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Abstract

We develop a Bayesian network (LASSO-BN) model for firm bankruptcy prediction. We

select financial ratios via the Least Absolute Shrinkage Selection Operator (LASSO), establish

the BN topology, and estimate model parameters. Our empirical results, based on 32,344 US

firms from 1961-2018, show that the LASSO-BN model outperforms most alternative methods

except the deep neural network. Crucially, the model provides a clear interpretation of its

internal functionality by describing the logic of how conditional default probabilities are obtained

from selected variables. Thus our model represents a major step towards interpretable machine

learning models with strong performance and is relevant to investors and policymakers.
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1 Introduction

Corporate bankruptcy is a serious issue in the financial market due to its damaging economic

and social consequences. As a result, the academic community, financial industry, and regulators

are keen to explore reasons behind and ways to predict and prevent it. In the literature, early

studies such as Altman (1968), Ohlson (1980), and Zmijewski (1984) document that accounting

ratios and stock market data contain valuable information for assessing firm financial health.

More recently, forecasting firm default probability has attracted a lot of attention in the financial

technology literature as state-of-the-art computational methods allow us to develop models that

evaluate default prediction with great precision (see Chen et al., 2019; Goldstein et al., 2019, for ex-

ample). These include the logit model (Tian et al., 2015), the support vector machine model (Liang

et al., 2016), the random forest (Chandra et al., 2009), and the deep neural network (Cerchiello

et al., 2017). Empirical evidence suggests that default forecasting performance can be improved

by selecting the most relevant variables via the least absolute shrinkage and selection operator

(LASSO) (Tian et al., 2015); or including new heterogeneous features such as textual information

(Mai et al., 2019); or employing complicated deep neural network models (Cerchiello et al., 2017),

which consist of a number of layers, each armed with numerous hidden neurons, and exhibit strong

capability in capturing the relationship between input variables and output bankruptcy forecasts.

Our paper is motivated by this strand of literature but its contribution lies in developing an

interpretable machine learning model that not only performs well empirically but also reveals the

mechanism through which bankruptcy forecasts are obtained from input variables, i.e., it paints a

clear picture of model internal functionality. Our paper thus addresses a growing call for model

interpretability in an age when increasingly sophisticated machine learning models and big data

make the decision making process obscure. Kim and Doshi-Velez (2017) indicate that opening

the black box is not about understanding all bits and bytes of the model but instead knowing the

logic of the internal functionality for the downstream conclusions ; whereas Mittelstadt et al. (2018)

acknowledge the need for this but expresses concern that, with complicated internal states and

millions of interdependent values, the black box is difficult to open up.

In this paper, we adopt the Bayesian network model, a powerful machine learning tool in

handling uncertainty and multi-faceted relationship with a combination of domain knowledge and

data-driven modeling (Liu et al., 2018). It has enjoyed great success in the healthcare diagnosis

area in predicting the survival of the Alzhemer’s disease, heart disease, breast cancer, and so forth
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(Liu et al., 2018; Lu et al., 2016; Seixas et al., 2014). To the best of our knowledge, the Bayesian

network has not been implemented in default probability prediction, an area similar in nature to

that of healthcare diagnosis, making the Bayesian network an appropriate method for our purpose.

Methodologically, we perform the least absolute shrinkage and selection operator (LASSO) in

the first stage to select the most relevant accounting and financial variables (Tian et al., 2015). In

the second stage, we construct the Bayesian network structure from selected variables and estimate

parameters for the conditional probability via the expectation-maximization (EM) algorithm. The

same selected variables are also used in alternative models including the logistic regression, the

decision tree, the support vector machine, and the deep neural network model in the empirical

analyses. Our data contain quarterly COMPUSTAT accounting and financial information from

January 1961 to August 2018 with 31 variables of 32,344 firms with more than 1.5 million firm-

quarter observations in total.

Our empirical analyses reveal that the Bayesian network model achieves the second most ac-

curate forecasts and is only outperformed by the complex deep neural network model with three

hidden layers. More importantly, once we identify the dependence structure of the Bayesian net-

work, we are able to explain clearly the way that the model arrives at conditional probability for

default, and how the default probability varies upon changes with input variables. In this way, the

Bayesian network is able to address what-if questions of an ad-hoc scenario, such as what could

a firm do differently to achieve a better health status. This allows us to construct bankruptcy

probability surface by changing input variables in company financial statements. In other words,

we are able to gauge the sensitivity of conditional default probabilities with respect to variations

in input variables.

Hence, our paper makes three contributions to the literature. First, as far as we are aware, this

is the first study that balances the performance and interpretability of a machine learning model

in predicting firm bankruptcy probability, as the existing data science literature is yet to embrace

the interpretability issue. Second, given the clear internal functionality of the Bayesian network

model, we are able to draw probability surfaces of variables of interest and perform sensitivity and

scenario analyses to address what-if questions such as how bankruptcy probabilities change with

regard to a particular input variable. We believe that this is the first ad-hoc scenario analysis

in bankruptcy prediction. Finally, we offer solid empirical evidence that the Bayesian network

model is a promising tool for predicting conditional default probability with precision. Our paper

showcases a meaningful application of this powerful method and is relevant to investors, portfolio
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managers, and regulators. It also points to a promising avenue to which the Bayesian network can

make substantial contribution.

The rest of this paper proceeds as follows. We undertake a review of relevant strands of the

literature in Section 2. The two-stage Bayesian network model and other methodological issues

are discussed in Section 3. In Section 4, we introduce the data, perform empirical analyses, and

undertake robustness check. Finally, Section 5 concludes.

2 Literature review

In this section, we review relevant studies that focus on the use of machine learning models in

predicting corporate default, on the Bayesian network model, and on the LASSO method.

Machine learning models

Since the seminal work of Altman (1968), Ohlson (1980), and Zmijewski (1984), predicting

corporate bankruptcy has been a topical issue in the literature for a long time. Mai et al. (2019)

conduct a recent review of this area and note that methodologically many studies focus on machine

learning models due to their estimation precision. In Table 1, we provide a partial summary

of studies in the past three years, all of which feature a model in the machine learning family

including the logistic regression, decision tree, random forest, support vector machine, and deep

neural network. We further classify them into two groups: the interpretable and non-interpretable

ones according to Mittelstadt et al. (2018). Only the simple logistic regression and tree-based

models, serving as benchmarks, can be considered interpretable models.

It is worth noting that Gogas et al. (2018) develop a geometric interpretable model and use it

as a stress testing tool to visualize the classification space with two variables as well as the linear

decision boundary. By calculating the distance of the data to the decision boundary and simulating

certain scenarios, the tool provides an effective interpretation for the model results and partially

answers the what-if question of changing the critical variable values. However, this study assumes

the fail and alive cases are linearly separable by two selected variables, which is contrary to findings

in most papers in Table 1.

Bayesian network model

The Bayesian network is able to capture the relationship and probability distribution to en-

hance the ontology inference capability in the diagnosis of a variety of diseases. Hence, it is often
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implemented in the healthcare diagnoses for medical ontology probabilistic inference and achieved

via the K2 greedy algorithm. Delen et al. (2019) perform the Bayesian network with the elastic

net variable selection method in understanding and predicting prominent variables that determine

student attrition and achieve an accuracy as high as 84%. However, no comparison is conducted

between the Bayesian network and alternative approaches. Dag et al. (2016) use the Bayesian

network to predict heart transplant survival. They adopt different selection methods to generate

a set of potential predictors with medically relevant variables and construct the Bayesian network

from selected predictors. The Bayesian network not only achieves similar predictive performance

compared with the best-performing approaches in the literatures but also provides an interactive

relation among the predictors and the conditional survival probability. Meanwhile, the Bayesian

network is implemented in project management (Hu et al., 2013; Yet et al., 2016), cyber-security

assessment (Zhang et al., 2018), and stock index forecasting (Malagrino et al., 2018). In a pio-

neer study, Sun and Shenoy (2007) use a Näıve Bayesian network to assess the bankruptcy. The

bankruptcy predictors are selected by a heuristic method and a Näıve Bayesian network is con-

structed based on these predictors. However, the Näıve Bayesian network does not contain any

topology or hierarchy logic among the predictors as it considers parallel impacts of all predictors

to the output.

LASSO

Introduced by Tibshirani Tibshirani (1996), the LASSO is a powerful method for variable

selection widely adopted in economics and finance. It is successfully implemented in the literature

for predicting stock returns using intraday NYSE data (Chinco et al., 2019), corporate bankruptcy

(Amendola et al., 2011; Tian et al., 2015), corporate bond recovery rate (Nazemi and Fabozzi,

2018), and macroeconomic time series (Bai and Ng, 2008; Kim and Swanson, 2014). Tian et al.

(2015) apply the LASSO to forecast corporate bankruptcy in the US and achieve strong out-of-

sample performance, whereas Rapach et al. (2013) show that the LASSO outperforms a backward

or forward stepwise regression.

3 Bayesian network with Lasso

In this section, we first outline the Bayesian network with a simple illustration. We then

introduce the LASSO selection method in our two-stage Bayesian network model. Alternative

machine learning models are also discussed.
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3.1 The Bayesian network

A Bayesian network is a directed graph that encodes the latent probabilistic relationship between

variables of interest in a reasoning representation problem (Heckerman et al., 1995; Lauritzen,

1995). The representation usually starts from the domain knowledge, constructs a prior network,

and combines it with the observed data to learn a new Bayesian network (Heckerman et al., 1995).

In this framework, a variable is termed a node, vertice, or point. The nodes are connected by

directed arrows indicating probabilistic dependencies.

To illustrate, we assume that bank failure is caused by two variables: Total Capital (C) and

Risk-adjusted Capital Ratio (R) shown in Figure 1. The two arrows starting from the Total Capital

(C) and the Risk-adjusted Capital Ratio R, respectively, to Bank Failure (F ) suggest that F is

dependent on R and C. Meanwhile, the arrow pointing from C to R indicates that the Risk-adjusted

Ratio also depends on the Total Capital. In this example, Total Capital (C) and Risk-adjusted

Capital Ratio (R) are parent variables of Bank Failure (F ), and Total Capital (C) is also a parent

of Risk-adjusted Capital Ratio (R).

The joint probability of Bank Failure (F ), Total Capital (C), and Risk-Adjusted Capital Ratio

(R) can be expressed as follows:

P (F,C,R) = P (R|F,C)P (C|F )P (F ). (1)

We are usually interested in addressing the following question: Given an observed Risk-Adjusted

Capital Ratio (R), what is the probability of Bank Failure (F )? The answer can be evaluated by

the conditional probability as follows:

P (F |R) =
P (F,R)

P (R)
=

∑
C P (F,C,R)∑

C

∑
F P (F,C,R)

. (2)

In general, a Bayesian network model can be summarized as follows. Suppose we have a domain

of discrete variables U = x1, ..., xn, and a set of cases D = C1, ..., Cm. Our main interest is in

determining the joint probability distribution p(Cm+1|D, ξ), which is the probability of a new case

Cm+1 given the set of past observations D and current information ξ. In Bayesian network models,

we do not intend to recover the complete distribution. Instead, we assume that the distribution

for data is generated from a latent structural network Bs with a number of unknown parameters.
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Hence, the probability p(Cm+1|D, ξ) with the structural network Bs can be expressed as follows:

p(Cm+1|D, ξ) =
∑
allBs

p(Cm+1|D,Bs, ξ)p(Bs|D, ξ). (3)

The structural network Bs reflects our belief of the variables and the relationship between

them based on domain knowledge. In most cases, however, Bs is unknown even though variables

U and case observations D are available. Two methods are usually adopted to construct Bs:

the domain expert heuristic method employed by Chakraborty et al. (2016); and the statistical

structure learning algorithm used by Heckerman et al. (1995) and Liu et al. (2018). In this paper,

we implement the structural learning method due to the lack of domain knowledge as in most

practical cases.

To implement the statistical structure learning algorithm, our first step is structure learning,

i.e., we identify the interactive relation between variables, specify the topology of the framework in

order to construct a Bayesian network. Once we obtain the network, we determine the parameters

of the network and define the joint probability representing the statistical behavior of observed

data in parameter learning (Heckerman et al., 1995; Lauritzen, 1995; Liu et al., 2018).

Structure learning

Structure learning can be performed primarily in three ways: the search-score method, the

constraint-learning method, and the dynamic programming based method. Among them, the

search-score method is suitable for problems with large volume of data (Daly et al., 2011; Heckerman

et al., 1995). In our paper, we construct our Bayesian network model with the popular K2 search-

score algorithm (Cooper and Herskovits, 1992; Feng et al., 2014; Garvey et al., 2015).

Specifically, we assume a domain of n discrete variables U = x1, ..., xn with an ordering of

variables, a set of cases D = C1, ..., Cm, and an upper limit u on the number of parents a variable

may have. The algorithm heuristically searches for the most appropriate belief-network structure

based on D. In the initial stage, an empty πi is created as a set of parents of variables xi, i = 1 · · ·n.

A function pred(xi) is defined to represent a set of variables preceding xi. For each variable xi in

U , we calculate the score Pold = f(i, πi) as follows:

f(i, πi) =

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)

ri∏
k=1

αijk!, (4)

where qi = |∅i|, and ∅i is a list of all possible parents of xi in D; ri = |Vi|, and Vi lists all possible
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values of the variable xi; αijk is the number of cases in D in which the variable xi is instantiated

with its kth value, and the parents of xi in πi are instantiated with the jth instantiation in ∅i;

Nij =
∑ri

k=1 αijk is the number of instances in the data where the parents of xi in πi are instantiated

with the jth instantiation in ∅i.

The f(i, πi) is considered the probability of the case set D given that the parents of xi are πi.

When the number of variables in πi is less than u, the variables xm of pred(xi) will be iteratively

added to πi. The probabilistic score is updated if xm is added to the set πi. In this way, the K2

algorithm finds a network structure Bs with variables in U that each node in Bs exhibits at most

u parents, such that the achieved probabilistic score metric is larger than a pre-defined real value

of p.

Parameter learning

The parameters of the Bayesian network, θijk, is the conditional probability distribution of the

node Xi in U taking the kth value with its parent node πi taking the jth value as follows:

θijk = p(Xi = xk|πi = j). (5)

The parameters can be determined by the expectation-maximization (EM) algorithm, a well-known

approach for estimating the maximum likelihood of the model with latent structure (Dempster et al.,

1977; Green, 1990; Lauritzen, 1995). Green (1990) introduces an EM algorithm for estimating the

penalized likelihood, which exhibits a more efficient convergence rate than the traditional EM

algorithm. Following Green (1990) and Lauritzen (1995), we consider a log-likelihood function

given the observed data as follows:

Q(θ′|θ) = Eθlog f(X|θ′)|y, (6)

where X is the learned variable based on the complete data with the density function f , and

y is the observed data. The EM algorithm features a recursive process of two steps: First, the

expectation step (E-step) of fixing θ and calculating the expected value of Eθlogf(X|θ′)|y; Second,

the maximization step (M-step) of finding θ values that maximize likelihood Q(θ′|θ). At the E-step,

we add a penalty J(θ′) to the log-likelihood function following Green (1990) as follows:

Q∗(θ′|θ) = Q(θ′|θ)− J(θ′), (7)
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where J(θ′) is a function proportional to a prior density. The M-step maximizes the penalized

log-likelihood function.

3.2 LASSO selection method

Following Tian et al. (2015), we estimate the LASSO parameters by minimizing the negative

log-likelihood of discrete hazard function with a penalty for the sum of absolute value of covariate

parameters. The discrete hazard function is given as follows:

P (Yi,t+N = 1|Yi,t+N−1 = 0, Xi,t) =
eβ0+β

′Xi,t

1 + eβ0+β
′Xi,t

, (8)

where Xi,t is a vector of time-varying predictive variables observed for quarter t, and i is the firm

index. The variable Yi,t+N is the default label, which is equal to one if firm i files for bankruptcy

protection at t + N given that it survives N − 1 quarters from time t to t + N − 1. The negative

log-likelihood function with a penalty of sum of the absolute value of the covariate parameters is

specified as follows:

n∑
i=1

(
−Yi,t+N (β0 + β′Xi,t) + log(1 + exp(β0 + β′Xi,t))

)
− λ

p∑
k=1

|βk| , (9)

where n is the number of firms and p is the number of predictive variables in the hazard model.

Following Tibshirani (1996), we employ a ten-folder cross-validation for parameter estimation.

4 Data and empirical analyses

In this section, we first introduce our data. In the empirical analyses, we begin with discussing

accounting and financial variables selected by the LASSO. We then make comparison of bankruptcy

prediction accuracy between alternative models and highlight the interpretability of the models.

Finally, we perform a subsample analysis to check the robustness of the baseline results with respect

to the sample period.

4.1 Data

We use quarterly COMPUSTAT data from January 1961 to August 2018 for 31 accounting

variables as candidate variables for bankruptcy prediction following the existing literature (see

Amendola et al., 2011; Bharath and Shumway, 2008; Campbell et al., 2008; Ding et al., 2012; Liang
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et al., 2016; Mai et al., 2019, for example). When constructing the accounting-based predictors,

we align a firm’s fiscal year with the calendar year to ensure that the accounting information is

observable to investors at the time of prediction. Because we use quarterly data, we lag all variables

by a quarter. Furthermore, we remove variables at the top and bottom one percentile following

Tian et al. (2015). Our final dataset contains 1,563,010 firm-quarter observations for 32,344 firms.1

The descriptive statistics of accounting variables is shown in Table 2. As some variables are

scaled (such as current assets over current liabilities ACTLCT) whereas others are in monetary

terms (such as total asset TASSET), the descriptive statistics varies to a large extent. Our

bankruptcy indicator is based on the Reason for Deletion variable dlrsn in the COMPUSTAT.

A firm is defaulted if it is de-listed from the stock exchange due to liquidation or bankruptcy and

the default indicator is one; otherwise the indictor is zero. In total, we identify 16,924 bankruptcy

and liquidation filings over the sample period. In Figure 2 we demonstrate the occurrence of de-

fault by year. We observe two clear peaks during 1982 to 1991 and from 2007 to 2008 of the Great

Recession.

4.2 Alternative models

Among the most popular bankruptcy prediction models reviewed in Liang et al. (2016) and Lin

et al. (2012), we employ the logistic regression (LR) and decision-tree (Tree), which are simple and

interpretable models. We also implement the support vector machine (SVM) which is of modest

complexity. The deep neural network (DNN) is selected as a complex model and we follow a

standard specification DNN(50,30,20) with three hidden layers of 50, 30, and 20 hidden neurons,

respectively (Goodfellow et al., 2016). Thus we include four models in addition to the Bayesian

network model to assess their interpretability and prediction accuracy. They are applied to the

same variables selected by the LASSO model.

All models are implemented via R packages. The logistic regression is based on the ISLR

package; the classification and regression trees (CART) model of Huang (2014) is based on the tree

package; the support vector machine (SVM) with radial kernel is based on the e1071 package; and

the deep neural network is based on the H2o package with H2o cloud computing backend. To train

the CART and SVM models, a 10-folder cross-validation is applied to achieve a stable and optimal

selection of parameters.

1 We use the first 70% of data as the training set and remaining 30% as testing set but our empirical results
remain qualitatively the same if we split the data 50:50 for training and testing sets. These results are available upon
request from the authors.
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Furthermore, the deep neural network is trained by the stochastic gradient descent algorithm

with epochs of 200. To avoid overfitting, the traditional L2 regularization is applied to penalize

the weights. The dropout method of Srivastava et al. (2014) is performed to randomly omit a

subset of hidden neurons at each iteration of the training process. An early stopping suggested in

Bengio (2012) is also implemented for monitoring the performance of the validation and training

set and for stopping the training early when the performance of the training set keeps improving

but validation set stops. The Bayesian network model is implemented by the bnlearn package; and

the LASSO is performed by the glmnet package.

4.3 LASSO selection results

We identify the most relevant predictors via a 10-folder cross-validation LASSO to optimize the

λ coefficient for each predictive variable. Selected variables are summarized in Table 3 Panel A. As

we can see, 16 variables exhibit non-zero coefficients out of 31 potential predictive variables. This

is more than the number of variables identified in Tian et al. (2015).

The selected variables mainly concern a firm’s leverage, liquidity, profitability, and market

based variables. First of all, the leverage ratio of total liability over total assets (LTAT) is the most

influential with the largest coefficient. This is in line with Campbell et al. (2008), Ohlson (1980),

and Zmijewski (1984). The other leverage ratio chosen by the LASSO is a book leverage measure

of total debts over total assets (FAT), also chosen in Tian et al. (2015), which contains information

about future default risk. We notice that the market leverage measure of total liabilities over the

sum of market equity and total liabilities (LTMTA), which is heavily influenced by stock prices, is

not selected. Hence, the book leverage ratio may convey more information than the market leverage

measure.

The relevance of market based variables is eloquently argued in Campbell et al. (2008), which

suggest that the logarithmic market capitalization (RSIZE) and logarithmic stock price (PRICE)

are important. As Tian et al. (2015) point out, the information conveyed in PRICE is forward

looking, whereas RSIZE reflects the true value of a firm. These two variables exhibit the second

and third largest coefficient in the LASSO selection results.

Six liquidity ratios are chosen, including growth of inventories over inventories (INVCHINVT),

working capital over total assets (WCAPAT), current liabilities over total liabilities (LCTLT),

current assets over current liabilities (ACTLCT), current liabilities over total assets (LCTAT), and

cash and short-term investment over total assets (CASHAT). A lack of liquidity is more likely to

10



increase default risk rather than causing bankruptcy directly. As a result, the selection of ACTLCT

(current ratio) and WCAPAT (working capital turnover) is consistently with previous research (see

Chava and Jarrow, 2004; Ohlson, 1980; Shumway, 2001, for example). Furthermore, the inventory

variable (INVCHINVT), the percentage of current liability (LCTLT), the current liability coverage

(LCTAT), and a cash and short-term investment variable (CASHAT) all capture different aspect

of a firm’s liquidity.

Also essential in predicting bankruptcy are profitability ratios. Retained earnings over total

assets (REAT) receives the most attention. This choice is consistent with Altman (1968), Chava

and Jarrow (2004), and Shumway (2001), all of which show the impact of cumulative profitability

on reducing the bankruptcy probability. The other four profitability measures, retained earnings

over current liabilities (RELCT), net income over total assets (NIAT), net income over the total

of market equity and total liabilities (NIMTA), and operating income over sales (OIADPSALE),

imply that cumulative and current period profitability help reduce bankruptcy risk, but to a lesser

degree.

In addition to these major accounting and financial ratios, the LASSO also picks sales over

total assets (SALEAT): the higher the sales turnover, the lower the bankruptcy risk (Altman,

1968; Shumway, 2001).

4.4 Prediction accuracy

To provide a comprehensive analysis, our bankruptcy prediction horizon ranges from one to 12

quarters ahead. We use two popular measures: the accuracy ratio (ACCU) and the area under the

Receiver Operating Characteristic (ROC) curve (AUC), to evaluate the performance of alternative

models following Liang et al. (2016), Mai et al. (2019), and Tian et al. (2015). The ACCU is based

on the cumulative accuracy profile (CAP) that measures the percentage of true bankrupt firms

included if choosing a different percentage of observations using the sorted forecasted probabilities

generated by a used model (Engelmann et al., 2003; Mai et al., 2019). The baseline model assigns

class labels randomly. The accuracy ratio of a forecasting model is the difference in the area between

the CAP of the model and that of a baseline model. The AUC is an equally popular measure of the

overall performance of a model. It is calculated by the ROC curve, which shows the capability of a

model balancing the false positive rate and the true positive rate. The area under the ROC curve

provides a measure of the capability of the overall performance and the corresponding robustness

of the model.
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In the empirical analyses, we examine the forecasting performance of alternative models based

on two groups of prediction variables. In Group 1, we follow the LASSO result reported in Table

3 and use all 16 selected variables; whereas in Group 2, we only use the ten top-ranked variables.

This is because the absolute value of LASSO coefficients for variables ranked from 11th to 16th is

lower than 1E-5, much closer to zero than the top 10 ranked variables. Furthermore, a model with

fewer variables affords better interpretation as only the most relevant variables are included.

Panels A and B in Table 4 contains the ACCU and AUC for bankruptcy predictions over one to

12 quarters ahead generated by the Bayesian network model and alternative ones via, respectively,

Group 1 and Group 2 variables. In Panel A, we note that the AUC values of all models are above

0.76 over forecasting horizons of up to one year. The DNN(50,30,20) and the Bayesian network

model perform the best at 0.9003 and 0.8951, respectively, over the one-quarter horizon. Over longer

forecasting horizons, the prediction accuracies gradually decrease; whereas across the models the

prediction accuracy increases from the more traditional models such as the logistic regression to the

state-of-the-art large scaled neural network. The DNN(50,30,20) exhibits the best performance in

terms of AUC and ACCU while the Bayesian network model comes second. It is interesting to note

that the Bayesian network model easily beats the other three less sophisticated ones. The logistic

regression and decision tree model exhibit the lowest accuracy and smallest ACCU and AUC.

In Panel B, with fewer variables and less information to draw upon, the prediction accuracy

drops for all models. However, we still find that, similar to results in Panel A, increasing model

complexity leads to more accurate bankruptcy prediction. Interestingly, over longer forecasting

horizons the Bayesian network seems to make a better use of the information content of variables

and tends to outperform the DNN(50,30,20). For example, over 10 to 12 quarters ahead, the AUC

for the Bayesian network model is 0.7416, 0.7289, and 0.7259, respectively, and the corresponding

AUC for the DNN(50,30,20) is marginally lower at 0.7414, 0.7268, and 0.7257. Similar patterns

hold for the ACCU over the longest forecasting horizons.

4.5 Model interpretability

Interpretability refers to the transparency of a model’s internal function and the degree of

human comprehensibility (Doshi-Velez and Kim, 2017; Mittelstadt et al., 2018). Recently, Bastani

et al. (2017) and Ribeiro et al. (2016) pursue two classes of approximate models such as linear

models and the decision tree type of models precisely because of model interpretability. In Table

4, approximate models such as the logistic regression and decision, whose internal functions can
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be easily interpreted by their structures and corresponding parameters, fare poorly empirically.

Meanwhile, more complex models such as the support vector machine and deep neural network

model do not offer easily observable or comprehensible structures but perform well empirically.

For the Bayesian network model, it exhibits smaller scale and simpler structure than the DNN

model with comparable forecasting accuracy. More importantly, it sheds light on interpreting the

internal reasoning logic with a structural network. Below we scrutinize model interpretability in

detail based on their one-year ahead forecasting performance.

Logistic regression

It is fairly easy to interpret the logistic regression model by looking at variable coefficients

and their statistical significance in Table 5. For example, the ratio between firm net income over

market equity and total liabilities (NIMTA) and the scaled market capitalization (RSIZE) exhibit

the largest coefficient at −0.283 and −0.171, respectively, and are both highly significant at the 1%

level. Hence, these two variables are the most influential in determining future bankruptcy than

other variables; and they suggest that the larger the relative net income and market capitalization

of a firm, the lower the probability of default.

Decision tree

Figure 3 shows the decision tree for forecasting bankruptcy over the next year using all 16

LASSO identified variables. We observe that the model constructs the decision tree with only 12

variables, including OIADPSALE, INVTSALE, QALCT, RELCT, LTAT, PRICE, FAT, CASHMTA,

REAT, NIAT, TSALE, and APSALE. The decision tree provides a graphical and self-explainable

interpretation of the internal function. However, this simplistic structure yields an average AUC

of 0.7581 and accuracy ratio of 0.7431, which is among the lowest across alternative models.

Although the structure and coefficients of the above two models offer a transparent functionality

and can be relatively easily comprehended in their entirety, the models show a lack of accuracy in

handling the prediction problem thus making them a local approximation and represent a partial

or a slice of the entire problem (Mittelstadt et al., 2018).

Bayesian network

Figure 4 illustrates two structures of the Bayesian network for forecasting bankruptcy four

quarters ahead based on Group 1 and Group 2 variables. In Figure 4(a), the complex interleaved

arrows show the inter-dependence of 16 variables and dlrsn, the state of bankruptcy. We see
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that bankruptcy is directly determined by only eight crucial variables: ACTLCT, CASHAT, FAT,

NIMTA, PRICE, RSIZE, WCAPAT, and LTAT. They cover key aspects of current asset, income,

cash flow, liability, and market capitalization of a firm. Figure 4(b), meanwhile, shows a simpler

structure with a clearer relation for the decision making process determined by fewer variables

including ACTLCT, FAT, PRICE, RSIZE, WCAPAT and LTAT. It thus provides a simpler logic

reasoning of the internal functionality. However, as results in Table 4 Panel B suggest, the simpler

structure compromises on the forecasting accuracy. Hence, a natural trade-off exists between the

simplicity and interpretability of the model and its forecasting performance.

Furthermore, the structure in Figure 4(a) can be interpreted as the conditional probability

of Pr(dlsrn | ACTLCT, CASHAT, FAT, NIMTA, PRICE, RSIZE, WCAPAT, LTAT), which not

only provides a binary answer of true or false to the future bankruptcy problem but also yields

a probability of it. Each variables is affected by others through a conditional probability, such as

Pr(FAT | CASHAT, LTAT, REAT, WCAPAT, SALEAT), where LTAT, the ratio between total

liabilities and total assets, indirectly influences the probability of bankruptcy via its impact on

FAT.

The conditional probability of Pr(dlsrn|Scenario) is well suited to address what-if questions

via a scenario analysis. In Table 6, the Bayesian network model generates a default probability of

0.6867 based on real data. This suggests that the firm under scrutiny is highly likely to default in

the future. Hence, we perform a scenario analysis to see what happens when key variable values

change. We consider two different scenarios: In the first scenario, we assume that a firm’s financial

health deteriorates with decreasing net income, cash flow and current asset, and increasing debt

and liability; whereas in the second scenario, the financial status improves with higher income,

cash flow and current asset and lower debt and liability. Specially, in the first scenario, ACTLCT,

CASHAT, and NIMTA are reduced to be less than 1, 0.01, and 0.0001, respectively, while FAT and

LTAT are increased to be over 0.8 and 1, respectively. As we expect, the bankruptcy probability

shoots up to 0.9789, showing an extremely risky situation that, with less asset, less income but

more debt, the firm is almost surely going to default. In the second scenario, a financially healthy

firm with more asset, more income and less debt exhibits an extremely low bankruptcy probability

of 0.0465. The scenario analysis not only points to the direction of firm survival but also quantifies

the default probability given specific variable values, making this analytical tool very helpful for

stakeholders in- and outside the firm.

We are also able to perform sensitivity analysis of bankruptcy prediction with respect to partic-
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ular variables of interest. Based on the information in Table 6, we select three pairs of influential

variables and generate probability surfaces to capture the impact of these variables on bankruptcy

probability in Figure 5. Figure 5(a) illustrates the bankruptcy probability conditional upon the

ratio between total liabilities and total assets (LTAT) and the ratio between current assets to cur-

rent liabilities (ACTLCT). With zero current asset (ACTLCT=0) and a high total liability ratio

(LTAT=7×104), the bankruptcy probability increases to as high as 0.8. If the total liability ratio

remains at LTAT=7×104 but current asset ratio (ACTLCT) increases from 0 to the third quar-

tile at 2.32, the bankruptcy probability decreases slowly with tiny magnitude. This shows that a

massive liability is hugely detrimental to firm solvency even with large current assets.

Figure 5(b) exhibits bankruptcy probability changes conditional on the ratio of debts to total

assets (FAT) and the ratio of cash to total assets (CASHAT). The pattern is similar to that in

Figure 5(a) and indicates that when FAT is as high as 2×104, the bankruptcy probability remains

high at 0.7 even when CASHAT reaches the third quartile at 0.69. The probability drops only

to 0.5 even when CASHAT reaches an incredibly high level of 10000. Meanwhile, if the FAT is

drops to the 3rd quartile at 0.268, the probability decreases almost linearly as CASHAT increases.

This quantifies and highlights the importance of the debt ratio for the financial health of a firm

and reveals that maintaining an appropriate level of debt is an effective way of avoiding future

bankruptcy.

In Figure 5(c), we note a similar pattern that when total liabilities over total assets (LTAT) is

at a high level of 7×104, the bankruptcy probability reaches 0.8 and decreases ever so slowly even

when the ratio of net income to the total liability (NIMTA) grows to 15, an extremely high level

for net income. However, if LTAT stays at the third quartile at 0.75, the probability decreases to

0.5 and further decreases to lower value than 0.4 as NIMTA increases.

To summarize, Figure 5 clearly reflects postfix interpretation based on the model. It addresses

the link between conditional probabilities and the final outcome suggested by the model, and cap-

tures inferences from the structural conditional probability. The scenario and sensitivity analyses

described above are of great use to investors and policymakers as they offer detailed explanation

in terms of the theoretical and empirical functionality of the model.

4.6 Robustness check

The empirical analyses so far are based on a long sample period from January 1961 to August

2018, which experiences different business cycles and a number of financial crises. As a robustness
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check, we evaluate the LASSO selection and Bayesian network model again using a shorter and

more recent sample period starting from just before the Great recession in March 2007 to the end

of the sample period in August 2018. This is motivated by Figure 2 which shows a recent wave

of firm defaults and it would be interesting to see which variables the LASSO identified and how

well they predict bankruptcy. In total we have 423,012 firm-quarter observations for the robustness

test.

Table 3 Panel B shows the selected variables based on the shorter sample period. We notice

a large overlap between the selected variables from the whole sample and the subsample. For

example, the log market capitalization (RSIZE) and the log stock price (PRICE) remain the second

and third most important variables. Among all 16 variables with non-zero coefficient, nine of them

overlap with those in Panel A. The new list of selected variables cover quick assets (QALCT),

cash (CASHMTA), inventory (INVTSALE), liability (LCTSALE) and sales (TSALE) that are

very similar to variables of current asset (ACTLCT), cash (CASHAT), inventory (INVCHINVT),

liabilities (LCTAT), and sales (SALEAT) in Panel A. The new selection exhibits more focus on

the liability (LTMTA), accounts payable (APSALE), and total asset (TASSET), all of which are

essential for firm survival in turbulent market conditions.

We use all selected 16 variables (Group 1) and the top 11 variables (Group 2) to predict firm

bankruptcy and summarize the results in Table 7. The bankruptcy forecasting results are generally

in line with those in Table 4: First, the forecasting performance generally improves with model

sophistication; second, the Bayesian network is only outperformed by the most sophisticated deep

neural network model; third, results with fewer variables are less accurate.

5 Conclusion

Despite the advancement of sophisticated algorithm that well describe data, the financial in-

dustry is faced with a new call for formulating interpretable machine learning models that are not

only powerful in performance but also comprehensible to investors to allow them to make informed

investment decisions. In this paper, motivated by successful applications of the Bayesian network

in the healthcare diagnosis area, we modify the Bayesian network and implement it for the purpose

of predicting firm bankruptcy probability. We first select relevant variables by the LASSO, con-

struct the Bayesian network with selected variables, and estimate model parameters via the EM

algorithm. We use quarterly COMPUSTAT data from January 1961 to August 2018 for the empir-
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ical analyses and show that the Bayesian network model performs very well and is outperformed

only by the complicated deep neural network with three hidden layers. Furthermore, the topol-

ogy of the Bayesian network exhibits a clear representation of its internal functionality based on

conditional probability inferences. It offers scenario and sensitivity analyses of individual variables

on bankruptcy probability making it easily understandable by the general investment community.

This underlines the contribution of our paper to the literature.

While we consider our study an important step towards integrating superior forecasting per-

formance with model interpretability, we recognize that the model can be improved along different

dimensions in the future. For example, the topology of the Bayesian network can be made dynam-

ically updated over time for more flexibility. Furthermore, most machine learning models forecast

bankruptcy probability at time t+1 based on data at time t, whereas traditional Hazard models

include data at all healthy time to predict bankruptcy probability. Thus a machine learning model

can be enhanced by a Hazard model in bringing more promising results with an interpretable

structure.
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Table 3: Explanatory variables selected by the LASSO

This table summarizes the explanatory variables as selected by the LASSO. In Panel A the full sample period is from

January 1961 to August 2018; in Panel B the subsample is from March 2007 to August 2018. ***, ** and * denote

significance at the 1%, 5%, and 10% level respectively. The z -statistics are reported in parenthese.

Panel A. Full sample Panel B. Subsample
# Variable Coefficient Variable Coefficient

1 LTAT 0.2830 (10.929)*** LTMTA 0.2999 (14.077)***
2 RSIZE -0.0442 (51.000)*** RSIZE -0.1131 (11.261)***
3 PRICE -0.0109 (32.696)*** PRICE -0.0813 (12.441)***
4 INVCHINVT 6.6716E-05 (9.549)*** NIMTA -0.0311 (11.706)***
5 REAT -2.3784E-05 (5.154)*** CASHMTA -0.0135 (11.682)***
6 WCAPAT -1.9306E-05 (7.015)*** LCTLT 2.3160E-04 (12.167)***
7 LCTLT 1.7622E-05 (5.492)*** OIADPSALE -1.9897E-04 (10.987)***
8 FAT 1.2234E-05 (6.388)*** LCTSALE 4.2607E-05 (11.137)***
9 ACTLCT -1.2230E-05 (11.022)*** QALCT -2.5710E-05 (7.100)***
10 RELCT -1.1713E-05 (11.133)*** LTAT 1.8029E-05 (10.729)***
11 NIAT -8.9378E-06 (2.007)** RELCT -1.1955E-05 (7.418)***
12 LCTAT 8.2558E-06 (2.166)** TSALE -9.3633E-06 (2.753)***
13 SALEAT -6.0518E-06 (2.123)** FAT 8.4814E-06 (1.716)*
14 CASHAT -4.9206E-06 (1.326)* INVTSALE -7.2972E-06 (1.022)*
15 NIMTA -3.0785E-06 (1.299)* APSALE -1.5559E-06 (1.533)*
16 OIADPSALE -5.1861E-07 (1.965)** TASSET -1.0079E-07 (2.492)**
17 LCTSALE 0.0000 ACTLCT 0.0000
18 EBITSALE 0.0000 CASHAT 0.0000
19 QALCT 0.0000 CHAT 0.0000
20 APSALE 0.0000 CHLCT 0.0000
21 CASHMTA 0.0000 EBITSALE 0.0000
22 CHAT 0.0000 INVCHINVT 0.0000
23 CHLCT 0.0000 LCTAT 0.0000
24 INVTSALE 0.0000 NIAT 0.0000
25 LTMTA 0.0000 NISALE 0.0000
26 OIADPAT 0.0000 OIADPAT 0.0000
27 SEQAT 0.0000 REAT 0.0000
28 SIGMA 0.0000 SALEAT 0.0000
29 TASSET 0.0000 SEQAT 0.0000
30 TSALE 0.0000 SIGMA 0.0000
31 NISALE 0.0000 WCAPAT 0.0000
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Table 4: Bankruptcy forecasting performance across different models

In this table, the bankruptcy prediction accuracy measures ACCU and AUC are obtained via the logistic regression

(LR), decision tree (Tree), support vector machine (SVM), deep neural network (DNN(50,30,20)), and Bayesian

network (BN) over forecasting horizons of one to 12 quarters ahead. Panels A and B use 16 (Group 1) and 10 (Group

2) most influential variables, respectively. The sample period is from January 1961 to August 2018.

LR Tree SVM DNN (50,30,20) BN
ACCU AUC ACCU AUC ACCU AUC ACCU AUC ACCU AUC

Panel A: Group 1 variables
1Q 0.7661 0.7866 0.7944 0.8186 0.8344 0.8804 0.8569 0.9003 0.8506 0.8951
2Q 0.7654 0.7750 0.7871 0.7892 0.8119 0.8615 0.8458 0.8890 0.8331 0.8821
3Q 0.7619 0.7785 0.7787 0.7938 0.8082 0.8534 0.8376 0.8728 0.8240 0.8669
4Q 0.7630 0.7703 0.7686 0.7946 0.8325 0.8654 0.8190 0.8686 0.8123 0.8632
5Q 0.7648 0.7827 0.7547 0.7846 0.8042 0.8392 0.8166 0.8674 0.8140 0.8597
6Q 0.7620 0.7850 0.7465 0.7642 0.7922 0.8238 0.7934 0.8532 0.7891 0.8487
7Q 0.7587 0.7635 0.7404 0.7428 0.7880 0.8139 0.7959 0.8456 0.7907 0.8415
8Q 0.7538 0.7633 0.7338 0.7444 0.7691 0.7908 0.7807 0.8360 0.7728 0.8326
9Q 0.7546 0.7694 0.7351 0.7603 0.8319 0.8413 0.7783 0.8230 0.7758 0.8222
10Q 0.7608 0.7644 0.7406 0.7434 0.7523 0.7602 0.7564 0.8191 0.7575 0.8168
11Q 0.7080 0.7144 0.6685 0.6915 0.7446 0.7446 0.7812 0.8088 0.7669 0.8055
12Q 0.6878 0.6899 0.6692 0.6698 0.7028 0.6929 0.7494 0.8115 0.7525 0.8097

Avg 0.7506 0.7619 0.7431 0.7581 0.7893 0.8139 0.8009 0.8496 0.7949 0.8454

Panel B: Group 2 variables
1Q 0.6863 0.7029 0.6803 0.6828 0.7420 0.7820 0.7689 0.8264 0.7631 0.8205
2Q 0.6853 0.6952 0.6795 0.7053 0.7232 0.7632 0.7605 0.8132 0.7571 0.8099
3Q 0.6626 0.6730 0.6570 0.6865 0.7066 0.7466 0.7518 0.7977 0.7429 0.7912
4Q 0.6618 0.6838 0.6568 0.6770 0.6899 0.7299 0.7461 0.7868 0.7341 0.7858
5Q 0.6637 0.6862 0.6601 0.6679 0.6766 0.7166 0.7151 0.7784 0.7032 0.7781
6Q 0.6604 0.6610 0.6580 0.6766 0.6616 0.7016 0.6836 0.7613 0.6838 0.7611
7Q 0.5577 0.5807 0.5563 0.5653 0.6489 0.6889 0.6793 0.7607 0.6658 0.7629
8Q 0.5529 0.5772 0.5488 0.5618 0.6274 0.6674 0.6703 0.7552 0.6845 0.7552
9Q 0.5534 0.5782 0.5501 0.5504 0.6125 0.6525 0.6552 0.7589 0.6612 0.7559
10Q 0.5591 0.5823 0.5556 0.5639 0.5999 0.6399 0.6526 0.7414 0.6506 0.7416
11Q 0.5063 0.5313 0.5035 0.5125 0.5854 0.6254 0.6124 0.7268 0.6292 0.7289
12Q 0.5065 0.5363 0.5042 0.5143 0.5683 0.6083 0.6221 0.7257 0.6238 0.7259

Avg 0.6047 0.6240 0.6009 0.6137 0.6535 0.6935 0.6932 0.7694 0.6916 0.7681
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Table 5: Logistic regression coefficients over the one-year bankruptcy forecasting horizon

This table summarizes estimated coefficients and their statistical significance obtained from the logistic regression in

predicting one-year ahead firm bankruptcy. The sample period is from January 1961 to August 2018.

# Estimate Std. error z value Pr(> |z|)

0 Intercept -0.2230 0.017 -12.82 < 2e-16
1 ACTLCT 5.84E-05 1.00E-05 5.8400 5.21E-09
2 CASHAT -2.03E-04 7.86E-05 2.5760 0.0100
3 FAT 3.13E-04 4.87E-05 -6.4350 1.23E-10
4 INVCHINVT 0.0036 6.53E-04 5.4480 5.10E-08
5 NIAT -5.33E-04 9.22E-05 -5.7780 7.54E-09
6 NIMTA -0.2830 0.0380 -7.4440 9.78E-14
7 PRICE -0.0258 0.0023 -11.39 < 2e-16
8 RELCT -5.64E-05 1.64E-05 3.4360 0.0006
9 RSIZE -0.1710 0.0035 -48.74 < 2e-16

10 SALEAT -1.16E-04 3.20E-05 -3.6240 0.0003
11 WCAPAT -4.91E-04 8.16E-05 6.0130 1.82E-09
12 REAT -5.07E-05 1.21E-05 -4.1790 2.93E-05
13 LTAT 3.40E-04 1.12E-04 -3.0380 0.0024
14 LCTAT 1.55E-04 6.13E-05 2.5340 0.0113
15 LCTLT 1.56E-04 2.81E-05 5.5440 2.96E-08
16 OIADPSALE -2.83E-04 8.10E-05 3.4950 0.0005

AIC: 579901
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Table 6: Scenario analysis of bankruptcy probability

Based on information in Figure 4, this table reports bankruptcy probability based on variable values and two ad-hoc

scenarios when key variable values are changed leading to different bankruptcy probability.

Variables Data Scenario 1 Scenario 2

ACTLCT 1.7580 < 1.0 > 2.0
CASHAT 0.0398 < 0.03 > 0.5
FAT 0.1379 > 0.2 < 0.1
NIMTA 0.0010 < 0.0001 > 0.1
LTAT 0.5893 > 0.6 < 0.1

PRICE 1.3545 1.3545 1.3545
RSIZE 5.5077 5.5077 5.5077
WCAPAT 0.2028 0.2028 0.2028
INVCHINVT -0.0038 -0.0038 -0.0038
NIAT 0.0016 0.0016 0.0016
RELCT 0.7156 0.7156 0.7156
SALEAT 0.3343 0.3343 0.3343
REAT 0.1915 0.1915 0.1915
LCTAT 0.2676 0.2676 0.2676

Probability 0.6867 0.9789 0.0465
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Table 7: Robustness test: Bankruptcy forecasting performance across different models over more
recent sample period

In this table, the bankruptcy prediction accuracy measures ACCU and AUC are obtained via the logistic regression

(LR), decision tree (Tree), support vector machine (SVM), deep neural network (DNN(50,30,20)), and Bayesian

network (BN) over forecasting horizons of one to 12 quarters ahead. Panels A and B use 16 (Group 1) and 10 (Group

2) most influential variables, respectively. The sample period is from March 2007 to August 2018.

LR Tree SVM DNN (50,30,20) BN
ACCU AUC ACCU AUC ACCU AUC ACCU AUC ACCU AUC

Panel A: Robust Group 1 variables
1Q 0.7470 0.7730 0.7892 0.8155 0.7886 0.8332 0.8103 0.8554 0.7975 0.8890
2Q 0.7188 0.7272 0.7753 0.7736 0.8071 0.8472 0.8256 0.8695 0.7872 0.8167
3Q 0.7435 0.7580 0.7426 0.7514 0.7865 0.8193 0.8372 0.8333 0.8008 0.8490
4Q 0.7602 0.7586 0.7682 0.7522 0.8272 0.8538 0.7802 0.8299 0.7625 0.8566
5Q 0.7521 0.7657 0.7351 0.7661 0.7848 0.8016 0.8005 0.8309 0.7615 0.8273
6Q 0.7584 0.7803 0.7169 0.7592 0.7673 0.8222 0.7858 0.8204 0.7760 0.8386
7Q 0.7476 0.7423 0.7177 0.7287 0.7467 0.7810 0.7633 0.8317 0.7395 0.8292
8Q 0.7047 0.7398 0.7241 0.7129 0.7451 0.7683 0.7773 0.7923 0.7152 0.7866
9Q 0.7153 0.7329 0.7152 0.7107 0.7826 0.8059 0.7496 0.7960 0.7498 0.7567
10Q 0.7157 0.7311 0.7078 0.6936 0.7205 0.7193 0.7222 0.8172 0.7518 0.8002
11Q 0.6925 0.6708 0.6366 0.6446 0.7266 0.7094 0.7595 0.7922 0.7643 0.7870
12Q 0.6738 0.6590 0.6308 0.6351 0.6862 0.6584 0.7204 0.7927 0.7510 0.7573

Avg 0.7275 0.7366 0.7216 0.7286 0.7641 0.7850 0.7776 0.8218 0.7631 0.8162

Panel B: Robust Group 2 variables
1Q 0.6510 0.6599 0.6472 0.6620 0.7291 0.7706 0.7293 0.7894 0.7608 0.8049
2Q 0.6491 0.6898 0.6730 0.6811 0.6837 0.7571 0.7131 0.8127 0.7200 0.7572
3Q 0.6471 0.6415 0.6148 0.6745 0.6704 0.7074 0.7253 0.7891 0.7378 0.7727
4Q 0.6263 0.6545 0.6471 0.6582 0.6424 0.7012 0.6980 0.7680 0.6926 0.7842
5Q 0.6242 0.6392 0.6481 0.6393 0.6505 0.7113 0.6919 0.7438 0.6684 0.7256
6Q 0.6225 0.6404 0.6273 0.6480 0.6360 0.6567 0.6507 0.7269 0.6527 0.7265
7Q 0.5264 0.5444 0.5080 0.5321 0.6406 0.6512 0.6676 0.7277 0.6139 0.7457
8Q 0.5300 0.5734 0.5028 0.5457 0.6176 0.6613 0.6682 0.7409 0.6399 0.7223
9Q 0.5217 0.5719 0.5286 0.5055 0.5968 0.6046 0.6307 0.7356 0.6088 0.7327
10Q 0.5205 0.5789 0.5511 0.5256 0.5717 0.6175 0.6039 0.7385 0.6460 0.7063
11Q 0.4793 0.5279 0.4879 0.4733 0.5389 0.5957 0.5944 0.7256 0.6268 0.7107
12Q 0.4813 0.4965 0.4903 0.4971 0.5466 0.5748 0.5728 0.6946 0.6052 0.6795

Avg 0.5733 0.6015 0.5772 0.5869 0.6270 0.6674 0.6622 0.7494 0.6644 0.7390
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Figure 1: A simple illustration of the Bayesian network

This figure illustrates a simple Bayesian network example in which bank failure depends on two variables: the

Risk-Adjusted Capital Ratio (R) and the Total Capital (C), and the former variable also directly depends on the

latter.

Total Capital 
(C)

Risk-Adjusted 
Capital Ratio (R)

Bank Failure (F)

Figure 2: Bankruptcy and liquidation between 1991-2018

This figure shows the number of corporate bankruptcy filing each year from 1961 to 2018. The bankruptcy is shown

by the dlrsn in the COMPUSTAT, which shows the reason a firm becomes inactive. We consider a firm is in default

when dlrsn shows bankruptcy or liquidation in our study.
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Figure 3: The decision tree model

This figure shows the decision tree model for forecasting bankruptcy four quarters ahead constructed from all 16

variables. The sample period is from January 1961 to August 2018.
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Figure 4: The Bayesian network model

This figure shows the structure of the Bayesian network for forecasting bankruptcy four quarters ahead constructed

by (a) 16 variables in Group 1 and (b) 10 variables in Group 2. The sample period is from January 1961 to August

2018.
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Figure 5: Sensitivity analysis of the Bayesian network on changes of input variables

This figure shows the bankruptcy probability surface generated by the Bayesian network on the changes of (a) LTAT

and ACTLCT; (b) FAT and CASHAT; (c) LTAT and NIMTA.
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