

One-Domain-One-Input: Adaptive Random

Testing by Orthogonal Recursive Bisection

with Restriction

Hilary Ackah-Arthur, Jinfu Chen, Dave Towey,

Michael Omari, Jiaxiang Xi, and Rubing Huang

Faculty of Science and Engineering, University of Nottingham Ningbo

China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.

First published 2019

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence.pdf

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf

TR-2018-159

1

Abstract—One goal of software testing may be the identification

or generation of a series of test cases that can detect a fault with as

few test executions as possible. Motivated by insights from

research into failure-causing regions of input domains, the

even-spreading (even distribution) of tests across the input

domain has been identified as a useful heuristic to more quickly

find failures. This finding has encouraged a shift in focus from

traditional random testing (RT) to its enhancement, adaptive

random testing (ART), which retains the randomness of test input

selection, but also attempts to maintain a more evenly distributed

spread of test inputs across the input domain. Given that there are

different ways to achieve the even distribution, several different

ART methods and approaches have been proposed. This paper

presents a new ART method, called ART-ORB, which explores

the advantages of repeated geometric bisection of the input

domain, combined with restriction regions, to evenly spread test

inputs. Experimental results show a better performance in terms

of fewer test executions than RT to find failures. Compared with

other ART methods, ART-ORB has comparable performance (in

terms of required test executions), but incurs lower test input

selection overheads, especially in higher dimensional input space.

It is recommended that ART-ORB be used in testing situations

involving expensive test input execution.

Index Terms—Random testing, adaptive random testing,

partition testing, orthogonal recursive bisection, restricted

random testing.

I. INTRODUCTION

n software testing, exhaustive testing (the testing of all

possible input combinations) is almost never possible, due to

the large and complex nature of most software systems. The

selection of appropriate test inputs—ones more likely to reveal

failures or problems in the software—is therefore critical for

the effective evaluation of the software‘s quality. Much

research has been conducted into diverse testing techniques that

This work is partly supported by National Natural Science Foundation of China

(NSFC grant numbers: U1836116, 61502205, 61762040 and 61872167), the

project of Jiangsu provincial Six Talent Peaks (Grant number:
XYDXXJS-016), and the Graduate Research Innovation Project of Jiangsu

Province (Grant number: KYLX16_0900).

H. Ackah-Arthur, J. Chen, M. Omari, J. Xi, and R. Huang are with the
School of Computer Science and Communication Engineering, Jiangsu

University, Zhenjiang, 212013, China (e-mail: {hilaryaa, jinfuchen, michael,

xijiaxiang, rbhuang} @ujs.edu.cn).
D. Towey is with the School of Computer Science, University of

Nottingham Ningbo China, Ningbo, Zhejiang 315100, China (e-mail:

dave.towey@nottingham.edu.cn).
*All correspondence should be addressed to Jinfu Chen.

could improve the failure detection capability of test inputs [1],

[2], [3]. Random testing (RT) [4] is a simple and fundamental

technique that generates test inputs by simply randomly

selecting them from the entire input domain (the set of all

possible inputs) [4]. RT has been successfully applied in

industry, detecting software failures [5], [6], [7]. However, a

criticism of RT has been that, because it does not use any

information of the specifications or the program under test in

selecting the test inputs, its failure detection effectiveness can

be limited [8].

It has been observed that the failure-causing inputs (program

inputs that can reveal failures) of most programs form

contiguous regions in the input domain [9], [10], [11].

Motivated by this observation, Chen et al. [12] proposed the

adaptive random testing (ART) approach to enhance the failure

detection effectiveness of RT. In addition to selecting test

inputs randomly, ART employs a mechanism to evenly spread

the inputs over the input domain. Several ART methods have

been proposed that employ different strategies to ensure the

random and even spread of test inputs [13], [14], [15], [16],

[17]. Compared with RT, most of these ART methods provide

improved failure detection effectiveness, in terms of

F-measure—the number of test inputs executed to find a failure

[18], [19]. Many also include mechanisms to reduce the

computational overheads incurred due to the additional

even-spreading.

Two frequently used strategies employed in ART are

partitioning and excluding. Both strategies sample the input

domain when performing their testing processes, but differ in

the procedures and assumptions they employ: Partitioning

considers only the sampling rate of each sub-domain [16],

while excluding only considers the sampling rate of the

non-excluded regions [14]. However, most ART methods that

use partition or exclusion strategies tend to require fewer test

input executions before detecting failures.

This paper proposes a new ART method that aims to provide

faster failure detection performance (compared with both RT

and other ART methods) while maintaining a more acceptable

level of computational overheads. The method, called ART by

orthogonal recursive bisection (ART-ORB), integrates both

partition and exclusion strategies. ART-ORB selects test inputs

from outside of restricted regions, and uses pairs of

non-failure-revealing tests within a domain to partition the

domain geometrically. Section III presents an in-depth

description of the method.

This paper makes the following contributions:

Hilary Ackah-Arthur, Member, IEEE CS, Jinfu Chen*, Member, IEEE, Dave Towey, Member, IEEE,

Michael Omari, Jiaxiang Xi, and Rubing Huang, Member, IEEE

One-Domain-One-Input: Adaptive Random

Testing by Orthogonal Recursive Bisection with

Restriction (ART-ORB)

I

TR-2018-159

2

 We propose a new ART method that uses repeated

geometric bisection of the input domain combined with

use of restricted regions, to better spread test inputs.

 We present an algorithm and a binary tree data structure to

provide a detailed process description of the proposed

ART method.

 We conduct an investigation of the test input distributions

of the proposed ART method. Using two commonly used

metrics, we compute the distribution of generated test

inputs and compare them with those of other testing

methods.
 Using simulations and experiments with 16 error-seeded

programs, we validate the failure finding performance of

the proposed method, and compare its performance with

RT and other, similar ART approaches.

The rest of this paper is structured as follows: Section II

describes the background of the study and the related ART

methods. Section III presents a detailed description of the

proposed ART method, including the core algorithm. The

simulation and experimental results are presented in Section

IV. These results are discussed in Section V. Some of the

potential threats to the validity of this study are examined in

Section VI. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED STUDIES

A. Background

1) Random Testing

Random Testing (RT) [4] is a fundamental and useful

technique for testing software. RT involves selecting inputs in a

random manner from the input domain until a stopping

condition—such as detection of a failure, complete execution

of a test suite, or the passage of a specified amount of time—is

reached. It can efficiently generate large numbers of candidate

tests, and need not have human influence or bias in the test case

generation process [4]. This random generation may have the

advantage of revealing failures that cannot be detected by

deterministic approaches like branch testing [8] or domain

testing [9]. The relative ease with which RT can usually be

implemented, combined with the ability to calculate reliability

estimates [4], make RT an attractive testing option that has been

successfully applied in many real-world applications [5], [6],

[7]. However, because it does not make use of additional

available information from the program being tested [8], RT‘s

failure detection effectiveness may be limited.

Empirical studies have shown that failure regions (portions

of the input domain which, when selected as program input,

reveal failures), tend to cluster into contiguous regions,

especially for programs with numerical input domains [9], [10],

[11]. Based on this observation, it is possible to make a simple

improvement to RT, using generic information about the

typical failure patterns seen in many programs.

2) Failure Pattern

Chan et al. [20] identified three categories of failure patterns:

point, strip and block. An illustration of these failure patterns in

a two-dimensional input domain is shown in Fig. 1.

Fig. 1. Classifications of patterns of failure-causing inputs: (a) point pattern,

(b) strip pattern, and (c) block pattern. The outer boundaries of each subfigure
represent the borders of the two-dimensional input domain, and the filled

regions represent the failure patterns (clusters of failure-causing inputs).

The point pattern may be characterized by multiple

stand-alone points or small-sized regions scattered across the

input domain. Strip patterns are narrow and elongated. A

typical example of this failure pattern is White and Cohen‘s [9]

domain errors. The main characteristic of the block pattern is

that the failure-causing inputs are localized in either a single or

a few contiguous, compact regions of the program‘s input

space, with no obvious elongation in any dimension. Chan et al.

[20] noted that point pattern may sometimes be spread in a

regular manner throughout the input domain. They also

explained that strip and block failure patterns were likely to be

more common than point patterns. Examples 1, 2, and 3 show

sample pseudo-code program snippets containing specific

errors that lead to the three failure pattern types.

Example 1: A program fault that results in block failure pattern.

INTEGER X, Y, Z
INPUT X, Y

IF (X > 0 AND X < 10 AND Y > 0 AND Y < 10)

 Z = X /* correct statement: Z = 2 * X */

ELSE

 Z = 2 * Y

OUTPUT Z

Example 2: A program fault that results in strip failure pattern.

INTEGER X, Y, Z
INPUT X; Y

IF (Y <= 0) /* correct statement: IF (Y <= 1) */

 Z = X – 2 * Y
ELSE

 Z = X + 2 * Y

OUTPUT Z

Example 3: A program fault that results in point failure pattern.

INTEGER X, Y, Z
INPUT X, Y;

IF (X mod 4 = 0 AND Y mod 4 = 0)

Z = X – Y /* correct statement: Z = X + Y */
ELSE

Z = X * Y

OUTPUT Z

Intuitively, if the failure pattern is of block or strip type, then

selection of test inputs close to each other would be less likely

to quickly find the failure region quickly, in terms of the

F-measure: A wide-spread and even distribution of test input

execution should be faster. Consequently, after execution of a

test that has not revealed a failure, choosing a next test input

that is farther away from all the previously executed tests

should be more likely to reveal failure. Inspired by these failure

patterns observations, Chen et al. [12] proposed Adaptive

Random Testing (ART), an improvement on the

failure-detection capability of RT.

TR-2018-159

3

3) Adaptive Random Testing

ART is essentially a random testing method, but with a

mechanism that uses information about the location of

previously executed tests to widely spread test inputs over the

input domain. Previous empirical studies [21], [15], [22] and

experimental analyses [12], [23] have shown that ART can

significantly outperform RT in terms of the F-measure,

especially when the failure patterns are of block type. In some

studies, approximately 50% fewer tests have been required to

detect the first failure than RT. However, the overheads

associated with the ART test generation process can be

substantial, and may outweigh the advantages of executing

fewer tests.

Research into ART methods that can maintain reductions in

required test executions to find failures, but also minimize

associated overheads, has yielded a number of ART

implementations. These can be grouped according to several

strategies, including: ‗distance strategy‘ spreads test inputs by

ensuring that each next test is far from all executed tests;

'exclusion strategy' uses exclusion regions around executed

inputs to restrict test selection to other parts of the input

domain; and 'partition strategy' divides the input domain into

several sub-domains and distributes the selection of test inputs

among them.

This paper proposes a new ART method that is based on

partitioning, but that also employs exclusion to achieve the

even spread of test inputs across the input domain.

4) Orthogonal Recursive Bisection (ORB) Strategy

Two traditional objectives of a good partitioning scheme

may be: splitting data evenly among partitions; and ensuring

efficient access to non-local data. The Orthogonal Recursive

Bisection ORB strategy [24] is a domain decomposition

approach that has been used to define mutual interactions

among discrete entities in scientific simulations (such as

molecules, charges, astrophysical bodies, etc.). It has also been

used to distribute a large cardiac model data set to a distributed

memory supercomputer [25]. ORB recursively subdivides a

computational space into two domains with the equal numbers

of particles, or the same calculation costs. It forms a balanced

binary tree by geometrically splitting the domains (uniformly

or non-uniformly) each time the process splits the tree. The

direction of the division is chosen arbitrarily or alternates

orthogonally (x, y, z, x,..., for a 3-dimensional, 3D, space), to

form a cascade of sub-domains. In the example in Fig. 2, a 3D

input space is split on the x-axis into two sub-domains. For each

sub-domain, the split is next performed on the y-axis, yielding

four sub-domains. The third split is applied to each of these four

sub-domains on the z-axis, resulting in eight sub-domains. This

iterative splitting along the x, y, and z axes produces a binary

tree whose number of leaves equals the current number of

partitions. The eight sub-domains represent the leaves of the

binary tree.
ORB is relatively simple to implement and can be quite

efficient. It requires an algorithm to determine the bisection

point at each level. For incremental and non-uniform

distributions of sub-domains, the approach picks the largest

sub-domain each time and divides again. However, the aspect

ratio of a sub-domain could become large, due to the direction

of splitting (alternating among the axes), and can result in a

Fig. 2. Decomposition of a 3D domain using Orthogonal Recursive Bisection.

sub-optimal interaction list in some applications [24], [25].

This problem can be solved by ensuring that the geometric split

is always along the longest dimension. The bisection process is

repeated until the desired number of (sub-)domains is obtained.

ORB results in compact and localized sub-domains [26].
In this study, we modify the basic ORB algorithm and apply

it in an ART implementation called ART-ORB to enhance the

even spread of tests within the input domain. ART-ORB

non-uniformly and incrementally partitions a given input

domain by splitting the longest dimension of the largest domain

each time. The domain-splitting mechanism ensures some

distance between selected test inputs in different sub-domains,

thereby enhancing their even spread. To further enhance the

spread, and reduce the possibility of selecting tests close to each

other within any sub-domain, ART-ORB also incorporates an

exclusion strategy.

B. Related Studies

Adaptive Random Testing (ART) is a family of RT-based

testing methods that aim to find failures faster by evenly

spreading test inputs over the input domain. Several ART

methods have been developed based on various strategies,

using, for example, distance, exclusion, or partitioning. An

early ART algorithm using the distance strategy is

Fixed-Size-Candidate-Set ART (FSCS-ART) [12]. Using a

uniform distribution, FSCS-ART generates a set of random test

inputs (referred to as the candidate set), and computes their

distances to all previous tests (the executed set). The element

from the candidate set that is furthest from the executed tests is

then chosen as the next test input. The underlying distance

strategy of FSCS-ART has been used in several ART

implementations [27], [28], [29].

An exclusion strategy restricts test case selection to certain

areas of the input domain. Several exclusion strategies exist,

with the original being Restriction-based ART (RART), also

known as Restricted Random Testing (RRT) [30]. RRT makes

use of exclusion regions drawn around previously executed

tests, and restricts generation of the next test input to being

from outside of these exclusion regions. For two-dimensional

(2D) input domains, the exclusion regions are typically circles

which ensure that a minimum distance exists between all

generated tests (equal to the radius of the exclusion region). The

size of each exclusion region is related to both the size of the

entire input domain, and the number of previously executed

TR-2018-159

4

tests [30]. For a 2D input domain with target exclusion area At

and N previously executed tests, each exclusion region has a

radius (r) of:

 (1)

The target exclusion area At is the portion of the input

domain area A that we attempt to exclude from test generation.

It is determined by the target exclusion ratio, R [31]: At = AR.

ART methods that use a partitioning strategy are inspired by

partition testing [32], which involves test case generation

methods that divide the input domain into a number of

partitions and select test inputs from within each partition.

These ART methods can be categorized according to how they

select tests from the partitions.

Two partition-based ART methods that draw tests randomly

from within partitions are ART by Random Partition

(ART-RP), and ART by Bisection (ART-B) [13]. Neither of

these methods requires distance computations for the test

selection. ART-RP uses the executed tests to iteratively

partition the input domain, generating the next test from the

largest of the partitions. Although random selection of test

inputs from the largest partition enhances the even spread of the

tests, there is a chance that the selected input may be close to a

previously executed one. Similar to ART-RP, our proposed

ART-ORB also randomly selects the next test from the largest

sub-domain, using the previously executed tests to partition the

domain. However, while ART-RP partitions a 2D domain into

four sub-domains, ART-ORB partitions it into two. Also,

ART-B iteratively bisects the largest dimension of the input

domain to create equally-sized partitions: It randomly generates

a test from each partition, and bisects all partitions as soon as

they all contain tests. The failure detection effectiveness of

ART-B reduces over time: Because there is no mechanism in

place to generate tests from empty partitions, eventually, test

inputs will be next to each other. As the number of partitions

increases, test inputs subsequently selected from two empty

regions next to each other may have similar characteristics.

ART-ORB incrementally partitions each domain into two

non-uniform sub-domains, only requiring reassignment of two

test inputs. ART-B, in contrast, periodically partitions all

domains into uniform sub-domains, incurring the overhead of

multiple test input reassignments. Because neither ART-RP nor

ART-B involves distance computations or comparisons, they

have lower time overheads compared to other ART approaches.

However, they also have lower failure-detection capability.

Although both methods have some similarity to ART-ORB,

they differ in their test selection, and partitioning method.

A second category of partition-based ART approaches

involves applying a basic ART method (FSCS-ART [12] or

RRT [30], for example) to select test inputs from within the

partitions. ART with divide-and-conquer (ART-DC) [27] is one

such method. It divides each dimension of the input domain

into smaller, equal-sized, sub-domains when a predefined

number (the threshold) of tests have been executed. Test inputs

are then selected from these sub-domains using the original

ART algorithm [12]. ART-DC has similar failure detection

effectiveness to both FSCS-ART and RRT, and its

computational complexity depends on the value of the

threshold and the ART algorithm applied. Because of the

overheads from fully applying the original ART algorithm in

each of the sub-domains, the computational complexity can be

comparatively high, especially for high threshold values.

Although it also incrementally partitions the input domain,

ART-DC is quite different from ART-ORB, both in terms of its

partitioning approach, and test case selection in the partitions.

Another partition-based ART approach is two-point

partitioning ART (ART-TPP) [28], which augments the ART by

balancing approach [29] by applying a different test case

selection criterion and using the midpoint of the test inputs to

further partition the domain. ART-TPP selects the largest

partition and, if there is no executed test there already, it

randomly generates a test input. If the partition already contains

an executed test, then a candidate set of random test inputs is

generated, and the one furthest from the executed test is

selected as the next test input. The partition is then divided

through the midpoint of these last two test inputs. ART-TPP has

some similarity to ART-ORB, as it also bisects through the

midpoint of two tests within a partition and selects the next test

from within the largest partition. However, it differs in its test

case selection process and the number of partitions generated.

While ART-ORB restricts regions as part of the selection

strategy, ART-TPP computes distances to candidate test cases.

Also, ART-TPP divides all dimensions of a domain while

TABLE I

COMMON CHARACTERISTICS OF ART METHODS

No. Characteristics ART-RP ART-B ART-DC ART-TPP ART-ORB

1 Random selection of test inputs within sub-regions

2 Employs FSCS strategy to select test inputs within sub-regions

3 Employs RRT strategy to select test inputs within sub-regions

4 Distance computation

5 Generates test inputs from largest sub-region

6 Employs location of test inputs to partition sub-regions

7 Bisects using the longest dimension of a sub-region

8 Partitions sub-regions into equal sizes

9 Partitions each sub-region at a time

10 Partitions domains after a predefined number of test input selections

11 Partitions a sub-region into two in each partitioning process

)()(NArRadius t

TR-2018-159

5

ART-ORB divides only one dimension for each test selection

iteration. Although ART-TPP has comparable stability and

failure detection capability to other partition-based ART

methods [13], its associated candidate selection and distance

calculations can become computationally expensive. The

partitioning of each region into four sub-regions, and the

checking and reassigning of previous test inputs to their

respective sub-regions within the sub-domains increases the

ART-TPP overheads.

Table I summarizes the similarities and differences among

the described partition-based ART methods and ART-ORB.

Since ART-DC uses either FSCS or RRT when selecting tests

within sub-regions of the input domain, Characteristics 2 and 3

are both selected for ART-DC in the table.

The partitioning strategy has been used in many variations of

ART [33], [22], [21]. A possible drawback of this strategy,

however, is that it can incur high overheads, which can be

wasteful, especially for strategies that divide the input domain

from the very start of the testing (when faults may be less likely

to be detected). Consideration of the overheads involved with

partitioning is therefore very important when developing

partition-based ART strategies. It has also been shown that

employing restriction in test input generation generally

provides better failure detection effectiveness than the use of

candidate selection [14].

This paper presents a new ART method that employs

Orthogonal Recursive Bisection [24] as a partitioning strategy

to significantly reduce overheads, and applies RRT [30] as an

exclusion strategy in the test input generation to increase the

failure detection effectiveness.

III. METHOD

The proposed ART-ORB method attempts to evenly spread

test inputs throughout the input domain through a combination

of partitioning and use of exclusion regions.

The first step is to randomly select a test input (T1) from the

entire input domain and check whether or not it reveals a

failure. If T1 does not reveal a failure, then, assuming a 2D

input domain, a circular exclusion zone of radius r1 is defined

around T1 according to (1). (Higher dimensional input domains

are dealt with similarly, but the exclusion zone is a

corresponding hypersphere, and the radius is calculated

accordingly.) ART-ORB then randomly generates the second

test input, T2, from outside of this exclusion zone. T2 is

executed to determine whether or not it reveals a failure: if it

does not, then the entire input domain is partitioned into two

sub-domains (regions), and the largest sub-domain is then

identified. Using the area A3 of this largest sub-domain, an

exclusion zone of radius r3 is created around the executed test

input in the sub-domain, and the next test input (T3) is

generated from outside this exclusion zone (but within the

sub-domain). If T3 does not reveal a failure, then this

sub-domain is also divided into two further sub-regions.

ART-ORB continues by repeatedly selecting the next test from

each successive largest region within the input domain and

performing the exclusion and division operations until a

generated test input reveals a failure.

When partitioning a region, ART-ORB uses the ORB

strategy [24] with non-uniform partitioning (producing

sub-regions of unequal sizes). ART-ORB uses the positions of

the two test inputs in the region and the longest dimension of

that region. The mid-point between the two test inputs is

identified, and the region is split using a line perpendicular to

the longest dimension through this point. This results in the two

test inputs being separated, one at either side of the dividing

line; one in each new sub-region. Because the dividing line‘s

position is determined by the positions of the two test inputs,

the resulting sub-regions are unlikely to have the same size. If

D represents the input domain and TS represents a set of

previously executed tests, then the process orthogonally divides

the input domain into sub-domains {D1, D2, …, Ds} such that

 𝑫𝑠1 i = D (where s denotes the number of sub-domains after

each division). Because input domain division takes place only

after a test has been executed, the number of sub-domains after

each division process is equal to the total number of executed

test cases (s = |TS|).

The circular exclusion zone (in 2D) is chosen because

previous research has shown this to provide the best RRT

failure-finding performance [14], [34]. The size of the

exclusion zone is partly determined by the target exclusion ratio

(R) [31]. For example, in a 2D region, with a total area of 150, if

R = 60%, ART-ORB will define an exclusion zone of area

150×0.6 = 90, centered on the single executed test in that

region. The exclusion zone radius is calculated based on the

dimensions of the input domain, using a formula for n

dimensions:

d

dd
N

ARd
CrRadius

2/2
2

)(

 (2)

In (2), d is the dimension of the input domain, A is the area of

the current region/partition, N is the number of previously

executed tests, R is the target exclusion ratio and [d/2] is the

integer value of d/2. The result of Cd-2×d/2 represents the

formula coefficient for the dimension d, and Cd-2 represents the

formula coefficient for the d-2 dimension: For example, the

radius formula for the 4D input domain [14] has a formula

coefficient of 2 since the formula coefficient C2 (that is C4-2,

where d=4) for 2D (as shown in (1)) is equal to 1. Chan et al.

[14] provide a fuller description of various radius formulas,

with formulas for n-dimensions also having been explained

previously [35].

TR-2018-159 6

Fig. 3. Outline of ART by Orthogonal Recursive Bisection (ART-ORB). (a)

Generation of the second test case. (b) Generation of the third test case. (c)

Generation of the fourth test case. (d) Twelve generated test cases within the
input domain.

A detailed example of the ART-ORB process is illustrated in

Fig. 3. Here, ART-ORB randomly selects the first test input T1

from the input domain and defines an exclusion zone around it.

Fig. 3(a) shows an exclusion zone defined around the first

non-failure-revealing test case T1, and the next test (t) is

randomly selected from outside this zone. When attempting to

generate t, if a candidate is randomly selected from within the

exclusion zone (such as k1, shown with a star symbol), it is

discarded. If neither T1 nor T2 are failure-revealing, then the

region is partitioned using a line perpendicular to the longest

dimension through the mid-point of T1 and T2, as illustrated in

Fig. 3(b). In the next steps, to generate the next test t (as 3rd and

4th tests), ART-ORB works within the largest region of the

input domain (Figs. 3(b) and 3(c)), discarding test candidates k2

and k3, which were selected randomly but fell within the

exclusion zones. Fig. 3(d) shows a possible distribution of test

cases within the entire input domain after twelve test inputs

have been selected.

A binary tree representation for the ART-ORB partitioning

process shown in Fig. 3 is presented in Fig. 4. The nodes in the

tree represent the regions within the input domain, and the

percentage value in each node is the percentage of the total

input domain area in that region at a particular stage of the

partitioning process. The root of the binary tree D represents the

entire input domain with a percentage area of 100%. The leaf

nodes in Fig. 4 (highlighted with thick green circles) represent

the current completely partitioned regions (corresponding to all

regions in Fig. 3(d)). The sum of all current regions in the

domain is equal to the complete input domain size, and thus the

sum of the percentage area values in all the leaf nodes must be

100%. Because ART-ORB only allows one test per region, a

test input generated from a particular region is assigned an

identifier corresponding to that region: The test T9 (Fig. 3(d)),

for example, is in the current region D9.

At any stage of the partition process, the leaf node with the

largest percentage size in the tree is partitioned, irrespective of

its level in the tree. For example, the node in the tree that is

divided after the root D has been partitioned is D1, because it

has a larger proportion of the input domain (54.1%) than D2

(45.9%). The numbers beneath parent nodes in Fig. 4 indicate

the partitioning sequence. If the partitioning were to continue

beyond the current twelve regions, the next node (region) to be

partitioned would be D5, because its area is the largest. As this

illustrates, it is possible for a node at a lower level in the tree to

be partitioned before other nodes at higher levels—the nodes‘

levels do not influence the partition process.

Conventional partitioning-based testing strategies normally

perform partitioning prior to the selection of any test cases.

Although ART-ORB involves the notion of partitioning, it

differs from conventional strategies in that the process is done

progressively, and in real-time.

Because ART-ORB selects a new test input from the largest

partition each time, and even within that specific partition, an

exclusion region is defined around the previously executed test

in it, ART-ORB can therefore be considered to use a ―double

exclusion principle‖ to generate the wide and even spread of

test inputs.

A. Algorithm Description

We provide a formal description of the proposed ART-ORB

method in Algorithm 1.

At each partitioning iteration, the largest subdomain is

partitioned using a line perpendicular to the longest dimension

through the mid-point of the two test inputs in the region. Each

next test input is generated in the current region, outside of the

exclusion zone around the previously executed input in the

region [30], [14], [31]. The variable curRegion represents the

current rectangular region, defined by its lower-left point and

upper-right point coordinates.

The first test input is generated randomly from the entire

input domain (line 4). In line 14, a test input (or point) in the

current region is generated using RRT [30] with only one

previously executed test input in the region. Any current region

curRegion selected from regionList at any stage will contain

one previously executed test input. The function

findMaxRegion(regionList) (line 11) returns the index of the

largest region in regionList. Because the exclusion zone size is

TR-2018-159 7

Fig. 4. Binary tree representation of the ART-ORB process.

proportional to the size of each region (refer to (2)), as the

regions are recursively divided, the size of the exclusion region

defined around the test input will also decrease.

Algorithm 1 ART by Orthogonal Recursive Bisection (ART-ORB)

Input: (1) D[] // where D[] represents the input domain.
 (2) R // exclusion ratio.
Output: TS ={T1; T2; _ _ _ ; Tn} // set of test cases

 1: Construct regionList = {}; // To store a list of regions or (sub-)domains.
 2: Construct TS = {}; //To store executed test cases.
 3: Set curRegion = D[]; // Assign the input domain to curRegion. curRegion

represents the current region needed to be bisected recursively.
 4: tempT = generateRandPoint(curRegion); // Generate test case randomly
from the entire input domain.

 5: TS = TS ∪ {tempT};
 6: if tempT finds failure then

 7: break;
 8: end if
 9: Add curRegion to regionList;
10: while (stopping criteria not reached) do

11: pIndex = findMaxRegion(regionList); //find the region with the largest
size in regionList, and pIndex is the index of region for the next
partition.

12: curRegion = regionList.get(pIndex);
13: T1= the existing test input in curRegion;
14: T2=generateRandExPoint(curRegion., T1, R); // Generate a new test

input by restricting region around T1 using exclusion ratio R within
the current region.

15: TS = TS ∪ {T2};
16: if T2 finds failure then
17: break;
18: end if
19: regionList.remove(pIndex); //remove the max-sized region from

regionList
20: Calculate the midpoint (median) of T1 and T2, divide curRegion

orthogonally into two new sub-regions via this midpoint and using
longest dimension of curRegion, and then add them into
regionList;

21: Locate T1 and T2 to their corresponding sub-regions;
22: end while

23: return TS ;

B. Computational Efficiency

The computational overhead of ART-ORB is analytically

comparable to that of other ART methods. ART-ORB

combines partitioning with an exclusion strategy. It does not

employ any candidate selection, or require distance calculations

to all previously executed test inputs in each selection process.

Assuming the size of the test case set is N. ART-ORB

partitions a region of the input domain and applies an exclusion

zone in the largest region around the executed test there. The

time required for ART-ORB to identify the largest region (ie.

findMaxRegion()) varies from 0 to N, therefore the complexity

is O(N/2). The original restriction algorithm selects the N
th

 test

input from the entire input domain with a complexity of

O(NlogN)—each test input generation requires that the

distances from each candidate test to all N previously executed

tests be calculated. However, the ART-ORB algorithm only

requires distance calculations associated with candidate tests

from within the current region and the single executed test in

that region; therefore using a constant time k. As a result,

generating a new test input has a complexity of O(k(logN)).

Hence, the worst-case time complexity of selecting N test cases

using ART-ORB is O(NlogN).

Unlike many other ART methods that use partitioning (e.g.,

ART-DC [27], ART-TPP [28], ART-RP [13], and ART-B

[13]), ART-ORB is very efficient as it only reassigns the two

executed test inputs in the divided sub-region after each

partitioning.

IV. EMPIRICAL STUDIES AND ANALYSIS

A. Setup of the Empirical Studies

Because ART methods are enhancement to RT, our focus

when evaluating the failure detection capability of ART-ORB

is on its improvement over RT. ART-ORB presents a new

partition-based ART strategy that aims to improve failure

detection effectiveness and efficiency. Our empirical analysis

had three phases.

TR-2018-159 8

Firstly, we performed simulations to evaluate ART-ORB‘s

ability to evenly spread test cases throughout the input domain,

or to analyze how close together the generated test cases are,

compared to RT.

Secondly, we performed a series of simulations using

different failure patterns and varying failure rates, to investigate

the impact of different failure regions on the failure detection

effectiveness of ART-ORB, again comparing with RT. Since

all ART methods share the aim of improving on RT, we also

determined how the performance of ART-ORB compares with

some similar ART methods (ART-RP, ART-B, ART-DC, and

ART-TPP). We performed a series of simulations in a 2D input

space to ascertain: (1) the failure detection effectiveness

performance of ART-ORB compared with RT and the other

ART methods; and (2) the efficiency of the proposed method,

compared with the other ART methods (the ART test input

selection process typically incurs increased time costs).

Lastly, we performed experiments with 16 real, previously

published, fault-seeded programs [12], [35], [28] to further

validate the results obtained in the simulations. The programs

were selected due to their varying dimensions and failure rates.

1) Research Questions

Our empirical study was guided by the following research

questions:

RQ1: How evenly spread is the distribution of test cases

generated by the ART-ORB method?

RQ2: Does ART-ORB perform better than RT for all failure

patterns, in terms of the F-ratio?

RQ3: How does ART-ORB compare with other partition-based

ART methods, in terms of the F-ratio, E-measure, Fm-time, and

Execution time?

RQ4: What is the statistical significance of the ART-ORB

performance compared to other ART methods, in terms of

E-measure?

Although ART-ORB‘s use of the exclusion strategy with

minimum distance computations significantly reduces the test

generation costs, it may also potentially lead to a situation

where several inputs are close to one another instead of being

evenly distributed, due to boundary effect [36]. This could have

a negative impact on the failure detection ability of the method.

The first research question (RQ1) was designed to empirically

evaluate the extent of this potential undesirable effect, if any.

This is also vital for determining ART-ORB‘s ability to

distribute test inputs, as it has been shown that more evenly

distributed tests have higher failure detection [37]. The second

research question (RQ2) was designed to establish the extent to

which ART-ORB improves on ordinary RT, for different

failure patterns. The third and fourth research questions (RQ3

and RQ4), were designed to compare ART-ORB to similar

ART methods, to help identify situations in which ART-ORB

should be applied instead of the other ART methods.

2) Experimental Environment

The environment used to conduct the simulations and

experiments was the Windows 10 Professional (64 bits) OS,

running on Intel Core i3 Duo processors, with a speed of 3.70

GHz each, and memory of 4 GB. We implemented all

algorithms in Java and ran them on the Eclipse neon platform

with JDK 1.7. We employed the Spyder utility within the

Anaconda platform for generating the charts and used the R

language platform for the statistical analysis.

3) Test Distribution Metrics

We adopted two diversity metrics [37] to measure how

well-spread the distribution of test inputs generated by

ART-ORB was. These two metrics, Discrepancy and

Dispersion, are commonly used for measuring the

equidistribution of sample points. Discrepancy indicates

whether or not different regions inside the input domain D have

similar densities of tests:

 (3)

where D1, D2, D3, . . . , Dm are m randomly defined rectangular

sub-domains of the input domain D, and |Di| is the size of Di. T

is the set of all selected test cases from D, and Ti is a subset of T

from sub-domain Di, such that |Ti| = |T ∩ Di|. The value of m

cannot be too small; otherwise, a reliable approximation of the

discrepancy may not be possible. Similarly, m cannot be too

large either, because the computational overhead increases as

the value of m increases. To balance the overheads and

accuracy, we set m to be 1000, which is consistent with

previous studies [37], [38].

Dispersion indicates whether or not there is a large empty

region (containing no tests) in the input domain D, and is

reflected by the maximum distance that any test input has from

its nearest neighbor:

 (4)

where dist(u,v) denotes the Euclidean distance between two

points u and v, (u, N) refers to u‘s nearest neighbor in set N,

and T ={t1, t2, . . . , tn} is the set of all test cases.

Discrepancy and Dispersion have been used previously [37],

[38], [39] to measure the test case distributions of various ART

algorithms, and have provided evidence of the existence of a

strong correlation between the even spread of test inputs and

the failure detection effectiveness. Intuitively speaking, smaller

Discrepancy and Dispersion values indicate more evenly

distributed sets of generated test inputs.

4) Failure Region Definition

In order to simulate the testing of faulty programs in different

situations, we defined a 2D input domain and created randomly

located failure regions of the required patterns and sizes (based

on the predefined failure rates). We applied the different testing

methods in this input domain to generate test inputs.

The block pattern failure region was obtained by randomly

defining a square region that provided the failure rate required

within the input domain. The strip failure pattern was obtained

by randomly choosing two points each on adjacent borders of

the domain, and connecting them to form a strip representing

the failure region. We then adjusted the width of the strip by

varying moving the points to achieve the desired size of the

failure region. The point failure pattern was created by

randomly choosing 50 circular and non-overlapping regions

from within the input domain. Suppose each of the 50 point

failure regions is denoted as Pi, where i = 1, 2, 3, … , 50, and

D

D

T

T
yDiscrepanc

iim

i

max
1

})){\,(,(max
1

tTttdistDispersion iii

n

i

TR-2018-159 9

 denotes the size of the input domain. We defined the size

of each Pi as , where ρi is randomly

chosen from [0, 1) based on a uniform distribution. We avoided

points that were close to the corners of the input domain to

prevent excessively wide strips. Similar to previous ART

studies, we set the failure rates (θ) at 0.01, 0.005, 0.002 and

0.001, for each failure pattern.

When applying a testing method to generate test inputs in the

simulations, if a generated input fell inside the failure region,

then the testing method was considered to have detected a

failure. The test input generation process was repeated until a

failure was detected.

5) Effectiveness and Efficiency Measure Criteria

Chen and Yu [40] refer to elements of an input domain that

do not produce correct outputs as failure-causing inputs. The

failure rate (θ) is obtained by dividing the number of

failure-causing inputs by the total number of inputs in the input

domain.

The F-measure [18] is defined as the (expected) number of

test cases executed before detecting the first failure. The failure

detection effectiveness of a testing strategy can be reflected by

the F-measure because lower F-measure means the testing

strategy is more effective, as fewer test cases are needed to

detect the first failure. In practice, a test process may be

terminated whenever a failure is detected and resumed only

after the detected fault is fixed. Hence, the F-measure is also

realistic from a practical point of view. For an input domain

with size |D| and number of failure-causing inputs represented

by m; the failure rate (θ) is calculated as m/|D|. The F-measure

value for random test case selection (with replacement) is equal

to 1/θ, or equivalently |D|/m. We also adopt the ART F-ratio

(FART/FRT), which is the ratio of ART‘s F-measure (FART) to

RT‘s F-measure (FRT), to compare ART‘s and RT‘s

failure-finding performance. For example, if RT executes 100

test cases before detecting the first failure, and an ART method

executes 20 before detecting a failure, then the ART method

requires 20/100=0.2=20% of RT‘s test cases to detect the first

failure. The F-ratio is computed as:

 (5)

Smaller F-ratio values for an ART method indicate better

(faster) failure detection effectiveness.

We also used the E-measure (Em) to evaluate the failure

detection effectiveness of our method. The E-measure is the

(expected) total number of distinct failures detected by a

specific number of generated test cases. A testing approach is

considered more to be more effective in detecting failure if it

has a lower F-measure, a lower F-ratio, and a higher E-measure.

To examine the significance of the performance differences

between ART-ORB and other ART methods, we computed

both p-value (probability value) and effect size (at the 5%

significance level)[41] for the E-measure results. The p-value

determines whether the difference between two ART methods

is statistically significant. To measure the p-value, we used the

unpaired two-tailed Mann-Whitney-Wilcoxon test [41]. A

p-value less than 0.05 means that there is a significant

difference between the two methods being compared. The

effect size (ES) measure indicates the probability of one

method being better than another. To measure the ES, we used

the non-parametric Vargha and Delaney effect size measure

[42]. An ES value for any two methods X and Y indicates the

probability that X is better than Y. In this study, we used R

language [43] to obtain the p-value and ES value for pairs of

ART methods.

We employed two efficiency metrics to compare the time

costs of ART-ORB with other ART methods. These metrics

are: Fm-time (the time required to detect the first failure); and

Execution time (the time required to execute a specific number

of test cases). The efficiency of a testing approach is more

intuitively reflected by these measures as a lower Fm-time

indicates that less time is required to detect the first failure, and

a lower execution time indicates that less time is required to

execute a set of test cases.

6) Experimental Parameters

We conducted a comparative analysis of our ART algorithm

against RT, ART-RP, ART-B, ART-DC, and ART-TPP.

ART-DC has two different implementations that achieve

similar results: RRT-DC and FSCS-DC. In this study, we

applied the RRT-DC version, and refer to it as ART-DC. We set

the threshold (λ) of ART-DC to 50: Higher thresholds (such as

λ =100) may provide better failure detection effectiveness, but

also increase the computational overheads; lower threshold

(such as λ =4 or λ =10), on the other hand, increase the chance

of pure random generation of test cases, thus defeating the goal

of even spreading [27]. In ART-TPP, as in previous work [28],

we set the candidate set size, k, to 3.

In the simulations, as in previous studies [14], [44], we

varied the target exclusion ratios for both ART-DC and

ART-ORB between 1% and 150%, and used the best result

each time. We extended the target exclusion ratio range up to

220% for the experiment with fault-seeded programs. The

F-measure results in the simulations were averaged over 5000

runs, while the results from the experiments with real programs

were averaged over 3000 runs—this was due to the

significantly longer amount of time required for the real

program execution and they are also consistent with previous

studies [12], [14], [35]. For the E-measure, Fm-time, and

Execution time results, we repeated both simulations and

experiments 200 times. The choice of this repeated run was due

to the time constraints in executing some of the subject

programs. For example, the average time taken by ART-RP to

execute each run of 4000 test cases for the calGCD program

was as much as 19 hours. Additionally, we used as many as 16

subject programs with varying input dimensions in the

experiments. Thus, the choice of 200 repetitions strikes a

balance between generalization and statistical analysis [41].

B. Simulations

A major advantage of the use of simulations to evaluate a

testing method is that they can provide a more complete picture

of the performance under various scenarios. We conducted a

series of simulations to address the research questions defined

in Section IV-A-1. This section presents and discusses these

simulations‘ results.

D

DP j jii)/(50

100%
RT

ART

F

F
ratioF

TR-2018-159 10

1) Test Input Distribution of ART-ORB

We conducted a series of simulations, in input domains of

1D to 4D, to investigate both the Discrepancy and Dispersion of

ART-ORB compared to RT and other ART methods. To avoid

bias, the exclusion ratio for both ART-ORB and ART-DC was

set to 75%. In the simulations, we generated 100, 1000, and

10000 sets of test inputs for each testing method and input

domain, and calculated the Discrepancy and Dispersion values

using the formulas (3) and (4) from Section IV-A-1. Table II

presents the simulation result, with the best values (the lowest

values) highlighted.

It can be observed from Table II that the Discrepancy values

of ART-ORB are lower than RT for all cases, and that they

generally increase with the increasing dimensions of the input

domain. Although the other ART methods generally have lower

Discrepancies values than RT, they are not all lower in all

cases. For example, the other ART methods had higher

Discrepancy results than RT for 1000 tests in 4D input

domains. ART-ORB has lower Discrepancy values than all

other testing methods, both RT and ART, especially for the 1D

and 2D input domains.

As expected, Table II also shows that ART-ORB performs

better in terms of the Dispersion metric than RT, and again,

increasing as the dimension increases. Compared with the other

ART methods, ART-ORB usually has lower, or among the

lowest, Dispersion values. The only time when RT had a better

Dispersion result than ART-ORB was for 100 tests in the 3D

input domain—in this case, the dispersions of the other ART

methods were also higher than that of RT. Table II also shows

that the Dispersion results for all testing methods increases as

the dimension increases. When the dimension of input domain

is low, ART methods evenly spread test cases and therefore

have lower dispersion values. With the increase of dimension,

the test cases they select show a certain degree of uneven

distribution resulting in larger dispersion values. Hence, the

reason for their higher dispersion as dimension increases.

Surprisingly, this phenomenon is observed for RT. Our

investigations show similar observations in other studies [37],

[38].

TABLE II

DISCREPANCY AND DISPERSION RESULTS FOR EACH METHOD AND DIMENSION FOR DIFFERENT NUMBERS OF TEST INPUTS

Number of test inputs Testing Strategy
Discrepancy Dispersion

1D 2D 3D 4D 1D 2D 3D 4D

100

RT 0.064924 0.110079 0.080605 0.076196 0.024296 0.146948 0.232739 0.411993

ART-RP 0.038009 0.036375 0.04085 0.049667 0.017792 0.12096 0.265197 0.382913

ART-B 0.031748 0.078038 0.059664 0.021465 0.020372 0.118384 0.252942 0.353152

ART-DC 0.034188 0.034128 0.035375 0.036382 0.015507 0.123422 0.300325 0.401826

ART-TPP 0.030378 0.032806 0.041056 0.042993 0.018208 0.132635 0.293382 0.339824

ART-ORB 0.029091 0.023167 0.041947 0.043958 0.014654 0.136443 0.268746 0.404833

1000

RT 0.021063 0.016977 0.015908 0.016411 0.00281 0.049948 0.142325 0.243003

ART-RP 0.007591 0.007574 0.019485 0.018483 0.001947 0.042786 0.137002 0.229629

ART-B 0.00444 0.01549 0.0216 0.021132 0.002464 0.045012 0.145932 0.237007

ART-DC 0.019588 0.004642 0.017609 0.020325 0.002883 0.047424 0.151221 0.221336

ART-TPP 0.009262 0.010459 0.006511 0.021547 0.002335 0.050908 0.139035 0.269923

ART-ORB 0.008654 0.009616 0.006662 0.012181 0.00148 0.043875 0.132397 0.226125

10000

RT 0.002889 0.005012 0.005939 0.008203 0.000489 0.020114 0.102807 0.149492

ART-RP 0.002812 0.003826 0.007169 0.005706 0.000195 0.016112 0.0702 0.143263

ART-B 0.002 0.005408 0.004584 0.010245 0.000271 0.015831 0.07305 0.133702

ART-DC 0.003189 0.00405 0.002133 0.001015 0.000314 0.017366 0.066335 0.135845

ART-TPP 0.002094 0.004671 0.006738 0.013356 0.000286 0.017208 0.066119 0.141453

ART-ORB 0.000917 0.001114 0.003977 0.006171 0.000161 0.014128 0.058487 0.135359

TABLE III
F-MEASURE AND F-RATIO COMPARISONS FOR ART BY ORTHOGONAL RECURSIVE BISECTION FOR DIFFERENT FAILURE PATTERNS

Failure

Rate (θ)

 Block Pattern Strip Pattern Point Pattern

Expected

F-measure

(FRT)

Mean

F-measure

of ART

(FART)

(FART/FRT) (%)

Mean

F-measure

of ART

(FART)

(FART/FRT) (%)

Mean

F-measure

of ART

(FART)

(FART/FRT) (%)

0.01 100 69.5 69.5% 89.0 89.0% 95.6 95.6%

0.005 200 138.9 69.5% 182.2 91.1% 192.4 96.2%

0.002 500 351.1 70.2% 468.0 93.6% 481.9 96.4%

0.001 1000 701.5 70.2% 943.6 94.4% 965.3 96.5%

TR-2018-159 11

2) Failure Detection Effectiveness

We performed simulations using three failure pattern types

(block, strip, and point), with different failure rates, averaging

results over 5000 executions. These simulations were

categorized into three main parts.

Firstly, we compared the F-measure performances for

ART-ORB with the expected F-measure values for RT, for the

three failure patterns. For each test run, we calculated the

average F-measure value, and the F-ratio for each failure rate

and failure pattern. Table III presents these results.

Table III shows that ART-ORB has a best improvement of

30.5% over RT for the block failure pattern, and 11% for the

strip pattern. As expected, ART-ORB‘s spreading of test cases

evenly over the input domain did not result in a significant

improvement in failure detection for the point pattern, with the

best improvement of only 4.4%.

Secondly, we compared the ART-ORB F-ratio performance

to those of the other ART methods considered in this study,

again using the block, strip, and point failure patterns. Table IV

shows these results.

Table IV shows that, for non-point patterns, the ART failure

detection performance generally increases as the failure rate

increases. An increase in failure rate increases the probability

that a failure-revealing test will be selected as the next input;

therefore the increase in performances of the ART methods. As

a result, the lowest F-ratio results were obtained for the highest

failure rate (0.01) for most non-point failure patterns.

Table IV also shows that ART-ORB slightly outperforms the

other ART methods for all failure rates, when the block failure

pattern is used. The F-ratio results obtained for strip failure

pattern also showed a slightly better performance for

ART-ORB for half of the failure rates, and a comparable

performance for the others (0.002 and 0.001). As expected,

none of the ART methods showed much improvement over RT

for the point failure pattern—some even had a worse

performance. Although ART-ORB had a better performance

than the other ART methods for point failure pattern, it also had

a less significant improvement over RT, with the maximum

improvement being 4.4%.

TABLE IV

F-RATIO RESULTS OF ART METHODS FOR THE BLOCK, STRIP, AND POINT

FAILURE PATTERNS AVERAGED OVER 5000 TEST RUNS

Failure

Rate (θ)

(%) FART/FRT

ART-RP ART-B
ART-DC

(λ=50)
ART-TPP ART-ORB

Block

pattern

0.01 76.0% 75.1% 78.7% 79.5% 69.5%

0.005 77.5% 73.8% 79.0% 77.5% 69.5%

0.002 80.9% 73.1% 79.9% 76.2% 70.2%

0.001 80.1% 73.8% 80.1% 76.6% 70.2%

Strip

pattern

0.01 92.0% 91.7% 90.1% 94.3% 89.0%

0.005 93.3% 94.6% 92.2% 95.0% 91.1%

0.002 95.0% 93.7% 93.4% 95.7% 93.6%

0.001 94.2% 95.5% 95.2% 96.6% 94.4%

Point

pattern

0.01 102.9% 98.8% 96.8% 100.8% 95.6%

0.005 103.9% 100.0% 98.3% 102.1% 96.2%

0.002 100.0% 100.6% 97.0% 98.6% 96.4%

0.001 100.3% 99.7% 97.8% 100.0% 96.5%

In the third set of simulations, although the proposed method

showed relatively better failure finding effectiveness

(F-measure) than the other previous ART methods, for almost

all failure rates, we further investigated this effectiveness for a

fixed number of test cases (E-measure).

(a) (b) (c)

(d) (e) (f)

Fig. 5. E-measure comparisons of ART methods using the block, strip, and point failure patterns, for failure rates (θ) of 0.01 and 0.001.

TR-2018-159 12

We performed simulations for each failure pattern using

failure rates of 0.01 and 0.001. For each E-measure simulation,

we generated a fixed test set (n) of 4000 test cases and averaged

the results over 200 runs. The results are presented in Fig. 5.

Fig. 5 indicates that the ART-ORB E-measure performance

is comparable to that most of the other ART methods, for all

failure patterns. An exception is ART-DC, which has better

performance, especially for higher failure rates. This is due to

the relatively large threshold (λ=50) considered in this study.

Larger thresholds increase the probability of fault detection;

however, larger thresholds come with higher computational

costs.

3) Failure Detection and Computational Efficiency

The time required for a testing method to detect failure can

be a good determinant of its efficiency. Generally, testing

proceeds by repeatedly generating test cases until a failure is

detected. Therefore, the time required to detect the first failure

(Fm-time) may be a good indicator of a method‘s

failure-detecting efficiency. To evaluate this for our proposed

method, we compared ART-ORB with the other ART methods

in terms of the Fm-time. Fig. 6 shows the Fm-time results for all

failure patterns, using failure rates of 0.01 and 0.001, averaged

over 200 results. As the results show, ART-ORB requires far

less time to detect the first failure, outperforming the other

methods for all failure patterns and failure rates, especially for

the lower failure rates.

The failure-detection speed alone does not provide a

complete representation of the efficiency of a testing method.

The average time required to execute a fixed number of test

cases (Execution time) is also indicative of the method‘s

efficiency. We therefore further investigated ART-ORB by

comparing its execution time with those of the other ART

methods. For this, we generated 4000 test cases, repeating the

simulation 200 times. Fig. 7 presents boxplots that summarize

the execution time results for each ART method, for all failure

patterns, using failure rates of 0.01, 0.005, 0.002, and 0.001.

For all failure patterns, ART-ORB provides the lowest (best)

execution time. It can also be seen that ART-DC again has the

worst execution time.

 (a) (b) (c)

(d) (e) (f)

Fig. 6. Fm-time comparison of ART methods using the block, strip, and point failure patterns, for failure rates (θ) of 0.01 and 0.001.

 (a) (b) (c)

Fig. 7. Execution time results for the block, strip, and point failure patterns, using failure rates of 0.01, 0.005, 0.002, and 0.001.

TR-2018-159 13

C. Experiments with Fault-seeded Programs

The results from the simulations indicate that our proposed

method outperforms RT and compares well with ART-RP,

ART-B, ART-DC, and ART-TPP, in terms of failure detection

effectiveness. The simulation results also show that the time

taken by ART-ORB is less than the other ART methods. In

order to further validate these results, we performed several

similar experiments with a number of real-life benchmark

programs.

The experiments involved 16 fault-seeded programs that

were implemented in Java, with varying dimensions and input

domains. Table V gives details about these programs, including

their dimensions, inputs types, input domains, the number of

each fault type used, and the failure rates.

The first 12 programs are published, fault-seeded programs

[45], [46], that are commonly used in ART research [12], [14],

[35]. They involve numerical calculations, and range in length

from 30 to 200 lines of code. They have varying dimensions,

and some have varying program input types. We converted

these 12 published programs that were originally written in C

and C++, to Java.

TABLE V
SUBJECT PROGRAMS ORDERED BY DIMENSION

Program

Name

Dimension

(d)
Input Type

Input domain Types of Faults Failure

Rate From To SDL RSR AOR CR SVR ROR

airy 1 double (−5000.0) 5000.0

1

0.000716

erfcc 1 double (−30000.0) 30000.0 1 1 1 1 0.000574

probks 1 double (−50000.0) 50000.0 1 1 1 1 0.000387

bessj0 1 double (−300000.0) 300000.0 2 1 1 1 0.001373

tanh 1 double (−500.0) 500.0 1 1 1 1 0.001817

bessj 2 int, double (2.0,−1000.0) (300.0, 15000.0) 2 1

1 0.001298

gammq 2 double, double (0.0, 0.0) (1700.0, 40.0)

1

3 0.000830

sncndn 2 double, double (−5000.0, −5000.0) (5000.0, 5000.0)

1 4

0.001623

golden 3
double, double,

double

(−100.0, −100.0,

−100.0)
(60.0, 60.0, 60.0)

1 1 3 0.000550

plgndr 3 int, int, double (10.0, 0.0, 0.0) (500.0, 11.0, 1.0) 1 2

2 0.000368

cel 4
double, double,
double, double

(0.001, 0.001,
0.001, 0.001)

(1.0, 300.0, 10000.0,
1000.0)

 1 1

1 0.000332

el2 4
double, double,

double, double
(0.0, 0.0, 0.0, 0.0)

(250.0, 250.0, 250.0,

250.0)
 1 3 2 3 0.000690

calDay 5 int, int, int, int, int (1, 1, 1, 1, 1800) (12, 31, 12, 31, 2200) 1

0.000632

triangle 6 int, int, int, int, int, int
(-25, -25, -25, -25,

-25, -25)

(25, 25, 25, 25, 25,

25)

1

0.000713

line 8
int, int, int, int, int, int,

int, int
(-10, -10, -10, -10,
-10, -10, -10, -10)

(10, 10, 10, 10, 10,
10, 10, 10)

1 0.000303

calGCD 10
int, int, int, int, int, int,

int, int, int, int
(1, 1, 1, 1, 1, 1, 1, 1,

1, 1)

(1000, 1000, 1000,

1000, 1000, 1000,
1000, 1000, 1000,

1000)

 1

0.000984

The remaining four subject programs all have higher

dimensionality, were downloaded from other sources [47],

[48], and were implemented in Java. All four have integer-only

input parameters (input domains). The calDay and line

programs were obtained from Ferrer et al. [47]. The calDay test

program computes the days of the week, while the line program

checks if two rectangles overlap. The triangle program is a

classification program (for acute-, obtuse-, and right-angled

triangles) whose implementation is based on a programming

exercise [48]. The calGCD program computes the greatest

common divisor of ten integer values.

All 16 programs had faults seeded in using different types of

common mutant operations [49], including: statement deletion

(SDL), return statement replacement (RSR), arithmetic

operator replacement (AOR), constant replacement (CR),

scalar variable replacement (SVR), and relational operator

replacement (ROR). The failure rates of the subject programs

range approximately from 0.0003 to 0.002. The failure rate for

the calGCD program was not documented in the literature;

therefore we estimated it by performing random testing with a

large number of test inputs (1,000,000,000).

TABLE VI

FAILURE PATTERNS OF THE 16 SUBJECT PROGRAMS

Subject Program Failure Pattern Characteristics

airy A block in the center of the input domain

erfcc A block in the center of the input domain

probks A block in the center of the input domain

bessj0 A block in the center of the input domain

tanh A block in the center of the input domain

bessj Strip

gammq A long narrow strip

sncndn Points scattered over the entire input domain

golden Points scattered around a very large hyperplane

plgndr Strips near the edge of the input domain

cel One failure region (strip) along the entire edge of the

input domain

el2 Strips near the edges of the input domain

calDay A combination of strips and points, but with the strips
only in some dimensions.

triangle Points scattered over the entire input domain

line Point-like patterns scattered over different regions of
the input domain

calGCD Points scattered over the entire input domain

TR-2018-159 14

Previous researches [50], [51], and analysis reported the

failure pattern types of the first 12 subject program. The failure

patterns of the remaining four programs were not available in

the literature. We therefore identified their failure patterns by

executing RT and recording a large numbers of generated test

inputs that cause failure in the programs. Plotting all dimension

may produce an output that is complicated and may be

impossible to properly analyze the failure patterns, hence, we

chose to plot their values in 3D and at different angles (see

figures in Appendix). Although their plots were in parts (three

dimensions at a time), the results provided a good estimate of

their failure patterns. The characteristics of the failure patterns

in the 16 programs are described in the Table VI.

In the experiments, all subject programs were tested by each

testing method, with failures being recorded as detected when

the output for the faulty program (the mutant) and the original

(correct) version were different.

1) Failure Detection Effectiveness

Similar to the simulations, we performed experiments to

determine the improvement of ART-ORB‘s failure detection

ability over RT‘s. We applied both methods to test each subject

program, recording their average F-measure from 3000

repetitions, and calculating the F-ratio values. These results are

shown in Table VII. The table also includes the exclusion ratios

R used by ART-ORB which provided the best results for each

subject program.

The results in Table VII clearly show that ART-ORB has

better failure detection effectiveness than RT for all subject

programs. For airy, erfcc, probks, bessj0, and tanh, ART-ORB

strongly outperformed RT, with improvements ranging

between 42% and 45%. For the bessj, gammq, plgndr, el2, and

calDay, ART-ORB had between 7.8% and 38.2% improvement

over RT. There was only small improvement over RT for

sncndn, golden, cel, triangle, line, and calGCD (between 1.2%

and 5.3%). We observed that ART-ORB generally provided

better results for high exclusion ratios.

TABLE VII

F-MEASURE AND F-RATIO RESULTS FOR ART-ORB AND RT FOR EACH SUBJECT

PROGRAM, AND BEST R FOR ART-ORB

Subject

Program

Mean

F-measure

of RT

(FRT)

Mean

F-measure of

ART-ORB

(FART)

F-ratio of

ART-ORB

(FART/FRT)

(%)

Best R for

ART-ORB

(%)

airy 1504.4 827.6 55.0% 50%

erfcc 1905.7 1073.1 56.3% 80%

probks 2567.5 1490.0 58.0% 70%

bessj0 781.3 445.5 57.0% 60%

tanh 572.9 322.4 56.3% 80%

bessj 755.5 467.1 61.8% 150%

gammq 1210.8 1082.4 89.4% 110%

sncndn 624.3 609.9 97.7% 120%

golden 1834.8 1761.3 96.0% 100%

plgndr 2767.7 1910.0 69.0% 140%

cel 3123.2 3086.7 98.8% 140%

el2 1438.7 1101.7 76.6% 220%

calDay 86.3 79.6 92.2% 140%

triangle 1418.3 1368.0 96.5% 220%

line 3252.8 3081.8 94.7% 170%

calGCD 1047.3 991.4 94.7% 190%

To further validate the simulation results obtained from the

comparison of ART-ORB with other ART methods, we also

applied the other ART methods to the subject programs,

calculating their F-measure and F-ratio values. Fig. 8 presents

the F-ratio comparison of ART-ORB to the other ART methods

for each subject program.

The results in Fig. 8 show that ART-ORB consistently uses

amongst the fewest test cases to detect the first failure: It

generally outperforms the other ART methods for 10 of the 16

fault-seeded programs, and has comparable performance for the

other six. Although ART-ORB showed less significant

improvement over RT for sncndn, golden, cel, triangle, line,

and calGCD, its performances was similar to the other ART

methods in the study.

Fig. 8. F-ratio comparison for the ART methods.

We also compared ART-ORB with the other ART methods

in terms of the E-measure, using a test set of 4000, and

averaging the result over 200 repetitions. Fig. 9 shows these

results.

The E-measure results in Fig. 9 show that ART-ORB has

comparable performance to the other ART methods. However,

the ART-ORB performance varies in magnitude for each

subject program. The results also show that ART-ORB

E-measure performance improves slightly as higher

dimensional programs are used. ART-DC has better E-measure

performance for all the 1D programs, but its performance

becomes comparable to the other ART methods in the higher

dimensional programs.

In order to further analyze the significance of the differences

in E-measure, we calculated the p-value and effect size (ES)

[41] for pair-wise comparisons between the individual ART

methods. We generated 800 E-measure results for each subject

program using test sets of size 1000, 2000, 3000, and 4000. The

results are presented in Table VIII, where the column labeled

―Preferred‖ identifies which ART method of the pair, based on

ES, has better performance.

The results for most subject programs show that there is no

significant E-measure difference between ART-ORB and

ART-RP, ART-B, or ART-TPP (the p-value is greater than

0.05). However, there is a significant E-measure difference

between ART-ORB and ART-DC for most programs (the

p-value is less than 0.05). The E-measure ES values indicate

TR-2018-159 15

(a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 (j) (k) (l)

 (m) (n) (o)

TR-2018-159 16

(p)

Fig. 9. E-measure comparison of ART methods for each subject program using
a set of 4000 tests.

that ART-ORB is generally better than ART-RP in terms of

probability of detecting more failures (the ES values for most

programs is greater than 0.5, with few programs having ES

values close to 0.5). The comparison of ES values between

ART-ORB and either ART-B or ART-TPP shows similar

failure detection probabilities (there is a similar number of ES

values above and below 0.5 for all programs). ART-DC has a

higher probability of detecting failures than ART-ORB (the ES

values are below 0.5 for most programs). However, for higher

dimensional programs (d≥4), the failure detection performance

of ART-DC becomes worse than ART-ORB, in most cases.

The table also shows that ART-ORB is preferred to the other

methods in high dimensional situations (it has better ES

performance for almost all the programs with higher

dimensional input space).

TABLE VIII

COMPARISON OF PAIRS OF ART METHODS FOR EACH SUBJECT PROGRAM USING P-VALUE AND EFFECT SIZE FOR 800 E-MEASURE VALUES

Subject

Program

s

ART-ORB and ART-RP ART-ORB and ART-B ART-ORB and ART-DC ART-ORB and ART-TPP

P-value ES
Prefer

red
P-value ES

Prefer

red
P-value ES

Prefer

red
P-value ES

Prefer

red

airy 0.971619 0.500495
ART-

ORB
0.531013 0.491352

ART-

B

3.22E-20

*
0.369814

ART-

DC
0.785059 0.496231

ART-

TPP

erfcc 0.642482 0.506331
ART-

ORB
0.416547 0.51098

ART-

ORB

2.88E-09
*

0.417089
ART-

DC
0.676117 0.505682

ART-

ORB

probks 0.068810 0.524184
ART-

ORB
0.488026 0.509203

ART-

ORB

2.37E-07

*
0.429026

ART-

DC
0.945897 0.499102

ART-

TPP

bessj0 0.125268 0.521848
ART-

ORB
0.933170 0.501195

ART-

ORB

1.12E-24

*
0.353025

ART-

DC
0.699894 0.505490

ART-

ORB

tanh 0.644019 0.506617
ART-

ORB
0.480267 0.489913

ART-

B

6.71E-52
*

0.282084
ART-

DC
0.637029 0.493245

ART-

TPP

bessj
0.001900

*
0.544320

ART-

ORB
0.986666 0.499761

ART-

B

2.42E-17

*
0.378625

ART-

DC
0.072443 0.525616

ART-

ORB

gammq 0.626420 0.493118
ART-

RP
0.184588 0.518748

ART-

ORB

0.001376
*

0.454592
ART-

DC
0.084432 0.524374

ART-

ORB

sncndn 0.452202 0.489228
ART-

RP
0.068236 0.473864

ART-

B
0.292013 0.484895

ART-

DC
0.494232 0.490203

ART-

TPP

golden 0.353127 0.487076
ART-

RP
0.083454 0.475838

ART-

B

0.000974

*
0.453942

ART-

DC
0.870945 0.497738

ART-

TPP

plgndr
4.10E-09

*
0.579108

ART-

ORB
0.931361 0.501166

ART-

ORB
0.075820 0.475825

ART-

DC
0.056164 0.473977

ART-

TPP

cel 0.061232 0.524688
ART-

ORB
0.27752 0.485499

ART-

B
0.373224 0.511796

ART-

ORB
0.463055 0.509727

ART-

ORB

el2
1.56E-29

*
0.659459

ART-

ORB

2.48E-21

*
0.634256

ART-

ORB

1.65E-10

*
0.590543

ART-

ORB

4.33E-18

*
0.622742

ART-

ORB

calDay
8.91

E-05*
0.556563

ART-

ORB

0.031725
*

0.531005
ART-

ORB
0.209173 0.518129

ART-

ORB

0.003829
*

0.541745
ART-

ORB

triangle 0.157980 0.519853
ART-

ORB
0.258723 0.515906

ART-

ORB
0.178200 0.518957

ART-

ORB
0.168949 0.519377

ART-

ORB

line
8.93

E-40*
0.682969

ART-

ORB

3.61

E-42*
0.688481

ART-

ORB

7.43

E-43*
0.689995

ART-

ORB

2.13

E-30*
0.659302

ART-

ORB

calGCD
0.022253

*
0.467473

ART-

RP
0.060388 0.473306

ART-

B
0.255103 0.483816

ART-

DC
0.418101 0.511512

ART-

ORB

* denotes statistically significant difference (p<0.05)

2) Failure Detection and Computational Efficiency

We evaluated the failure detection efficiency of ART-ORB

by comparing the time taken detect the first failure (Fm-time) to

those of other ART methods (as done in the simulation process).

We tested each subject program and recorded the Fm-time

averaged over 200 iterations. We performed the same

experiment for all the ART methods and compared their

Fm-time results: Fig. 10 presents the boxplot representations of

the Fm-time results for each subject program.

 (a)

TR-2018-159 17

 (b) (c) (d)

 (e) (f) (g)

 (h) (i) (j)

 (k) (l) (m)

 (n) (o) (p)

Fig. 10. Fm-time comparison of ART methods for each subject program.

TR-2018-159 18

It can be seen from Fig. 10 that ART-ORB uses far less time

to detect the first failure for almost all subject programs:

ART-ORB provides better failure detection efficiency for 12 of

the 16 real-life programs, and comparable time to other

methods for four of the five 1D programs. The results also show

that the Fm-time of ART-RP increases as higher dimensional

programs are used. Conversely, the Fm-time results of

ART-DC decreases with increasing program dimension. These

results are in broad agreement with those obtained in the

simulations (Fig. 6).

The time required to execute a number of test cases

(Execution time) was also compared across the ART methods.

We tested each subject program using each of the ART

methods using a set of 4000 tests, repeating 200 times and

averaging results. Fig. 11 presents this execution time

comparison.

Fig. 11 shows that, generally, ART-ORB has better

execution time than the other ART methods for almost all

subject programs. Similar to the failure detection efficiency,

ART-ORB‘s execution time is comparable to other ART

methods for 1D subject programs, but is better in all other

dimensions. A difference in efficiency can also be observed for

varying dimensions of subject programs: When these subject

programs are used, both ART-RP and ART-DC have similar

characteristics as in the Fm-time experiment—that is, ART-DC

has the worst execution time for lower dimensional programs

while ART–RP has the worst for higher dimensional programs.

(a)

(b) (c) (d)

(e) (f) (g)

 (h) (i) (j)

TR-2018-159 19

 (k) (l) (m)

 (n) (o) (p)
Fig. 11. Execution time comparison for the ART methods for each subject program using a set of 4000 tests.

V. DISCUSSION

In this paper, we have presented a new ART method

(ART-ORB) that dynamically spreads test cases by

incrementally and orthogonally bisecting regions of the input

domain. The method is based on the intuition that combining a

partitioning strategy (with acceptable overheads) with an

exclusion strategy should enable a more even spread of test

inputs over the input domain. This is partly motivated through

the review of ART methods that employ partitioning, as

described in Section II. We have empirically evaluated the

performance of the proposed ART method based on four

research questions posed in this paper. This section now

provides a discussion of the results obtained in response to the

research questions.

RQ1: In our initial investigation, we used both Discrepancy

and Dispersion metrics to evaluate the potential of ART-ORB

to distribute test inputs evenly over the input domain.

The Discrepancy results show that ART-ORB can distribute

test more evenly than RT, for all input domain dimensions. The

Dispersion results also indicate that, compared with RT,

smaller empty regions exist among tests generated by

ART-ORB, for almost all input domain dimensions. This

reflects a better even spreading of tests. For both metric, the

ART-ORB results are comparable to other ART methods, with

generally very small values in all cases. Thus, we can conclude

that ART-ORB does provide an effective strategy for evenly

distributing test inputs.

The more evenly spread distribution of test is achieved

through ART-ORB‘s use of a restriction zones around a

previous test within a region to enhance the diversity [52] of

selected tests. Furthermore, the partitioning of a region through

the midpoint of two generated tests makes it less likely for tests

to be very close to the border of each region. This also limits

how close test inputs within different regions of the input

domain can be to each other.

RQ2: Previous studies [12], [53] have shown that for

non-point failure patterns, evenly spread test cases have a

higher probability of detecting the first failure faster. ART,

which is based on this observation, therefore requires fewer test

executions than RT to detect the first (for non-point failure

patterns). This is consistent with our empirical results (Table

III). ART-ORB was also shown to execute more tests to find

the first failure in the case of point failure patterns than for

non-point patterns. These results provide strong evidence that

ART-ORB outperforms RT for all failure patterns and failure

rates, most significantly outperforming when the failure pattern

is of block type.

The results of the experiments with real programs (Table

VII) are consistent with the simulation results (Table III). It has

been suggested that ART-ORB can obtain better failure

detection effectiveness for airy, erfcc, probks, bessj0, and tanh

partly because their failure patterns are of block type. Similarly,

since bessj, plgndr, and el2 have been identified to have strip

type failure patterns [18], this may explain why the improved

performances of ART-ORB over RT are less pronounced

compared to programs with block patterns. Both gammq and

calDay show similar improved performances, as they have

been identified to have strip failure patterns. The marginal

improvement of ART-ORB over RT for sncndn and golden, is

also arguably related to these programs having point failure

patterns [19], [30]. The experiments, has shown that the failure

patterns for triangle, line, and calGCD (see figures in

Appendix) are similar to the point patterns discussed in Section

II.A.2, and therefore, their failure detection efficiency were not

expected to improve [20]. The cel program also shows some

small improvement although its failure pattern is non-point

[18]. Previous study has attributed this performance to the

shape and nature of its input domain [30]—that is, there are

TR-2018-159

20

significant variations in the dimensional magnitudes of its input

domain. However, its performance may improve for extremely

high target exclusion (R), as seen in some other studies [14].

For all the subject programs used in the experiment, ART-ORB

outperformed RT in terms of the F-measure.

RQ3: Comparing the failure detection improvements of

ART-ORB to those of other ART methods, ART-ORB showed

more improvement in most failure patterns than ART-RP,

ART-B, ART-DC, and ART-TPP. Similarly, as shown in Fig.

8, ART-ORB outperformed the other ART methods for most of

the fault-seeded programs. These improvements may be

attributed to ART-ORB‘s ability to more evenly spread tests

over the input domain.

Regarding ART-ORB‘s potential for finding multiple

failures (E-measure), the empirical results indicate that it is

comparable to the other ART methods: For all failure rates and

failure patterns used in the simulation, ART-ORB performed

similarly to the other ART methods, except ART-DC.

Comparable E-measure performances were also observed in the

experiments with fault-seeded programs. Although the

ART-DC E-measure performance of was better in the

simulations (especially for higher failure rates), the

experimental results also indicate that ART-DC only has better

performance for input domains with lower dimensions.

The Fm-time results obtained in both the simulations and

experiments provide show that ART-ORB outperforms the

other ART methods in terms of failure detection efficiency.

ART-ORB‘s lower time cost for detecting the first failure is

attributed to its much reduced computational overheads: it does

not have candidate selections; distance calculations for all but

one executed test are not necessary; repartitioning is only one

dimension of one subregion at a time; and

reassignment/reclassification of previous tests to new regions

only involves two tests for each new partition. ART-ORB has

reduced distance computations compared to ART-TPP and

ART-DC; and reduced test reassignments compared to

ART-RP, ART-B, and ART-DC. In addition, the ART-ORB

partitioning process is done progressively, and in real-time, and

hence the time cost of detecting the first failure is proportional

to the number of previously executed tests. This is a major

advantage in practice, since the testing process may often

terminate one a failure has been detected.

ART-ORB also has lower execution time than the other ART

methods for all failure rates and patterns. These observations

were consistent across both simulations and experiments. The

lower execution time indicates that ART-ORB is more

computationally efficient, taking less time to execute tests.

ART-ORB‘s efficiency is attributed to its minimized

computational overheads.

RQ4: The findings from the statistical evaluation of the

E-measure results generally indicate that ART-ORB has similar

failure detection ability to the other ART methods, except

ART-DC, which had better failure detection probability,

possibly due to the relatively large threshold (λ=50) used in our

study. Larger thresholds increase the probability of fault

detection, but also incur higher computational costs—ART-DC

has higher execution time than ART-ORB in terms of both

Fm-time and Execution time. On the other hand, some

interesting observations were made when higher dimensional

subject programs (d≥5) were used. As seen from the statistical

analysis of the E-measure results in Table VIII, the

performance of ART-DC tends to decrease for higher

dimensional programs. ART-ORB, in contrast, was observed to

outperform all the other ART methods for almost all higher

dimensional programs. This observation was also evident in the

comparison of the E-measure results shown in Fig. 9. This

provides evidence that ART-ORB is also more effective for

testing higher dimensional programs.

VI. THREATS TO VALIDITY

We have proposed and analyzed a new partition-based ART

method, ART-ORB, that aims to improve on RT‘s failure

detection effectiveness and efficiency. Evaluation of threats to

the validity of a study is very important, and this section

discusses the potential threats to the validity of this study.

The ART-ORB algorithm ensures an even spread of tests

within the input domain through the combination of

bisection-partitioning and an exclusion zone implementation. A

potential threat to the validity of our study is that it may be

possible for two test inputs from different regions of the input

domain to fall very close to each other. Our investigation into

the impact of this possible threat (RQ1) involved evaluating the

distribution of tests generated by ART-ORB, and showed that

the effect of this potential threat on the method‘s performance

is not significant: The possibility of it happening is very small.

A common threat to the validity of any empirical study

relates to the generalization of the results obtained to other

situations. This study has shown that ART-ORB is applicable

to both lower and higher dimensional programs with varying

input domain sizes. The evaluations in this study employed a

set of 16 real-life programs with input domains of up to 10

dimensions (higher dimensional programs require very high

system configurations to run due to their time and space

complexity). In addition, some subject programs with the same

dimensionality were identified to have similar failure pattern

types—the 1D programs‘ patterns, for example, were all

characterized as block type. Although the choice of subject

programs for this study may not fully represent a generalization

of the proposed method‘s applicability, it does serve the

purpose of introducing and evaluating ART-ORB.

Furthermore, the simplicity of the approach (especially the

incremental partitioning of the input space and selection of tests

from within the regions of the input domain) make it applicable

to other types of programs, including very large ones. In our

future work, we will apply ART-ORB to programs with input

domains beyond those used in this study, including of higher

dimensions, larger input domains, and involving other

programming constructs. Such application will, we anticipate,

further validate the approach, and support more generalization

of the conclusions.

The choice of other ART algorithms used in the comparisons

may also represent a threat to the validity of this study. In both

the simulations and experiments, we compared ART-ORB with

four partition-based ART algorithms: ART-RP, ART-B,

ART-DC, and ART-TPP. Since the four compared ART

implementations are common variations of the basic ART

algorithms [13], [27], [28], they are suitable candidates for the

comparisons. Nonetheless, our future work will include

TR-2018-159

21

evaluation against other ART methods, based on notions other

than partitioning, which we anticipate will further improve the

method‘s validity.

VII. CONCLUSION

In this paper, we have introduced an innovative, new test

case generation method (ART-ORB) aimed at reducing the

number of test cases executed before detecting the first failure

(compared to pure RT), and providing selection overheads that

are comparable to previous ART methods. The method

integrates the concepts of both partition testing and exclusion.

The method involves sequentially bisecting the largest

region within the entire input domain into further sub-regions.

This partitioning process is activated whenever two previously

executed tests are found within a single region. The process

splits the region with a divisor orthogonal to the largest

dimension of the region, through the midpoint of the previously

executed tests (in that region). The method repeatedly divides

the regions orthogonally and selects new inputs randomly from

outside of a restricted zone in the region. This process has low

overheads related to reassigning (two) tests in the region, and

avoids computing distances between all previously executed

tests. This results in an enhanced failure detection capability

and reduced test input generation overheads.

We performed a series of simulations to examine the

method‘s test case distribution, compared to RT and other ART

methods (ART-RP, ART-B, ART-DC, and ART-TPP). We

also performed simulations using the different categories of

failure pattern, and experimented with real-life, fault-seeded

subject programs, again comparing the method with both RT

and the other ART methods.

The evaluation and empirical results indicate that the

proposed approach is simple to implement, provides acceptable

complexity, and a better even spread of test inputs because of

its one-domain-one-input approach. Our evaluations have

demonstrated that ART-ORB can distribute tests more evenly

over the input domain than RT, and in a distribution

comparable to other ART methods.

ART-ORB performs better than RT in terms of ability to

detect failure, using significantly fewer tests than RT. It also

compares well with other ART methods in terms of failure

detection effectiveness.

In terms of efficiency of detecting failure, ART-ORB has

demonstrated minimized execution overheads, and outperforms

all the comparison ART methods in terms of both the time

required to find a first failure, and the execution time. The

significance of the overhead reductions was particularly

evident in high dimensional input domains.

In conclusion, we recommend that ART-ORB should be

considered whenever RT may be used, especially in situations

where test input execution is expensive. ART-ORB should also

be preferred among other ART methods in situations where

cost-efficient test input selection is required, especially in

higher dimensional input space. Due to the simplicity of this

approach, it will be of great interest to combine it with other

ART strategies in the future, to further improve on its

failure-detection effectiveness and efficiency. Our future work

will include enhancing the failure detection effectiveness of the

method by extending the exclusion to neighboring regions of a

candidate test case or by applying probability test profiles to the

algorithm.

ACKNOWLEDGMENT

We thank Prof. T. Y. Chen for the invaluable suggestions

and guidance related to the study of adaptive random testing.

References

[1] D. Hamlet and R. Taylor, ―Partition testing does not inspire

confidence (program testing),‖ IEEE Transactions on Software

Engineering, vol. 16, no. 12, pp. 1402-1411, Dec. 1990.
doi:10.1109/32.62448.

[2] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, ―Adaptive

random testing: The art of test case diversity,‖ Journal of Systems and
Software, vol. 83, no. 1, pp. 60-66, Jan. 2010.

doi:10.1016/j.jss.2009.02.022.

[3] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z.
Q. Zhou, ―Metamorphic testing: A review of challenges and

opportunities,‖ ACM Computing Surveys (CSUR), vol. 51, no. 1, pp.

4:1–4:27, 2018. doi:10.1145/3143561.
[4] R. Hamlet, Random Testing. Encyclopedia of Software Engineering.

Edited by J. Marciniak: Wiley, 1994.

[5] T. Yoshikawa, K. Shimura, and T. Ozawa, ―Random program
generator for Java JIT compiler test system,‖ in Proceedings of the 3rd

International Conference on Quality Software (QSIC 2003), Dallas,

TX, USA, Nov, 2003, pp. 20-23. doi:10.1109/QSIC.2003.1319081.
[6] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A.

Natarajan, and J. Steidl, Fuzz revisited: A re-examination of the

reliability of UNIX utilities and services, Technical report, University
of Wisconsin, 1995.

[7] K. Sen, D. Marinov, and G. Agha, ―CUTE: A concolic unit testing

engine for C,‖ in Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering
(ESEC/FSE-13), Lisbon, Portugal, Sept, 2005, pp. 263-272.

doi:10.1145/1081706.1081750.

[8] G. J. Myers, The Art of Software Testing. Revised and updated by T.
Badgett, T.M. Thomas and C. Sandler, Hoboken: NJ: John Wiley and

Sons, 2004.

[9] L. J. White and E. I. Cohen, ―A domain strategy for computer program
testing,‖ IEEE Transactions on Software Engineering, vol. SE-6, no.

3, pp. 247-257, May 1980. doi:10.1109/TSE.1980.234486.

[10] P. G. Bishop, ―The variation of software survival time for different
operational input profiles (or why you can wait a long time for a big

bug to fail),‖ in Proceedings of the 23rd International Symposium on

Fault-Tolerant Computing (FTCS-23 Digest of Papers, 1993). Jun.
22-24, 1993, pp. 98-107. doi:10.1109/FTCS.1993.627312.

[11] P. E. Ammann and J. C. Knight, ―Data diversity: An approach to

software fault tolerance,‖ IEEE Transactions on Computers, vol. 37,
no. 4, pp. 418-425, Apr. 1988. doi:10.1109/12.2185.

[12] T. Y. Chen, H. Leung, and I. K. Mak, ―Adaptive random testing,‖ in

Proceedings of the 9th Asian Computing Science Conference
(ASIAN’04), Lecture Notes in Computer Science, Chiang Mai,

Thailand, Dec., 2004, pp. 320-329.

doi:10.1007/978-3-540-30502-6_23.
[13] T. Y. Chen, R. G. Merkel, P.-K. Wong, and G. Eddy, ―Adaptive

random testing through dynamic partitioning,‖ in Proceedings of the

4th International Conference on Quality Software, 2004 (QSIC 2004)
Braunschweig, Germany, Sept., 2004, pp. 79-86.

doi:10.1109/QSIC.2004.1357947.

[14] K. P. Chan, T. Y. Chen, and D. Towey, ―Restricted random testing:
Adaptive random testing by exclusion,‖ International Journal of

Software Engineering and Knowledge Engineering, vol. 16, no. 04,

pp. 553-584, Oct. 2006. doi:10.1142/S0218194006002926.
[15] R. Huang, H. Liu, X. Xie, and J. Chen, ―Enhancing mirror adaptive

random testing through dynamic partitioning,‖ Information and

Software Technology, vol. 67, pp. 13-29, Nov. 2015.
doi:10.1016/j.infsof.2015.06.003.

[16] J. Chen, F.-C. Kuo, T. Y. Chen, D. Towey, C. Su, and R. Huang, ―A

Similarity Metric for the Inputs of OO Programs and Its Application in

TR-2018-159

22

Adaptive Random Testing,‖ IEEE Transactions on Reliability, vol. 66,
no. 2, pp. 373-402, 2017. doi:10.1109/TR.2016.2628759.

[17] J. Chen, L. Zhu, T. Y. Chen, D. Towey, F.-C. Kuo, R. Huang, and Y.

Guo, ―Test case prioritization for object-oriented software: An
adaptive random sequence approach based on clustering,‖ Journal of

Systems and Software, vol. 135, no. C, pp. 107-125, 2018.

doi:10.1016/j.jss.2017.09.031.
[18] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, ―On favourable conditions for

adaptive random testing,‖ International Journal of Software

Engineering and Knowledge Engineering, vol. 17, no. 06, pp.
805-825, Dec. 2007. doi:10.1142/S0218194007003501.

[19] T. Y. Chen, T. H. Tse, and Y.-T. Yu, ―Proportional sampling strategy:

A compendium and some insights,‖ Journal of Systems and Software,
vol. 58, no. 1, pp. 65-81, Aug. 2001.

doi:10.1016/S0164-1212(01)00028-0.

[20] F. T. Chan, T. Y. Chen, I. K. Mak, and Y.-T. Yu, ―Proportional
sampling strategy: Guidelines for software testing practitioners,‖

Information and Software Technology, vol. 38, no. 12, pp. 775-782,

Feb. 1996. doi:10.1016/0950-5849(96)01103-2.

[21] C. Mao, T. Y. Chen, and F.-C. Kuo, ―Out of sight, out of mind: a

distance-aware forgetting strategy for adaptive random testing,‖

Science China Information Sciences, vol. 60, no. 9, Apr. 2017, Art. no.
092106. doi:10.1007/s11432-016-0087-0.

[22] K. K. Sabor and S. Thiel, ―Adaptive random testing by static
partitioning,‖ in Proceedings of the 10th International Workshop on

Automation of Software Test, Florence, Italy, May 16-24, 2015, pp.

28-32. doi:10.1109/AST.2015.13.
[23] I. K. Mak, ―On the effectiveness of random testing,‖ M.S. thesis,

Faculty of Science, University of Melbourne, 1998.

[24] J. K. Salmon, ―Parallel hierarchical N-body methods,‖ Ph.D
Dissertation California Institute of Technology, 1991.

[25] M. Reumann, B. G. Fitch, A. Rayshubskiy, D. U. J. Keller, G.

Seemann, O. Dossel, M. C. Pitman, and J. J. Rice, ―Orthogonal
recursive bisection data decomposition for high performance

computing in cardiac model simulations: Dependence on anatomical

geometry,‖ in Proceedings of the Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC 2009),

Minneapolis, MN, USA, Sept. 3-6, 2009, pp. 2799-2802.

doi:10.1109/IEMBS.2009.5333803.
[26] J. Makino, ―A fast parallel treecode with grape,‖ Publications of the

Astronomical Society of Japan, vol. 56, no. 3, pp. 521-531, Jun. 2004.

doi:10.1093/pasj/56.3.521.
[27] C. Chow, T. Y. Chen, and T. H. Tse, ―The art of divide and conquer:

An innovative approach to improving the efficiency of adaptive

random testing,‖ in Proceedings of the 13th International Conference
on Quality Software (QSIC, 2013), Nanjing, China, Jul. 29-30, 2013,

pp. 268-275. doi:10.1109/QSIC.2013.19.

[28] C. Mao, ―Adaptive random testing based on two-point partitioning,‖
Informatica, vol. 36, no. 3, Sept. 2012.

[29] T. Y. Chen, D. H. Huang, and F.-C. Kuo, ―Adaptive random testing by

balancing,‖ in Proceedings of the 2nd International Workshop on
Random Testing: co-located with the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE 2007), Atlanta,

Georgia, Nov. 06, 2007, pp. 2-9. doi:10.1145/1292414.1292418.
[30] K. P. Chan, T. Y. Chen, and D. Towey, ―Restricted random testing,‖ in

Proceedings of the 7th European Conference on Software

Quality—ECSQ 2002, Helsinki, Finland, Jun, 2002, pp. 321-330.
doi:10.1007/3-540-47984-8_35.

[31] K. P. Chan, T. Y. Chen, and D. Towey, ―Controlling restricted random

testing: An Examination of the exclusion ratio parameter,‖ in
Proceedings of the 19th International Conference on Software

Engineering and Knowledge Engineering (SEKE 2007), Boston, MA,

Jul. 9-11, 2007, pp. 163-166
[32] E. J. Weyuker and B. Jeng, ―Analyzing partition testing strategies,‖

IEEE Transactions on Software Engineering, vol. 17, no. 7, pp.

703-711, Jul. 1991. doi:10.1109/32.83906.
[33] T. Y. Chen, D. H. Huang, and Z. Q. Zhou, ―Adaptive random testing

through iterative partitioning,‖ in Proceedings of the International

Conference on Reliable Software Technologies, Porto, Portugal, Jun.

5-9, 2006, pp. 155-166. doi:10.1007/11767077_1.

[34] K. P. Chan, T. Y. Chen, and D. Towey, ―Normalized restricted random

testing,‖ in Proceedings of the 8th Ada-Europe International
Conference on Reliable Software Technologies, Toulouse, France,

Jun. 16-20, 2003, pp. 368-381.

[35] H. Ackah-Arthur, J. Chen, J. Xi, M. Omari, H. Song, and R. Huang,
―A cost-effective adaptive random testing approach by dynamic

restriction,‖ IET Software, vol. 12, no. 6, pp. 489 – 497, Dec. 2018.

doi:10.1049/iet-sen.2017.0208.
[36] J. Geng and J. Zhang, ―A new method to solve the ―boundary effect‖

of adaptive random testing,‖ in Proceedings of the 2010 International

Conference on Educational and Information Technology (ICEIT),
Chongqing, China, Sept., 2010, pp. V1-298-V1-302.

doi:10.1109/ICEIT.2010.5607704.

[37] T. Y. Chen, F.-C. Kuo, and H. Liu, ―On test case distributions of
adaptive random testing,‖ in Proceedings of the 19th International

Conference on Software Engineering and Knowledge Engineering,

Boston, United States July 9-11, 2007, pp. 141-144.
[38] H. Liu, X. Xie, J. Yang, Y. Lu, and T. Y. Chen, ―Adaptive random

testing through test profiles,‖ Software: Practice and Experience, vol.

41, no. 10, pp. 1131-1154, Apr. 2011. doi:10.1002/spe.1067.
[39] H. Liu, X. Xie, J. Yang, Y. Lu, and T. Y. Chen, ―Adaptive random

testing by exclusion through test profile,‖ in Proceedings of the 10th

International Conference on Quality Software (QSIC 2010)

Zhangjiajie, China, 2010, pp. 92-101. doi:10.1109/QSIC.2010.61.

[40] T. Y. Chen and Y.-T. Yu, ―On the relationship between partition and

random testing,‖ IEEE Transactions on Software Engineering, vol. 20,
no. 12, pp. 977-980, Dec. 1994. doi:10.1109/32.368132.

[41] A. Arcuri and L. Briand, ―A Hitchhiker's guide to statistical tests for
assessing randomized algorithms in software engineering,‖ Software

Testing, Verification and Reliability, vol. 24, no. 3, pp. 219-250, 2014.

[42] A. Vargha and H. D. Delaney, ―A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,‖

Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.

101-132, Jun. 2000. doi:10.3102/10769986025002101.
[43] R. C. Team, ―R: A language and environment for statistical

computing,‖ R Foundation for Statistical Computing, Vienna, Austria,

2018. Available: http://www.R-project.org/.
[44] K. P. Chan, T. Y. Chen, and D. Towey, ―Forgetting test cases,‖ in

Proceedings of the 30th Annual International Computer Software and

Applications Conference (COMPSAC'06), Chicago, IL, USA, Sept.
17-21, 2006. doi:10.1109/COMPSAC.2006.43.

[45] ACM, Collected Algorithms from ACM, Volume 1, 2, 3, (1980) ed.,

New York, USA: Association for Computer Machinery, 1980.
[46] B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd

ed.: Cambridge university press, 2007.
[47] J. Ferrer, F. Chicano, and E. Alba, ―Evolutionary algorithms for the

multi‐objective test data generation problem,” Software: Practice

and Experience, vol. 42, no. 11, pp. 1331-1362, Nov. 2, 2012.

doi:https://doi.org/10.1002/spe.1135.

[48] Y. D. Liang, Introduction to Java Programming and Data Structures,
Eleventh ed.: Pearson Education, 2017.

[49] Y. Jia and M. Harman, ―An analysis and survey of the development of

mutation testing,‖ IEEE Transactions on Software Engineering, vol.
37, no. 5, pp. 649-678, Sept.-Oct. 2011. doi:10.1109/TSE.2010.62.

[50] F.-C. Kuo, ―On adaptive random testing,‖ PhD Dissertation, Faculty

of Information & Communication Technologies, Swinburne
University of Technology, 2006.

[51] D. Towey, ―Studies of different variations of adaptive random

testing,‖ PhD Dissertation, University of Hong Kong, 2006.
[52] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, ―A revisit of three

studies related to random testing,‖ Science China Information

Sciences, vol. 58, no. 5, pp. 052104:1--052104:9, Apr. 2015.
doi:10.1007/s11432-015-5314-x.

[53] T. Y. Chen, F.-C. Kuo, and Z. Zhou, ―On the relationships between the

distribution of failure-causing inputs and effectiveness of adaptive
random testing,‖ in Proceedings of the 17th International Conference

on Software Engineering and Knowledge Engineering (SEKE 2005),

Taipei, Taiwan, Jun 14-16, 2005, pp. 306-311.

APPENDIX

The figures below are illustrates the distributions of failure

causing inputs that are generated from the domains of the

calDay, triangle, line and calGCD programs respectively. For

TR-2018-159

23

each program, 500 failure causing inputs are generated and

plotted in 3D with three views angles.

(a)

(b)

Fig. A1. The distribution of failure-causing test inputs for the calDay program represented in 3D. a shows the distribution in the first three axes (X, Y, Z). b shows

the distribution in the last three axes (Z, U, V).

(a)

(b)

Fig. A2. The distribution of failure-causing test inputs for the triangle program represented in 3D. a shows the distribution in the first three axes (X, Y, Z) . b shows

the distribution in the last three axes (U, V, W).

TR-2018-159

24

(a)

(b)

(c)

Fig. A3. The distribution of failure-causing test inputs for the line program represented in 3D. a shows the distribution in the first three axes (X, Y, Z) . b shows the

distribution in the fourth to sixth axes (U, V, W). c shows the distribution in the last three axes (W, R, S).

(a)

TR-2018-159

25

(b)

(c)

(d)

Fig. A4. The distribution of failure-causing test inputs for the calGCD program represented in 3D. a shows the distribution in the first three axes (X, Y, Z) . b shows
the distribution in the fourth to sixth axes (U, V, W). c shows the distribution in the seventh to ninth axes (R,S,T). d shows the distribution in the last three axes (S,

T, O).

Hilary Ackah-Arthur received the

B.Sc. degree in computer science from

University of Cape Coast, Ghana, in

2007; the M.S. degree in

telecommunications management from

HAN University of Applied Sciences,

The Netherlands, in 2011; and the

Postgraduate diploma in wireless and

mobile computing from the Centre for

Development of Advanced Computing (CDAC), India, in

2013. Since 2011, he has been a lecturer with the Computer

Science Department, Takoradi Technical University, Ghana.

He is currently pursuing the doctorate degree in computer

applied technology at the School of Computer Science and

Telecommunication Engineering, Jiangsu University, China.

His research interests include software analysis and testing,

service computing, information systems and security. Mr.

Ackah-Arthur is a member of the IEEE Computer Society.

Jinfu Chen (M‘13) received the B.E.

degree from Nanchang Hangkong

University, Nanchang, China, in 2004,

and the Ph.D. from Huazhong

University of Science and Technology,

Wuhan, China, in 2009, both in

computer science. He is a professor in

the School of Computer Science and

Communication Engineering, Jiangsu

University, Zhenjiang, China. His

major research interests include software testing, software

analysis, and trusted software. Prof. Chen is a Member of the

ACM and the China Computer Federation.

Dave Towey is an associate professor at

University of Nottingham Ningbo China

(UNNC), in Zhejiang, China, where he

serves as the director of teaching and

learning, and deputy head of school, for

TR-2018-159

26

the School of Computer Science. He is also the deputy director

of the International Doctoral Innovation Centre at UNNC. He is

a member of the UNNC Artificial Intelligence and

Optimization research group. His current research interests

include software testing (especially adaptive random testing,

for which he was amongst the earliest researchers who

established the field, and metamorphic testing), computer

security, and technology-enhanced education. He received the

B.A. and M.A. degrees in computer science, linguistics, and

languages from the University of Dublin, Trinity College,

Ireland; the M.Ed. degree in education leadership from the

University of Bristol, U.K.; and the Ph.D. degree in computer

science from The University of Hong Kong, China. He

co-founded the ICSE International Workshop on Metamorphic

Testing in 2016. Towey is a member of both the IEEE and the

ACM.

Michael Omari received the B.Sc. in

computer science from University of

Ghana, Legon in 2007. He obtained the

masters degree from Coventry

University, UK in 2014 in information

technology. He worked in Takoradi

Technical University as a research

assistant from 2008 to 2013. Since then

he has been working as an instructor in

assembly language programming and software engineering. He

began his doctoral studies in 2016 at Jiangsu University, China.

His research interests include software testing and embedded

systems.

Jiaxiang Xi received the B.E. degree in

software engineering in 2015 from

Jiangsu University, Zhenjiang, China,

where he is currently working toward the

master‘s degree in the School of

Computer Science and Communication

Engineering. His research interests

include software testing and service

computing.

Rubing Huang is an associate professor

in the Department of Software

Engineering, School of Computer

Science and Communication

Engineering, Jiangsu University, China.

He received the Ph.D. degree from

Huazhong University of Science and

Technology, China, in computer science

and technology. His current research

interests include software testing and software maintenance,

especially adaptive random testing, random testing,

combinatorial testing, and regression testing. He has more than

40 publications in journals and proceedings, including in ICSE,

IEEE-TR, JSS, IST, IET Software, IJSEKE, SCN, COMPSAC,

SEKE, and SAC. He has served as the program committee

member of SEKE14-19, SAC17-19, and CTA17-19. He is a

senior member of the China Computer Federation, and a

member of the IEEE and the ACM.

