
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

Metamorphic Testing: Testing the Untestable 

Segura, S., Towey, D., Zhou, Z.Q., Chen, T.Y. 



 

 

University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 

315100, Zhejiang, China. 

 

First published 2018 

 

This work is made available under the terms of the Creative Commons 

Attribution 4.0 International License: 

http://creativecommons.org/licenses/by/4.0   

 

The work is licenced to the University of Nottingham Ningbo China 
under the Global University Publication Licence: 
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence.pdf 
  

 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf


1 
 

Metamorphic Testing: Testing the Untestable 
 

Sergio Segura 
Department of Computer Languages and Systems, University of Seville, Spain.  
 

Dave Towey 
School of Computer Science, University of Nottingham Ningbo China, China.  
  
Zhi Quan Zhou 
Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, 
University of Wollongong, Australia. 
 
Tsong Yueh Chen 
Department of Computer Science and Software Engineering, Swinburne University of 
Technology, Australia  
 
ABSTRACT. What if we could know that a program is buggy, even if we could not tell 
whether or not its observed output is correct? This is one of the key strengths of 
metamorphic testing, a technique where failures are not revealed by checking an 
individual concrete output, but by checking the relations among the inputs and outputs of 
multiple executions of the program under test. Two decades after its introduction, 
metamorphic testing has become a fully-fledged testing technique with successful 
applications in multiple domains, including online search engines, autonomous 
machinery, compilers, Web APIs, and deep learning programs, among others. This article 
serves as a hands-on entry point for newcomers to metamorphic testing, describing 
examples, possible applications, and current limitations, providing readers with the basics 
for the application of the technique in their own projects. 
 
Keywords: Software testing, metamorphic testing, oracle problem, test case generation. 

Introduction 

Suppose you are helping your son with his homework. You ask him how many exercises 
he has to do in total, and he answers two. You are not sure if that is correct, so a few 
minutes later you ask how many math exercises the teacher has asked him to do, and this 
time he answers four. This is wrong─the total number of exercises cannot be less than the 
number of math exercises─and so the boy seems forgetful. Note that there was no need to 
know if either of the answers were correct to detect the problem and, more importantly, 
the boy has exposed himself! 

Like the child in the example above, some programs are extremely difficult to test 
because of the lack of an oracle─a mechanism that can decide whether or not the 
program’s output is correct in a reasonable amount of time [1]. Consider, for example, 
testing programs such as compilers, search engines, machine learning systems, or 
simulators: determining the correctness of the output for a given input may be non-trivial 
and error-prone. This is known as the oracle problem, and the programs suffering from it 
are often referred to as non-testable (or untestable) [1]–[3]. 

Metamorphic testing (MT) is an effective technique for alleviating the oracle problem, 
and thus for testing “untestable” programs where, as in the previous example, failures are 
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not revealed by checking individual outputs, but by checking expected relations among 
multiple executions of the program under test. Since its introduction by Chen et al. in 
1998 [4], the literature on MT has grown impressively, and many successful applications 
of the technique have come to light. Some of these successes include the detection of 
bugs in real-world systems such as the search engines Google and Bing [5], the compilers 
GCC and LLVM [6], commercial code obfuscators [7], NASA systems [8], and the Web 
APIs of Spotify and YouTube [9]. Recently, GraphicsFuzz, a spinout company from 
Imperial College London, has commercialized this technique [10]. In this article, we 
present an intuitive introduction to metamorphic testing, giving practical examples, 
describing success stories, and discussing its limitations. 
 

Metamorphic testing in a nutshell 

MT approaches the software testing problem from a perspective not used by most other 
testing strategies: rather than focusing on each individual output, MT looks at multiple 
executions of the program. It checks whether the inputs and outputs of these multiple 
executions satisfy certain metamorphic relations, which are necessary properties of the 
intended program’s functionality. A metamorphic relation transforms existing (source) 
test cases into new (follow-up) ones. If the program’s behavior across these source and 
follow-up test cases violates the metamorphic relation, the program must be faulty.  

As an example, consider the program merge 𝐿 , 𝐿  that merges two lists into a single 
ordered list without duplicated elements. Deciding whether the output of the program is 
correct for any two non-trivial input lists is difficult, and thus this is an instance of the 
oracle problem. However, the order of the parameters should not influence the result, 
which can be expressed as the following metamorphic relation: merge 𝐿 , 𝐿
 merge 𝐿 , 𝐿 . This metamorphic relation can be instantiated into one or more 
metamorphic tests by using specific input values and checking whether the relation holds, 
e.g. merge 𝑎, 𝑑 , 𝑘, 𝑡  merge 𝑘, 𝑡 , 𝑎, 𝑑 . If the relation is violated, we could be 
certain that the program is faulty. In this example, 𝑎, 𝑑 , 𝑘, 𝑡 ) is called the source test 
case, and 𝑘, 𝑡 , 𝑎, 𝑑  is called the follow-up test case. Note that many others 
metamorphic relations could be identified, for example, merge 𝐿 , 𝐿
 merge 𝐿 , 𝐿 , where 𝐿 𝐿 𝐿  and 𝐿 𝐿 𝐿 , and  is the list concatenation 
operator.  

MT is also regarded as an effective test data generation technique. This is because a 
metamorphic relation implicitly defines how a given source test case can be transformed 
into one or more follow-up test cases such that the relation can be checked. In the 
previous example, for instance, MT could be used together with a random list generator 
to automatically construct source test cases (𝑒. 𝑔. 𝑠, 𝑡 , 𝑘, 𝑙, 𝑝 ) and their respective 
follow-up test cases 𝑘, 𝑙, 𝑝 , 𝑠, 𝑡  by swapping the order of the lists. This could 
continue until a pair that reveals a bug is found 
( merge 𝑠, 𝑡 , 𝑘, 𝑙, 𝑝  merge 𝑘, 𝑙, 𝑝 , 𝑠, 𝑡 , or until a maximum timeout is 
reached.  
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MT was originally proposed two decades ago as a technique to reuse successful test cases 
(those that pass and thus reveal no failures). Since then, MT has thrived, becoming a 
well-established testing technique with numerous applications in both academia and 
industry. For a thorough introduction to the technique we refer the reader to two recent 
surveys on the topic [2], [3], and a recent webinar [11]. 
 

A hands-on example 

Suppose that you are part of the testing team for the popular website Booking.com, which 
allows users to find potential lodgings according to their preferences. You run an 
exploratory test by performing a search for accommodation in Rome, which returns 7,378 
result items. Is this output correct? Is there anything missing in the result set? Is there any 
result not meeting the search criteria included in the list? Answering these questions 
would be extremely time-consuming. This is a clear case of the oracle problem. To 
alleviate this problem, and to automate the generation of test cases, MT could be 
employed by applying the following basic steps.  

Step 1. Identification of metamorphic relations 

Metamorphic relations are generally identified based on our knowledge of the problem 
domain, the program specification, and/or the user manual. To identify a metamorphic 
relation, we may think about how certain changes in the program’s inputs may be 
expected to produce certain changes in the program’s outputs [12]. For example, Figure 1 
shows the interface of Booking.com displaying the results of the search for 
accommodation in Rome. A closer look at this may lead us to several metamorphic 
relations, for example: 

MR1: Perform a search. Then repeat the search adding a budget filter, “US$100-US$150 
per night”, for instance. The result set of the second search (follow-up test case) should 
be a subset of the result set of the first search (source test case), where no filter was 
applied. 

MR2: Perform a search for hotels with a “1 star” rating filter (source test case). Then, 
repeat the search four times changing the star rating filter to “2 stars”, “3 stars”, “4 
stars”, and “5 stars”, respectively (follow-up test cases). The results sets of the five 
searches should not contain any common result item, since the same hotel cannot have 
two different star ratings at the same time. 

MR3: Perform a search (source test case). Then, repeat the search changing the ordering 
criterion from default (“Our top picks”) to “Review score” (follow-up test case). Both 
searches should return the same items, regardless of their ordering. 

These are just a few of the potentially huge number of metamorphic relations that could 
be identified for Booking.com and similar websites and APIs [5], [9]. The reader may like 
to try identifying some other relations by looking at the “Popular” filters shown on the 
left side of Figure 1. 
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Step 2. Implementation 

Once the relations are identified, it is time to implement and run the actual metamorphic 
tests by instantiating each relation with specific test data. This can be done using any 
standard unit testing framework. As an example, Figure 2 shows a metamorphic test for 
the relation MR1 written in the JUnit framework. Note that the key difference compared 
with standard unit test cases is that the method under test (Booking.search) is 
executed twice (lines 17 and 24), instead of just once, and that the assertion (line 27) 
refers to the output of both calls, instead of to a single output. 

Several points are worth emphasizing in this example. First, recall that every 
metamorphic test starts from an existing test case, called the source test case. Source test 
cases can be designed from scratch, using any standard test design technique, or they can 
be reused from an existing test suite. Second, note that each metamorphic relation can be 
typically instantiated into many metamorphic tests, by using different test data. Thus, we 
could easily implement many other metamorphic tests from MR1 by simply using 
different search queries and budget filters.  
 

 
Figure 1. Booking.com search interface. 
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Step 3. Automated test case generation 

Finally, the real potential of MT is fully realized when combining it with automated test 
data generation techniques. In the example of Figure 2, for instance, both the query 
search and the filter data could be randomly generated, enabling the construction of a 
potentially limitless number of test cases. Note that this process would include not only 
the generation of inputs, but also the generation of the corresponding output assertions, 
truly achieving full test automation.  
 

 
Figure 2. Sample implementation of a metamorphic test in JUnit 4. 

 

Approaches for the identification of metamorphic relations 

The effectiveness of MT is strongly influenced by the metamorphic relations used, and 
thus identifying effective metamorphic relations is a critical step. The identification of 
metamorphic relations is a task that requires creativity and domain knowledge, but there 
are clues that can help in the process [12]. We next describe two common approaches for 
the identification of metamorphic relations. 

Input-driven approach. This strategy involves thinking of changes to the program’s 
inputs that should produce expected changes in the outputs [12]. The possible changes in 
the input parameters depend on their data type. For example, possible operations in an 
input list might include: adding an element to the list; removing an element from the list; 
splitting the list; reordering the list; and so on. Analogously, possible changes to a search 
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query might involve adding or removing filtering, sorting or pagination-related 
parameters [5], [9]. These possible changes provide clues about how source test cases 
could be changed to generate new follow-up test cases, and consequently for the 
identification of metamorphic relations. This approach is frequently used in numerical 
and graph-theory programs. 

Output-driven approach. In contrast to the previous approach, this method proposes 
starting from possible relations among outputs typically found in the target domain, and 
then thinking about what kind of changes in the program's inputs would lead to 
satisfaction of the expected relation among outputs. For example, typical relations 
between outputs in search operations are: having a result set which is a subset of another 
result set; having two result sets containing the same items; or having two disjoint result 
sets (sets with no common elements) [5], [9]. Suppose we are looking at the subset 
relation between outputs in the Booking.com example. We should think of changes to the 
search query that filters some items out of the result set. For example, we could perform a 
search for hotels, and then perform the same search for hotels, but this time with “Pets 
allowed” (or any other filter). The result set of the latter search should be a subset of the 
former (where no filters were used). This approach is frequently used in programs 
accessing data repositories such as information systems, search engines, and Web APIs. 

Regardless of the approach followed, previous studies suggest that metamorphic relations 
should be diverse, meaning that they should involve different input parameters and input 
constraints to exercise the program under test as thoroughly as possible [13]. 

Applications 

Figure 3 summarizes the domains where MT has been applied, based on a survey of 84 
case studies published between January 1998 and May 2018 (note that the total number 
of publications on MT, considering all types of papers, is much higher). The most popular 
domain is web services and applications (14%), followed by computer graphics (11%). 
We also found a variety of applications to other fields (24%) such as financial software, 
optimization programs, cybersecurity, and data analytics, as well as industrial 
applications in organizations such as NASA and Adobe. Interestingly, only 5% of the 
papers reported results in numerical programs, even though this is a frequently used 
domain to illustrate how MT works in the literature. The arrows in Figure 3 represent 
whether there is an increasing or a decreasing trend in the applications in a particular 
domain in the last three years. The increasing number of applications of MT to 
bioinformatics and artificial intelligence, including machine learning and autonomous 
vehicles, is worth noting. 

 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/MS.2018.2875968

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7 
 

 
Figure 3. Application domains 

 

We next highlight some successful applications of MT in the domains of compilers and 
artificial intelligence. 

Compilers 

Several researchers have proposed using MT to find failures in compilers based on the 
following idea: removing dead source code from a program should not alter the 
functionality of the compiler-generated code [6]. The approach works in three steps: 1) 
Run a program (source test case) with some inputs using a profiler to identify the 
executed code; 2) Create a new version of the program (follow-up test case) by removing 
some of the dead code (statements not executed in step 1); and 3) Run the new program 
on the same inputs, reporting any observed changes in the outputs as a failure. This 
approach was reported to have detected 147 bugs (110 fixed) in the GNU Compiler 
Collection (GCC) and Low Level Virtual Machine (LLVM) C compilers when first 
published [6], but hundreds more bugs have been found (and fixed) since then [14]. 

A similar strategy has been used in industry by GraphicsFuzz for testing graphics drivers 
[10]. Their approach works as follows [15]: First, an image is rendered using a shader 
program (through the graphics driver under test, which includes a shader compiler that 
translates the shader program into low-level machine code for the target GPU). The 
output image is called the original image. Second, a transformation is applied to the 
shader program that should have no significant impact on how the image is rendered (for 
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example, adding “+0.0” to an arithmetic expression). Third, an image is rendered using 
the modified shader program (still through the graphics driver under test), obtaining a so-
called variant image. Finally, the original and variant images are compared. If the 
differences are significant it means that the graphics driver is faulty. At the time of 
writing, the GraphicsFuzz toolset had revealed more than 83 issues in several graphics 
compilers from popular GPU designers. Among others, it has been publicly credited for 
detecting bugs in Apple (iOS-Webkit), NVIDIA, and Chrome (on Samsung S6), 
receiving a Google Chrome bug bounty of $2,000. GraphicsFuzz was acquired by Google 
in Aug 2018. 

Artificial intelligence 

MT has been used for testing artificial intelligence (AI) tools such as supervised and 
unsupervised machine learning programs [16]. These are programs that “learn” from a set 
of data samples composed of attributes and labels. Metamorphic relations in this domain 
define changes in the samples used for learning that produce a predictable effect in the 
knowledge extracted from them: changing the order of the attributes in the samples 
should have no impact in the outcome, for example. Among others, MT has been used to 
detect real bugs in the machine learning tools Weka and RapidMiner. 

MT has also proved to be effective to test AI-driven systems. Researchers at the 
Fraunhofer Center for Experimental Engineering (USA) developed a framework for the 
automated testing of simulated autonomous drones [17]. Their approach starts by 
defining a model of a flying scenario and observing the drone behavior in this scenario. 
Then, they programmatically generate multiple variations of the scenario where the 
outcome of the drone flight should be equivalent. For example, the drone should behave 
consistently no matter whether it is flying north or south, if the distances and relative 
position of obstacles are the same. This approach enabled them to detect a number of 
issues that led to unexpected behavior of the drone, including fatal crashes. For example, 
they found that the drone had problems landing in some situations when rotating objects 
in the scene. They determined that the problem was related to the direction of sunlight not 
being rotated, and that this caused a shadow to fall on the landing-pad in some 
orientations, causing the vision system to fail to recognize the landing spot. 

A similar idea was used by researchers at University of Virginia and Columbia University 
to implement DeepTest, a testing tool for self-driving cars driven by Deep Neural 
Networks (DNNs) [18]. DeepTest automatically generates synthetic test cases with 
different driving conditions such as rain or fog, where the car should behave similarly. 
Among other results, DeepTest found thousands of erroneous actions, under different 
realistic driving conditions, some of which led to fatal crashes in three top performing 
DNNs in the Udacity self-driving car challenge. Figure 4 shows one of the test cases 
generated by DeepTest that revealed a failure [19]. The blue arrow in the left-hand image 
shows the original trajectory of the car. The red arrow in the right-hand image shows the 
erroneous trajectory calculated by the DNN-driven system when fog was added to the 
scene. 

 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/MS.2018.2875968

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9 
 

 

a) original scene 
 

b) same scene with added fog 

Figure 4. A sample of erroneous behaviour found by DeepTest [19]. 
 

Limitations 

MT also has some limitations that may narrow its applicability in certain domains. First, 
it is worth noting that while MT can be used to alleviate the oracle problem, it cannot 
solve it completely. This is because metamorphic relations cannot be used to tell whether 
or not the output of a program is the expected one. For instance, the metamorphic test of 
Figure 2 could pass even if the outputs of the source test case (“hotels in Rome”) and the 
follow-up test case (“hotels in Rome with a budget of $120-$180 per night”) are wrong 
(if both searches return a particular hotel in Florence, for instance). Thus, MT (on its 
own) may not be suitable for testing critical systems that require the correctness checking 
of each individual output. 

Another limitation of MT is the need to identify metamorphic relations, which is typically 
a manual process requiring effort and creativity. Although some approaches for the 
automated discovery of metamorphic relations exist, so far, they have mostly focused on 
numerical programs [20], [21]. Reported experiences of teaching MT, however, suggest 
that students can easily identify effective metamorphic relations after only a few hours of 
training [13]. 

Finally, the number of metamorphic relations in most non-trivial programs is potentially 
huge. This leads to a common problem when applying MT: how to select the most 
effective metamorphic relations. Although some heuristics for guiding the process do 
exist, as previously explained, more systematic approaches for such optimal selection are 
yet to be proposed.  
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Conclusion 

MT is a thriving testing technique with demonstrated ability to address the oracle 
problem and to enable test case generation. Future contributions are expected in many 
areas, including new application domains, automated inference of metamorphic relations, 
tools, and integration with other testing techniques.  
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Tweets: 

* Metamorphic testing can detect bugs even when we might not be able to tell if 
the program output is correct. 

* Metamorphic testing can test untestable programs because it uses the program to test 
itself. 

* Metamorphic testing is a fully automatable test case generation and result verification 
technique. 

* Metamorphic testing can test self-driving cars, compilers, cybersecurity, big data and 
AI software, and much more. 

* Google buys GraphicsFuzz, a startup from Imperial College London, to apply 
metamorphic testing to graphics drivers. 
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