart systems to direct a healthy 
lifestyle in individuals. This movement of highly personal and 
physically ‘close’ sensors will lead to every individual being 
responsible for creating their own Big Data and will drive further 
developments towards more ubiquitous BANs and PANs. 

 



Existing BAN applications are primarily contextualized as 
fitness devices, with activity monitoring as the primary data. 
This provides a popular and relatively safe framing of the 
measurements, and the insights can lead to improved well-being 
e.g. habit-forming, gamified exercising and the introduction of 
social accountability [42]. When WSNs are used for health and 
medical monitoring, greater caution needs to be exercised and 
health care providers should be informed or involved in decision 
making in response to the analysis of data streams.  

Key issues at the micro level are integration of multi-sensor 
data, their interpretation of sensor data, and ensuring the 
accuracy of measurements of individual sensors and the overall 
network. Dealing with these issues becomes increasingly 
complex as the number of sensors grow, particularly when we 
deal with the swarms of sensors.  The application of BAN level 
sensors in a health context will require contextualization with 
the existing medical health records. For example, chronic lung 
disease patients may be particularly sensitive to variations in air 
pollution levels, relative to the normal population. When 
contextualized with this information, the smart system can tailor 
its suggestions, actions and reporting accordingly. For example, 
suggestions of physical activity might be more conservative in a 
polluted context. Additionally, control of the smart environment 
may use more air filtration but can be costly and energy 
consuming. Integration of existing medical record data into a 
smart system, while respecting the privacy rights of the 
individuals, and the local legal system, represents another 
challenge. This represents knowledge management for forming 
“smart algorithms,” and refers to the understanding and wisdom 
levels of the DIUWV hierarchy shown in Figure 1. Adequate 
responses to changes detected in sensor data streams require 
management and use of appropriate knowledge. For example, 
the system must be aware of thresholds that define safe levels of 
air pollutants for both immediate exposure chronic exposure so 
that appropriate action can be made. Furthermore, the system 
should be aware of lover values of these thresholds if high-risk 
or vulnerable groups including children, pregnant women, and 
chronic patients, are present in the environment. Decision 
making requires integration of wisdom level (Fig. 1) knowledge 
to ensure adequate decision making. 

Smart environments are promising areas for WSN 
applications in the context of both health and wellbeing. 
Modelling of health characteristics of an individual’s 
environment both in real-time and over historical periods 
enables understanding of individual’s exposure to potentially 
harmful substances. The critical data include environmental 
health metrics, including air pollutant (such as particulate 
matter, formaldehyde, or volatile organic compounds) 
concentrations, temperature, and humidity allows. Reactive 
systems look promising for the prevention of environment-
based health risks. The detection of increased levels of pollution 
may trigger air-purification systems in the home or workplace. 
Conversely, low levels of pollution may lead to outside air being 
introduced into the living environment, providing a supply of 
fresh air in an energy efficient manner. 

IV. SOFTWARE ENGINEERING CHALLENGES 
After the text edit has been completed, the paper is ready for 

the template. Duplicate the template file by using the Save As 

command, and use the naming convention prescribed by your 
conference for the name of your paper. In this newly created file, 
highlight all of the contents and import your prepared text file. 
You are now ready to style your paper; use the scroll down 
window on the left of the MS Word Formatting toolbar. Given 
the number and diversity of network sensors, and the data 
coming from overlapping coverage (e.g. continuous concurrent 
measurement of ECG, HR, and HRV) a key challenge of the 
system is to identify data that is trustworthy – accurate, precise, 
and reliable. If, for example, several sensors simultaneously 
covering the same data source supply differing or even 
conflicting data, this raises several key questions:  

• What is the system actually intended to do? 

• Which source (if any) should be considered canonical? 

• What degrees of ‘trust’ or ‘authority’ should be given to 
one measure or another? 

• How should this be established? 

• How do we evaluate the correctness of our approach in 
an environment that is uncertain by design? 

The problems of this nature are well-studied in software 
testing [43], and are known as the oracle problem [44]:  Given a 
system whose output or behaviour can be observed, how can an 
observer know if this output or behaviour is correct? If there is 
a mechanism, automated or not, that the observer can use to 
decide, then this mechanism is called an oracle. If no oracle is 
available, or if one is available, but it is not practical to use it 
(perhaps owing to excessive overheads), then the system faces 
the oracle problem. In a large, distributed and free-form sensor 
network, the oracle problem is an inevitability. In sensor 
systems, the oracle problem can occur at both ends: the data 
acquisition level (sensors) and the data processing or 
interpretation (software) level.  

A naive approach to dealing with multiple sensors providing 
different values for what should be the same data source might 
be analogous to software engineering's n-version programming 
(NVP) [45]. NVP essentially works by building several (n) 
implementations from the same specifications, and then 
executing all n for any given input. A form of voting or polling 
can then be used to decide on situations where the outputs or 
behaviours for the different implementations differ. However, in 
the context of large, complex sensor networks, the choice of the 
decision algorithm employed when implementing NVP is 
critical, and possibly undecidable, given the nature of the 
measures being observed [46]. Fundamentally, we are uncertain 
as to what a correct answer is at any given moment.  

 Metamorphic Testing (MT) is an alternative approach to 
alleviating the Oracle problem that has been growing in 
popularity in recent years [47,48,49]. Instead of attempting to 
identify the correctness of individual outputs (or executions), 
MT instead examines relationships amongst multiple executions 
that should hold for the system, called metamorphic relations 
(MRs): Without needing to identify any individual output as 
correct or incorrect, identification of a violation of the MR is 
sufficient to find an fault in the system in question. MT has been 
applied to a large amount of so-called untestable systems [50], 
overcoming the oracle problem obstacle, and uncovering 



previously unknown, real, bugs [51,52,53,54]. Critically, MT 
has been successfully applied to a number of areas and themes 
that we describe in this paper. MT has also been suggested as a 
suitable technique for analysing and verifying Big Data systems 
[48,55]. Similarly, MT has been successfully applied to large 
bioinformatics and health data, highlighting the suitability of the 
technique to this type of data [54,56]. 

V. DISCUSSION AND CONCLUSION 
 Health-related data, such as vital signs and various screening 
data, should produce similar values when detected by different 
sensors located at different parts of the body, or within the 
personal environment. The value of each data point for a given 
variable depends on the previous value, change of the status of 
the organism, and responses to various stimuli. Interpretation of 
the data depends on so-called medically established “normal 
values” that define healthy state. Furthermore, different states of 
the organism (such as resting, sleeping, exercising, walking or 
running) show characteristic trends of variable behavior. 
Pathological values are defined by specific thresholds and show 
specific trend deviations. Multiple sensors are expected to show 
the same trends for a given variable. They should agree with 
medical knowledge and conform to the value ranges 
characteristic for identified state.  

Integration with IoT measurements, such as atmospheric 
variables or air pollution, provide additional information that 
can help both the interpretation of measured changes as well as 
the calibration of the sensor networks. For example, changes in 
wearable blood pressure (BP) measurement from a smart wrist 
band can be verified by a FDA certified IoT BP monitor, that 
can be requested automatically by the system. These data need 
to be cross-compared with HRV and weight data to identify 
possible causes of variability. Calibration of multiple sensors 
and sensor types from the network can, therefore, be done at the 
same time when measurement with certified instrument is 
performed. The recorded data then updates the individual’s 
health history, and the past data can be corrected for systematic 
errors and explainable deviations. We propose the following 
starting points for the oracle problem questions: 

What is the system actually intended to do? The system is 
intended to collect vital data from individuals, the environment, 
assure accuracy, validity, and relevance of the data, provide 
interpretations, and act upon the patterns recognized in the 
data. 

Which source (if any) should be considered canonical? The 
primary canonical data are those collected from certified 
medical devices, which can be used to calibrate other sensor 
data. 

What degrees of ‘trust’ or ‘authority’ should be given to one 
measure or another? Higher trust is given to data of higher 
granularity, certified sensors, and certified medical instruments. 

How should this be established? Unusual behavior or 
discrepancies can be explained, responded to, or corrected, 
through use of primary canonical data and the data from highly 
reliable IoT linked devices. 

How do we evaluate the correctness of our approach in an 
environment that is uncertain by design?  Compare data with 

the expected behavior (medical knowledge) and validate 
through regular medical diagnostic tests that are done on a 
regular schedule or on demand. 

 Given the continuous reduction of sensor costs, and the 
emergence of 5G technologies, we foresee the growth of 
systems that combine large sensor networks with embedded 
redundancy, where multiple sensors measure the same variable 
and stream data to a control unit. The control unit will compare 
data between different streams, compare them with expected 
behavior based both on medical knowledge and the subject’s 
individual characteristics. The system must apply filtering and 
corrections based on evidence, and provide reports followed by 
appropriate advice. When needed, standard medical diagnostic 
testing should be initiated and requested to validate changes 
indicated by WSN streams. The filtered, corrected, and 
summarized streamed data will be stored to form personal health 
histories. These personal health records will drive and 
complement both health and wellbeing personal care. 
Ownership of the data, plus ensuring safety and security of these 
data will require new implementation models. 
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